IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.40, NO.3, MARCH 2018 611

Direct Sparse Odometry

Jakob Engel

, Vladlen Koltun, and Daniel Cremers

Abstract—Direct Sparse Odometry (DSO) is a visual odometry method based on a novel, highly accurate sparse and direct structure
and motion formulation. It combines a fully direct probabilistic model (minimizing a photometric error) with consistent, joint optimization
of all model parameters, including geometry-represented as inverse depth in a reference frame-and camera motion. This is achieved in
real time by omitting the smoothness prior used in other direct methods and instead sampling pixels evenly throughout the images.
Since our method does not depend on keypoint detectors or descriptors, it can naturally sample pixels from across all image regions
that have intensity gradient, including edges or smooth intensity variations on essentially featureless walls. The proposed model
integrates a full photometric calibration, accounting for exposure time, lens vignetting, and non-linear response functions. We
thoroughly evaluate our method on three different datasets comprising several hours of video. The experiments show that the
presented approach significantly outperforms state-of-the-art direct and indirect methods in a variety of real-world settings, both in

terms of tracking accuracy and robustness.

Index Terms—Visual odometry, SLAM, 3D reconstruction, structure from motion

1 INTRODUCTION

SIMULTANEOUS localization and mapping (SLAM) and
visual odometry (VO) are fundamental building blocks
for many emerging technologies-from autonomous cars and
UAVs to virtual and augmented reality. Realtime methods
for SLAM and VO have made significant progress in recent
years. While for a long time the field was dominated by fea-
ture-based (indirect) methods, in recent years a number of
different approaches have gained in popularity, namely
direct and dense formulations.

Direct versus Indirect. Underlying all formulations is a
probabilistic model that takes noisy measurements Y as input
and computes an estimator X for the unknown, hidden model
parameters (3D world model and camera motion). Typically
a Maximum Likelihood approach is used, which finds the
model parameters that maximize the probability of obtaining
the actual measurements, i.e., X* := argmaxy P(Y|X).

Indirect methods then proceed in two steps. First, the raw
sensor measurements are pre-processed to generate an
intermediate representation, solving part of the overall
problem, such as computing the image coordinates of corre-
sponding points. Second, the computed intermediate values
are interpreted as noisy measurements Y in a probabilistic
model to estimate geometry and camera motion. Note that
the first step is typically approached by extracting and
matching a sparse set of keypoints—however other options
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exist, like establishing correspondences in the form of
dense, regularized optical flow. It can also include methods
that extract and match parametric representations of other
geometric primitives, such as line- or curve-segments.

Direct methods skip this pre-computation step and
directly use the actual sensor values-light received from a
certain direction over a certain time period-as measure-
ments Y in a probabilistic model.

In the case of passive vision, the direct approach thus opti-
mizes a photometric error, since the sensor provides photo-
metric measurements. Indirect methods on the other hand
optimize a geometric error, since the pre-computed values-
point-positions or flow-vecors-are geometric quantities.
Note that for other sensor modalities like depth cameras or
laser scanners (which directly measure geometric quantities)
direct formulations may also optimize a geometric error.

Dense versus Sparse. Sparse methods use and reconstruct
only a selected set of independent points (traditionally cor-
ners), whereas dense methods attempt to use and recon-
struct all pixels in the 2D image domain. Intermediate
approaches (semi-dense) refrain from reconstructing the
complete surface, but still aim at using and reconstructing a
(largely connected and well-constrained) subset.

Apart from the extent of the used image region however, a
more fundamental—and consequential—difference lies in the
addition of a geometry prior. In the sparse formulation, there
is no notion of neighborhood, and geometry parameters (key-
point positions) are conditionally independent given the cam-
era poses & intrinsics.' Dense (or semi-dense) approaches on
the other hand exploit the connectedness of the used image
region to formulate a geometry prior, typically favouring
smoothness. In fact, such a prior is necessarily required to
make a dense world model observable from passive vision

1. Note that even though early filtering-based methods [4], [12] kept
track of point-point-correlations, these originated from marginalized
camera poses, not from the model itself.
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alone. In general, this prior is formulated directly in the form
of an additional log-likelihood energy term [21], [22], [26].

Note that the distinction between dense and sparse is not
synonymous to direct and indirect—in fact, all four combina-
tions exist:

e  Sparse + Indirect: This is the most widely-used formu-
lation, estimating 3D geometry from a set of key-
point-matches, thereby using a geometric error
without a geometry prior. Examples include the
work of Jin et al. [12], monoSLAM [4], PTAM [16],
and ORB-SLAM [20].

e Dense + Indirect: This formulation estimates 3D
geometry from-or in conjunction with-a dense, regu-
larized optical flow field, thereby combining a geo-
metric error (deviation from the flow field) with a
geometry prior (smoothness of the flow field), exam-
ples include [23], [27].

e  Dense + Direct: This formulation employs a photometric
error as well as a geometric prior to estimate dense or
semi-dense geometry. Examples include DTAM [21],
its precursor [26], REMODE [22], and LSD-SLAM [5].

e  Sparse + Direct: This is the formulation proposed in
this paper. It optimizes a photometric error defined
directly on the images, without incorporating a geo-
metric prior. While we are not aware of any recent
work using this formulation, a sparse and direct for-
mulation was already proposed by Jin et al. in 2003
[13]. In contrast to their work however, which is
based on an extended Kalman filter, our method
uses a non-linear optimization framework. The moti-
vation for exploring the combination of sparse and
direct is laid out in the following section.

Furthermore there are hybrid approaches such as SVO [9],
which use a direct formulation for initial alignment and to
obtain correspondences, before switching to an indirect for-
mulation for joint model optimization.

1.1 Motivation

The direct and sparse formulation for monocular visual
odometry proposed in this paper is motivated by the fol-
lowing considerations.

(1)  Direct: One of the main benefits of keypoints is their
ability to provide robustness to photometric and geo-
metric distortions present in images taken with off-
the-shelf commodity cameras. Examples are auto-
matic exposure changes, non-linear response func-
tions (gamma correction/white-balancing), lens
attenuation (vignetting), de-bayering artefacts, or
even strong geometric distortions caused by a rolling
shutter. This robustness or even invariance to photo-
metric variations however comes at the cost of dis-
carding potentially valuable information contained
in exactly these variations.

At the same time, for all use-cases mentioned in
the introduction, millions of devices will be (and
already are) equipped with cameras solely meant to
provide data for computer vision algorithms, instead
of capturing images for human consumption. These
cameras should and will be designed to provide a
complete sensor model, and to capture data in a way

Fig. 1. Direct sparse odometry (DSO). 3D reconstruction and tracked tra-
jectory for a 1:40 min video cycling around a building (monocular visual
odometry only). The bottom-left inset shows a close-up of the start and
end point, visualizing the drift accumulated over the course of the trajec-
tory. The bottom row shows some video frames.

that best serves the processing algorithms: Auto-
exposure and gamma correction for instance are not
unknown noise sources, but features that provide
better image data—and that can be incorporated into
the model, making the obtained data more informa-
tive. Since the direct approach models the full image
formation process down to pixel intensities, it greatly
benefits from a more precise sensor model.

One of the main benefits of a direct formulation is
that it does not require a point to be recognizable by
itself, thereby allowing for a more finely grained
geometry representation (pixelwise inverse depth).
Furthermore, we can sample from across all available
data—including edges and weak intensity variations-
generating a more complete model and lending more
robustness in sparsely textured environments.

(2)  Sparse: The main drawback of adding a geometry
prior is the introduction of correlations between
geometry parameters, which render a statistically
consistent, joint optimization in real time infeasible
(see Fig. 2). This is why existing dense or semi-dense
approaches (a) neglect or coarsely approximate cor-
relations between geometry parameters (orange),
and / or between geometry parameters and camera
poses (green), and (b) employ different optimization
methods for the dense geometry part, such as a pri-
mal-dual formulation [21], [22], [26].

In addition, the expressive complexity of today’s
priors is limited: While they make the 3D reconstruc-
tion denser, locally more accurate and more visually
appealing, we found that priors can introduce a bias,
and thereby reduce rather than increase long-term,
large-scale accuracy. Note that in time this may well
change with the introduction of more realistic, unbi-
ased priors learnt from real-world data.
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Fig. 2. Sparse versus dense Hessian structure. Left: Hessian structure of
sparse bundle adjustment: since the geometry-geometry block is diago-
nal, it can be solved efficiently using the Schur complement. Right:
A geometry prior adds (partially unstructured) geometry-geometry
correlations—the resulting system is hence not only much larger, but
also becomes much harder to solve. For simplicity, we do not show the
global camera intrinsic parameters.

1.2 Contribution

In this paper we propose a sparse and direct approach to mon-
ocular visual odometry, an example reconstruction is shown
in Fig. 1. To our knowledge, it is the only fully direct method
that jointly optimizes the full likelihood for all involved model
parameters, including camera poses, camera intrinsics, and
geometry parameters (inverse depth values). This is in con-
trast to hybrid approaches such as SVO [9], which revert to an
indirect formulation for joint model optimization.

Optimization is performed in a sliding window, where
old camera poses as well as points that leave the field of
view of the camera are marginalized, in a manner inspired
by [17]. In contrast to existing approaches, our method fur-
ther takes full advantage of photometric camera calibration,
including lens attenuation, gamma correction, and known
exposure times. This integrated photometric calibration fur-
ther increases accuracy and robustness.

Our CPU-based implementation runs in real time on a
laptop computer. We show in extensive evaluations on
three different datasets comprising several hours of video
that it outperforms other state-of-the-art approaches (direct
and indirect), both in terms of robustness and accuracy.
With reduced settings (less points and active keyframes), it
even runs at 5x real-time speed while still outperforming
state-of-the-art indirect methods. On high, non-real-time
settings in turn (more points and active keyframes), it cre-
ates semi-dense models similar in density to those of LSD-
SLAM, but much more accurate.

2 DIRECT SPARSE MODEL

Our direct sparse odometry is based on continuous optimi-
zation of the photometric error over a window of recent
frames, taking into account a photometrically calibrated
model for image formation. In contrast to existing direct
methods, we jointly optimize for all involved parameters
(camera intrinsics, camera extrinsics, and inverse depth val-
ues), effectively performing the photometric equivalent of
windowed sparse bundle adjustment. We keep the geome-
try representation employed by other direct approaches,
i.e.,, 3D points are represented as inverse depth in a refer-
ence frame (and thus have one degree of freedom).

Notation. Throughout the paper, bold lower-case letters
(x) represent vectors and bold upper-case letters (H)

0 100 200
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i

150s

i |
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Fig. 3. Photometric calibration. Top: Inverse response function G~ and
lens attenuation V' of the camera used for Fig. 1. Bottom: Exposure ¢ in
milliseconds for a sequence containing an indoor and an outdoor part.
Note how it varies by a factor of more than 500, from 0.018 to 10.5 ms.
Instead of treating these quantities as unknown noise sources, we
explicitly account for them in the photometric error model.

represent matrices. Scalars will be represented by light
lower-case letters (¢), functions (including images) by light
upper-case letters (/). Camera poses are represented as
transformation matrices T; € SE(3), transforming a point
from the world frame into the camera frame. Linearized
pose-increments will be expressed as Lie-algebra elements
z; € s¢(3), which-with a slight abuse of notation-we directly
write as vectors z; € RS. We further define the commonly
used operator = : s¢(3)x SE(3) — SE(3) using a left-multi-
plicative formulation, i.e.,

x; EET,‘ = 6Ii . T7 (1)

2.1 Calibration

The direct approach comprehensively models the image for-
mation process. In addition to a geometric camera model-
which comprises the function that projects a 3D point onto
the 2D image—it is hence beneficial to also consider a photo-
metric camera model, which comprises the function that
maps real-world energy received by a pixel on the sensor
(irradiance) to the respective intensity value. Note that for
indirect methods this is of little benefit and hence widely
ignored, as common feature extractors and descriptors are
invariant (or highly robust) to photometric variations.

2.1.1 Geometric Camera Calibration

For simplicity, we formulate our method for the well-known
pinhole camera model—radial distortion is removed in a pre-
processing step. While for wide-angle cameras this does
reduce the field of view, it allows comparison across methods
that only implement a limited choice of camera models.
Throughout this paper, we will denote projection by Il :
R? — () and back-projection with IT_ ' : O x R — R®, where ¢
denotes the intrinsic camera parameters (for the pinhole
model these are the focal length and the principal point). Note
that analogously to [2], our approach can be extended to other
(invertible) camera models, although this does increase
computational demands.

2.1.2 Photometric Camera Calibration

We use the image formation model used in [8], which
accounts for a non-linear response function G : R — [0,255],
as well as lens attenuation (vignetting) V' : Q — [0, 1]. Fig. 3
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Fig. 4. Residual pattern. Pattern \/, used for energy computation. The
bottom-right pixel is omitted to enable SSE-optimized processing. Note
that since we have 1 unknown per point (its inverse depth), and do not
use a regularizer, we require |\'p| > 1 in order for all model parameters
to be well-constrained when optimizing over only two frames. Fig. 19
shows an evaluation of how this pattern affects tracking accuracy.

shows an example calibration from the TUM monoVO data-
set. The combined model is then given by

where B; and I; are the irradiance and the observed pixel
intensity in frame 4, and ¢; is the exposure time. The model
is applied by photometrically correcting each video frame
as very first step, by computing

(3)

In the remainder of this paper, I; will always refer to the
photometrically corrected image I;, except where otherwise
stated.

2.2 Model Formulation

We define the photometric error of a point p € (); in refer-
ence frame I;, observed in a target frame I, as the weighted
SSD over a small neighborhood of pixels. Our experiments
have shown that eight pixels, arranged in a slightly spread
pattern (see Fig. 4) give a good trade-off between computa-
tions required for evaluation, robustness to motion blur,
and providing sufficient information. Note that in terms of
the contained information, evaluating the SSD over such a
small neighborhood of pixels is similar to adding first- and
second-order irradiance derivative constancy terms (in
addition to irradiance constancy) for the central pixel. Let

R
teti
t;eti

Y

14

b)) — (Lilp] — bi)

where N p is the set of pixels included in the SSD; t;,¢; the
exposure times of the images I;,[;; and || - ||, the Huber
norm. Further, p’ stands for the projected point position of
p with inverse depth d,, given by

p =IL(RII; (p,dp) + t), (5)
with
R t| el
R ©

In order to allow our method to operate on sequences without
known exposure times, we include an additional affine
brightness transfer function given by e~ (I; — b;). Note that
in contrast to most previous formulations [6], [13], the scalar
factor e~ is parametrized logarithmically. This both prevents
it from becoming negative and avoids numerical issues aris-
ing from multiplicative (i.e., exponentially increasing) drift.

Fig. 5. Factor graph for the direct sparse model. Example with four key-
frames and four points; one in KF1, two in KF2, and one in KF4. Each
energy term (defined in Eq. (4)) depends on the point’s host frame
(blue), the frame the point is observed in (red), and the point’s inverse
depth (black). Further, all terms depend on the global camera intrinsics
vector ¢ which is not shown.

In addition to using robust Huber penalties, we apply a
gradient-dependent weighting w, given by

62

Wp 1= —————, 7
T e+ IVLpI; "
which down-weights pixels with high gradient. This
weighting function can be probabilistically interpreted as
adding small, independent geometric noise on the projected
point position p’, and immediately marginalizing it-approx-
imating small geometric error. To summarize, the error E;
depends on the following variables: (1) the point’s inverse
depth dp, (2) the camera intrinsics ¢, (3) the poses of the
involved frames T;, T;, and (4) their brightness transfer
function parameters a;, b;, a;, b;.
The full photometric error over all frames and points is
given by

B =33 30

i€F peP; jEObS(P)

By, ®)

where ¢ runs over all frames F, p over all points P; in
frame i, and j over all frames obs(p) in which the point p
is visible. Fig. 5 shows the resulting factor graph: The
only difference to the classical reprojection error is
the additional dependency of each residual on the pose of
the host frame, i.e.,, each term depends on fwo frames
instead of only one. While this adds off-diagonal entries
to the pose-pose block of the Hessian, it does not affect
the sparsity pattern after application of the Schur comple-
ment to marginalize point parameters. The resulting sys-
tem can thus be solved analogously to the indirect
formulation. Note that the Jacobians with respect to the
two frames’ poses are linearly related by the adjoint of
their relative pose. In practice, this factor can then be
pulled out of the sum when computing the Hessian or its
Schur complement, greatly reducing the additional com-
putations caused by more variable dependencies.

If exposure times are known, we further add a prior pull-
ing the affine brightness transfer function to zero

> (Maa? + Nob}). )

ieF

Eprior =
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Fig. 6. Windowed optimization. The red curve denotes the parameter
space, composed of non-euclidean camera poses in SE(3), and the
remaining euclidean parameters. The blue line corresponds to the tan-
gent-space around ¢, in which we (1) accumulate the quadratic margin-
alization-prior on z, and (2) compute Gauss-Newton steps §. For each
parameter, the tangent space is fixed as soon as that parameter
becomes part of the marginalization term. Note that while we treat all
parameters equally in our notation, for euclidean parameters tangent-
space and parameter-space coincide.

If no photometric calibration is available, we set t; = 1 and
Ao = Ay = 0, as in this case they need to model the (unknown)
changing exposure time of the camera. As a side-note it
should be mentioned that the ML estimator for a multiplica-
tive factor a* = argmaz, Y, (ax; — y;)? is biased if both z;
and y; contain noisy measurements (see [7]); causing a to
drift in the unconstrained case A\, = 0. While this generally
has little effect on the estimated poses, it may introduce a
bias if the scene contains only few, weak intensity variations.
Point Dimensionality. In the proposed direct model, a
point is parametrized by only one parameter (the inverse
depth in the reference frame), in contrast to three unknowns
as in the indirect model. To understand the reason for this
difference, we first note that in both cases a 3D point is in
fact an arbitrarily located discrete sample on a continuous,
real-world 3D surface. The difference then lies in the way
this 2D location on the surface is defined. In the indirect
approach, it is implicitly defined as the point, which (projected
into an image) generates a maximum in the used corner response
function. This entails that both the surface, as well as the
point’s location on the surface are unknowns, and need to
be estimated. In our direct formulation, a point is simply
defined as the point, where the source pixel’s ray hits the surface,
thus only one unknown remains. In addition to a reduced
number of parameters, this naturally enables an inverse
depth parametrization, which—in a Gaussian framework—
is better suited to represent uncertainty from stereo-based
depth estimation, in particular for far-away points [3].
Consistency. Strictly speaking, the proposed direct sparse
model does allow to use some observations (pixel values)
multiple times, while others are not used at all. This is
because—even though our point selection strategy attempts
to avoid this by equally distributing points in space (see
Section 3.2)—we allow point observations to overlap, and
thus depend on the same pixel value(s). This particularly
happens in scenes with little texture, where all points have
to be chosen from a small subset of textured image regions.
We however argue that this has negligible effect in practice,
and—if desired—can be avoided by removing (or down-
weighting) observations that use the same pixel value.

2.3 Windowed Optimization
We follow the approach by Leutenegger et al. [17] and opti-
mize the total error (8) in a sliding window using the
Gauss-Newton algorithm, which gives a good trade-off
between speed and flexibility.

For ease of notation, we extend the = operator as defined
in (1) to all optimized parameters—for parameters other
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than SE(3) poses it denotes conventional addition. We will
use ¢ € SE(3)" x R™ to denote all optimized variables,
including camera poses, affine brightness parameters,
inverse depth values, and camera intrinsics. As in [17], mar-
ginalizing a residual that depends on a parameter in ¢ will
fix the tangent space in which any future information
(delta-updates) on that parameter is accumulated. We will
denote the evaluation point for this tangent space with ¢,
and the accumulated delta-updates by z € se(3)" x R™. The
current state estimate is hence given by ¢ = z&¢,. Fig. 6 vis-

ualizes the relation between the different variables.
Gauss-Newton Optimization. We compute the Gauss-New-

ton system as
H=J)"WJ b=—-J"Wr,

and (10)

where W € R"*" is the diagonal matrix containing the
weights, r € R" is the stacked residual vector, and J € R™*¢
is the Jacobian of r.

Note that each point contributes |N,| = 8 residuals to the
energy. For notational simplicity, we will in the following
consider only a single residual rj, and the associated row of
the Jacobian J,. During optimization—as well as when mar-
ginalizing—residuals are always evaluated at the current
state estimate, i.e.,

e = ri(z88))

e 11
= (Lp' (T, Tj,d, ¢)] = b)) — Le an

t;e% (L [p] - b?)a

where (T;,T;,d,c,a;,a;,b;,bj) := z=g, are the current state
variables the residual depends on. The Jacobian J, is evalu-
ated with respect to an additive increment to z, i.e.,

k(8 +x)=4p)
=" 12
It can be decomposed as
_ [0 p'((B+=z)mgy) (8 +x)mEy)
]k’ — | Qs ) 5 (13)
aP asgeo asphoto
Jr cho ]photo

where §,., denotes the “geometric” parameters (T;, T;, d,c),
and  dpnoto denotes the “photometric” parameters
(a;,a;,b;,b;). We employ two approximations, described
below.

First, both J ., and J,., are evaluated at z = 0. This tech-
nique is called “First Estimate Jacobians” [11], [17], and is
required to maintain consistency of the system and prevent
the accumulation of spurious information. In particular, in
the presence of non-linear null-spaces in the energy (in our
formulation absolute pose and scale), adding linearizations
around different evaluation points eliminates these and
thus slowly corrupts the system. In practice, this approxi-
mation is very good, since J o, Je, are smooth compared
to the size of the increment z. In contrast, J; is much less
smooth, but does not affect the null-spaces. Thus, it is evalu-
ated at the current value for z, i.e., at the same point as the
residual r;. We use centred differences to compute the
image derivatives at integer positions, which are then bili-
nearly interpolated.
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Second, J,, is assumed to be the same for all residuals
belonging to the same point, and evaluated only for the cen-
ter pixel. Again, this approximation is very good in practice.
While it significantly reduces the required computations,
we have not observed a notable effect on accuracy for any
of the used datasets.

From the resulting linear system, an increment is com-

puted as § = H 'b and added to the current state

"V — § 4 x. (14)

Note that due to the First Estimate Jacobian approximation,
a multiplicative formulation (replacing (8 + z)z{, with
S§m(xm¢,) in (12)) results in the exact same Jacobian, thus a
multiplicative update step z"V « log(8ze®) is equally
valid.

After each update step, we update ¢, for all variables that
are not part of the marginalization term, using i «— z = ¢,
and =z « 0. In practice, this includes all depth values, as
well as the pose of the newest keyframe. Each time a new
keyframe is added, we perform up to 6 Gauss-Newton iter-
ations, breaking early if § is sufficiently small. We found
that-since we never start far-away from the minimum—a
Levenberg-Marquardt dampening (which slows down
convergence) is not required.

Marginalization. When the active set of variables becomes
too large, old variables are removed by marginalization
using the Schur complement. Similar to [17], we drop any
residual terms that would affect the sparsity pattern of H:
When marginalizing frame i, we first marginalize all points
in P;, as well as points that have not been observed in the
last two keyframes. Remaining observations of active points
in frame ¢ are dropped from the system.

Marginalization proceeds as follows: Let E’ denote the
part of the energy containing all residuals that depend on
state variables to be marginalized. We first compute a
Gauss-Newton approximation of E’' around the current
state estimate { = xm&,. This gives

E(z )
~ 2z —z0) b+ (z — z) H(z — ) + ¢
=2z" (b —Hay) + ' Hz + (c+ 2 Hzy — 2_b),
———

=b’ =:

(15)

where z;, denotes the current value (evaluation point for r) of
z. The constants ¢, ¢’ can be dropped, and H, b are defined as
in (10), (11), (12), and (13). This is a quadratic function on z,
and we can apply the Schur complement to marginalize a sub-
set of variables. Written as a linear system, it becomes

Hep } {xa } B b/,
Hﬁﬁ T B b/ﬁ ’
where 8 denotes the block of variables we would like to mar-

ginalize, and « the block of variables we would like to keep.
Applying the Schur complement yields Hyoz, = b),, with

HO!D[
[ (16)

Hpg,

Huo = Hoo — HupH Hp, an
b] = b, — HygH; /b, (18)

The residual energy on x, can hence be written as

E'(zq8(8y),) = 2z.b), + 2 Hoo Ty (19)
This is a quadratic function on = and can be trivially added
to the full photometric error FE, during all subsequent
optimization and marginalization operations, replacing the
corresponding non-linear terms. Note that this requires the
tangent space for ¢, to remain the same for all variables that
appear in E' during all subsequent optimization and mar-
ginalization steps.

3 VisuAL ODOMETRY FRONT-END
The front end is the part of the algorithm that

e determines the sets F,P;, and obs(p) that make up
the error terms of Ej,. It decides which points and
frames are used, and in which frames a point is visi-
ble-in particular, this includes outlier removal and
occlusion detection.

e provides initializations for new parameters, required
for optimizing the highly non-convex energy func-
tion Ephoto- As a rule of thumb, a linearization of the
image [ is only valid in a 1-2 pixel radius; hence all
parameters involved in computing p’ should be ini-
tialized sufficiently accurately for p’ to be off by no
more than 1-2 pixels.

e decides when a point/frame should be marginalized.

As such, the front-end needs to replace many operations

that in the indirect setting are accomplished by keypoint
detectors (determining visibility, point selection) and ini-
tialization procedures such as RANSAC. Note that many
procedures described here are specific to the monocular
case. For instance, using a stereo camera makes obtaining
initial depth values more straightforward, while integration
of an IMU can significantly robustify—or even directly pro-
vide—a pose initialization for new frames.

3.1 Frame Management
Our method always keeps a window of up to Ny active
keyframes (we use Ny =7). Every new frame is initially
tracked with respect to these reference frames (Step 1). It is
then either discarded or used to create a new keyframe
(Step 2). Once a new keyframe-and respective new points-
are created, the total photometric error (8) is optimized.
Afterwards, we marginalize one or more frames (Step 3).

Step 1: Initial Frame Tracking. When a new keyframe is cre-
ated, all active points are projected into it and slightly
dilated, creating a semi-dense depth map. New frames are
tracked with respect to only this frame using conventional
two-frame direct image alignment, a multi-scale image pyra-
mid and a constant motion model to initialize. Fig. 7 shows
some examples—we found that further increasing the den-
sity has little to no benefit in terms of accuracy or robustness,
while significantly increasing runtime. Note that when
down-scaling the images, a pixel is assigned a depth value if
at least one of the source pixels has a depth value as in [24],
significantly increasing the density on coarser resolutions.

If the final RMSE for a frame is more than twice that of
the frame before, we assume that direct image alignment
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Fig. 7. Example depth maps used for initial frame tracking. The top row
shows the original images, the bottom row the color-coded depth maps.
Since we aim at a fixed number of points in the active optimization, they
become more sparse in densely textured scenes (left), while becoming
similar in density to those of LSD-SLAM in scenes where only few infor-
mative image regions are available to sample from (right).

failed and attempt to recover by initializing with up to 27
different small rotations in different directions. This recov-
ery-tracking is done on the coarsest pyramid level only, and
takes approximately 0.5 ms per try. Note that this RAN-
SAC-like procedure is only rarely invoked, such as when
the camera moves very quickly or shakily. Tightly integrat-
ing an IMU would likely render this unnecessary.

Step 2: Keyframe Creation. Similar to ORB-SLAM, our
strategy is to initially take many keyframes (around 5-10
keyframes per second), and sparsify them afterwards by
early marginalizing redundant keyframes. We combine
three criteria to determine if a new keyframe is required:

1) New keyframes need to be created as the field of
view changes. We measure this by the mean
square optical flow (from the last keyframe to the
latest frame) f:= (23" |p — p’Hz)% during initial
coarse tracking.

2) Camera translation causes occlusions and dis-
occlusions, which requires more keyframes to be
taken (even though f may be small). This is mea-
sured by the mean flow without rotation, i.e.,
fri= (A3 [p— pi)’, where p, is the warped
point position with R = I3,s.

3) If the camera exposure time changes significantly, a
new keyframe should be taken. This is measured by
the relative brightness factor between two frames
a = |log ("~ %t;t; 1.

These three quantities can be obtained easily as a by-
product of initial alignment. Finally, a new keyframe is
taken if wyf +wy, fy +w,a > Tis, where wy, wy,w, pro-
vide a relative weighting of these three indicators, and
Tyt = 1 by default.

Step 3: Keyframe Marginalization. Our marginalization
strategy is as follows (let I; ... I, be the set of active key-
frames, with I; being the newest and I,, being the oldest):

1)  We always keep the latest two keyframes (/; and 1).

2)  Frames with less than 5 percent of their points visible
in [; are marginalized.

3) If more than N; frames are active, we marginalize
the one (excluding I; and I;) which maximizes a
“distance score” s(I;), computed as

s(h)=/d(i,1) > (d(i,5) +e) ",
jeB.n\{i}

(20)
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Fig. 8. Keyframe management. Bottom: The six old keyframes in the
optimization window, overlaid with the points hosted in them (already
marginalized points are shown in black). The top image shows the full
point cloud, as well as the positions of all keyframes (black camera frus-
tums)—active points and keyframes are shown in red and blue respec-
tively. The inlay shows the newly added keyframe, overlaid with all
forward-warped active points, which will be used for initial alignment of
subsequent frames.

where d(i, j) is the euclidean distance between key-
frames I; and I;, and € a small constant. This scoring
function is heuristically designed to keep active key-
frames well-distributed in 3D space, with more key-
frames close to the most recent one.
A keyframe is marginalized by first marginalizing all points
represented in it, and then the frame itself, using the mar-
ginalization procedure from Section 2.3. To preserve the
sparsity structure of the Hessian, all observations of still
existing points in the frame are dropped from the system.
While this is clearly suboptimal (in practice about half of all
residuals are dropped for this reason), it allows to efficiently
optimize the energy function. Fig. 8 shows an example of a
scene, highlighting the active set of points and frames.

3.2 Point Management
Most existing direct methods focus on utilizing as much
image data as possible. To achieve this in real time, they
accumulate early, sub-optimal estimates (linearizations /
depth triangulations), and ignore-or approximate-correla-
tions between different parameters. In this work, we follow a
different approach, and instead heavily sub-sample data to
allow processing it in real time in a joint optimization frame-
work. In fact, our experiments show that image data is highly
redundant, and the benefit of simply using more data points
quickly flattens off. Note that in contrast to indirect methods,
our direct framework still allows to sample from across all
available data, including weakly textured or repetitive regions
and edges, which does provide a real benefit (see Section 4).
We aim at always keeping a fixed number N, of active
points (we use N, = 2,000), equally distributed across space
and active frames, in the optimization. In a first step, we
identify N, candidate points in each new keyframe (Step 1).
Candidate points are not immediately added into the opti-
mization, but instead are tracked individually in subsequent
frames, generating a coarse depth value which will serve as
initialization (Step 2). When new points need to be added to



618 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.40, NO.3, MARCH 2018

Fig. 9. Candidate selection. The top row shows the original images, the
bottom row shows the points chosen as candidates to be added to the
map (2,000 in each frame). Points selected on the first pass are shown
in green, those selected on the second and third pass in blue and red
respectively. Green candidates are evenly spread across gradient-rich
areas, while points added on the second and third pass also cover
regions with very weak intensity variations, but are much sparser.

the optimization, we choose a number of candidate points
(from across all frames in the optimization window) to be
activated, i.e., added into the optimization (Step 3). Note
that we choose N,, candidates in each frame, however only
keep N, active points across all active frames combined. This
assures that we always have sufficient candidates to acti-
vate, even though some may become invalid as they leave
the field of view or are identified as outliers.

Step 1: Candidate Point Selection. Our point selection strat-
egy aims at selecting points that are (1) well-distributed in
the image and (2) have sufficiently high image gradient
magnitude with respect to their immediate surroundings.
We obtain a region-adaptive gradient threshold by splitting
the image into 32 x 32 blocks. For each block, we then com-
pute the threshold as g + gy, where g is the median absolute
gradient over all pixels in that block, and ¢, a global con-
stant (we use gy, = 7).

To obtain an equal distribution of points throughout the
image, we split it into d x d blocks, and from each block
select the pixel with largest gradient if it surpasses the
region-adaptive threshold. Otherwise, we do not select a
pixel from that block. We found that it is often beneficial to
also include some points with weaker gradient from regions
where no high-gradient points are present, capturing infor-
mation from weak intensity variations originating for exam-
ple from smoothly changing illumination across white
walls. To achieve this, we repeat this procedure twice more,
with decreased gradient threshold and block-size 2d and 4d,
respectively. The block-size d is continuously adapted such
that this procedure generates the desired amount of points
(if too many points were created it is increased for the next
frame, otherwise it is decreased). Fig. 9 shows the selected
point candidates for some example scenes. Note that for for
candidate point selection, we use the raw images prior to
photometric correction.

Step 2: Candidate Point Tracking. Point candidates are
tracked in subsequent frames using a discrete search along
the epipolar line, minimizing the photometric error (4).
From the best match we compute a depth and associated
variance, which is used to constrain the search interval for
the subsequent frame. This tracking strategy is inspired by
LSD-SLAM. Note that the computed depth only serves as
initialization once the point is activated.

Step 3: Candidate Point Activation. After a set of old points
is marginalized, new point candidates are activated to
replace them. Again, we aim at maintaining a uniform
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Fig. 10. Results on EuRoC MAYV (top) and ICL_NUIM (bottom) datasets.
Translational RMSE after Sim(3) alignment. RT (dashed) denotes hard-
enforced real-time execution. Further, we evaluate DSO with low set-
tings at 5 times real-time speed, and ORB-SLAM when restricting local
loop-closures to points that have been observed at least once within the
last tn]ax=1 Os.

spatial distribution across the image. To this end, we first
project all active points onto the most recent keyframe. We
then activate candidate points which—also projected into
this keyframe—maximize the distance to any existing point
(requiring larger distance for candidates created during the
second or third block-run). Fig. 7 shows the resulting distri-
bution of points in a number of scenes.

Outlier and Occlusion Detection. Since the available image
data generally contains much more information than can be
used in real time, we attempt to identify and remove poten-
tial outliers as early as possible. First, when searching along
the epipolar line during candidate tracking, points for
which the minimum is not sufficiently distinct are perma-
nently discarded, greatly reducing the number of false
matches in repetitive areas. Second, point observations for
which the photometric error (4) surpasses a threshold are
removed. The threshold is continuously adapted with
respect to the median residual in the respective frame. For
“bad” frames (e.g., frames that contain a lot of motion blur),
the threshold will be higher, such that not all observations
are removed. For good frames, in turn, the threshold will be
lower, as we can afford to be more strict.

4 RESULTS

In this section we will extensively evaluate our Direct
Sparse mono-VO algorithm (DSO). We both compare it to
other monocular SLAM/VO methods, as well as evaluate
the effect of important design and parameter choices. We
use three datasets for evaluation:

(1)  The TUM monoVO dataset [8], which provides 50 pho-
tometrically calibrated sequences, comprising 105
minutes of video recorded in dozens of different envi-
ronments, indoors and outdoors (see Fig. 11). Since
the dataset only provides loop-closure-ground-truth
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Fig. 11. TUM mono-VO Dataset. A single image from each of the 50 TUM mono-VO dataset sequences (s_01 to s_50) used for evaluation and
parameter studies, overlayed with the predicted depth map from DSO. The full dataset contains over 105 minutes of video (190’000 frames). Note
the wide range of environments covered, ranging from narrow indoor corridores to wide outdoor areas, including forests.

(allowing to evaluate tracking accuracy via the accu-
mulated drift after a large loop), we evaluate using
the alignment error (e,in) as defined in the respective
publication.

(2) The EuRoC MAV dataset [1], which contains 11 ste-
reo-inertial sequences comprising 19 minutes of
video, recorded in three different indoor environ-
ments. For this dataset, no photometric calibration or
exposure times are available, hence we omit photo-
metric image correction and set (A, =\, = 0). We
evaluate in terms of the absolute trajectory error
(€ate), which is the translational RMSE after Sim(3)
alignment. For this dataset we crop the beginning of
each sequence since they contain very shaky motion
meant to initialize the IMU biases—we only use the
parts of the sequence where the MAYV is in the air.

(3)  The ICL-NUIM dataset [10], which contains eight ray-
traced sequences comprising 4.5 minutes of video,
from two indoor environments. For this dataset, pho-
tometric image correction is not required, and all
exposure times can be set to ¢t = 1. Again, we evalu-
ate in terms of the absolute trajectory error (eate).

Methodology. We aim at an evaluation as comprehensive
as possible given the available data, and thus run all
sequences both forwards and backwards, 5 times each (to
account for non-deterministic behaviour). For the EuRoC
MAV dataset we further run both the left and the right
video separately. In total, this gives 500 runs for the TUM-
monoVO dataset, 220 runs for the EuRoC MAYV dataset, and
80 runs for the ICL-NUIM dataset, which we run on 20 dedi-
cated workstations. We remove the dependency on the host
machine’s CPU speed by not enforcing real-time execution,
except where stated otherwise: for ORB-SLAM we play the
video at 20 percent speed, whereas DSO is run in a sequen-
tialized, single-threaded implementation that runs approxi-
mately four times slower than real time. Note that even
though we do not enforce real-time execution for most of
the experiments, we use the exact same parameter settings
as for the real-time comparisons.

The results are summarized in the form of cumulative
error plots (see, e.g., Fig. 10), which visualize for how many

tracked sequences the respective error value (eyte / €align) Was
below a certain threshold;” thereby showing both accuracy
on sequences where a method works well, as well as robust-
ness, i.e.,, on how many sequences the method does not fail.
The raw tracking results for all runs-as well as scripts to
compute the figures-are provided in the supplementary
material.®> Additional interesting analysis using the TUM-
monoVO dataset—e.g., the influence of the camera’s field of
view, the image resolution or the camera’s motion direc-
tion-can be found in [8].

Evaluated Methods and Parameter Settings. We compare
our method to the open-source implementation of (monoc-
ular) ORB-SLAM [20]. We also attempted to evaluate
against the open-source implementations of LSD-SLAM [5]
and SVO [9], however both methods consistently fail on
most of the sequences. A major reason for this is that they
assume brightness constancy (ignoring exposure changes),
while both real-world datasets used contain heavy expo-
sure variations.

To facilitate a fair comparison and allow application of
the loop-closure metric from the TUM-monoVO dataset,
we disable explicit loop-closure detection and re-localiza-
tion for ORB-SLAM. Note that everything else (including
local and global BA) remains unchanged, still allowing
ORB-SLAM to detect incremental loop-closures that can
be found via the co-visibility representation alone. All
parameters are set to the same value across all sequences
and datasets. The only exception is the ICL-NUIM data-
set: For this dataset we set gy, = 3 for DSO, and lower the
FAST threshold for ORB-SLAM to 2, which we found to
give best results.

4.1 Quantitative Comparison

Fig. 10 shows the absolute trajectory RMSE e, on the
EuRoC MAV dataset and the ICL-NUIM dataset for both
methods (if an algorithm gets lost within a sequence, we set

2. On default settings, we run each method 10 times forwards and
10 times backwards, resulting in 1,000/440/160 runs. The respective
error plots summarize all these runs, and are scaled to fit the 500/
220/80 scale.

3. http://vision.in.tum.de/dso
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Fig. 12. Results on TUM-monoVO Dataset. Accumulated rotational drift
e, and scale drift e, after a large loop, as well as the alignment error as
defined in [8]. Since e, is a multiplicative factor, we aggregate
e/, = max(e,, e;'). The solid line corresponds to sequentialized, non-
real-time execution, the dashed line to hard enforced real-time process-
ing. For DSO, we also show results obtained at low parameter settings,
running at 5 times real-time speed.

eate = 00). Fig. 12 shows the alignment error e,jgn, as well as
the rotation-drift e, and scale-drift e, for the TUM-monoVO
dataset. The full set of results for each evaluated trajectory
is visualized in Fig. 13 and Fig. 14.

In addition to the non-real-time evaluation (bold lines),
we evaluate both algorithms in a hard-enforced real-time set-
ting on an Intel i7-4910MQ CPU (dashed lines). In this mode,
we enforce real-time by allowing both ORB-SLAM and DSO
to skip frames if tracking cannot keep up-increasing the drift
or potentially leading to complete loss of track. The direct,

ORB-SLAM:
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Fig. 13. Full evaluation results. All error values for the EuRoC MAV data-
set (left) and the ICL_NUIM dataset (right): Each square corresponds to
the (color-coded) absolute trajectory error e, over the full sequence.
We run each of the 11 + 8 sequences (horizontal axis) forwards (“Fwd”)
and backwards (“Bwd”), 10 times each (vertical axis); for the EuRoC
MAYV dataset we further use the left and the right image stream. Fig. 10
shows these error values aggregated as cumulative error plot (bold, con-
tinuous lines).

ORB-SLAM:

Bwd

s 01

s_10 s 2
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Fig. 14. Full evaluation results. All error values for the TUM-monoVO
dataset (also see Fig. 11). Each square corresponds to the (color-coded)
alignment error e, as defined in [8]. We run each of the 50 sequences
(horizontal axis) forwards (“Fwd”) and backwards (“Bwd”), 10 times each
(vertical axis). Fig. 12 shows all these error values aggregated as cumu-
lative error plot (bold, continuous lines).

sparse approach clearly outperforms ORB-SLAM in accu-
racy and robustness both on the TUM-monoVO dataset, as
well as the synthetic ICL_NUIM dataset. On the EuRoC
MAV dataset, ORB-SLAM achieves a better accuracy (but
lower robustness). This is due to two major reasons: (1) there
is no photometric calibration available, and (2) the sequences
contain many small loops or segments where the quadrocop-
ter “back-tracks” the way it came, allowing ORB-SLAM’s
local mapping component to implicitly close many small
and some large loops, whereas our visual odometry formula-
tion permanently marginalizes all points and frames that
leave the field of view. We can validate this by prohibiting
ORB-SLAM from matching against any keypoints that have
not been observed for more than tn.. = 10s (lines with circle
markers in Fig. 10): In this case, ORB-SLAM performs similar
to DSO in terms of accuracy, but is less robust. The slight
difference in robustness for DSO comes from the fact that for
real-time execution, tracking new frames and keyframe-
creation are parallelized, thus new frames are tracked on the
second-latest keyframe, instead of the latest. In some rare
cases—in particular during strong exposure changes-this
causes initial image alignment to fail.

To show the flexibility of DSO, we include results when
running at 5 times the speed they were recorded at,* with
reduced settings (N, = 800 points, Ny =6 active frames,
424 x 320 image resolution, <4 Gauss-Newton iterations
after a keyframe is created): Even with such extreme set-
tings, DSO achieves very good accuracy and robustness on
all three datasets.

Note that DSO is designed as a pure visual adometry
while ORB-SLAM constitutes a full SLAM system, includ-
ing loop-closure detection & correction and re-localiza-
tion—all these additional abilities are neglected or switched
off in this comparison.

4. All images are loaded, decoded,

beforehand.

and pinhole-rectified
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Fig. 15. Photometric calibration. Errors on the TUM-monoVO dataset for
ORB-SLAM and DSO, when incrementally disabling photometric calibra-
tion. While DSO as a direct method clearly benefits from photometric cal-
ibration, ORB-SLAM as an indirect approach performs better on the
original images. We therefore use the original images for all other ORB-
SLAM evaluations.

Runtime. The required compute depends both on the
number of tracked frames, as well as the number of key-
frames created (i.e., on how far the camera moves). On the
TUM monoVO dataset, the average single-threaded runtime
for initial frame alignment and candidate point tracking
(performed for each frame) is 18 ms (6.5 ms on “reduced”
settings). Creating a new keyframe takes 143 ms (43 ms on
“reduced” settings), also in a single thread.

4.2 Parameter Studies

This section aims at evaluating a number of different param-
eter and algorithm design choices, using the TUM-monoVO
dataset.

Photometric Calibration. We analyze the influence of pho-
tometric calibration, verifying that it in fact increases accu-
racy and robustness for direct methods. To this end, we
incrementally disable the different components:

1)  exposure (blue): sett; = 1and A, = A, = 0.

2) vignette (green): set V(x) =1 (and 1.).

3) response (yellow): set G~! = identity (and 1-2.).

4) brightness constancy (black): set A\, =\, = oo, ie,

disable affine brightness correction (and 1-3.).

Fig. 15 shows the result. As expected, DSO performs signifi-
cantly better with full photometric calibration, in particular
compared to a basic brightness constancy assumption (as
used in many other direct or semi-direct approaches like
LSD-SLAM or SVO). In turn, ORB-SLAM performs worse
when using photometrically calibrated images. In fact, the
photometric calibration only affects the keypoint selection
(FAST thresholding): For this step, using the original
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Fig. 16. Amount of data used. Errors on the TUM-monoVO dataset,
when changing the size of the optimization window (top) and the number
of points (bottom). Using more than N, = 500 points or N; = 7 active
frames has only marginal impact. Note that as real-time default setting,
we use N, = 2,000 and N; = 7, mainly to obtain denser reconstructions.
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Fig. 17. Selection of data used. Errors on the TUM-monoVO dataset,
when changing the type of data used. Left: Errors for different gradient
thresholds g1, which seems to have a limited impact on the algorithms
accuracy. Right: Errors when only using FAST corners, at different
thresholds. Using only FAST corners significantly reduces accuracy and
robustness, showing that the ability to use data from edges and weakly
textured surfaces does have a real benefit.

images—in particular with enabled gamma correction—lead
to a better point distribution. Note that we observed the
same behaviour for DSO, and thus also perform point selec-
tion on the original images (see Section 3.2). In all remaining
experiments we use the original images for ORB-SLAM, and
(if available) a full photometric calibration for DSO.

Amount of Data. We analyze the effect of changing the
amount of data used, by varying the number of active
points N, as well as the number of frames in the active win-
dow Ny. Note that increasing N allows to keep more obser-
vations per point: For any point we only ever keep
observations in active frames; thus the number of observa-
tions when marginalizing a point is limited to N; (see
Section 2.3). Fig. 16 summarizes the result. We can observe
that the benefit of simply using more data quickly flattens
off after N, = 500 points. At the same time, the number of
active frames has little influence after Ny = 7, while increas-
ing the runtime quadratically. We further evaluate a fixed-
lag marginalization strategy (i.e., always marginalize the
oldest keyframe, instead of using the proposed distance
score) as in [17]: this performs significantly worse.

Selection of Data. In addition to evaluating the effect of the
number of residuals used, it is interesting to look at which
data is used—in particular since one of the main benefits of a
direct approach is the ability to sample from all points,
instead of only using corners. To this end, we vary the gradi-
ent threshold for point selection, g:; the result is summa-
rized in Fig. 17. While there seems to be a sweet spot around
gm = 7 (if gy, is too large, for some scenes not enough well-
distributed points are available to sample from—if it is too
low, too much weight will be given to data with a low signal-
to-noise ratio), the overall impact is relatively low.

More interestingly, we analyse the effect of only using cor-
ners, by restricting point candidates to FAST corners only.
We can clearly see that only using corners significantly
decreases performance. Note that for lower FAST thresholds,
many false “corners” will be detected along edges, which our
method can still use, in contrast to indirect methods for
which such points will be outliers. In fact, ORB-SLAM
achieves best performance using the default threshold of 20.

Number of Keyframes. We analyze the number of key-
frames taken by varying 7y (see Section 3.1). For each value
of Tiy we give the resulting average number of keyframes
per second; the default setting Ti; = 1 results in eight key-
frames per second, which is easily achieved in real time.
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Fig. 18. Number of keyframes. Errors on the TUM-monoVO dataset,
when changing the number of keyframes taken via the threshold 7j¢.

The result is summarized in Fig. 18. Taking too few key-
frames (less than 4 per second) reduces the robustness,
mainly in situations with strong occlusions / dis-occlusions,
e.g.,, when walking through doors. Taking too many key-
frames, on the other hand (more than 15 per second),
decreases accuracy. This is because taking more keyframes
causes them to be marginalized earlier (since Ny is fixed),
thereby accumulating linearizations around earlier (and
less accurate) linearization points.

Residual Pattern. We test different residual patterns for N,
covering smaller or larger areas. The result is shown in Fig. 19.

4.3 Geometric versus Photometric Noise Study
The fundamental difference between the proposed direct
model and the indirect model is the noise assumption.
The direct approach models photometric noise, i.e., additive
noise on pixel intensities. In contrast, the indirect
approaches models geometric noise, i.e., additive noise on the
(u,v)-position of a point in the image plane, assuming
that keypoint descriptors are robust to photometric noise.
It therefore comes at no surprise that the indirect
approach is significantly more robust to geometric noise
in the data. In turn, the direct approach performs better
in the presence of strong photometric noise—which key-
point-descriptors (operating on a purely local level) fail to
filter out. We verify this by analyzing tracking accuracy
on the TUM-monoVO dataset, when artificially adding (a)
geometric noise, and (b) photometric noise to the images.
Geometric Noise. For each frame, we separately generate
a low-frequency random flow-map N,:Q — R? by up-
sampling a 3 x 3 grid filled with uniformly distributed ran-
dom values from [789789]2 (using bicubic interpolation).
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Fig. 19. Residual pattern. Errors on the TUM-monoVO dataset for some
of the evaluated patterns \V;,. Using only a 3 x 3 neighborhood seems to
perform slightly worse—using more than the proposed 8-pixel pattern
however seems to have little benefit—at the same time, using a larger
neighbourhood increases the computational demands. Note that these
results may vary with low-level properties of the used camera and lens,
such as the point spread function.
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Fig. 20. Geometric noise. Effect of applying low-frequency geometric noise
to the image, simulating geometric distortions such as a rolling shutter (eval-
uated on the TUM-monoVO dataset). The top row shows an example image
with §, = 2. While the effect is hardly visible to the human eye (observe that
the close-up is slightly shifted), it has a severe impact on SLAM accuracy, in
particular when using a direct model. Note that the distortion caused by a
standard rolling shutter camera easily surpasses §, = 3.

We then perturb the original image by shifting each pixel
x by Ny(x)
IL(x) := I(x+ Ny(x)). (21)

This procedure simulates noise originating from (unmod-
eled) rolling shutter or inaccurate geometric camera calibra-
tion. Fig. 20 visualizes an example of the resulting noise
pattern, as well as the accuracy of ORB-SLAM and DSO for
different values of §,. As expected, we can clearly observe
how DSO’s performance quickly deteriorates with added
geometric noise, whereas ORB-SLAM is much less affected.
This is because the first step in the indirect pipeline—
keypoint detection and extraction—is not affected by low-
frequency geometric noise, as it operates on a purely local
level. The second step then optimizes a geometric noise
model-which not surprisingly deals well with geometric
noise. In the direct approach, in turn, geometric noise is not
modeled, and thus has a much more severe effect—in fact,
for 8, > 1.5 there likely exists no state for which all resid-
uals are within the validity radius of the linearization of I;
thus optimization fails entirely (which can be alleviated by
using a coarser pyramid level). Note that this result also
suggests that the proposed direct model is more susceptible
to inaccurate intrinsic camera calibration than the indirect
approach—in turn, it may benefit more from accurate, non-
parametric intrinsic calibration.

Photometric Noise. For each frame, we separately generate
a high-frequency random blur-map N, :Q — R? by up-
sampling a 300x300 grid filled with uniformly distributed
random values in [-§,,5,]°. We then perturb the original
image by adding anisotropic blur with standard deviation
N,(x) to pixel x

I'(x) == /R B8 N,(0°)[(x+8) s, (22)
where ¢(+; Np(x)Q) denotes a 2D Gaussian kernel with stan-
dard deviation N,(x). Fig. 21 shows the result. We can
observe that DSO is slightly more robust to photometric
noise than ORB-SLAM—this is because (purely local) key-
point matching fails for high photometric noise, whereas a
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Fig. 21. Photometric noise. Effect of applying high-frequent, non-isotropic
blur to the image, simulating photometric noise (evaluated on the TUM-
monoVO dataset). The top row shows an example image with §, = 6, the
effect is clearly visible. Since the direct approach models a photometric
error, it is more robust to this type of noise than indirect methods.

joint optimization of the photometric error better overcomes
the introduced distortions.

To summarize: While the direct approach outperforms
the indirect approach on well-calibrated data, it is ill-suited
in the presence of strong geometric noise, e.g., originating
from a rolling shutter or inaccurate intrinsic calibration. In
practice, this makes the indirect model superior for smart-
phones or off-the-shelf webcams, since these were designed
to capture videos for human consumption-prioritizing reso-
lution and light-sensitivity over geometric precision. In turn,
the direct approach offers superior performance on data cap-
tured with dedicated cameras for machine-vision, since these
put more importance on geometric precision, rather than
capturing appealing images for human consumption. Note
that this can be resolved by tightly integrating the rolling
shutter into the model, as done, e.g., in [15], [18], [19].

4.4 Qualitative Results
In addition to accurate camera tracking, DSO computes 3D
points on all gradient-rich areas, including edges—resulting
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Fig. 23. Point density. 3D point cloud and some coarse depth maps, i.e.,
the most recent keyframe with all N, active points projected into it) for
N, = 500 (top), N, = 2,000 (middle), and NN,, = 10,000 (bottom).

in point-cloud reconstructions similar to the semi-dense
reconstructions of LSD-SLAM. The density then directly
corresponds to how many points we keep in the active win-
dow N,,. Fig. 23 shows some examples. Fig. 22 shows three
more scenes (one from each dataset), together with some
corresponding depth maps. Note that our approach is able
to track through scenes with very little texture, whereas
indirect approaches fail. All reconstructions shown are sim-
ply accumulated from the odometry, without integrating
loop-closures. See the supplementary video for more quali-
tative results, available online.

Failure Modes. As for all monocular methods, the pre-
dominant cause of failure is degenerate motion in the
form of almost-pure rotation, since no new points can be
triangulated. This issue is amplified since DSO is designed
as pure visual odometry, and does not reuse points once
they leave the field of view. In contrast, a full SLAM for-
mulation (as used by ORB-SLAM) allows to recycle previ-
ously triangulated points once they re-enter the field of

Fig. 22. Qualitative examples. One scene from each dataset (left to right: V2_01_easy [1], seq_38[8] and office_1[10]), computed in real time with
default settings. The bottom shows some corresponding (sparse) depth maps-some scenes contain very little texture, making them very challenging

for indirect approaches.
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view (implicit loop-closures as discussed in Section 4.1),
and thereby bridge over some periods of degenerate cam-
era motion. Note that this issue stems from the employed
windowed optimization strategy (Section 2.3) and is not
inherent to the proposed direct sparse model formulation
(Section 2.2).

We have not observed significant issues with non-Lam-
bertian surfaces, likely due to the concentration on high-gra-
dient points. However, the proposed direct model will fail
when the scene lighting change drastically, e.g., in the pres-
ence of moving light sources or when the time of day
changes. While this is typically unproblematic for short-
term visual odometry, it needs to be addressed to facilitate
life-long mapping, for instance by changing the energy (4)
to penalize gradient direction or magnitude differences
instead of absolute intensity.

5 CONCLUSION

We have presented a novel direct and sparse formulation for
Structure from Motion. It combines the benefits of direct
methods (seamless ability to use & reconstruct all points
instead of only corners) with the flexibility of sparse
approaches (efficient, joint optimization of all model param-
eters). This is possible in real time by omitting the geometric
prior used by other direct methods, and instead evaluating
the photometric error for each point over a small neighbor-
hood of pixels, to well-constrain the overall problem. Fur-
thermore, we incorporate full photometric calibration,
completing the intrinsic camera model that traditionally
only reflects the geometric component of the image forma-
tion process.

We have implemented our direct & sparse model in the
form of a monocular visual odometry algorithm, incremen-
tally marginalizing / eliminating old states to maintain
real-time performance. To this end we have developed a
front-end that performs data-selection and provides accu-
rate initialization for optimizing the highly non-convex
energy function. Our comprehensive evaluation on several
hours of video shows the superiority of the presented for-
mulation relative to state-of-the-art indirect methods. We
furthermore present an exhaustive parameter study, indi-
cating that (1) simply using more data does not increase
tracking accuracy (although it makes the 3D models
denser), (2) using all points instead of only corners does
provide a real gain in accuracy and robustness, and (3)
incorporating photometric calibration does increase perfor-
mance, in particular compared to the basic “brightness
constancy” assumption.

We have also shown experimentally that the indirect
approach—modeling a geometric error—is much more
robust to geometric noise, e.g., originating from a poor intrin-
sic camera calibration or a rolling shutter. The direct
approach is in turn more robust to photometric noise, and
achieves superior accuracy on well-calibrated data. We
believe this to be one of the main explanations for the recent
revival of direct formulations after a dominance of indirect
approaches for more than a decade: For a long time, the pre-
dominant source of digital image data were cameras, which
originally were designed to capture images for human view-
ing (such as off-the-shelf webcams or integrated smartphone

cameras). In this setting, the strong geometric distortions
caused by rolling shutters and imprecise lenses favored the
indirect approach. In turn, with 3D computer vision becom-
ing an integral part of mass-market products (including
autonomous cars and drones, as well as mobile devices for
VR and AR), cameras are being developed specifically for
this purpose, featuring global shutters, precise lenses, and
high frame-rates—which allows direct formulations to real-
ize their full potential.

Since the structure of the proposed direct sparse energy
formulation is the same as that of indirect methods, it can
be integrated with other optimization frameworks like
(double-windowed) bundle adjustment [25] or incremental
smoothing and mapping [14]. The main challenge here is
the greatly increased degree of non-convexity compared to
the indirect model, which originates from the inclusion of
the image in the error function-this is likely to restrict the
use of our model to video processing.
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