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Abstract—Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning

from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for

the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the

workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem

common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a

graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how

modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate

different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for

hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with

the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.

Index Terms—Multi-atlas segmentation, partial annotations, Markov Random Field, unifying framework, continuous max-flow,

annotation strategies

Ç

1 INTRODUCTION

IN recent years, major efforts have been undertaken
towards building large medical image databases such as

ADNI [1]. Segmenting anatomical structures in these images
is often necessary to better understand physiological and
pathological processes through quantitative analysis. As the
wealth of data increases, manually annotating the images
becomes prohibitive, especially for large 3D or 4D image
datasets. Automated segmentation approaches may face
challenges in large databases due to large variability in shape
and appearance of the structures of interest, the presence of
pathologies, or different imaging protocols used to acquire
the images. In particular, it becomes increasingly desirable
to develop robust and accurate segmentation techniques that
rely onminimalmanual input or weak supervision.

Multi-atlas segmentation [2], [3], [4] has proven to be a
successful and robust tool and is widely used in the medical

imaging community [5]. The approach generally relies on
label propagation from multiple atlases (i.e., fully annotated
training images) to a target image. Using multiple atlases
offers the important advantage of capturing anatomical var-
iability. Ideally, the atlases should match the population to
be segmented [6]. However, suitable atlases are not always
available for large image databases, especially if the images
in the database exhibit large variabilities, e.g., due to the
presence of disease or aging processes. This motivates the
use of training data obtained with different annotation strat-
egies, where atlas images are only partially annotated, dras-
tically reducing the labelling effort per image and therefore
allowing expert raters to (partially) annotate more training
images in the same time. To employ partially annotated
atlas data while building on the success of multi-atlas seg-
mentation (MAS), we propose a generalisation of the label-
ling problem in existing MAS methods. In the following
paragraphs, we review relevant work in the field before
identifying the main contributions of this paper.

ManyMAS techniques use non-linear registration to warp
segmentations from multiple suitable atlases to a target
image [2], [3], [4], [7], [8], [9]. The target segmentation can be
formed by fusion of the propagated labels, for example by
applying a majority vote rule [2], [8] or another combination
strategy such as a weighted average based on global or local
similarity measures between the target and atlas images [7],
[10]. In [9], a probabilistic framework was presented where
the above-mentioned vote rules are expressed with a genera-
tive label fusion model. This was extended in [10] to incorpo-
rate non-local label fusion and registration uncertainty, and
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in [11] to allow the use of atlases annotated with different
labelling protocols. Other combination strategies include
STAPLE [12], where label fusion weights are estimated with
an expectation-maximisation algorithm, or Joint Label
Fusion [13], where correlations among atlases are taken into
account. To account for high local anatomical variability
between images, and to relax the requirement for accurate
registration, patch-based segmentation [14], [15] has been
introduced. Using this approach, the label fusion step
employs a non-local weighted average of voxel labels in a
small neighbourhood of the atlases, with weights based on
the similarities of patches centred on the compared voxels.
Considerable improvements in segmentation accuracy can be
achieved by using the label propagation results as prior prob-
abilities in subsequent refinement steps, combining them
with regularisation terms and an intensity model in aMarkov
Random Field (MRF) formulation [16], [17], [18], [19], [20].
This was first suggested by [16] in combination with graph-
cuts [21], whereas [17] proposed an expectation-maximisation
approach, whichwas also adopted in [18] and [19].

All of the above methods rely on the availability of a fully
annotated atlas dataset with the aim to segment an individ-
ual target image. It has been shown that, in general, segmen-
tation accuracy decreases when fewer [2] or less similar [8]
atlases are used. However, segmentation methods requiring
fewer atlases (i.e., training data) while preserving accuracy
are highly desirable, as they could reduce the workload of
raters who manually annotate these atlases. Recently, a
number of methods have been proposed for iterative label
propagation, which allow labels from a small set of anno-
tated atlas images to be propagated to similar images or
image regions in the test population [6], [22], [23], [24], [25].
These methods avoid error-prone registration between dis-
similar images by only propagating information between
similar images which are easy to register. They therefore
exploit the unlabelled test population in a semi-supervised
learning setup and thus reduce the amount of labelled atlas
data necessary to achieve accurate segmentation results.

Other strategies to reduce the manual workload that have
been proposed in the computer vision and medical imaging
community employ weak supervision. This includes annota-
tions in the form of bounding boxes around an object instead
of pixel-wise labelling, such as proposed in GrabCut [26] and
recently extended to 3D bounding boxes in [27], scribbles
that only annotate part of an image (e.g., [28]), or image tags
which only describe which class is present in an image (e.g.,
[29]). [30] give a good summary of the various forms of weak
supervision and propose a unified framework for segmenta-
tion in computer vision datasets. In the context of MAS, [31]
proposed a modification of the STAPLE algorithm [12] that
can deal withmissing annotations in the atlases.

A frequently usedmethod to efficiently solve the labelling
problem is to express it as an MRF energy function [32] and
minimise it using min-cut/max-flow techniques [21], [28],
[33], [34]. The MRF is normally defined by a graph con-
structed on a regular grid that represents the target image.
However, some applications formulate anMRF energy func-
tion on graphs connecting multiple images. Recently, [35]
applied graph-cuts for co-segmentation of pairs of PET and
CT images by minimising an MRF energy function which
penalises tumour segmentation differences between a PET

and CT image of the same subject. [36] used an extension of
continuousmax-flow [33] for simultaneous prostate segmen-
tation in multiple 2D slices while penalising segmentation
differences between slices. Continuous max-flow (CMF) sol-
ves the continuous counterpart to the discrete min-cut/max-
flow problem [33] and it can be computed using a reliable,
inherently parallelisable multiplier-based algorithm with
guaranteed convergence. This makes it suitable for the opti-
misation of large labelling problems.

1.1 Our Contribution

In this paper, we propose methods and annotation strategies
which enable the use of partially annotated data for MAS,
with themain goal of reducing the requiredmanual labelling
effort. As a first contribution, we propose a unifying frame-
work for MAS using a novel graphical representation of the
labelling problem. In Section 2 we demonstrate how label
fusion, spatial regularisation, and data models can be
expressed simultaneously using this representation. We
then show in Section 3 how the framework can be used to go
beyond the abilities of existing MAS techniques: The pro-
posed flexible graph structure allows a relaxation of the
annotation requirements in atlas images. This means that
our framework naturally allows the use of atlases that were
only partially annotated, resulting in a reduced manual
labelling effort for expert raters.We examine different partial
annotation strategies and investigate modifications in the
graph configuration to optimally exploit partially annotated
atlas data in the segmentation process. To optimise the aris-
ing MRF energy function, we provide an efficient optimisa-
tion scheme based on continuous max-flow [33], [34] in
Section 4. Experiments on hippocampal (Sections 5.1
and 5.2) and cardiac segmentation (Section 5.3) highlight the
performance of the proposed framework and shed light on
some of the possibilities it offers for employing partial anno-
tations such as missing slices or scribbles. A preliminary ver-
sion of this work was presented in [37]. In comparison, this
paper includes a more comprehensive description of our
work and its context, the exploration of additional partial
annotation strategies, an extension of the proposed method
to multi-label segmentation, and improved and more com-
prehensive experimental evaluation on two datasets.

2 UNIFIED FRAMEWORK FOR MULTI-ATLAS

SEGMENTATION

In this section, we first revisit the labelling problem in exist-
ing MAS methods [2], [7], [8], [16], [17] and reformulate it as
an MRF energy optimisation problem defined on a graph
comprising multiple images (i.e., the target and atlases). In
particular, we show how the proposed graphical approach
can incorporate label fusion (Section 2.1), spatial regularisa-
tion (Section 2.2), as well as a data term and missing atlas
labels (Section 2.3). It is important to note that this unifying
framework also provides a flexible way to employ partially
annotated data and leverage unlabelled data as later intro-
duced in Section 3, which is not possible with the existing
MAS techniques it can express, and is inspired by.

2.1 Label Fusion

For MAS using R images, all atlas images j 2 f1; . . . ; Rg are
registered to the target image i. For convenience we assume
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i ¼ Rþ 1. The label maps lj associated with the atlas images
j are then propagated to the target. Fig. 1a shows an exam-
ple atlas set with corresponding label maps, and an unla-
belled target image. Each voxel x 2 V in the target image i
is labelled using some combination strategy, e.g., a
weighted average of atlas labels ljðxÞ

liðxÞ ¼ argmax
L

XR
j¼1

bijðxÞdðljðxÞ ¼ LÞ: (1)

Here dð�Þ is an indicator function. The weights bijðxÞ can be
uniform (which is equivalent to the majority vote rule as
used in [2], [3], [8]) or based on global or local similarity
measures between images i and j as in [7], [9], [10].

As an alternative perspective, we can use a graphical
representation to model the relationship of shared informa-
tion between the atlases and the target using an MRF [32].
According to the above labelling scenario, this graph con-
nects each voxel x in the target image i to the corresponding
voxels in the atlases j with an edge weighted by bijðxÞ. The
manual annotations in the atlases can be encoded by the
unary potential function

V ðljðxÞÞ ¼
0 ljðxÞ ¼ GjðxÞ;
1 otherwise;

�
(2)

where GjðxÞ is the ground truth label given by the expert
rater, assigning infinite cost to the hypothetical scenario of
assigning a different label to the atlas voxel. Fig. 1b visual-
ises this configuration and in Section 2.3, these terminal
graph connections are discussed in more detail. To find a
labelling on the graph, we can formulate a pairwise

potential function that penalises conflicting labels in voxels
connected by a high weight bijðxÞ, e.g.,

V ðliðxÞ; ljðxÞÞ ¼ bijðxÞdðljðxÞ 6¼ liðxÞÞ: (3)

This assigns a high penalty when the target and atlas labels
differ and the atlas is considered similar to the target i, as
defined by the similarity measure bijðxÞ. In the case of a
majority vote, the weights are uniform, e.g., bijðxÞ ¼ 1. The
cost for labelling an individual voxel x in image i can then
be calculated as follows:

Epropagation liðxÞð Þ ¼
XR
j¼1

V ðliðxÞ; ljðxÞÞ (4)

¼
XR
j¼1

bijðxÞ �
XR
j¼1

bijðxÞdðljðxÞ ¼ liðxÞÞ:

(5)

As we assume the graphical model encodes Markov proper-
ties, voxels in the target image are conditionally indepen-
dent given the atlas images since spatially neighbouring
voxels in the target image are not connected in the graph (in
contrast to the setting for regularisation in many vision
problems [32]). Since the atlas labels are fixed and assumed
to be independent of each other (a common assumption in
MAS), it follows that the target voxels are statistically inde-
pendent, and the optimal label can be found by minimising
Epropagation liðxÞð Þ independently for all voxels

liðxÞ ¼ argmin
L

Epropagation liðxÞ ¼ Lð Þ (6)

¼ argmax
L

XR
j¼1

bijðxÞdðljðxÞ ¼ LÞ: (7)

This leads to the same result as the vote rule in Eq. (1), demon-
strating thatMAS can be expressed in terms of a graph optimi-
sation problem. Patch-based segmentation (PBS [14], [15]) can
also be expressed in this framework. In this case we use a
slightly different graph structure as the label fusion step in
PBS takes into account multiple voxels in a neighbourhood of
x in each atlas instead of just one voxel at location x. By denot-
ing the patch-based label fusion weights as bijðx; yÞ; y 2 N x to
reflect the non-local nature of thesemethods, a labelling can be
found for this scenario as well. Here, multiple patches in the
atlases are used at locations y in a neighbourhood N x around
location x. This scenario is visualised in Fig. 2. A similar con-
figuration could be used to express registration uncertainty as
presented in [10], where labels from multiple “candidate
locations” in each atlaswere fusedusingweights basedon reg-
istration uncertainty. While the proposed formulation holds
for these non-local techniques, the graph structure becomes
more complex. In the scope of this paper, we limit ourselves to
graphs on regular grids where voxels in different images are
only connected if they are at corresponding locations.

It is important to note that the graphical model presented
so far is an ineffective way to encode label fusion. The
1-weighted terminal connections as introduced in Eq. (2)
are never cut. Therefore all atlas voxels could be collapsed
with the terminal nodes they are associated with, and label
fusion could be encoded by unary potentials on the target
image only. However, the proposed novel perspective on

Fig. 1. (a) Toy dataset with an unlabelled target image on the left, atlas
images and corresponding manual annotations (blue and red depict dif-
ferent labels) on the right. (b) In MAS, each voxel x in target image i is
labelled by label propagation from atlases j 2 f1; . . . ; Rg with fusion
weights bijðxÞ. This can also be interpreted as an MRF optimisation
problem, where atlas voxels are connected to the terminal nodes with
infinitely weighted edges and inter-image edges bijðxÞ encode label
fusion.
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label fusion has two advantages: (1) it readily allows the
integration of additional components and therefore pro-
vides a unifying reformulation for existing multi-atlas seg-
mentation methods, and (2) the graphical approach extends
to segmentation using partially annotated atlases (Section 3),
where the proposed model does not permit the trivial
reduction to unary potentials mentioned above.

2.2 Spatial Regularisation

In the previous section, we proposed assigning pairwise
potentials between target and atlas voxels for label propaga-
tion. In addition, we can incorporate spatial regularisation
with pairwise potentials between adjacent voxels x; ywithin
an image i

V ðliðxÞ; liðyÞÞ ¼ aiðx; yÞdðliðxÞ 6¼ liðyÞÞ: (8)

This simple modification of the graph structure is shown in
Fig. 3a. Regularisation enforces spatial consistency by penal-
ising different label assignment in adjacent voxels. If the reg-
ularisation weights aiðx; yÞ are based on intensity gradients,
consistent labels can be enforced in adjacent labels that are
similar in appearance, while allowing different labels across
intensity boundaries. A graph configuration as shown in
Fig. 3a models the scenario where regularisation is used to
refine label fusion results, e.g., as in [16], [38].

2.3 Data Term and Missing Labels

In Eq. (2) we showed how manual annotations can be
encoded as unary potentials which are often referred to as a
data term [28], [32]. The ground truth nature of these anno-
tations is reflected in the graph structure by infinitely
weighted terminal connections for each atlas voxel accord-
ing to the manual label given. As can be seen in Figs. 1b or
3a, the voxels in the target image are not connected to the
terminals as they are assumed to be unlabelled and no prior
knowledge is available for them. It is important to note that
a data term could be specified for the target image as well
using prior probabilities, intensity models of the data, or a
combination of both. This is a common technique when
using MRFs in vision problems [16], [17], [32], [39] and can
be incorporated by extending the graph structure as visual-
ised in Fig. 3b. However, in the scope of this work, such
unary potentials on the target image were not investigated.
Furthermore, missing labels can be easily accounted for by
removing terminal connections (i.e., unary potentials) for
voxels where annotations are not available, as shown in
Fig. 3c. The important implications of this property will be
discussed in detail in Section 3 in conjunction with partially
annotated atlas data.

2.4 Summary

We propose to interpret both the target image and the set of
atlas images as a single graph structure (in which each voxel
is a node) encoding Markov properties. On this graph we
can use unary potentials to define the data term Edata to
encode manual annotations or other prior knowledge, or to
reflect missing labels. We then showed how pairwise poten-
tials can be used to encode label fusion through inter-image
connections and to build a propagation energy term
Epropagation. Another pairwise potential term Eregularisation enc-
odes spatial regularisation through intra-image edges. The
propagation, data, and regularisation terms can be com-
bined to a comprehensive labelling energy function defined
for the whole graph

EðlÞ ¼ EdataðlÞ þ EregularisationðlÞ þEpropagationðlÞ: (9)

As mentioned in the introduction, many existing multi-atlas
segmentation methods (e.g., [16], [18]) use an MRF formula-
tion to improve label propagation results with the benefits

Fig. 2. Graph configuration representing patch-based segmentation.
bijðx; yÞ is determined by a patch similarity measure between a patch
centred around voxel x in image i and voxel y in image j. Not all connec-
tions are drawn for better visibility and to reflect that in practice, dissimi-
lar patches are omitted in the label fusion [14].

Fig. 3. Different graph configurations representing (a) MAS with spatial regularisation in the target image, (b) an additional data term in the target
image, i.e., encoding intensity models for the data, (c) MAS with missing atlas labels. Missing labels are reflected in the graph structure by missing
terminal connections.
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of regularisation and intensity data models. However, these
approaches use probabilistic label propagation results as
prior probabilities (i.e., unary potentials) in a subsequent
refinement step, therefore adding the MRF optimisation as
a separate post-processing step. The above comprehensive
formulation treats label propagation as part of the optimisa-
tion process, and unifies all the components within a single
framework. Furthermore, as we show in Section 3, the flexi-
bility of the proposed graph structure lends itself naturally
to exploit partially annotated data.

3 PARTIAL ANNOTATION STRATEGIES

Manually annotatingmedical images is very time consuming,
placing a major burden on clinical experts tasked with label-
ling large datasets. Using the proposed unified framework, it
is possible to perform segmentation using partially annotated
atlas data, going beyond the scope of existing multi-atlas
segmentation techniques. We showed in Section 2.3 how our
graphical model can easily accommodate missing labels
through missing terminal connections in the graph structure.
By applying our framework to any of the existing approaches
discussed throughout Section 2, this would lead to a segmen-
tation that is inferred from the available labels only, ignoring
missing information.

Additionally, spatial consistency in the atlas images can
be exploited to employ unlabelled atlas data as well. As
neighbouring voxels are expected to share the same label,

particularly if the voxels exhibit similar intensity patterns,
we propose to use spatial regularisation within the atlas
images as a form of intra-image label propagation. This way,
labels may be shared between similar regions with labelled
and unlabelled voxels in the atlases and propagated to the
target image. This modification in the graph structure leads
to a configuration as shown in Fig. 4a. Another possible con-
figuration combines this with an additional inter-atlas prop-
agation scheme which allows atlases to share information as
well (shown in Fig. 4b). This serves to facilitate the propaga-
tion, especially when manual labels are very scarce at some
locations x. The reader may note that this spatial regularisa-
tion scheme contains obsolete edges between labelled atlas
voxels. These could be removed to improve computational
efficiency as shown in Fig. 4c.

With this framework, it becomes interesting to pursue
strategies which aim to efficiently build partially annotated
datasets which may then be used as training data for seg-
mentation tasks. In the remainder of this section, we pro-
pose two partial annotation strategies, which are evaluated
in the Experiments Sections 5.2 and 5.3.

3.1 Strategy A: Slicewise Annotation

Medical volumetric images are often manually annotated
slice-by-slice. Therefore reducing the proportion of anno-
tated sliceswhile retaining robust and accurate segmentation
is an important goal. To simulate partially annotated atlases,
only annotations from a proportion of evenly spaced 2D sli-
ces are used, and the remaining labels are set to be “missing”.
As an example, Fig. 5a shows a cross-section of a 3D image
where every fifth slice is annotated. It is important to note
that in the selected slices, the structures of interest are delin-
eated in detail, i.e., all voxels in that slice are labelled.

3.2 Strategy B: Scribbles

Scribbles are often used to annotate images in the context of
interactive segmentation [26], [28]. This strategy typically
involves placing brush strokes (i.e., “scribbles”) on parts of
the image considered within the structure of interest, or
within the background. As scribbles do not delineate the
structure boundary, this only requires a very short user
interaction and could potentially require less expertise.
These properties make “scribbling” an attractive annotation

Fig. 4. Graph configurations for employing partially annotated atlas data. Voxels with missing labels (white) are disconnected from terminal nodes. In
contrast to Fig. 3c, spatial regularisation is enabled in all images. (a) Voxels at each location x in the target image are connected to voxels in atlases
j. (b) Additionally, atlas voxels are connected to voxels in other atlases. (c) Shows a possible graph sparsification by removing obsolete edges
between labelled atlas voxels.

Fig. 5. Illustration of partial annotation strategies: (a) a volumetric image
with partial slice-by-slice annotation and (b) the same image with scrib-
bles placed on each slice. Red and blue depict foreground and back-
ground, respectively, and voxels in grey remained unlabelled.
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strategy if it can be shown their use leads to competitive
segmentation results. Fig. 5b shows an example image with
scribbles for both the structure of interest (i.e., the hippo-
campus) and the background. We propose to annotate the
training dataset by efficiently placing scribbles covering
large areas (without delineating boundaries), as this can be
done efficiently and is expected to make the segmentation
task easier than very sparse, small scribbles.

4 OPTIMISATION USING CONTINUOUS MAX-FLOW

The MRF energy function proposed in Eq. (9) consists of
unary and pairwise terms. The pairwise terms encoding
propagation (Eq. (3)) and regularisation (Eq. (8)) are both
chosen as a Potts model. The MRF energy is therefore sub-
modular for binary labelling and metric for multiple labels.
Such discrete pairwise MRFs are graph-representable in the
binary case and their global minimum can be found in poly-
nomial time usingmin-cut/max-flow approaches [39]. In the
multi-label case with metric costs, approximate solutions
within a known factor of the global minimum can be
found [21]. Discrete graph-cuts [21] on regular voxel grids
may suffer frommetrication artifacts, in particular when spa-
tial regularisation is only enforced in a 6-neighbourhood.
This can be addressed by increasing the number of edges in
the graph to allow more isotropic regularisation, thus
increasing the computational burden. Increasing the neigh-
bourhood sizemay therefore be problematic for large graphs
between multiple images. Recently, [33] proposed a max-
flow algorithm in the continuous 2D or 3D domain (i.e., an
image) which avoids this metrication bias and is inherently
parallelisable in contrast to many discrete graph-based
methods [33]. As the proposed energy function needs to be
optimised for a large graph consisting of voxels in all images
and their interactions, this approach was adopted and
extended for graphs betweenmultiple images.

Analogous to discrete max-flow approaches, the energy
function on the graph can be optimised by maximising a
source flow ps through the network, subject to flow conser-
vation and capacity constraints on the edges. In the
original continuous max-flow algorithm [33], spatial flows
p ¼ ½px; py; pz�T exist between adjacent voxels in the image
domain V (for regularisation) and source and sink flows ps;t

between voxels and terminal nodes. The optimisation is per-
formed with a variational approach by introducing a
Lagrange multiplier uðxÞ to incorporate the constraints [33].
It has been shown that the resulting uðxÞ corresponds to the
globally optimal labelling [33] in the binary case.

We present a generalisation of CMF from a single image
to an arbitrary configuration of interconnected images to
account for any user-defined choice of inter-image relation-
ships bijðxÞ. Fig. 6 shows the capacity constraints and intro-
duces the notation for inter-image flows rijðxÞ (for label
propagation), spatial flows piðxÞ (for regularisation) and ter-
minal flows ps;ti ðxÞ (for the data term). The regularisation
constraints aðxÞ determine the smoothness of the result. To
enforce greater smoothness in homogeneous image regions
than along intensity boundaries, aðxÞ can be defined based
on the image gradientrIðxÞ

aðxÞ ¼ a exp �krIðxÞk2
2s2

1

 !
; (10)

with parameters a and s1. This measure is the continuous
equivalent of the regularisation term used in in [16], one of
the pioneering works combining regularisation and MAS.
To satisfy flow conservation, the sum of all in- and outgoing
flows riðxÞ at each node must be zero, i.e., 8i; x 2 V

riðxÞ ¼ div piðxÞ � psi ðxÞ þ ptiðxÞ þ
XR

j¼1;j6¼i

rijðxÞ ¼ 0; (11)

where rijðxÞ ¼ �rjiðxÞ and R is the number of images in the
graph. We propose to adapt the definitions of the discrete
gradient and divergence operators to account for aniso-
tropic voxel dimensions ½sx; sy; sz�, which are often found in
medical images

rp ¼ dxp

sx
;
dyp

sy
;
dzp

sz

� �T
(12)

div p ¼ r � p: (13)

Here, dx; dy; dz are the intensity differences between neigh-
bouring voxels in different orientations, respectively. Using
the augmented Lagrangian method [40], the following aug-
mented Lagrangian function can be defined

Lðu; ps; pt;p; rÞ ¼
XR
i¼1

Z
V

psi dxþ
Z
V

uiridx� c

2
krik2

� �
: (14)

Eq. (14) can be maximised iteratively by optimising each
variable u; ps; pt;p; r separately. The novel component com-
pared to [33], [36] is the use of inter-image flows rijðxÞ
between any pair of images i; j. We therefore show in partic-
ular the optimisation step at iteration k for rijðxÞ, while fix-
ing all other variables

rkþ1
ij ¼ argmax

jrijj�bij

Lðu; ps; pt;p; rÞ: (15)

This leads to

rkþ1
ij ¼

�bij;
1
2 ðJk

j � Jk
i Þ � �bij;

1
2 ðJk

j � Jk
i Þ; j 12 ðJk

j � Jk
i Þj � bij;

bij otherwise.

8><
>: (16)

where

Jk
i ¼ ðdiv pi � psi þ ptiÞk þ

XR
l¼1;l6¼i;j

rkil �
uk
i

c
; (17)

Fig. 6. Flow constraints bijðxÞ; Cs;t
i ðxÞ;aiðxÞ for label propagation, data

term and spatial regularisation, and corresponding inter-image flows
rijðxÞ, source and sink flows ps;ti ðxÞ and spatial flows piðxÞ at location x
in image i.
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A more detailed derivation of this result is given in the sup-
plemental material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2017.2711020. After convergence, a
segmentation can be found by discretising the resulting
solution for u, e.g., by thresholding at 50 percent.

CMF has been extended to multi-label segmentation
problems in [34] using a Potts model approach. To optimise
for multiple labels, the graph structure is duplicated for
every label. The data term is encoded in the sink constraints
of each “sub-graph” while the source connections remain
unconstrained. The same changes can be applied to the the
graph in our framework, as shown in Fig. 7, and Eq. (14)
can be adapted accordingly

Lðu; ps; pt;p; rÞ ¼
XR
i¼1

Z
V

psi dxþ
XL
l¼1

Z
V

ui;lri;ldx

 

� c

2

XL
l¼1

kri;lk2
!
:

(18)

Here, ui;l is the labelling function for label l 2 1; ::; L in
image i and ri;l is the new flow conservation constraint

ri;lðxÞ ¼ div pi;lðxÞ � psi ðxÞ þ pti;lðxÞ þ
XR

j¼1;j6¼i

rij;lðxÞ ¼ 0:

(19)

5 EXPERIMENTS AND RESULTS

In the previous sections, we proposed a unified MAS
framework which can naturally accommodate partially
annotated atlas data. We showed how the proposed
graphical representation can implement a number of exist-
ing techniques through changes in the graph configura-
tion. In the following experiments, we first employ our
framework to perform hippocampal segmentation using
three existing techniques (Section 5.1). We then investigate
how the framework can be used—with further modifica-
tions of the graph structure—to employ partially anno-
tated atlases for segmentation. This is done using both the
slicewise partial annotation strategy (Section 5.2) and
scribbles (Section 5.3).

The experiments were carried out on two datasets: (1)
brain MR images from the ADNI database for hippocampal
segmentation (a binary segmentation problem) and (2) car-
diac MR images for segmentation of the right and left ven-
tricular cavities and the left ventricle myocardium (i.e.,
segmentation with multiple labels).

5.1 Evaluation of Proposed Framework for MAS

To explore the proposed unifying framework, a number of
different configurations were compared which correspond
to existing segmentation techniques. To acquire a labelling
on a target image, selected atlas images were aligned with
the target image using non-rigid registration [41] and a
graph was constructed using each of the chosen configura-
tions. The optimisation proposed in Section 4 was per-
formed to achieve a segmentation result.

First, we studied segmentation using the majority vote
label fusion step (MAS-MV) [2], [3], [8]. For this, we assume
a graph structure as shown in Fig. 1b and label propagation
weights were set to bijðxÞ ¼ 1. We compared MAS-MV to
locally weighted label fusion (MAS-LW) as explored in [7],
[9], [10]. Propagation weights bijðxÞ were based on a local
similarity measure between the target and the atlases

bijðxÞ ¼ K � exp �ðPiðxÞ � PjðxÞÞ2
2ps2

2 � jP j

 !
; (20)

where P ðxÞ is a patch centred around voxel x and jP j is the
patch size. K does not influence the label fusion result and
was set to 1. By modifying the graph configuration to addi-
tionally incorporate intra-image edges in the target image,
we added a regularisation term as described in Section 2.2
and shown in Fig. 3a. This configuration (further referred to
as MASr-LW) implements simultaneous label fusion and
regularisation similar to [16], [17]. It is important to note
that these approaches incorporated an additional probabil-
ity term based on intensity models of the data. However, in
preliminary experiments, we achieved better results with-
out this term.

5.1.1 Data and Experiment Setup

The proposed method was applied to 202 images from the
ADNI database [1] for which reference segmentations of the
hippocampus were made available through ADNI. All
images were affinely aligned to the MNI152 template space
with a voxel spacing of 1 mm3 and intensity-normalised [42].
The data were split randomly into two equally sized sets,
one for parameter tuning and one for evaluation. Optimal
parameters were chosen for locally weighted label fusion
(i.e., the propagaton term) and for spatial regularisation.
The tuning procedure is described in Section 5.4.1. The ter-
minal connections encoding the data term simply consisted
of infinite weights in voxels where manual annotations
were available, and zero weight in unlabelled voxels.

5.1.2 Results

For evaluation, a 10-fold cross-validation was performed
within the evaluation set. In each fold, every test subject
was segmented by selecting the R most similar images from
the remaining folds as atlases and transforming them to the
target space using nonrigid registration [41]. Similarity was
assessed with normalised mutual information. This was
repeated for R ¼ f5; 10; 15; 20g to measure the influence of
the number of atlases on segmentation accuracy. Fig. 8
shows the mean Dice coefficients of the pooled results. Seg-
mentation results generally increased with the number of
atlases used. Majority vote (MAS-MV) was more robust

Fig. 7. Schematic showing graph configuration for multi-label CMF using
the Potts Model. The graph (in this figure only one image i is shown) is
replicated for each label l. The data term is encoded in the sink con-
straints for every label.
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than locally weighted fusion (MAS-LW) when using 5 or 10
atlases, but for larger atlas sets, MAS-LW achieved better
results. With additional spatial regularisation, MASr-LW
consistently outperformed both MAS-LW and MAS-MV.

5.2 Evaluation of Partial Annotation Strategy A:
Slicewise (PA-SW)

This experiment investigates the performance of our frame-
work on the same segmentation task when using atlases
which were partially labelled slice-by-slice as proposed in
Section 3.1. This strategy provides exact delineations of struc-
ture boundaries in the annotated slices, which is desirable
due to poor contrast between the hippocampus and neigh-
bouring tissue. As proposed in Section 3, we examined two
graph configurations using different propagation schemes.
In the first configuration (PA-SW-CONF1, Fig. 4a), the regu-
larisation term included spatial regularisation in all images
(i.e., target and atlases). The propagation term allowed label
propagation from the atlases to the target. In addition, in the
second configuration (PA-SW-CONF2, Fig. 4b), label propa-
gation between atlaseswas allowed by expanding the propaga-
tion term with inter-atlas connections. To demonstrate how
these approaches benefit from unlabelled data in the atlas set,
they were compared to a third configuration, PA-SW-
baseline, using the same partial annotations, but no spatial
regularisation within the atlases. In this configuration, inter-
image edges connected target voxels to the atlas voxels, and
spatial regularisation in the target was performed as in
MASr-LW in the previous section.

5.2.1 Data and Experiment Setup

The same data was used as in the previous experiment
(Section 5.1). To simulate partially annotated atlas data,
manual labels of a proportion q of evenly distributed slices
in 20 atlases were used for segmentation of the target
image. To determine which slices were used, for each atlas
a different (random) offset was added to the determined
slice positions. The partial annotations were then trans-
formed to the target space using nonrigid registration [41].
The data term was built by establishing terminal connec-
tions at labelled voxels, while leaving unlabelled voxels
unconnected, as explained in Section 2.3. The proportion
of labelled atlas slices ranged from q ¼ 1 (i.e., fully
labelled) to q ¼ 0:1 (i.e., every 10th slice) to investigate
how strongly the atlas label maps could be sub-sampled
while achieving robust segmentation results. The parame-
ters for the propagation term were chosen as in the previ-
ous experiment and optimal choices for the regularisation

coefficients a; s1 were obtained through parameter tuning
as described in Section 5.4.2.

5.2.2 Results

Results on the evaluation set were obtained using the same
10-fold cross-validation as described in Section 5.1.2. Fig. 9
shows the mean Dice coefficients pooled from all folds for all
tested proportions of labelled slices q. For q ¼ 1 (i.e., the group
on the left), all atlas slices were labelled. In this case, the pro-
posed graph configurations PA-SW-CONF1 and PA-SW-
CONF2 are equivalent toMASwith regularisation refinement
(MASr-LW). It can be seen that reducing the proportion of
labelled atlas slices to q ¼ 0:4 still yields comparable results
for both tested configurations. When using fewer labelled sli-
ces, the performance decays rapidly for PA-SW-CONF1. For
the second configuration CONF2, accuracy decreases as well,
but more steadily. However, it is important to remember that
the performance trade-off for, e.g., q ¼ 0:1 stems from one
tenth of the labelling effort. In contrast to this, results for PA-
SW-baseline (where unlabelled atlas datawas ignored, shown
in blue) deteriorated rapidly when decreasing the annotation
rate. Fig. 10 shows example segmentation results for one sub-
ject at two different slice positions (top and bottom rows) for
decreasing values of q (left to right). For the slice in Fig. 10a,
even using only every tenth atlas slice (i.e., q ¼ 0:1 on the very
right) did not influence the segmentation result. The slice in
Fig. 10b was more challenging to segment due to the complex
shape of the hippocampus. There, reducing the proportion of
labelled atlas slices lead to failure in detecting the folding of
the structure. Incorporating constraints preventing holes in
the segmentation could potentially help reduce this effect.

5.3 Evaluation of Partial Annotation Strategy B:
Scribbles (PA-SC)

Finally, we examined the performance of our framework
when using data annotated with scribbles as proposed in
Section 3.2. This experiment was carried out on cardiac MR
data (Section 5.3.1) to demonstrate the applicability of our
method to different (and multi-label) segmentation tasks.
Scribbles are a suitable annotation strategy for this type of
data due to the small number of slices (therefore it was fea-
sible to annotate each slice) and good image contrast. In a
first group of experiments, we investigated the scenario
when the scribbles were available only on the atlases. This

Fig. 8. Mean Dice coefficients for MAS-MV, MAS-LW and MASr-LW
using R ¼ f5; 10; 15; 20g atlases. The error bars depict the standard
error.

Fig. 9. Mean Dice coefficients for slicewise partial annotation for different
proportions q of labelled atlas slices. PA-SW-CONF1, PA-SW-CONF2,
PA-SW-baseline describe graph configurations and the error bars depict
the standard error.
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partial annotation scenario will be referred to as PA-SC-A
and was compared against MASr-LW with fully annotated
atlases as a gold standard. We used the graph configuration
CONF1 (as shown in Fig. 4a) since manual labels were avail-
able in roughly the same locations in all images (as opposed
to the slicewise annotation strategy where entire slices
remained unlabelled). Therefore, the complex propagation
scheme CONF2 was not deemed necessary. In the second
group of experiments, we examined scenarios which
involve placing scribbles on a target image before auto-
mated segmentation, closely related to [28]. In the simplest
configuration, scribbles were placed solely on the target
image (PA-SC-T) [28], and no atlases were used. We then
investigated if, in addition, a “scribbled” atlas database
would improve these results (PA-SC-A+T). Here, scribbles
were available both in the atlas database and the target
image. Lastly, we used fully annotated atlases in combina-
tion with a scribbled target image (PA-SC-AF+T) to obtain a
target segmentation with the proposed framework.

5.3.1 Data and Experiment Setup

These experiments were performed for multi-label cardiac
segmentation. The proposed method was tested on a short-
axis cardiac MR dataset of 28 subjects in the end-diastole
phase. The data were acquired on a 1.5T Philips Achieva
system (Best, The Netherlands) using a 32-channel coil and
the balanced-steady state free precession (b-SSFP) sequence.
Images in the left ventricular short-axis plane were acquired
using the following parameters: 320� 320 mm field-of-
view; 3.0 ms repetition time; 1.5 ms echo time; 50 ms shot
duration; 8 mm section thickness with a 2 mm gap. The
reconstructed MR images are of dimension 288� 288� 12,
with voxel spacing 1:23� 1:23� 10 mm. The LV cavity, LV
myocardium, and the RV cavity were manually annotated
by two experienced imaging scientists. Ten subjects were
labelled by one observer, whereas the other 18 were labelled
by the second observer. The annotation time for a complete
image was approximately 30 min. In addition, all images
were partially annotated by a third observer. For this pur-
pose, scribbles were placed on every slice for all structures
(including the background). The task was set such that the
observer should rapidly label large areas while not delineat-
ing the structure boundaries. This allowed the annotation
time to be reduced to a mean time of 3:9� 0:6 min, i.e., a

speedup of a factor > 7 compared to a full annotation. All
manual annotations were done using ITK-SNAP [43].

The propagation weights bij for label fusion were chosen
as in [10], where the same cardiac dataset was used. There,
an exponential kernel was proposed based on the sum of
squared distances between two patches centred around cor-
responding voxels in the target and atlas image. The optimal
kernel width was found to be 50 and the patch size 3� 3� 1
voxels. Suitable parameters for spatial regularisation a; s1

were found in a tuning step as described in Section 5.4.3.

5.3.2 Results

The proposed configurations were evaluated using each
image not used during parameter tuning as a target image.
The remaining images were used as atlases, respectively.
For each target subject, the 15 most similar remaining
images were used as atlases as in [10] (measured with nor-
malised mutual information).

Fig. 12a shows mean Dice coefficients for the first group
of experiments, where scribbles were placed on the atlases,
and completely unlabelled target images were segmented
using the proposed framework. It can be seen that using
scribbled atlases (PA-SC-A) yielded results comparable to
MASr-LW (where fully annotated atlases were used) for the
right and left ventricle. For the myocardium, using scribbled
atlases could not match the accuracy achieved when using
fully annotated atlases. Fig. 13 shows example segmentation
results for one subject. It can be seen that the results of PA-
SC-A and MASr-LW are similar. However, since there is no
boundary delineation in the scribbled atlases, the resulting
segmentation results for PA-SC-A were more intensity

Fig. 10. An example segmentation for PA-SW-CONF2 is shown in red and the ground truth segmentation in yellow. The same subject is shown at dif-
ferent slice positions in (a) and (b). From left to right, the proportion of labelled atlas slices q was 1; 0:8; 0:6; 0:4; 0:2; 0:1.

Fig. 11. Example cardiac data: (a) shows an image of the heart and
(b) shows the complete annotation of the left ventricular cavity (blue), the
left ventricular myocardium (cyan) and the right ventricular cavity (green).
(c) shows scribbles placed on the same image using ITK-SNAP [43].
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driven as can be seen for example in the myocardium in the
mid-ventricular view.

The results for the second group of experiments are
shown in Fig. 12b. Here, the target images to be segmented
contained scribbles. In the simplest configuration PA-SC-T,
a target segmentation is obtained from the scribbled target
image only. Adding the scribbled atlases (PA-SC-A+T)
yielded results very similar to PA-SC-T. However, placing
scribbles in a target image to aid segmentation using fully
annotated atlases (PA-SC-AF+T) yielded considerable
improvements over both PA-SC-T (as seen in Fig. 12b) and
MASr-LW (as seen in Fig. 12a. Visual results for these
experiments are shown in Fig. 14 for the same subject as
above. It can be seen that all three methods containing target
scribbles were able to detect the myocardium in the apical
slice, which was not possible using only atlas information
(as seen in the middle row in Fig. 13). Furthermore, it can be
seen that the segmentation obtained with fully annotated

atlases and a scribbled target image (PA-SC-AF+T) is visu-
ally very similar to the ground truth segmentation, which is
also reflected in the high Dice scores reported in Fig. 12b.

5.4 Analysis of Parameter Sensitivity

5.4.1 Multi-Atlas Segmentation

In this section, we describe the parameter selection procedure
for the experiments performed in Section 5.1. First, we deter-
mined parameter values fs2; jP jg forMAS-LW as introduced
in Eq. (20). To do this, 10 target subjects were randomly
drawn from the parameter tuning data. For each target
image, the 20 most similar images in the remaining tuning
images were used as atlases as recommended in [8] and the
segmentation experiments were performed for a parameter
range of jP j ¼ f1; 3; 5; 7; 9g and s2 ¼ f30; 50; 80; 100; 200g.
The parameter set yielding the highest mean Dice coefficient
were used for evaluation and subsequent tuning of the regu-
larisation coefficients a; s1 for MASr-LW. These parameters
were tuned for R ¼ f5; 10; 15; 20g atlases, as we expected the
number of atlases to have an influence on the optimal regu-
larisation coefficients. The explored parameter range was
a ¼ f0; 0:01; 0:1; 2g and s1 ¼ f1; 10; 50; 100; 300g. Figs. 15 and
16 show the results of parameter tuning.

Fig. 13. Visual results for a mid-ventricular (top), apical (middle) and
basal slice (bottom) for one subject. From left to right: The example
image, ground truth segmentation and segmentation obtained with PA-
SC-A and MASr-LW.

Fig. 14. Visual results for a mid-ventricular (top), apical (middle) and
basal slice (bottom) for one subject. From left to right: the example
image, ground truth segmentation and segmentation obtained with PA-
SC-A+T, PA-SC-T, and PA-SC-AF+T.

Fig. 15. Mean Dice coefficients for a grid search of the parameter
choices for MAS-LW on R ¼ 20 atlases. The white cross marks the opti-
mal parameter choice.

Fig. 12. Mean Dice coefficients for experiments employing scribbles. (a)
compares the performance of configurations using scribbled atlas data
to fully annotated atlas data and in (b), results are shown for all configu-
rations where the target itself contains scribbles as well.

Fig. 16. Mean Dice coefficients for a grid search of the parameter
choices for MASr-LW using R ¼ f5; 10; 15; 20g atlases (left to right). The
white cross marks the optimal parameter choice for each experiment.
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5.4.2 Slicewise (SW) Partial Annotation Strategy

For the experiments using slicewise partial annotations
(Section 5.2), the regularisation parameters a; s1 were tuned
on the same dataset as above. The parameters were tuned
separately for both examined graph configurations CONF1
and CONF2. Fig. 17 shows optimal parameter choices for
both PA-SW-CONF1 (Fig. 17a) and PA-SW-CONF2
(Fig. 17b) when using different proportions q of annotated
atlas slices. The parameters with the highest mean Dice
score for each configuration and each q were used during
the evaluation.

5.4.3 Scribbles (SC) Partial Annotation Strategy

Here, parameter selection is discussed for the final experi-
ment (Section 5.3) where scribbles are used for cardiac seg-
mentation. To find parameter settings for regularisation, 10
random subjects were selected as target images. For each
target subject, the 15 most similar images from the remain-
ing population were used as atlases as in [10]. The parame-
ter space was explored on the selected target subjects and
the best performing set was used for the remaining popula-
tion. The spatial regularisation parameters a; s1 were
explored in a range of f0; 0:001; 0:01; 0:1; 1g and f1; 10; 50;
100; 300g, respectively. Fig. 18 shows the tuning results for
all experiment configurations, with optimal parameter
choices marked with a white cross.

6 DISCUSSION

In the experiments section, we first demonstrated how our
framework can be used to express state-of-the-art techni-
ques through modifications in the graphical representa-
tion of the labelling problem (Section 5.1). In particular,
label fusion using the majority vote rule [2], [8] and locally
weighted vote rule [7], [9], [10] were compared against
locally weighted label fusion with added regularisation
for spatial coherence. As expected, using more atlases
generally improved segmentation accuracy [2]. The
parameters for locally weighted label fusion were tuned
using 20 atlases, which may explain the drop in perfor-
mance of MAS-LW compared to MAS-MV when using
fewer (i.e., 5 or 10) atlases. More elaborate parameter tun-
ing should remove this effect as locally weighted fusion

has been shown to outperform majority vote in similar
settings [9]. Regularisation in the target image (MASr-
LW) performed consistently better than MAS-LW. How-
ever, improvements became smaller for larger datasets
where label fusion from many atlases caused inherent
smoothness, yielding decreased benefit from additional
spatial regularisation.

By re-interpreting label fusion as a pairwise component on
an MRF energy function, it is possible to go beyond the scope
of existing applications for multi-atlas segmentation. An
important point is that the modular graph structure, where
pairwise terms can be used for label propagation (between
images) or spatial regularisation (within images) and where a
unary term can be used to encodemanual annotations, allows
a relaxation of the annotation requirements for atlases. There-
fore, the proposed framework can employ partially annotated
images and represent unlabelled voxels simply by removing
terminal links in the graph structure. Furthermore, the label
propagation and regularisation schemes can be configured in
different ways to facilitate information propagation in the
graph. In Section 5.2, two configurationswere used for hippo-
campal segmentation using partially labelled atlases where
only a proportion of slices in each image were annotated.
With both configurations, it was possible to achieve robust
results when using as little as 40 percent of the annotations.
Using the configuration where labels were propagated
between atlases as well as to the target image (PA-SW-
CONF2), it was possible to reduce the amount of labelled sli-
ces even further while still obtainingmeanDice coefficients of
0:83� 0:08 for q ¼ 0:1. In that case for example, only every
tenth slice was labelled in the atlases. Depending on the appli-
cation, this performance trade-off could be acceptable, and
this would mean that partially annotated atlas databases
could be built in 10 percent of the time required to create a

Fig. 17. Mean Dice coefficients for a grid search of the parameter choices using a proportion of q ¼ f1; 0:8; 0:6; 0:4; 0:2; 0:1g labelled slices in the
atlases (left to right). The white cross marks the optimal parameter choice for each q. The colours encode the Dice coefficient (see colorbar on the
right). The top (a) and bottom (b) rows show results for CONF1 and CONF2, respectively.

Fig. 18. Results of parameter tuning for experiments using scribbles.
The color encodes a measure of combined segmentation accuracy in all
structures of interest.
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fully labelled dataset. When allowing propagation only
between each atlas and the target image (PA-SW-CONF1), the
performance decayed as the proportion of labelled atlas slices
was reduced. This can be explained by the increased distance
between labelled slices, making it more difficult for intra-
image regularisation to interpolate labels. In contrast to
CONF2, in CONF1 each voxel in the atlases is connected only
to its spatial neighbours and the target image. Therefore, there
may be large distances (on the graph) between unlabelled and
labelled nodes. CONF2 addresses this problem by facilitating
propagation between atlases as well, therefore reducing the
distances of unlabelled nodes to nodeswith strongdata terms.
A comparison of the above configurations to a configuration
where unlabelled atlas data was ignored (PA-SW-baseline)
revealed that exploiting unlabelled data as in PA-SW-CONF1
and PA-SW-CONF2 was crucial for achieving robust results
when decreasing the annotation rate.

In the slicewise annotation strategy discussed above, the
selected sliceswere completely annotatedwith detailed delin-
eations of structures of interest. In contrast, scribbles were
proposed as an alternative partial annotation strategy in Sec-
tion 3.2, with the aim to save time by not requiring the
observer to delineate the structure boundaries. We chose to
design the task such that the scribbled areas were as large as
possible without sacrificing speed on annotating details (as
shown in Fig. 11c). Placing smaller scribbles could further
increase speed, but likely at the expense of segmentation accu-
racy. The results presented in Fig. 12a show that using scrib-
bled atlases yielded comparable performance to MASr-LW,
albeit with slightly worse accuracy in the myocardium. The
final set of experiments assumed the infrastructure for placing
manual scribbles is available at segmentation time, as for
example in interactive segmentation [28]. Results (Fig. 12b)
showed that in this case, the additional help of scribbled
atlases did not greatly influence segmentation results, indicat-
ing that scribbles in the target directly are sufficient for obtain-
ing an accurate segmentation with the proposed framework.
However, it can be seen that in combination with a scribbled
target image, a fully annotated atlas set can improve segmen-
tation results considerably in the myocardium, which is the
most challenging structure to segment accurately.

6.1 Limitations and Future Work

The proposed method involves two computationally expen-
sive steps: (1) the pairwise non-rigid registration between
the atlases and each target image (approx. 2-10min per regis-
tration step), and (2) the MRF energy minimisation step
(approx. 5-10 min per segmentation task). To increase
computational efficiency, an extension to the proposed
framework could move from a voxel-wise representation of
the images to a supervoxel representation. This change in the
graphical representation could enhance the scalability of the
proposedmethod to larger databases.

The formulation proposed in this paper assumes that the
atlases are a good representation of the anatomy of the target
image. This was achieved by atlas selection based on global
image similarity as commonly used in multi-atlas segmenta-
tion [8]. To account for remaining anatomical variability in
the selected atlases,we used local similaritymeasures for label
fusion.However,when scaling the proposedmethod to larger
databases of dissimilar images, the aforementioned

assumption may no longer hold, and sparse connections
between similar images only could ensure accurate label
propagation, as well as alleviate computational burden due
to registration.

In the scope of this paper, the data term was used exclu-
sively to encode manual annotations. However, as briefly
described in Section 2.3, the data term could also incorpo-
rate conditional label probabilities based on the observed
intensities. These intensity models could be learned from
the annotated data similar to [26] and applied to unlabelled
regions in all images. This could make it feasible to further
reduce the annotation rate while maintaining robust seg-
mentation results. Furthermore, it would be of great interest
to extend the data term to incorporate weak annotations
such as bounding boxes or image tags.

7 CONCLUSION

In this paper, we proposed a unifying formulation for label
propagation and regularisation based on a novel graphical
representation of the labelling problem which is flexible
and easily extendable. Small modifications in its configura-
tion allow the use of partially annotated atlas data for seg-
mentation. Experiments on two datasets demonstrated the
usefulness of the proposed framework for segmentation
using different partial annotation strategies. Pursuing these
annotation strategies can save time and make annotating
large databases feasible, while leading to robust segmenta-
tion results when combined with existing concepts in multi-
atlas segmentation.
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