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Abstract—In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the

directed graph scenario which is a natural form for many real world applications. Different from existing research efforts that either only

deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on

directed graphs using absorbingMarkov chains, which can be regarded as maximizing the accumulated expected number of visits from

the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and

multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and

changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number

of existing methods, including graph kernels, graph Laplacian based methods, and spanning forest of graphs. Its computational

complexity and the generalization error are also studied. Empirically, our algorithm is evaluated on a wide range of applications, where it

has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work

exceptionally well with large sparse directed graphs with e.g., millions of nodes and tens of millions of edges, where it significantly

outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight

changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.

Index Terms—Random walks on directed graphs, transductive learning, absorbing Markov chain, transduction generalization error

Ç

1 INTRODUCTION

WE focus on the following graph transduction problem:
Given a directed graph with certain nodes labeled,

make predictions on the unlabeled nodes by propagating
the class labels following the underlining directed graph
structure. Different from undirected graphs that delineate
symmetric weight between adjacent nodes, in directed
graphs, edge or link directions are well preserved in its
weight matrix. This information is particularly useful in
many real life applications that can be naturally character-
ized using directed graphs, including automated delinea-
tion of filamentary structures in images and videos [1], [2],
[3], [4], [5], image classification [6] and clustering [7], net-
work and link analysis in hyperlinks of webpages as well as
citations of papers [8], [9], [10], [11], among others. More-
over, the fast pace of big data production and storage,
together with the scarcity of annotated labels, also create the
need for algorithms capable of scaling up to make predic-
tions on large-scale directed graphs with few known labels.

Since being introduced by Vapnik in the nineties, many
research efforts have already been devoted to graph-based
transduction or transductive learning, as can be found in
the comprehensive reviews in [12], [13]. Most of the existing
literature work with undirected graphs. For example, the
harmonic functions on Gaussian fields [14], the local and
global consistency of [15], the quadratic criterion [16], the
commute time kernel [11], the partially absorbing random
walks [17], and the greedy max-cut [18]. Besides, there are a
few methods specifically dedicated to directed graphs,
including in particular [6], [19], [20]. One major difficulty in
learning with directed graphs lies in the asymmetric nature
of the weight matrix introduced by these directed edges or
links. This is often regarded as cumbersome when aligning
with the key concepts developed for undirected graphs that
are symmetric by nature, such as graph Laplacians. It thus
leads to the widely adopted symmetrization trick in e.g., the
construction of graph Laplacians [19], or co-link similarity
matrices [10], or covariance kernel [20]. Unfortunately,
important information conveyed by edge directions is still
lost. There have been a few methods for large-scale trans-
duction such as [21], [22], which are however not ready to
be used for directed graphs.

We propose a random walk on absorbing Markov chains
approach to the problem of transductive learning on directed
graphs,where the edge directions—the key aspect of directed
graphs, are well preserved. Our algorithm is intuitive to
understand, easy to implement, and byworkingwith absorb-
ing Markov chains [23], the sparse nature of the graph struc-
ture is also retained, which is important in the context of
predictions on large-scale directed graphs.
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The most related work is that of [19], which generalizes
their earlier framework of regularized risk minimization on
undirected graphs [15] to directed graphs by discrimina-
tively normalizing in-links and out-links, as well as adopt-
ing the directed graph Laplacian of [24]. The method of [19]
involves utilizing a symmetrization trick to construct sym-
metric Laplacian matrix for digraphs [24]. In contrast, we
directly work with asymmetric matrices, which is the key in
preserving edge directions. In addition, the construction
in [19] relies on an irreducible Markov chain, which how-
ever only apply to strongly connected directed graphs, that is,
there is a directed path from any node to any other node of
the graph. Since in practice the directed graphs are usually
not necessarily strongly connected, a teleporting random
walk trick (e.g., [25]) is adopted by inserting bi-directional
edges between all node pairs with an equal weight. The
resulting method thus works only with non-sparse matrices,
instead our algorithm is able to preserve sparse graph struc-
tures and edge directional information of the input. Besides,
our algorithm is able to efficiently work with large-scale
graphs that might be too big to be considered by [19]. More
recently, the family of partially absorbing random walks
(PARWs) is proposed in [17], which can be formulated as a
special case of the absorbing Markov chains considered in
our approach. Notice that absorbing random walks have
also been considered by [26], which recursively constructs
absorbing nodes. However, [26] focuses on ranking with
diversity, which is an entirely different problem in natural
language processing.

The main contributions of this work are four folds. (1) A
novel random walk on absorbing Markov chain approach is
proposed to the problem of transductive classification on
directed graphs. (2) An efficient algorithm is provided that
exploits the inherent sparse graph structure, while it also
maintains and directly utilizes edge directional information.
In addition, an optimal one-step increment/decrement
update (aka online update) is introduced, which is handy
in scenarios where local changes are made to graphs over
time, or prediction are made on out-of-sample instances.
The proposed algorithm also bears interesting connections

to existing works including undirected graph Laplacian,
diffusion graph kernels, spanning forest of graphs, graph-
based proximity measure, among others. (3) We present
several interesting properties of the fundamental matrix of
absorbing Markov chain, a central element in our approach.
(4) We conduct theoretical analysis on its generalization
error, as well as extensive and systematic empirical simula-
tions on various applications to examine the characteristics
of the proposed algorithm and its performance with respect
to existing state-of-the-art methods.1

2 OUR APPROACH: RANDOM WALKS

ON DIRECTED GRAPHS

Let G ¼ ðV; E;WÞ denote a directed graph or digraph,
where V ¼ fv1; v2; . . . vng is the set of nodes, E is the set of
directed edges each connecting two adjacent nodes, and
W ¼ wij

� � 2 Rn�n is the asymmetric non-negative matrix
with wij � 0 denoting the weight associated with the
directed edge from vi to vj. The in-degree of each node vj is
computed as d�j ¼ Pn

i¼1 wij, and define in-degree matrix
D ¼ diagðd�1 ; . . . ; d�n Þ. A column stochastic transition proba-
bility matrix, P ¼ pij

� �
, can be constructed as pij ¼ wij

d�
j
, or

equivalently as P ¼ WD�1. An important remark is that
random walks on an undirected graph can be regarded as a
special case in our context, since in its weight matrix W , the
symmetric pair wij and wji correspond to bi-directional
edges with the same weights—which can be characterized
by a reversible Markov chain. In fact, as illustrated in
Fig. 1a, loops, self-loops, and bi-directional edges (i.e., two
edges between adjacent nodes), as well as mixed graphs (of
directed and undirected edges) are all within the scope of
our digraph definition. In this paper, we focus on a trans-
ductive inference scenario where labels from the set of few
labeled nodes Vl are to be propagated to the rest of nodes,
namely the set of unlabeled nodes Vu, with V ¼ Vl [ Vu. The

Fig. 1. (a) An illustrative example of a weighted digraph-based transduction setting: Two different class labels are to be propagated from the labeled
nodes (the green and the red nodes, each for one class) to other nodes following the graph structure. Here only a subset of the graph nodes and
edges are displayed. Quantities such as W and P can be computed accordingly. (b) As some nodes might have zero in-degree (i.e., source nodes),
a new node is further added with directed edges to every nodes including itself, which gives ~P . According to the c vector, the edges toward those pre-
vious source nodes are weighted by 1, and other edges are weighted by 1� a. (c) Its transpose, ~Q, corresponds to the same graph but with edge
directions being reversed. This facilitates the evaluation of affinity scores flowing from unlabeled nodes (e.g., leaf nodes) to the labeled nodes (e.g.,
source nodes).

1. Implementations of our approach and related comparison meth-
ods can be obtained from https://web.bii.a-star.edu.sg/archive/
machine_learning/Projects/filaStructObjs/Tracing/transDigraph/
index.htm.
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labels here could be binary or multiclass. To simplify the
notation, we assume Vl contains the first l nodes,
Vl ¼ fv1; . . . ; vlg. To accommodate label information, we
define a label matrix Y of size n�K (assuming there are K
class labels available), with each entry Yik containing 1 pro-
vided the node i belongs to Vl and is labeled with class k,
and 0 otherwise. Besides, we define the ground-truth label
vector y, a vector of length n including two disjoint parts yl
and yu: yl is the input label vector of length l over the set of
labeled nodes, with each entry yi for the input class assign-
ment of node vi 2 Vl; yu is the hold-out ground-truth label
for the unlabeled nodes, i.e., a vector of length n� l. Simi-
larly, define the initial label vector ŷ containing also two
parts, ŷl :¼ yl and ŷu ¼ 0, where 0 is an all zero vector of
length n� l. Define the prediction vector y� with also two
parts y�l :¼ yl, as well as y�u of length n� l, containing the
prediction results, where each y�i denotes the predicted class
assignment for a node vi 2 Vu.

2.1 Our Absorbing Markov Chain and Its
Fundamental Matrix

There however exists an issue: the graph often contains
source nodes (i.e., nodes with d�j ¼ 0),2 for which the corre-
sponding columns in P are zero vectors—then P is not sto-
chastic anymore. Inspired by the PageRank method used in
Google search engine [25], we consider an augmented graph
to ameliorate this situation: One extra node vnþ1 is intro-
duced that is further connected to each of the source nodes
Vl with a equal weight of 1 and connected to the rest of nodes
with a equal weight of ð1� aÞ where a 2 ð0; 1Þ. A self-
connecting edge e ¼ ðvnþ1; vnþ1Þwith a transition probability
1 is further imposed on this new node vnþ1, to save itself
from being another source node. This leads to a digraph as
displayed in Fig. 1b, which also corresponds to an aug-
mented column-stochastic transition probabilitymatrix

~P ¼ aP 0

c 1

� �
�2 Rðnþ1Þ�ðnþ1Þ;

����
where c 2 R1�n is a vector with the elements corresponding
to source nodes being 1 and the remaining elements being
1� a. The reason of introducing a is as follows: Each tran-
sient node has to secure a positive value in c to ensure the
final absorption into vnþ1 for a valid absorbing Markov
chain. This naturally introduces a to down-weight P to aP .

Let us pause for a moment and recall that in our context,
labels of the source nodes (if there are any) are usually
known and are to be propagated to the remaining nodes
including the leaf nodes. Edges of the input graph however
flows from source to leaf nodes, as exemplified in Fig. 1b for
~P . It is more informative to reverse all the edge directions, to
compute instead the affinity of each unlabeled node toward
the labeled nodes (where many are source nodes). As pre-
sented in Fig. 1c, algebraically this corresponds to the
matrix transpose, ~Q :¼ ~PT . Surprisingly, now this row-
stochastic transition probability matrix

~Q ¼ aPT cT

0 1

� �
�¼ ~qij

� �
;

���� (1)

defines an absorbing Markov chain on the augmented
digraph, ~G. Considering random walks in the Markov chain
theory [23], each node vi of the digraph is equivalent to a
Markov chain state si, and collectively, the set of nodes nat-
urally identifies a set of states S ¼ fs1; s2; . . . ; snþ1g in the
Markov chain induced by the graph ~G of nþ 1 nodes. In
what follows node v and state s are sometimes used inter-
changeably. In addition, snþ1 is the only absorbing state,
while St ¼ fs1; s2; . . . ; sng denotes the set of transient or
non-absorbing states connecting to snþ1 by at least one path.
Here each entry ~qij denotes the transition probability from
state si to state sj with si; sj 2 St. It is also known that within
a finite number of steps, a particle in state si moving ran-
domly by ~Qwill be absorbed into snþ1 with probability 1.

Let us inspect further the upper left block of the matrix ~Q
in (1), denote Q ¼ aPT ¼ ½qij�, and I an identity matrix, both
of size n� n. From Markov chain theory [23] we know
every element of Qt ¼ Q . . .Q|fflfflfflffl{zfflfflfflffl}

t

denotes the probability of a

particle starting from si to visit sj in t steps. The expected
number of visits from si to sj ðsi ! sjÞ in t steps is
etðsi ! sjÞ ¼

Pt
k¼0 q

ðkÞ
ij , or in its matrix form

Et ¼ I þQþQ2 þ � � � þQt: (2)

Proposition 1. The fundamental matrix of the absorbing Mar-
kov chain ~Q is

E ¼ ðI � aPT Þ�1 ¼ ½eij�: (3)

The detailed proof is described in Appendix 5. In what
follows, we present a transductive learning algorithm based
on the fundamental matrix of the above absorbing Markov
chain ~Q.

2.1.1 Our Algorithm Maximizes the Accumulated

Expected Number of Visits

An important fact [23] about the fundamental matrix E of
our Markov chain ~Q is that its ði; jÞth entry eij provides
the expected number of times a particle from a transient
state si visits the transient state sj. This provides a notion
of affinity from state i to j. The intuition is, if a state j is
close to the initial state i in terms of graph structure, it
will be visited by the particle more often than if it is far
away from initial state (We visit our close relatives more
often than our distant ones). Now define the affinity
matrix as

A ¼ EY ¼ ðI � aPT Þ�1Y: (4)

It is a matrix of size n�K, with each entry aik being associ-
ated with an affinity score of state i belonging to class k. In
other words, it is the accumulated expected number of visits
from state vi to those states in Vl that are labeled with class
k. Here a 2 ð0; 1Þ acts as a parameter which controls how
long the random walker stays among the transient states
before it gets absorbed. If a is closer to 1 then the random
walker stays for a longer period of time before getting
absorbed, and vice versa. Empirically, it is observed that
our approach is insensitive to varying a values to anything
between .01 and .99. We set a ¼ 0:1 throughout the experi-
ments. To infer y�u of the unlabeled states Vu, our algorithm2. Usually source nodes are within V l, i.e., they are labeled nodes.
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predicts each entry’s class assignment by identifying a label
with the largest affinity score, namely

y�i ¼ argmax
k

aik; 8vi 2 Vu: (5)

2.1.2 Multi-Label Classification

With slight modification our approach is also able to work
with multi-label classification. That is, starting with a few
nodes of the input graph being labeled, to predict multiple
target labels for each of the remaining nodes. Instead of Y ,
we consider a matrix ~Y of size n� ~K for the input label
matrix. Here, each column of ~Y is for one of the ~K labels,
and each entry contains ~Yik ¼ 1 if the ith instance is positive
for label k, �1 if it is a negative instance, or 0 if it is unla-
beled. Instead of y�, define ~Y � the prediction matrix of size
n� ~K. To infer the row vectors ~Y �

u: of the unlabeled states
Vu from the incurred affinity matrix A ¼ ½aik�, we replace (5)
with the following one: 8vi 2 Vu; k 2 f1; . . . ; Kg, ~y�ik ¼ 1 if
aik > 0, and ~y�ik ¼ �1 otherwise. In other words, a particu-
lar entry is assigned positive, if its accumulative expected
number of visits to positively labeled instances is more than
that to those negative ones, and vice versa. The same proce-
dure can be carried on over all labels.

Algorithm 1. Transduction by Random Walks on
Directed Graphs

Input: A digraph G ¼ ðV; E;WÞ, label information Y , yl, and
a 2 ð0; 1Þ.
Output: y�u
Compute the in-degree matrixD.
Compute the transition probability matrix P ¼ WD�1.
Compute the affinity matrix A by (4).
Produce prediction y�u. The ith entry is computed by (5), for
an unlabeled node vi 2 Vu.

2.1.3 One-Step Increment/Decrement Update

(Aka Online Update)

In a dynamic graph setting, over the time its graph weights
or even structure might subject to changes, being either
inserting or deleting edges or nodes of the graph, or merely
adjustments of the edge weights. Note the node insertion
case corresponds to the out-of-sample instance scenario.
These operations can all be accomplished by one-step incre-
ment/decrement edge update. In what follow we present a
simple OðnÞ procedure to perform such update in our con-
text. Consider G (or G0) being a digraph (its updated
digraph) with transient submatrix Q ¼ aPT (Q0), and funda-
mental matrix E (E0), respectively. Our aim is to efficiently
update E in the following three cases: (1) Delete an edge or
decrease an edge weight, Dqij < 0; (2) Add an edge or
increase an edge weight, Dqij > 0, and Dqijeji 6¼ 1; (3) Add
a new node with its edges. Furthermore, the matrix Q has
the property that the summation of each row equals either a
or 0. In this case, a change of weight entry qij will lead to
changes in the entire ith row of Q. Fortunately, as described
in Proposition 2 below, the cases described above can all be
addressed, once we establish a mean to update E0 by Propo-
sition 2(i) focusing on the change of only a single entry qij
between Q and Q0:

Proposition 2.

(i) Suppose for an arbitrary entry qij, the amount of
change, Dqij, satisfies

��Dqij�� 	 qij if Dqij < 0, and
Dqijeji 6¼ 1 otherwise. The incurred amount of change
in E is

DE :¼ E0 � E ¼ Dqij
1� Dqij eji

E:i Ej: (6)

where E:i and Ej: denote the ith column and jth row of
E, respectively.

(ii) Consider the changes in the entire ith row of Q, and
assume the amount of change in each entry satisfies the
condition described above. To update matrix E, we can
either apply (6) n times with each time dealing with
one entry change, or equivalently apply the following
result:

E0 ¼ E þ E:iðDQi: EÞ
1� DQi: E:i

; (7)

where DQi: denotes the amount of change in the ith
row of Q.

(iii) Suppose a new node is added to the graph such that the

matrix Q becomes Q0 ¼ Q u
vT q

� 	
, then the new fun-

damental matrix E0 is given by

E0 ¼ E þ gðEuÞðvTEÞ gðEuÞ
gðvTEÞ g

� 	
; (8)

where g ¼ 1
ð1�qÞ�vT Eu

.

The proof is detailed in Appendix A. Notice the imposed
condition of Dqijeji 6¼ 1 in (i) for adding an edge is to guar-
antee that E is well-defined. Empirically online updates are
shown to produce the same results as the batch update
counterpart (i.e., our normal algorithm), with negligible
entry-wise difference (on the order of 10�10) but with an
order of magnitude speedup.

2.1.4 Properties of E

We present here several interesting properties regarding the
fundamental matrix E, a central element in our approach.

� Nonnegativity. For a digraph, elements of its funda-
mental matrix satisfies eij � 0, 1 	 i; j 	 n.

� Edge reversal property. By simply reversing all the
edge directions of a digraph with a fundamental
matrix E, the corresponding new fundamental
matrix is equal to ET .

� Connectivity and Transitivity. (i) For any edge ði; jÞ 2
f1; . . . ; ng in a digraph, eij > 0 iff there is at least
one path form vi to vj; (ii) For any i; j; k 2 f1; . . . ; ng,
if eij > 0 and ejk > 0, then eik > 0. As boundary
condition we assume there is one path of length 0
from any node to itself.

Moreover, if maxi;jqij < 1
n, the following properties are

also true:

� Diagonal dominance. For i; j 2 f1; . . . ; ng of a digraph
with i 6¼ j, eii > maxfeij; ejig.
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� Triangular inequality. For i; j; k 2 f1; . . . ; ng of a
digraph with j 6¼ i and k 6¼ i, eii � maxfeij þ eik�
ejk; eji þ eki � ekjg.

� Transit inequality. For distinct indices i; j; k 2
f1; . . . ; ng of a digraph, if there exists a path from vi
to vk and each path from vi to vt includes vk, then
eik > eit.

� Monotonicity. Suppose the entry qkt concerning the
edge from vk to vt is increased by Dqkt > 0. Then

(i) Dekt > 0, and for any i; j 2 f1; . . . ; ng such that
i 6¼ k or j 6¼ twe have Dekt > Deij;

(ii) for any i 2 f1; . . . ; ng, if there is a path from vi to
vk, then Deit > Deik.

Due to space limit, which are adapted from the proofs in
[27] tackling proximity measures in a more general setting.
Although the above properties are well-established as prox-
imitymeasures betweenvertices of graphs, to our best knowl-
edge,many of them are not shownbefore for the fundamental
matrix of a absorbingMarkov chain.

2.2 Connections to Existing Methods

2.2.1 Graph Kernels

Algebraically our algorithm is similar to several graph ker-
nels, including the Von Neumann Kernel KVND ¼P1

k¼0 a
kWk ¼ ðI � aWÞ�1 [28], and the regularized com-

mute time kernel KRCT ¼ ðD� aWÞ�1 [11], [15], [29]. These
kernel functions are however constructed specifically from
undirected graphs (i.e., within the cone of symmetric posi-
tive definite matrices) and based on considerably different
motivations and derivations.

2.2.2 PageRank and Digraph Laplacian

Our approach is also related to PageRank [25], which
resolves the issue of source nodes by teleporting random
walks that introduce bi-directional edges to all node pairs
with equal weights, i.e., �P ¼ ð1� hÞP þ h

n ee
T with e a n� 1

vector of all ones, and h a tiny positive real. A very similar
idea is also used by the closely related work [19] based on
digraph Laplacian [24]. They are very different from our
approach. First, both operate on graphs with irreducibleMar-
kov chains rather than the absorbing Markov chains consid-
ered in our context. By definition irreducibility requires
each node can be reached from any other node, i.e., a
strongly connected graph—algebraically this often gives
rise to a dense matrix, as shown in the teleporting operation.
Second, as side-effects of introducing the teleporting opera-
tion, the input graph structure is not well preserved, and
weak edge signals also tend to be washed away. In contrast
our approach is able to retain the input graph structure as
well as weak signals.

2.2.3 Graph Laplacian in Undirected Graphs

Our algorithm also works with undirected graphs as a special
case (i.e., equivalent to bi-directional edges with equal
weights). An interesting observation is that here our algo-
rithm can be shown as a scaled variant of the graph Lapla-
cian based method in [15], which has been specifically
developed for undirected graphs. This is discussed in
details in Appendix A.

2.2.4 Partially Absorbing Random Walks (PARW) [17]

It can be shown that the absorbing Markov chains consid-
ered in our context is quite general: The random walks
of [17] correspond to a very special kind of such absorbing
Markov chains where the submatrix of W concerning tran-
sient nodes forms a symmetric non-negative matrix. In
other words, the transient nodes are inter-connected with
undirected edges, while the edges from transient to absorb-
ing nodes are still directed. Details are relegated to
Appendix A.

2.2.5 Spanning Forest of Digraphs [30]

The celebrated Matrix-Tree theorem has been extended to
general digraphs [31], where the quantity Q :¼ 


I þ tL
��1

with L :¼ D�W is shown to be the normalized counts of
spanning out-forests. It turns out Q is a scaled version of
ðI � aPT Þ�1, the central piece of our approach. Details are
relegated to the supplementary file, available online, due to
space limit.

2.3 Analysis of Algorithm 1

2.3.1 Computational Complexity

The complexity of Algorithm 1 is dominated by the cost of
computing the affinity matrix A in (4), which can be accom-
plished by solving the following linear system

ðI � aPT ÞA ¼ Y:

For a general dense matrix P , the computational time is
Oðn3 þ n2KÞ. This is e.g., about the same complexity
of [19], one of our main competing methods. Fortunately,
P is usually a sparse matrix in our context, which can be
exploited to reduce the computational time. There are
many efficient solvers for large sparse linear systems,
including both direct [32], [33] and iterative methods [34],
[35]. In our implementation, we adopt the direct solver
UMFPACK [32] which exists as a built-in routine (for LU,
backslash, and forward slash functions) in MATLAB. The
specific complexity depends on the size (n), the number
of non-zero entries and the sparsity pattern of P , which
remains a challenging task to provide a tighter complex-
ity measure dedicated to our context. Nevertheless, our
approach is practically much more efficient comparing to
state-of-the-art methods including [19], as is empirically
verified in experiments.

2.3.2 Error Bound Based on Transductive

Rademacher Complexity

A data-dependent generalization error bound is provided
for the proposed algorithm, where we focus on the binary-
class case for the sake of simplicity. The bound provided by
our analysis is built on top of the work of [36] on transduc-
tive Rademacher complexity.

We start by reformulating our algorithm (4) as an equiva-
lent representation

h ¼ Eŷ ¼ ðI � aPT Þ�1ŷ; (9)

where ŷ is the initial label vector with partial labels
ŷi 2 f
1g for vi 2 Vl, and ŷi ¼ 0 otherwise. The obtained h
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is the “soft” label vector with hi being the “soft” label for
node vi, which will be assigned with class label signðhiÞ
when making predictions.3 We denote byHout the set of fea-
sible soft label vectors generated by our algorithm (9). Since
there are l labeled nodes, it follows that

Hout � H :¼ h
��� h ¼ ðI � aPT Þ�1ŷ; kŷk2 	

ffiffi
l

pn o
; (10)

which naturally admits a vanilla unlabeled-labelled representa-
tion proposed in [36]. We proceed with the definition of
transductive Rademacher complexity.

Definition 3. [36] Let F � Rn and p 2 ½0; 1=2�. The transduc-
tive Rademacher complexity of F with parameter p is defined as

Rl;nðF ; pÞ :¼ 1

l
þ 1

n� l

� �
Ess sup

f2F
ssT f

� 	
; (11)

where ss ¼ ðs1; . . . ; snÞT is a vector of i.i.d. random variables
such that

si :¼
1; with probability p;

�1; with probability p;

0; with probability 1� 2p:

8><
>: (12)

Different from inductive Rademacher complexity [37],
the transductive complexity does not depend on any under-
lying distribution. Besides, for any label vector h, define the
test error as Ll;nðhÞ :¼ 1

n�l

Pn
i¼lþ1 ‘ðhi; yiÞ with respect to its

0=1 loss function ‘ satisfying ‘ðhi; yiÞ ¼ 1 if hi 6¼ yi and
‘ðhi; yiÞ ¼ 0 otherwise, and define the empirical error of h as
L̂l;nðhÞ :¼ 1

l

Pl
i¼1 ‘ðhi; yiÞ. Based on the aforementioned

transductive Rademacher complexity, in what follows we
present our risk bound and relegate the proof to the supple-
mentary file, available online, due to space limit.

Theorem 4. LetHout be the set of feasible soft label vectors gener-
ated by applying (9) to all possible sample set fðvi; yiÞgni¼1. Let

c0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 lnð4eÞ=3p

, q :¼ 1=lþ 1=ðn� lÞ and s :¼
n

ðn�1=2Þð1�1=ð2maxðl;n�lÞÞÞ . For any d 2 ð0; 1Þ, with probability
1� d over random draws of sample fðvi; yiÞgni¼1, for all
h 2 Hout,

Ll;nðhÞ 	 L̂l;nðhÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l

nðn� lÞ kðI � aPT Þ�1k2F
s

þ c0q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðl; n� lÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sq

2
ln
1

d

r
;

(13)

It is easy to see that when l ! 1 and ðn� lÞ ! 1, s ! 1.
Then the convergence rate is determined by the slack terms

c0q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðl; n� lÞp þ

ffiffiffiffiffiffiffiffiffiffiffi
sq
2 ln

1
d

q
, which is in the order of

O



1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
minðl;n�lÞ

p
�
. So far we provide an transductive Rade-

macher bound for the binary scenario. In addition, a trans-
ductive bound based on PAC-Bayes is also provided in
what follows for general multiclass setting where binary
classification can be regarded as a special case. It is known
that the first bound is tighter but more focused on binary
classification, while the PAC-Bayes bound is more general.

2.3.3 PAC-Bayesian Transduction Bound

In this part we present a PAC-Bayesian bound for
Algorithm 1. The error bound presented in the next theorem
is an adaptation of the PAC-Bayesian bound for general
transductive learning developed in [38]. It mainly shows
that the test error can be upper bounded by the empirical
error plus some complexity term. Due to space constraint,
the proof is in the supplementary file, available online.

Theorem 5. Let L̂l;nðhÞ and Ll;nðhÞ be the empirical error and
test error, respectively, defined the same as in the previous sec-
tion with respect to the 0=1 loss function ‘. Then, for any deter-
ministic classifier h determined by our Algorithm 1 and any
d 2 ð0; 1Þ, with probability at lest 1� d over random draws of
Vl from V, the following bound holds

Ll;nðhÞ 	 L̂l;nðhÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ð1� l
nÞ

ln
n

l
þ 1

l
ln
Cðl; nÞ

d
þ lnðKeÞ

� �s
;

(14)

where Cðl; nÞ ¼ ð ffiffiffi
2

p
ln lþ 8Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð1� l

nÞ
q

and e is the base of the
natural logarithm.

Notice that when bl 	 l=n 	 bu for any constant bl, bu
satisfying 0 < bl 	 bu < 1 (e.g., l=n ¼ b0 the number of
labelled sample is a constant proportion of the number of
full sample), the complexity term (i.e., the second term on

the right-hand side of (14)) converges to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðKe

bl
Þ

2ð1�buÞ

r
as n ! 1,

which means that in such a case the test error Ll;nðhÞ will
not excess the empirical error L̂l;nðhÞ by a constant value.

3 EXPERIMENTS

Our approach is empirically evaluated in various applica-
tions, including citation problems, UCI datasets, social net-
work problems [39], as well as a relatively unconventional
problem: the retinal blood vessel tracing problem. For the
citation problem three datasets are employed: CoRA [9],
CiteseerX [9], and US Patent [40]. We also conduct experi-
ments on three UCI datasets: COIL20 [41], TDT2,4 and
20Newsgroups [42]. For social network we consider the
Google+ and the Twitter datasets of [39], where the goal is
to identify the social circles of individual users. Finally, the
tracing problem involves three datasets: a synthetic dataset,
as well as DRIVE [3] and STARE [1]. Our approach is also
compared with 12 state-of-the-art methods that directly
work with directed graphs:

3. We should remark that predictions made in this way are exactly
the same as the predictions made by Algorithm 1 in the binary case. Let
I 1 and I2 denote the index sets of labeled data from classes 1 and 2,
respectively, it follows that Yi1 ¼ 1 if i 2 I1, Yi2 ¼ 1 if i 2 I 2 and Yij ¼ 0
otherwise; ŷi ¼ 1 if i 2 I 1, ŷi ¼ �1 if i 2 I2 and ŷi ¼ 0 otherwise. Then,
from Equations (4) and (9) we have

A ¼
X
i2I1

E:i

X
i2I2

E:i

" #
and h ¼

X
i2I1

E:i �
X
i2I2

E:i;

which implies that for 1 	 i 	 n

signðhiÞ ¼ argmaxk2f1;2gaik:
4. NIST Topic Detection and Tracking corpus at http://www.nist.

gov/speech/tests/tdt/tdt98/index.html.
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� Network-only Bayes Classifier (NBC) [43].
� Network-only Link Based classifier (NLB) [44].
� Class Distribution Relational Neighbor classifier

(CDRN) [9].
� Weighted Vote Relational Neighbor classifier

(WVRN) [9].
� Digraph variant of the Commute Time Kernel classi-

fier (CTKd) [11].
� Regularized Commute Time Kernel classifier

(RCTKd) [11].
� Symmetrized Graph Laplacian (SGL) [19].
� Zero-mode Free Laplacian (ZFL) [10].
� Sum Over Path covariance kernel (SOP) [20].
� Biased Discriminative random Walks (bDWalk) [45],

[46].
� Bounded normalized random walk with restart

(bNRWR) [45].
� Approximate normalized, regularized, Laplacian

(aNRL) [45].
Out of these methods, four (NBC, NLB, CDRN, and

WVRN) are implemented by NetKit [9] in Java, SOP [20] is
obtained from the authors, while other methods (CTKd,
RCTKd, SGL, ZFL, bDWALK, bNRWR, aNRL, and Ours)
are implemented by ourselves in MATLAB. Note that the
original Commute Time Kernel classifier (or CTKu) only
works with undirected graphs. To work with digraphs, we
instead replace its original undirected graph Laplacian
with the symmetrized digraph Laplacian of [24]. As a
result, this variant is referred to as CTKd in this paper. To
ensure fair evaluations, the internal parameters of the
comparison methods are either set to as is from the
authors’ original source code, or as suggested by their
respective authors: For example, according to [19], the reg-
ularization parameter is set to 0.1 and the jumping factor
used in teleporting random walk is set to 0.01 for SGL. In
particular, for the four methods implemented by NetKit,
the uniform local-classifier is used as the “local” model,
and for collective inference relaxation labeling has been
used for NBC, CDRN, and WVRN, while iterative classifi-
cation is used for NLB. This setting is reported to deliver
the best performance in [9]. For each of bNRWR and
aNRL, there are two tuning parameters a 2 ð0; 1Þ denoting
the probability that the random walker continues the walk
and t 2 N denoting the maximum walk length. Following
[45], we use 5-fold cross-validation to search the optimal
parameters on the grid f0:1; 0:2; . . . ; 0:9g� f21; 22; . . . ; 25g on
all datasets except US patent, where we set a ¼ 0:1 and
t ¼ 4.5

In term of evaluation metric, the micro-averaged accu-
racy (AC) [47] is adopted in most of the experiments as the
accuracy measure, which is the sum of all true positive
counts divided by the total number of instances. For the
social network applications where there is a need to

evaluate the partial correctness of predicted labels in the
multi-label setting, a modified version of F1 score [48] is
used

F1 ¼ 1

nk

X
i;k

2j~y�ik
T
zikj

j~y�ikj þ jzikj ; (15)

where ~y�ik and zik are predicted and true labels for the kth
label of the ith instance. For the vessel tracing problem, we
employ the DIADEM score (DS) [49] instead, which is a
dedicated measure widely used by the biological tracing
community. An example is provided in the supplementary
file, available online, to illustrate how the DIADEM score is
computed.

3.1 Citation Problem

Paper citations naturally form a digraph and the aim here is
to predict a prescribed topic for each of the unlabeled papers
at hand, provided a few are labeled a priori. We first conduct
evaluations on CoRA [9] and CiteseerX [50]. The CoRA data-
set contains a citation digraph of 2,708 nodes and 5,429
directed links (edges) on computer science research papers
spanning 7 topics. CiteseerX is another citation dataset of
3,312 papers and 4,732 citations (directed edges) from 6 cate-
gories.We also examine our approach on a large-scale dataset,
US Patent [40], which consists of 13 million directed edges
connecting 2.7 million nodes that can be categorized into 418
distinct topics. For all three datasets, the adjacency matrices
are adopted as their correspondingweight matrices.

To evaluate the system performance against varying size
of labeled nodes in digraphs, the following strategy is
adopted: For each of the K classes, certain percentage (i.e.,
label ratio, also denoted as r) of instances (i.e., nodes) in this
class is uniformly selected as labeled nodes—this gives one
empirical data sample. This procedure is repeated 50 times
to produce an averaged performance estimate. We then
vary the label ratio r from 10 to 90 percent with 10 percent
increment, and compare the averaged performance (AC) of
competing methods as presented in the left column of
Fig. 2. Note that during these experiments, when the labeled
nodes are selected, the nodes with “zero-knowledge” com-
ponents [9] will be temporarily removed from consider-
ation, as these nodes that have no directed path connecting
to any node in Vl. Moreover, in Table 1 we present the aver-
aged CPU time for each of the competing methods: For US
Patent dataset, the timing is averaged over single runs of
different label ratios, while for CoRA and CiteseerX, the
timing is instead averaged over all runs and all label ratios,
where there are 50 runs for each specific label ratio.

From the left column of Fig. 2, we observe that for CoRA
and CiteseerX datasets, our approach and bNRWR consis-
tently outperforms the rest of competitors, and both
approaches achieve quite close accuracy. To clearly see the
difference between bNRWR and our approach, we included
a zoom-in figure of Fig. 2 in the supplementary file, avail-
able online, where we see that bNRWR has slightly higher
accuracy than our approach. One reason is that bNRWR
employs cross-validation to select the optimal tuning
parameter while our approach does not. However, cross-
validation makes bNRWR much slower than our approach,
as can be seen in Table 1. For the remaining methods,

5. In [45], the authors only mentioned that they used cross-valida-
tion to select optimal parameters without providing candidate values
for each parameters. The candidate sets used in our experiments are
based on the fact that a 2 ð0; 1Þ and observation that both bNRWR and
aNRL converges within 10 iterations. On US patent dataset, since it
takes prohibitively long time for bNRWR and aNRL to conduct cross-
validation, we use the parameters where both methods perform well
on other datasets.
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WVRN becomes the third best method, which is followed
by CDRN and others, while CTKd, ZFL and SOP often pro-
duce the least favorable results. For US patent dataset our
approach performs consistently the best and with a very

significant advantage comparing to the others across differ-
ent labeling ratios. Note the performance of SGL, a closely
related method of ours, is almost at the lower end of the
middle regime of performers. We attribute this to the fact

Fig. 2. Accuracy comparisons on three UCI datasets as well as the citation benchmarks including CoRA, CiteseerX, and US Patent. Here the micro-
averaged accuracy (AC) is adopted as the evaluation metric. The first column presents results on CoRA, CiteseerX, and US Patent, while the second
column shows results on UCI datasets COIL20, TDT2, and 20Newsgroups. In all plots, the horizontal axis denotes the label ratio (percentage of
labeled nodes) varying from 10 to 90 percent with 10 percent increment. See text for details.
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that both CoRA and CitesserX are not very dense digraphs
and their edge weights are quite asymmetric, which seems
to be difficult for SGL, as source information is not well
kept after utilizing teleporting Markov chain as well as the
symmetrized graph Laplacian [24]. Our results are also
aligned with existing evaluations,6 although the results are
not directly comparable due to the randomized nature
when sampling instances for each of the label ratios. In term
of CPU time as in Table 1, our approach consumes signifi-
cantly less time comparing to other methods, and is with a
significant gap from the second best, WVRN. On the flip
side, bDWALK and SOP are the most computational inten-
sive of all, which is closely followed by SGL. In particular,
our approach is shown to be very efficient when working
with the large-scale US patent dataset, where it takes merely
around 40 seconds for our approach to make predictions on
this million-node dataset using a standard desktop.

3.2 kNN Graphs on UCI Datasets

The kNN graphs are often used in practical semi-supervised
learning tasks. As they are asymmetric by nature, they can
be regarded as digraphs. Therefore, we also evaluate our
approach on kNN graphs constructed from the well-known
UCI datasets. Directed edges of the kNN graphs are
obtained as follows: There is an edge from node xi to node
xj if and only if xj are among the k ¼ 5 nearest neighbors of
xi. The weight of the assigned edge is given by Wij ¼
exp

�kxi�xjk2
2


 �
. Three directed graphs are thus obtained

from three UCI datasets as follows: The kNN graph of
COIL20 consists of 1,440 nodes from 20 classes and 7,200
edges. The kNN graph of TDT2 contains 10,212 nodes from
96 classes and 49,495 edges. The kNN graph of 20News-
groups includes 18,846 nodes from 20 classes and 91,690
edges. Similar to the previous section, we evaluate all meth-
ods on the above kNN graphs with label ratio r varying
from 10 to 90 percent. Experimental results are presented in
Table 1 and the second column of Fig. 2. Our approach
again achieves the best accuracy and outperforms the com-
petitors by a large margin in terms of computational time,
which is consistent with what we have already observed for
the citation problem.

3.3 Social Network Application

It is a non-trivial task to identify social circles in social net-
works. Usually such a problem involves many different

labels (circles) and is of large size. In particular, we consider
the problem of identifying 327 social circles in the Google+
dataset, and 3,127 social circles in the Twitter dataset. Both
datasets are from [39]. The Google+ dataset consists of a
graph with 1.4 million nodes and 30 million directed edges
belonging to 133 users. As only part of the nodes have
ground-truth labels, those nodes with no label information
are trimmed away—we are thus left with 19,327 nodes and
3,294,465 directed edges. Similarly, the Twitter dataset has
81,306 nodes and 2.4 million directed edges from 1,000
users. After removing nodes with no label information, we
obtain a digraph with 19,270 nodes and 490,667 directed
edges. For experimental evaluation, the label ratio r is var-
ied from 10 to 90 percent with 10 percent increment, and the
F1 score in (15) is computed. NBC, NLB, CDRN and WVRN
are only able to work with single-label classification prob-
lem. In the meantime, the teleporting random walks intro-
duced in SGL tends to wash away weak signals, which
seems to significantly deteriorate the performance over all
label ratios. As a result, our approach are compared with
three methods: CTKd, ZFL and SOP, as presented in Fig. 3.
Our approach clearly outperforms other three state-of-the-
arts by a very large margin in both datasets. For the Google
+ dataset, ours produces a series of increasing F1-scores of
0.7–0.95 with the increment of label ratio r, where ZFL and
SOP are the best runner-ups with combined best perfor-
mance of merely 0.25–0.65 during the same range of r.
CTKd seems to perform least well. These phenomena are
similarly observed for the Twitter dataset. The gap of per-
formance in the comparison methods seems to be attributed
to the combined influences of large label size and large data
size (In US patent dataset we also observe a rather signifi-
cant margin between our approach and the best runner-up).
The superior performance of our approach, on the other
hand, suggests that our approach is particularly reliable
when dealing with large-scale graphs with many labels.

3.4 Empirical Time-Complexity of Batch versus
Online Updates

Here we focus on the dynamic graph scenario where a small
fraction of the digraph structure might change over time,
being either changing a single edge weight, or inserting/
deleting a single node. In our context, this boils down to effi-
cient computation of the fundamental matrix E. Our
approach is capable of addressing these changes in E, as
presented in (7) and (8) for online updates, as well as in (3)
for batch update. Ideally, the online updates are expected to
be carried out more efficiently and the results should be the
same as of batch update. To show this, we design the

TABLE 1
Averaged CPU Time (Seconds) for All Competing Methods

NBC NLB CDRN WVRN CTKd RCTKd SGL ZFL SOP bDWALK bNRWR aNRL Ours

CoRA 1.01 1.25 2.90 0.91 2.81 1.31 2.84 1.98 2.84e+4 2.84e+4 2.48 2.30 1.11e-2
CiteseerX 1.04 1.25 3.41 0.96 4.07 1.73 4.13 2.81 6.93e+4 6.93e+4 2.61 2.48 9.79e-3
US Patent 1.14e+3 – 1.10e+3 2.65e+2 – – – – – – 3.57e+4 3.22e+4 40.53

COIL20 3.48 1.95 6.65 1.13 0.36 0.15 0.35 0.30 1.76e+3 1.76e+3 3.28 2.61 1.52e-2
TDT2 1.60e+2 – 2.85e+2 3.95 50.71 12.99 52.10 42.44 – – 87.40 64.01 0.35
20Newsgroups 15.72 79.95 10.65 2.96 1.99e+2 42.07 2.08e+2 1.92e+2 – – 1.05e+2 92.13 2.38

“–” denotes the cases where the method either fails to compute a solution due to out of memory or takes too long time to compute.

6. E.g., Fig. 6 of [9] on CoRA where the best performer delivers
around 0.8–0.9 by varying the label ratios.
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following synthetic experiments: The weight matrix of a
sparse digraph of size n is randomly generated with its E
matrix computed. This is followed by either changing a sin-
gle edge weight, or inserting/deleting a single node from
the digraph, which subsequently gives E0. Its online update
is then computed by (7) or (8), and the batch update is com-
puted by (3). The above process is repeated 20 times, for
each of the following four different digraph sizes, namely
n 2 f10; 100; 1000; 10; 000g, and the median running time is
displayed in Figs. 4A and 4B. Note that this comparison is
not entirely fair as the implementation set-up is less

favorable for the online update: To compute (3) for batch
update, the MATLAB implementation of UMFPACK direct
solver is highly optimized and runs on multiple cores, while
our implementation of the online updates, namely (7)
and (8) are in MATLAB script as is (without any optimiza-
tion). Nevertheless, as presented in Fig. 4 the online update
runs always an order of magnitude faster. Besides, the
numerical difference between batch and online updates is
negligible in practice. As displayed in Fig. 5, on average the
absolute difference value is always below 10�5 in the above
mentioned experiments. In addition, this numerical error
decreases dramatically with the increase of digraph sizes.

3.5 Comparison with Undirected Graph Based
Methods

So far we have compared our approach to a number of
methods that can directly work with digraphs. One may
still wonder how conventional undirected graph based
methods would perform in our context. For this purpose,
we compare our approach with two state-of-the-art such
methods, namely the Learning with Local and Global Con-
sistency (LLGC) method in [15] and the original Commute
Time Kernel classifier (CTKu) [11], both operate on undi-
rected graphs. We also compare with UG, introduced in
Section 2.2 and Appendix 5, which has been shown to be a
special case of our approach when graphs are undirected.
The comparison is conducted on CoRA and CiteseerX,
where we construct undirected graphs via assigning an

Fig. 3. Comparisons of F1-Score on the multi-label problem of Google+ and Twitter datasets. In both plots, the horizontal axis denotes the label ratio
(percentage of labeled nodes) varying from 10 to 90 percent with 10 percent increment. See text for details.

Fig. 4. Empirical time-complexity of batch update (3) versus online updates (7) and (8) of the fundamental matrix E. (A) and (B) show the CPU-time
(log-seconds) of batch update versus online update for changing one row using (7), and for inserting / deleting a new node with (8), respectively. See
text for details.

Fig. 5. Averaged absolute difference between online and batch updates.
The red and the blue curves show the average difference for changing
one row using (7), and for inserting/deleting a new node with (8),
respectively.
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edge if there is at least one link between two nodes, regard-
less of the linking direction. Results are presented in Fig. 6
when the label ratio varies from 0.1 to 0.9. In the figure,
‘Ours’ denotes results of our approach on the original
directed graphs. From Fig. 6, we observe that our approach
has the best overall performance, followed by UG and
LLGC. In addition, our approach performs better than UG
which only work on undirected graphs, especially when r is
large. This implies that incorporating directionality of graph
into our approach improves the performance. Moreover, our
approach outperforms CTKu by a largemargin on both data-
sets, and maintains a clear performance advantage of about
10 percent over LLGC on CoRAdataset.

3.6 The Effect of a

We also provide empirical analysis to study the effect of
varying a value to the performance of the proposed system:
As presented in Fig. 7, the empirical performance across a
wide range of applications is relatively stable against chang-
ing a values, especially during the range of .09 to .25. This
observation is further confirmed in Fig. 8 with varying label
ratios, where different a values usually result in less than
2 percent variations in its performance. The insensitive pat-
tern of a is experienced throughout empirical experiments.
This motivate us to simply fix a to certain value (0.1) during
the rest of experiments. We note in the passing that perfor-
mance degradation is to be expected when a taking extreme
values being too close to either 0 or 1, since which renders E
to be too close to either the identity matrix or an ill-
conditioned matrix, respectively.

3.7 Retinal Blood-Vessel Tracing

In vessel tracing, our approach is evaluated in synthetic
datasets [51], as well as two standard testbeds, DRIVE [3]

and STARE [1]. The synthetic dataset is constructed in
house that contains 17,000 synthesized retinal images with
varying densities of retinal blood vessels (which strongly
correlate with the frequency of cross-over occurrences
among vessel branches). Meanwhile, DRIVE dataset con-
tains 40 retinal fundus images, and STARE has 20 fundus
images. Exemplar images of the three datasets are plotted in
the first column of Fig. 11. Detailed protocol for creating the
synthetic retinal images can be found in [51].

The problem of vessel tracing is to trace blood vessels by
separating them into disjoint vessel trees, each starting from
a unique root segment within the optical disk. The major
difficulty here is to resolve the challenging cross-over issues
that are abundant in the retinal datasets. This problem can
be cast into a digraph-based transduction problem after the
following preprocessing steps:

i) Segmentation: As illustrated in Figs. 9A!9B, an input
retinal image is segmented into a binary image, with
vessel pixels being foreground and the remaining as
background.

ii) Skeleton map: Build a skeleton map from the binary
image, and remove the optical disk area as marked
within red ellipse in Fig. 9C. The tips attached to the
removed optical disk are the tips of root segments,
which are presented as color dots in Fig. 10A.

iii) Skeleton to digraph: A segment is defined in the skele-
ton as the group of connected pixels that ends in
either a junction or a tip. This segment corresponds
to a node in the resulting digraph, as shown in
Figs. 10A!10B. Two nodes are then linked with a

Fig. 6. Comparison with state-of-the-art methods based on undirected
graphs.

Fig. 7. Robustness of our system versus changing a values between .01
and .99. (A) For CoRA and CiteseerX, the performance or our system is
rather stable (with around .001 variation) when a is within .01 and 0.9,
and start to decrease slightly (around .01 variation) when a value goes
beyond .9. (B) The performance remains stable in vessel tracing
problems.

Fig. 8. Robustness of our system with respect to varying label ratio. The
error bar of each labeling ratio (r) displays 5 – 95 percentile of accuracy
when a values are systematically sampled between .01 and .99 with an
.01 increment. The narrow deviations from median as shown in the error
bar (usually less than 2 percent) clearly suggest that our system is rather
stable against changes of a values.

Fig. 9. Preprocessing of retinal blood vessel tracing. (A) An input image
from DRIVE. (B) Binary image after segmentation. (C) Image after skele-
ton extraction and optical disk removal. The red elliptical area in (A) and
(B) is the optical disk. The red dots in (C) are tips of the root segments
identified as those directly contacting the optical disk. Note that each
root segment induces a distinct vessel tree from the graph with itself
being the tree root, due to the nature of blood flow in vessels.
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directed edge if the two coinciding segments from
the skeleton map contact and satisfy the ordering cri-
teria of [51].

This produces a digraph as shown in Fig. 10B, where red-
colored and blue-colored nodes corresponding to the root
segments in skeleton map are labeled with distinct class
labels, each for one particular vessel tree. The task is to
propagate class labels (tree ids) to unlabeled nodes. As
reported in Table 2, overall our approach consistently out-
performs other methods by a margin. It is followed by ZFL,
SGL, and NBC, while WVRN and SOP tend to produce least
accurate predictions. ZFL also performs reasonably well on
vessel tracing problems, which is however cumbersome
when dealing with large matrices, as it requires to work
with (and even invert) dense matrices. Note the SGL
method here is employed as the learning engine in [51]
which is the state-of-the-art in this task. Exemplar images

and results are also presented in Fig. 11 for visual inspec-
tion. It suggests that empirically our approach delivers visu-
ally plausible tracing results when compared to the ground-
truths side-by-side, and errors occur at those challenging
spots that are often also difficult for human observers.

3.8 Analyzing Discriminative Ability
of Our Approach

Further, we compare the intra- and inter-class accumulated
affinity scores over different datasets, which offers an empir-
ical explanation for the discriminative ability of our
approach. The results displayed in Fig. 12 are obtained as fol-
lows: For each non-zero (i; j)th entry in E there is a directed
path connected both nodes. Now group all entries in E into
two sets: Those with both nodes belonging to the same class
(i.e., intra-class), and those each of which is from a different
class (i.e., inter-class). Then accumulate the scores within
each set and normalize – which produces the final scores.
The intra-class score is expected to outnumber the inter-class
one, and the larger the gap (or ratio) between the two sug-
gests a better discriminative ability on the particular dataset.
As revealed in Fig. 12, the ratios are all very large across vari-
ous datasets used in this paper, which indeed suggests that
our algorithm is expected to deliver good performance
regardless of any particular set of input labels.

4 CONCLUSION AND OUTLOOK

A novel random walk approach is proposed on digraphs
that is able to preserve edge directions and is shown to per-
form competitively against the state-of-the-art methods. For
future work, we plan to explore broader scope of applica-
tions, to generalize to work with problems with structured
labels, as well as to investigate its potentials in spectral clus-
tering on digraphs.

Fig. 11. Exemplar retinal tracing results on Synthetic dataset, DRIVE,
and STARE. The first, second and third column shows the original
images, ground-truth images and tracing results of our approach,
respectively. Segments with the same color form a distinct vessel tree.
Thus the number of colors equal to the number of classes (vessel trees).
Selected correct (wrong) tracing segments are shown in green circles
(red squares).

Fig. 10. From skeleton to digraph. (A) A exemplar skeleton map. (B) Its
digraph G. The highlighted zone of nodes are shown as an example
where the corresponding directed subgraph is formed. The segments
marked with red and blue dots at their tips are the root segments, with
each being regarded as the labeled node for its class. In other words,
each class (corresponds to a vessel tree) has exactly its root node
labeled, which corresponds to a source node in graph.

TABLE 2
Average DIADEM Scores (DS) Are Reported for the Synthetic

Dataset, as well as the Widely Used DRIVE
and STARE Testbeds

NBC NLB CDRN WVRN CTKd SGL SOP ZFL Ours

Syn [51] 0.64 0.62 0.61 0.62 0.61 0.64 0.60 0.70 0.73
DRIVE [3] 0.71 0.69 0.63 0.62 0.68 0.71 0.63 0.73 0.76
STARE [1] 0.33 0.29 0.27 0.25 0.30 0.38 0.22 0.39 0.41

Fig. 12. Empirical discriminative ability of our approach. Intra- and inter-
class accumulated affinities are displayed over different datasets. Intui-
tively the larger the gap between intra- and inter-class, the better its per-
formance would be. See text for details.
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APPENDIX

Proof of Proposition 1

Proof. We know [23] that the fundamental matrix of ~Q is
E ¼ P1

t¼0 Q
t, and are left to show that ðI � aPT Þ�1 exists,

and E ¼ ðI � aPT Þ�1. ðI � aPT Þ�1 exists, since its spectral
radius rðP Þ defined as the absolute value of its largest
eigenvalue is always 1, and a < rðP Þ�1 since a 2 ð0; 1Þ.
we also have Q1 ¼ ðaPT Þ1 ¼ 0 and the series I þQþ
Q2 þ . . . will converge to ðI � aPT Þ�1. tu

Proof of Proposition 2

Proof. (i) We focus only on the change in qij. The difference
between Q and Q0 is given by

Q0 �Q ¼ Dqij"i"
T
j ;

where "i ("j) is a column vector with the ith (jth) entry
being 1 and all other entries being 0. By the Sherman-
Morrison-Woodbury formula [52], we have

E0 ¼ ðI �Q0Þ�1 ¼ ðI �Q� Dqij"i"
T
j Þ�1

¼ ðI �QÞ�1

þ Dqij

1� Dqij"
T
j ðI �QÞ�1"i

ðI �QÞ�1"i"
T
j ðI �QÞ�1

¼ E þ Dqij
1� Dqijeji

E:iEj:;

which completes the proof of part (i).
(ii) The update of E is obtained by noting that

Q0 �Q ¼ "iDQi:

and applying the Sherman-Morrison-Woodbury formula
as in part (i).

(iii) By the definition of E, we have

E0 ¼ ðI �Q0Þ�1 ¼ I �Q �u

�vT 1� q

� 	�1

¼ ðI �QÞ�1 þ gðI �QÞ�1uvT ðI �QÞ�1 gðI �QÞ�1u

gvT ðI �QÞ�1
g

" #

¼ E þ gðEuÞðvTEÞ gðEuÞ
gðvTEÞ g

� 	
;

where g ¼ 1
ð1�qÞ�vT ðI�QÞ�1u

¼ 1
ð1�qÞ�vTEu

. tu

Connections to Graph Laplacian in Undirected
Graphs

Here we shown that when operating as random walks on
undirected graphs, our algorithm is equivalent to a scaled
variant of the graph Laplacian method of [15]. For an undi-
rected graph G, denote S ¼ D�1

2WD�1
2, and define P ¼

WD�1, where W ¼ ½wij� is a symmetric matrix and D ¼
diagðd1; . . . ; dnÞ, with di ¼

P
j wij. Now consider applying

our algorithm (i.e., (4) and (5)) on undirected graph G. Since

A ¼ ðI � aPT Þ�1Y ¼ D�1
2ðI � aSÞ�1D

1
2Y;

we have
D

1
2A ¼ ðI � aSÞ�1



D

1
2Y

�
:

Notice that since the goal is to choose the best element from
the current row i as in (5), the result will not change by mul-

tiplying an additional constant d
1
2
i to all elements in the row.

Define Â :¼ D
1
2A, and let Ŷ :¼ D

1
2Y we now have

Â ¼ ðI � aSÞ�1Ŷ ; (A:1)

which recovers the update formula of [15], with the only dif-
ference that instead of Y , Ŷ is used here as a row-wise
scaled variant. In Section 3.5, we compare the method in
(A.1), simply denoted as UG, with other undirected-graph
based methods.

Connections to Partially Absorbing RandomWalks
(PARW) [17]

The random walks considered in [17] deal with a special
form of absorbing Markov chains where the submatrix of its
weight matrix concerning transient nodes forms a symmet-
ric non-negative matrix with diagonal entries taking zero
values. More formally, denote this submatrix as

WP ¼

0 w1 2 � � � w1n

w2 1 0 � � � w2n

� � � � � � � � � � � �
wn 1 � � � wnn�1 0

0
BBB@

1
CCCA;

which is a n� n symmetric non-negative matrix with zero
diagonal values. Let LP ¼ diagð�1; . . . ; �nÞ with �i > 0 8i,
and define �P ¼ vecðLP Þ, where the operator vecð�Þ extracts
the diagonal elements of the input matrix to produce a col-
umn vector. The weight matrix of the PARW family pro-
posed in [17] can be regarded as an extended matrix of WP

by introducing an additional absorbing node, as

~WP ¼ WP �P

0 1

� �
;

with 0 here referring to a 1� n vector of zero values. Define
the degree matrix DP ¼ diagðd1; . . . ; dnÞ with each element
computed as the sum of the corresponding row of WP ,
di ¼

P
j wi j. denote the (sub-) graph Laplacian

LP ¼ DP �WP , and let PW ¼ ðLP þDP Þ�1WP , and
P� ¼ ðLP þDP Þ�1LP . At this point, we are ready to obtain
the probability transition matrix

~PP ¼ PW vecðP�Þ
0 1

� �
;

which is exactly the same form as of ~Q defined earlier in
Equation (1) of our approach. Note that the random walks
considered in [17] is a special form of (1) with WP confined
to being a symmetric matrix with zero diagonal entries. Fol-
lowing Proposition 1, its fundamental matrix becomes

EP ¼
X1
t¼0



PW

�t ¼ 

I � ðLP þDP Þ�1WP

��1

¼ 

LP þ LP

��1

LP þDP

�
:
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It is interesting to observe that the absorption probability
matrix, AP , proposed and discussed in [17] can be related
to EP as

AP ¼
X1
t¼0



PW

�t
PL ¼ EP

h

LP þDP

��1
LP

i
:

Interestingly, it corresponds to a special form of the absorb-
ing probabilities of the Markov chain (see e.g., Theorem
3.3.7 of [23]).
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