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Abstract—Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision

and natural language processing. In this paper, we present a generativemodel based on a deep recurrent architecture that combines recent

advances in computer vision andmachine translation and that can beused to generate natural sentences describing an image. Themodel is

trained tomaximize the likelihood of the target description sentence given the training image. Experiments on several datasets show the

accuracy of themodel and the fluency of the language it learns solely from image descriptions. Ourmodel is often quite accurate, whichwe

verify both qualitatively and quantitatively. Finally, given the recent surge of interest in this task, a competition was organized in 2015 using

the newly releasedCOCOdataset.We describe and analyze the various improvements we applied to our own baseline and show the

resulting performance in the competition, whichwewon ex-aequowith a team fromMicrosoft Research.
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1 INTRODUCTION

BEING able to automatically describe the content of an
image using properly formed English sentences is a

very challenging task, but it could have great impact, for
instance by helping visually impaired people better under-
stand the content of images on the web. This task is signifi-
cantly harder, for example, than the well-studied image
classification or object recognition tasks, which have been a
main focus in the computer vision community [1]. Indeed, a
description must capture not only the objects contained in
an image, but it also must express how these objects relate
to each other as well as their attributes and the activities
they are involved in. Moreover, the above semantic knowl-
edge has to be expressed in a natural language like English,
which means that a language model is needed in addition
to visual understanding.

Most previous attempts have proposed to stitch together
existing solutions of the above sub-problems, in order to go
from an image to its description [2], [3]. In contrast, we
would like to present in this work a single joint model that
takes an image I as input, and is trained to maximize the
likelihood pðSjIÞ of producing a target sequence of words
S ¼ fS1; S2; . . .g where each word St comes from a given
dictionary, that describes the image adequately.

The main inspiration of our work comes from recent
advances in machine translation, where the task is to trans-
form a sentenceSwritten in a source language, into its transla-
tion T in the target language, by maximizing pðT jSÞ. For

many years, machine translationwas also achieved by a series
of separate tasks (translating words individually, aligning
words, reordering, etc.), but recentwork has shown that trans-
lation can be done in a much simpler way using Recurrent
Neural Networks (RNNs) [4], [5], [6] and still reach state-of-
the-art performance. An “encoder” RNN reads the source sen-
tence and transforms it into a rich fixed-length vector repre-
sentation, which in turn in used as the initial hidden state of a
“decoder” RNN that generates the target sentence.

Here, we propose to follow this elegant recipe, replacing
the encoder RNN by a deep convolution neural network
(CNN). Over the last few years it has been convincingly
shown that CNNs can produce a rich representation of the
input image by embedding it to a fixed-length vector, such
that this representation can be used for a variety of vision
tasks [7]. Hence, it is natural to use a CNN as an image
“encoder”, by first pre-training it for an image classification
task and using the last hidden layer as an input to the RNN
decoder that generates sentences (see Fig. 1). We call this
model the Neural Image Caption, or NIC.

Our contributions are as follows. First, we present an
end-to-end system for the problem. It is a neural net which
is fully trainable using stochastic gradient descent. Second,
our model combines state-of-art sub-networks for vision
and language models. These can be pre-trained on larger
corpora and thus can take advantage of additional data.
Finally, it yields significantly better performance compared
to state-of-the-art approaches; for instance, on the Pascal
dataset, NIC yielded a BLEU score of 59, to be compared to
the current state-of-the-art of 25, while human performance
reaches 69. On Flickr30k, we improve from 56 to 66, and on
SBU, from 19 to 28. Third, we describe the lessons learned
from participating in the first MSCOCO competition, which
helped us to improve our initial model and place first in
automatic metrics, and first (tied with another team) in
human evaluation.
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2 RELATED WORK

The problem of generating natural language descriptions
from visual data has long been studied in computer vision,
but mainly for video [8], [9]. Traditionally, this has led to com-
plex systems composed of visual primitive recognizers com-
binedwith a structured formal language, e.g., And-Or Graphs
or logic systems, which are further converted to natural lan-
guage via rule-based systems. Such systems are heavily hand-
designed, relatively brittle and have been demonstrated only
on limited domains, e.g., traffic scenes or sports.

The problem of still image captioning in natural language
has recently enjoyed increased interest. Recent advances in
object recognition and detection as well as attribute recogni-
tion has been used to drive natural language generation sys-
tems, though these are limited in their expressivity. Farhadi
et al. [2] use detections to infer a triplet of scene elements
which is converted to text using templates. Similarly, Li
et al. [10] start off with detections and piece together a final
description using phrases containing detected objects and
relationships. A more complex graph of detections beyond
triplets is used by Kulkani et al. [3], but with template-based
text generation. More powerful language models based on
language parsing have been used as well [11], [12], [13], [14],
[15]. The above approaches have been able to describe
images “in the wild”, but they are heavily hand-designed
and rigidwhen it comes to text generation.

A large body of work has addressed the problem of rank-
ing descriptions for a given image [16], [17], [18], [19], [20].
Such approaches are based on the idea of co-embedding of
images and text in the same vector space. For an image
query, descriptions are retrieved which lie close to the image
in the embedding space. Most closely, neural networks are
used to co-embed images and sentences together [21] or even
image crops and subsentences [22] but do not attempt to gen-
erate novel descriptions. In general, the above approaches
cannot describe previously unseen compositions of objects,
even though the individual objects might have been
observed in the training data. Moreover, they avoid address-
ing the problem of evaluating how good a generated descrip-
tion is. More recently neural net based recognizer are used to
detect a larger set of words and in conjunction with a lan-
guagemodel sentences are generated [23].

In this work we combine deep convolutional nets for
image classification [24] with recurrent networks for
sequence modeling [25], to create a single network that gen-
erates descriptions of images. The RNN is trained in the
context of this single “end-to-end” network. The model is

inspired by recent successes of sequence generation in
machine translation [4], [5], [6], with the difference that
instead of starting with a sentence, we provide an image
processed by a convolutional net.

In the summer of 2015 a few approaches were introduced
which follow the above general paradigm. The closest works
are by Kiros et al. [26] who use a neural net, but a feedfor-
ward one, to predict the next word given the image and pre-
vious words. A recent work by Mao et al. [27], [28] uses a
recurrent NN for the same prediction task. This is very simi-
lar to the present proposal but there are a number of impor-
tant differences: we use a more powerful RNN model, and
provide the visual input to the RNN model directly, which
makes it possible for the RNN to keep track of the objects
that have been explained by the text. As a result of these
seemingly insignificant differences, our system achieves sub-
stantially better results on the established benchmarks. Fur-
ther, Kiros et al. [29] propose to construct a joint multimodal
embedding space by using a powerful computer vision
model and an Long-Short Term Memory (LSTM) that enco-
des text. In contrast to our approach, they use two separate
pathways (one for images, one for text) to define a joint
embedding, and, even though they can generate text, their
approach is highly tuned for ranking. A recurrent network is
being used by Donahue et al. [30] who address in addition
activity recognition and video description.

In addition, some approaches try to model in a more
explicit fashion the visual anchoring of sentence parts claim-
ing a performance benefit. Xu et al. [31] explore attention
mechanisms over image regions where while emitting
words the system can focus on image parts. An explicit
word to region alignment is utilized during training by Kar-
pathy et al. [32]. Finally, Chen et al. [33] build a visual repre-
sentation for sentence parts while generating the
description. Further analysis of the above approaches were
reported by Devlin et al. [34].

3 MODEL

In this paper, we propose a neural and probabilistic frame-
work to generate descriptions from images. Recent advan-
ces in statistical machine translation have shown that, given
a powerful sequence model, it is possible to achieve state-
of-the-art results by directly maximizing the probability of
the correct translation given an input sentence in an “end-
to-end” fashion—both for training and inference. These
models make use of a recurrent neural network which enco-
des the variable length input into a fixed dimensional vec-
tor, and uses this representation to “decode” it to the
desired output sentence. Thus, it is natural to use the same
approach where, given an image (instead of an input sen-
tence in the source language), one applies the same princi-
ple of “translating” it into its description.

Thus, we propose to directly maximize the probability of
the correct description given the image by using the follow-
ing formulation:

u
$ ¼ argmax

u

X

ðI;SÞ
log pðSjI; uÞ; (1)

where u are the parameters of our model, I is an image, and
S its correct transcription. Since S represents any sentence,

Fig. 1. NIC, our model, is based end-to-end on a neural network consist-
ing of a vision CNN followed by a language generating RNN. It generates
complete sentences in natural language from an input image, as shown
on the example above.
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its length is unbounded. Thus, it is common to apply the
chain rule to model the joint probability over S0; . . . ; SN ,
where N is the length of this particular example as

log p ðSjIÞ ¼
XN

t¼0

log pðStjI; S0; . . . ; St�1Þ; (2)

where we dropped the dependency on u for convenience. At
training time, ðS; IÞ is a training example pair, and we opti-
mize the sum of the log probabilities as described in (2) over
the whole training set using stochastic gradient descent (fur-
ther training details are given in Section 4).

It is natural to model pðStjI; S0; . . . ; St�1Þwith a Recurrent
Neural Network, where the variable number of words we
condition upon up to t� 1 is expressed by a fixed length
hidden state or memory ht. This memory is updated after
seeing a new input xt by using a non-linear function f

htþ1 ¼ fðht; xtÞ : (3)

To make the above RNN more concrete two crucial design
choices are to be made: what is the exact form of f and how
are the images and words fed as inputs xt. For f we use a
Long-Short Term Memory net, which has shown state-of-
the art performance on sequence tasks such as translation.
This model is outlined in the next section.

For the representation of images, we use a Convolutional
Neural Network. They have been widely used and studied
for image tasks, and are currently state-of-the art for object
recognition and detection. Our particular choice of CNN
uses the recent approach of batch normalization and yields
the current best performance on the ILSVRC 2014 classifica-
tion competition [24]. Furthermore, they have been shown
to generalize to other tasks such as scene classification by

means of transfer learning [35]. The words are represented
with an embedding model [36].

3.1 LSTM-Based Sentence Generator

The choice of f in (3) is governed by its ability to deal with
vanishing and exploding gradients [25], the most common
challenge in designing and training RNNs. To address this
challenge, a particular form of recurrent nets, called LSTM,
was introduced [25] and applied with great success to trans-
lation [4], [6] and sequence generation [37].

The core of the LSTM model is a memory cell c encoding
knowledge at every time step of what inputs have been
observed up to this step (see Fig. 2). The behavior of the cell
is controlled by “gates”—layers which are applied multipli-
catively and thus can either keep a value from the gated
layer if the gate is 1 or zero this value if the gate is 0. In par-
ticular, three gates are being used which control whether to
forget the current cell value (forget gate f), if it should read
its input (input gate i) and whether to output the new cell
value (output gate o). The definition of the gates and cell
update and output are as follows:

it ¼ sðWixxt þWimmt�1Þ (4)

ft ¼ sðWfxxt þWfmmt�1Þ (5)

ot ¼ sðWoxxt þWommt�1Þ (6)

ct ¼ ft � ct�1 þ it � hðWcxxt þWcmmt�1Þ (7)

mt ¼ ot � ct (8)

ptþ1 ¼ SoftmaxðmtÞ; (9)

where � represents the product with a gate value, and the
variousW matrices are trained parameters. Such multiplica-
tive gates make it possible to train the LSTM robustly as
these gates deal well with exploding and vanishing gra-
dients [25]. The nonlinearities are sigmoid sð�Þ and hyper-
bolic tangent hð�Þ. The last equation mt is what is used to
feed to a Softmax, which will produce a probability distribu-
tion pt over all words.

3.1.1 Training

The LSTM model is trained to predict each word of the sen-
tence after it has seen the image as well as all preceding
words as defined by pðStjI; S0; . . . ; St�1Þ. For this purpose, it
is instructive to think of the LSTM in unrolled form—a copy
of the LSTM memory is created for the image and each sen-
tence word such that all LSTMs share the same parameters
and the output mt�1 of the LSTM at time t� 1 is fed to the
LSTM at time t (see Fig. 3). All recurrent connections are
transformed to feed-forward connections in the unrolled
version. In more detail, if we denote by I the input image
and by S ¼ ðS0; . . . ; SNÞ a true sentence describing this
image, the unrolling procedure reads

x�1 ¼ CNNðIÞ (10)

xt ¼ WeSt; t 2 f0 . . .N � 1g (11)

ptþ1 ¼ LSTMðxtÞ; t 2 f0 . . .N � 1g; (12)

where we represent each word as a one-hot vector St of
dimension equal to the size of the dictionary. Note that we

Fig. 2. LSTM: the memory block contains a cell c which is controlled by
three gates. In blue we show the recurrent connections—the outputm at
time t� 1 is fed back to the memory at time t via the three gates; the cell
value is fed back via the forget gate; the predicted word at time t� 1 is
fed back in addition to the memory output m at time t into the Softmax
for word prediction.
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denote by S0 a special start word and by SN a special stop
word which designates the start and end of the sentence. In
particular by emitting the stop word the LSTM signals that
a complete sentence has been generated. Both the image
and the words are mapped to the same space, the image by
using a vision CNN, the words by using word embedding
We. The image I is only input once, at t ¼ �1, to inform the
LSTM about the image contents. We empirically verified
that feeding the image at each time step as an extra input
yields inferior results, as the network can explicitly exploit
noise in the image and overfits more easily.

Our loss is the sum of the negative log likelihood of the
correct word at each step as follows:

LðI; SÞ ¼ �
XN

t¼1

log ptðStÞ : (13)

The above loss is minimized w.r.t. all the parameters of the
LSTM, the top layer of the image embedder CNN and word
embeddingsWe.

3.1.2 Inference

There are multiple approaches that can be used to generate
a sentence given an image, with NIC. The first one is Sam-
pling where we just sample the first word according to p1,
then provide the corresponding embedding as input and
sample p2, continuing like this until we sample the special
end-of-sentence token or some maximum length. The sec-
ond one is BeamSearch: iteratively consider the set of the k
best sentences up to time t as candidates to generate senten-
ces of size tþ 1, and keep only the resulting best k of them.
This better approximates S ¼ argmaxS0pðS0jIÞ. We used the
BeamSearch approach in the following experiments, with a
beam of size 20. Using a beam size of 1 (i.e., greedy search)
did degrade our results by two BLEU points on average.
Further experiments on varying the beam size are reported
in Section 5.2.5.

4 EXPERIMENTS

We performed an extensive set of experiments to assess
the effectiveness of our model using several metrics,
data sources, and model architectures, in order to com-
pare to prior art.

4.1 Evaluation Metrics

Although it is sometimes not clear whether a description
should be deemed successful or not given an image, prior
art has proposed several evaluation metrics. The most reli-
able (but time consuming) is to ask for raters to give a sub-
jective score on the usefulness of each description given the
image. In this paper, we used this to reinforce that some of
the automatic metrics indeed correlate with this subjective
score, following the guidelines proposed in [16], which asks
the graders to evaluate each generated sentence with a scale
from 1 to 4.1

For this metric, we set up an Amazon Mechanical Turk
experiment. Each image was rated by two workers. The typ-
ical level of agreement between workers is 65 percent. In
case of disagreement we simply average the scores and
record the average as the score. For variance analysis, we
perform bootstrapping (re-sampling the results with
replacement and computing means/standard deviation
over the resampled results). Like [16] we report the fraction
of scores which are larger or equal than a set of predefined
thresholds.

The rest of the metrics can be computed automatically
assuming one has access to groundtruth, i.e., human gener-
ated descriptions. The most commonly used metric so far in
the image description literature has been the BLEU score [38],
which is a form of precision of word n-grams between gener-
ated and reference sentences.2 Even though this metric has
some obvious drawbacks, it has been shown to correlate well
with human evaluations. In this work, we corroborate this as
well, as we show in Section 4.3. An extensive evaluation pro-
tocol, as well as the generated outputs of our system, can be
found at http://nic.droppages.com/.

Besides BLEU, one can use the perplexity of the model
for a given transcription (which is closely related to our
objective function in (1)). The perplexity is the geometric
mean of the inverse probability for each predicted word.
We used this metric to perform choices regarding model
selection and hyperparameter tuning in our held-out set,
but we do not report it since BLEU is always preferred.3

More recently, a novel metric called CIDER [39] has been
introduced and used by the organizers of the MS COCO
Captioning challenge. In a nutshell, it measures consistency
between n-gram occurrences in generated and reference
sentences, where this consistency is weighted by n-gram
saliency and rarity.

As all of the above metrics have various shortcomings
(see [39] for detailed discussion), we provide in addition
results using METEOR [40] and ROUGE [41] metrics.

Lastly, the current literature on image description has
also been using the proxy task of ranking a set of available
descriptions with respect to a given image (see for
instance [29]). Doing so has the advantage that one can use

Fig. 3. LSTM model combined with a CNN image embedder (as defined
in [24]) and word embeddings. The unrolled connections between the
LSTM memories are in blue and they correspond to the recurrent con-
nections in Fig. 2. All LSTMs share the same parameters.

1. The raters are asked whether the image is described without any
errors, described with minor errors, with a somewhat related descrip-
tion, or with an unrelated description, with a score of 4 being the best
and 1 being the worst.

2. In this literature, most previous work report BLEU-1, i.e., they
only compute precision at the unigram level, whereas BLEU-n is a geo-
metric average of precision over 1- to n-grams.

3. Even though it would be more desirable, optimizing for BLEU
score yields a discrete optimization problem. In general, perplexity and
BLEU scores are fairly correlated.
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known ranking metrics like recall@k. On the other hand,
transforming the description generation task into a ranking
task is unsatisfactory: as the complexity of images to
describe grows, together with its dictionary, the number of
possible sentences grows exponentially with the size of the
dictionary, and the likelihood that a predefined sentence
will fit a new image will go down unless the number of
such sentences also grows exponentially, which is not realis-
tic; not to mention the underlying computational complex-
ity of evaluating efficiently such a large corpus of stored
sentences for each image. The same argument has been
used in speech recognition, where one has to produce the
sentence corresponding to a given acoustic sequence; while
early attempts concentrated on classification of isolated
phonemes or words, state-of-the-art approaches for this
task are now generative and can produce sentences from a
large dictionary.

Now that our models can generate descriptions of rea-
sonable quality, and despite the ambiguities of evaluating
an image description (where there could be multiple valid
descriptions not in the groundtruth) we believe we should
concentrate on evaluation metrics for the generation task
rather than for ranking.

4.2 Datasets

For evaluation we use a number of datasets which consist of
images and sentences in English describing these images.
The statistics of the datasets are as follows:

With the exception of SBU, each image has been anno-
tated by labelers with 5 sentences that are relatively visual
and unbiased. SBU consists of descriptions given by image
owners when they uploaded them to Flickr. As such they
are not guaranteed to be visual or unbiased and thus this
dataset has more noise.

The Pascal dataset is customary used for testing only
after a system has been trained on different data such as
any of the other four dataset. In the case of SBU, we hold
out 1,000 images for testing and train on the rest as used by
[14]. Similarly, we reserve 4 K random images from the
MSCOCO validation set as test, called COCO-4k, and use it
to report results in the following section.

Dataset name size

train valid. test

Pascal VOC 2008 [2] - - 1,000
Flickr8k [42] 6,000 1,000 1,000
Flickr30k [43] 28,000 1,000 1,000
MSCOCO [44] 82,783 40,504 40,775
SBU [18] 1M - -

4.3 Results

Since our model is data driven and trained end-to-end, and
given the abundance of datasets, we wanted to answer
questions such as “how dataset size affects generalization”,
“what kinds of transfer learning it would be able to
achieve”, and “how it would deal with weakly labeled
examples”. As a result, we performed experiments on five
different datasets, explained in Section 4.2, which enabled
us to understand our model in depth.

4.3.1 Training Details

Many of the challenges that we faced when training our
models had to do with overfitting. Indeed, purely super-
vised approaches require large amounts of data, but the
datasets that are of high quality have less than 100,000
images. The task of assigning a description is strictly harder
than object classification and data driven approaches have
only recently become dominant thanks to datasets as large
as ImageNet (with ten times more data than the datasets
we described in this paper, with the exception of SBU). As a
result, we believe that, even with the results we obtained
which are quite good, the advantage of our method versus
most current human-engineered approaches will only
increase in the next few years as training set sizes will grow.

Nonetheless, we explored several techniques to deal with
overfitting. The most obvious way to not overfit is to initial-
ize the weights of the CNN component of our system to a
pretrained model (e.g., on ImageNet). We did this in all the
experiments (similar to [17]), and it did help quite a lot in
terms of generalization. Another set of weights that could
be sensibly initialized are We, the word embeddings. We
tried initializing them from a large news corpus [36], but no
significant gains were observed, and we decided to just
leave them uninitialized for simplicity. Lastly, we did some
model level overfitting-avoiding techniques. We tried drop-
out [45] and ensembling models, as well as exploring the
size (i.e., capacity) of the model by trading off number of
hidden units versus depth. Dropout and ensembling gave a
few BLEU points improvement, and that is what we report
throughout the paper. Further details of the ensambling
and additional training improvements used for the MS
COCO challenge are described in Section 5.2.

We trained all sets of weights using stochastic gradient
descent with fixed learning rate and no momentum. All
weights were randomly initialized except for the CNN
weights, which we left unchanged because changing them
had a negative impact. We used 512 dimensions for the
embeddings and the size of the LSTMmemory.

Descriptions were preprocessed with basic tokenization,
keeping all words that appeared at least 5 times in the train-
ing set.

4.3.2 Generation Results

We report our main results on all the relevant datasets in
Tables 1 and 2. Since PASCAL does not have a training set,
we used the system trained using MSCOCO (arguably the
largest and highest quality dataset for this task). The state-

TABLE 1
Scores on the MSCOCO Development Set for Two Models:
NIC, Which Was the Model Which We Developed in [46],

and NICv2, Which Was the Model After We Tuned
and Refined Our System for the MSCOCO Competition

Metric BLEU-4 METEOR CIDER

NIC 27.7 23.7 85.5
NICv2 32.1 25.7 99.8
Random 4.6 9.0 5.1
Nearest Neighbor 9.9 15.7 36.5
Human 21.7 25.2 85.4
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of-the-art results for PASCAL and SBU did not use image
features based on deep learning, so arguably a big improve-
ment on those scores comes from that change alone. The
Flickr datasets have been used recently [16], [27], [29], but
mostly evaluated in a retrieval framework. A notable excep-
tion is [27], where they did both retrieval and generation,
and which yields the best performance on the Flickr data-
sets up to now.

Human scores in Table 2 were computed by comparing
one of the human captions against the other four. We do this
for each of the five raters, and average their BLEU scores.
Since this gives a slight advantage to our system, given the
BLEU score is computed against five reference sentences and
not four, we add back to the human scores the average differ-
ence of having five references instead of four.

Given that the field has seen significant advances in the
last years, we do think it is more meaningful to report
BLEU-4, which is the standard in machine translation mov-
ing forward. Additionally, we report metrics shown to cor-
relate better with human evaluations in Table 1.4 Despite
recent efforts on better evaluation metrics [39], our model
fares strongly versus human raters. However, when evalu-
ating our captions using human raters (see Section 4.3.6),
our model fares much more poorly, suggesting more work
is needed towards better metrics. For a more detailed
description and comparison of our results on the MSCOCO
dataset, and other interesting human metrics, see Section 5.
In that section, we detail the lessons learned from extra tun-
ing of our model w.r.t. the original model which was sub-
mitted in a previous version of this manuscript [46] (NIC in
Table 1) versus the latest version for the competition
(NICv2 in Table 1).

4.3.3 Transfer Learning, Data Size and Label Quality

Since we have trained many models and we have several
testing sets, we wanted to study whether we could transfer
a model to a different dataset, and how much the mismatch
in domain would be compensated with e.g., higher quality
labels or more training data.

The most obvious case for transfer learning and data
size is between Flickr30k and Flickr8k. The two datasets

are similarly labeled as they were created by the same
group. Indeed, when training on Flickr30k (with about 4
times more training data), the results obtained are four
BLEU points better. It is clear that in this case, we see
gains by adding more training data since the whole pro-
cess is data-driven and overfitting prone. MSCOCO is
even bigger (5 times more training data than Flickr30k),
but since the collection process was done differently,
there are likely more differences in vocabulary and a
larger mismatch. Indeed, all the BLEU scores degrade
by 10 points. Nonetheless, the descriptions are still
reasonable.

Since PASCAL has no official training set and was col-
lected independently of Flickr and MSCOCO, we report
transfer learning fromMSCOCO (in Table 2). Doing transfer
learning from Flickr30k yielded worse results with BLEU-1
at 53 (cf. 59).

Lastly, even though SBU has weak labeling (i.e., the
labels were captions and not human generated descrip-
tions), the task is much harder with a much larger and nois-
ier vocabulary. However, much more data is available for
training. When running the MSCOCO model on SBU, our
performance degrades from 28 down to 16.

4.3.4 Generation Diversity Discussion

Having trained a generative model that gives pðSjIÞ, an
obvious question is whether the model generates novel
captions, and whether the generated captions are both
diverse and high quality. Table 3 shows some samples
when returning the N-best list from our beam search
decoder instead of the best hypothesis. Notice how the
samples are diverse and may show different aspects
from the same image. The agreement in BLEU score
between the top 15 generated sentences is 58, which is sim-
ilar to that of humans among them. This indicates the
amount of diversity our model generates. In bold are the
sentences that are not present in the training set. If we take
the best candidate, the sentence is present in the training
set 80 percent of the times. This is not too surprising given
that the amount of training data is quite small, so it is rela-
tively easy for the model to pick “exemplar” sentences and
use them to generate descriptions. If we instead analyze
the top 15 generated sentences, about half of the times we
see a completely novel description, but still with a similar
BLEU score, indicating that they are of enough quality, yet
they provide a healthy diversity.

TABLE 2
BLEU-1 Scores

Approach PASCAL
(xfer)

Flickr
30k

Flickr
8k

SBU

Im2Text [18] 11
TreeTalk [14] 19
BabyTalk [3] 25
Tri5Sem [16] 48
m-RNN [27] 55 58
MNLM [29]5 56 51
SOTA 25 56 58 19
NIC 59 66 63 28
Human 69 68 70

We only report previous work results when available.
SOTA Stands for the Current State-of-the-Art.

TABLE 3
N-Best Examples from the MSCOCO Test Set

Aman throwing a frisbee in a park.
Aman holding a frisbee in his hand.
A man standing in the grass with a frisbee.
A close up of a sandwich on a plate.
A close up of a plate of food with french fries.
A white plate topped with a cut in half sandwich.
A display case filled with lots of donuts.
A display case filled with lots of cakes.
A bakery display case filled with lots of donuts.

Bold Lines Indicate a Novel Sentence not Present in the
Training Set

4. We used the implementation of these metrics kindly provided in
http://www.mscoco.org.

5. We computed these BLEU scores with the outputs that the
authors of [29] kindly provided for their OxfordNet system.
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4.3.5 Ranking Results

While we think ranking is an unsatisfactory way to evaluate
description generation from images, many papers report
ranking scores, using the set of testing captions as candi-
dates to rank given a test image. The approach that works
best on these metrics (MNLM), specifically implemented a
ranking-aware loss. Nevertheless, NIC is doing surprisingly
well on both ranking tasks (ranking descriptions given
images, and ranking images given descriptions), as can be
seen in Tables 4 and 5. Note that for the Image Annotation
task, we normalized our scores similar to what [27] used.

4.3.6 Human Evaluation

Fig. 4 shows the result of the human evaluations of the
descriptions provided by NIC, as well as a reference sys-
tem and groundtruth on various datasets. We can see that
NIC is better than the reference system, but clearly worse
than the groundtruth, as expected. This shows that BLEU
is not a perfect metric, as it does not capture well the dif-
ference between NIC and human descriptions assessed by
raters. Examples of rated images can be seen in Fig. 5. It is
interesting to see, for instance in the second image of the
first column, how the model was able to notice the frisbee
given its size.

4.3.7 Analysis of Embeddings

In order to represent the previous word St�1 as input to the
decoding LSTM producing St, we use word embedding vec-
tors [36], which have the advantage of being independent of
the size of the dictionary (contrary to a simpler one-hot-
encoding approach). Furthermore, these word embeddings
can be jointly trained with the rest of the model. It is
remarkable to see how the learned representations have
captured some semantic from the statistics of the language.
Table 6 shows, for a few example words, the nearest other
words found in the learned embedding space.

Note how some of the relationships learned by the model
will help the vision component. Indeed, having “horse”,
“pony”, and “donkey” close to each other will encourage the

CNN to extract features that are relevant to horse-looking
animals. We hypothesize that, in the extreme case where we
see very few examples of a class (e.g., “unicorn”), its proxim-
ity to other word embeddings (e.g., “horse”) should provide
a lot more information that would be completely lost with
more traditional bag-of-words based approaches.

5 THE MS COCO IMAGE CAPTIONING CHALLENGE

In the spring of 2015, as part of the MS COCO dataset a chal-
lenge was organized.6 Participants were recommended to
train their algorithms on the MS COCO 2014 dataset, and
results on the validation and test sets were submitted on an
evaluation server, with no more than five attempts in total
per group, in order to limit overfitting on the test set.
Human judges then evaluated the competing approaches
and the winners were invited to present their approach at a
workshop organized during CVPR 2015.

We entered the competition and the rest of this section
explains the various techniques we have explored in this
context, building on our baseline model described in the
previous sections.

5.1 Metrics

The metrics used are discussed in in Section 4. A special
emphasis is on CIDER [39], which was chosen by the com-
petition organizers to rank teams. As a result we use also
during hyper-parameter selection.

We found all the automatic metrics to correlate with each
other quite strongly (see Table 7). Notably, the main differ-
ence of these metrics is on how humans rank on it versus
several automatic image captioning systems (such as the
one we propose). Interestingly, BLEU score seems to be
quite bad (humans rank 13th out of 16); CIDER fares better

TABLE 4
Recall@k and Median Rank on Flickr8k

Approach Image Annotation Image Search

R@1 R@10 Med r R@1 R@10 Med r

DeFrag [22] 13 44 14 10 43 15
m-RNN [27] 15 49 11 12 42 15
MNLM [29] 18 55 8 13 52 10

NIC 20 61 6 19 64 5

TABLE 5
Recall@k and Median Rank on Flickr30k

Approach Image Annotation Image Search

R@1 R@10 Med r R@1 R@10 Med r

DeFrag [22] 16 55 8 10 45 13
m-RNN [27] 18 51 10 13 42 16
MNLM [29] 23 63 5 17 57 8

NIC 17 56 7 17 57 7

Fig. 4. Flickr-8k: NIC: Predictions produced by NIC on the Flickr8k test
set (average score: 2.37); Pascal: NIC: (average score: 2.45); COCO-
1k: NIC: A subset of 1,000 images from the MSCOCO test set with
descriptions produced by NIC (average score: 2.72); Flickr-8k: ref:
These are results from [16] on Flickr8k rated using the same protocol, as
a baseline (average score: 2.08); Flickr-8k: GT: we rated the groundtruth
labels from Flickr8k using the same protocol. This provides us with a
“calibration” of the scores (average score: 3.89).

6. More details can be found+ on the competition website: http://
mscoco.org/dataset/#captions-challenge2015.
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(where humans rank 6th); METEOR is the automatic metric
where humans rank the highest (third).

5.2 Improvements Over Our CVPR15 Model

In this section we analyze what components were improved
with respect to the model which we originally studied in
our CVPR 2015 work [46]. Section 5.3 shows a summary of
the results on both automatic and human metrics from the
MSCOCO competition. We summarize all the improve-
ments in Table 8.

5.2.1 Image Model Improvement

When we first submitted our image captioning paper to
CVPR 2015, we used the best convolutional neural network
at the time, known as GoogleLeNet [48], which had 22 layers,
and was the winner of the 2014 ImageNet competition. Later
on, an even better approach was proposed in [24] and
included a new method, called Batch Normalization, to better
normalize each layer of a neural network with respect to the
current batch of examples, so as to be more robust to nonli-
nearities. The new approach got significant improvement on

the ImageNet task (going from 6.67 percent down to 4.8 per-
cent top-5 error) and the MSCOCO image captioning task,
improving BLEU-4 by 2 points absolute.

5.2.2 Image Model Fine Tuning

In the original set of experiments, to avoid overfitting we
initialized the image convolutional network with a pre-
trained model (we first used GoogleLeNet, then switched to
the better Batch Normalization model), but then fixed its
parameters and only trained the LSTM part of the model on
the MS COCO training set.

For the competition, we also considered adding some
fine tuning of the image model while training the LSTM,
which helped the image model focus more on the kind of
images provided in the MS COCO training set, and ended
up improving the performance on the captioning task.

It is important to note that fine tuning the image model
must be carried after the LSTM parameters have settled on

Fig. 5. A selection of evaluation results, grouped by human rating.

TABLE 6
Nearest Neighbors of a Few Example Words

Word Neighbors

car van, cab, suv, vehicule, jeep
boy toddler, gentleman, daughter, son
street road, streets, highway, freeway
horse pony, donkey, pig, goat, mule
computer computers, pc, crt, chip, compute

TABLE 7
Pearson Correlation and Human Rankings Found in the
MSCOCO Official Website Competition Table for Several

Automatic Metrics (Using 40 Ground Truth Captions
in the Test Set)

Correlation (versus CIDER) Human Rank

CIDER 1.0 6
METEOR 0.98 3
ROUGE 0.91 11
BLEU-4 0.87 13
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a good language model: we found that, when jointly train-
ing both, the noise in the initial gradients coming from the
LSTM into the image model corrupted the CNN and would
never recover. Instead, we train for about 500 K steps (freez-
ing the CNN parameters), and then switch to jointly train
the model for an additional 100 K steps. Training was done
using a single GPU (Nvidia K20), and step time was about 3
seconds. Thus, training took over 3 weeks – parallelizing
training yielded somewhat worse results, though it
increased the speed to convergence.

The improvements achieved by this was one BLEU-4
point. More importantly, this change allowed the model to
transfer information from the image to the language which
was likely not possible due to the insufficient coverage of
the ImageNet label space. For instance, after the change we
found many examples where we predict the right colors,
e.g., “A blue and yellow train...”. It is plausible that the top-
layer CNN activations are overtrained on ImageNet-specific
classes and could throw away interesting features (such as
color), thus the caption generation model may not output
words corresponding to those features, without fine tuning
the image model.

5.2.3 Scheduled Sampling

As explained in Section 3.1, ourmodel uses an LSTM to gener-
ate the description given the image. As shown in Fig. 3,
LSTMs are trained by trying to predict each word of the cap-
tion given the current state of the model and the previous word
in the caption. At inference, for a new image, the previous
word is obviously unknown and is thus replaced by the word
generated by the model itself at the previous step. There is
thus a discrepancy between training and inference. Recently,
we proposed [47] a curriculum learning strategy to gently
change the training process from a fully guided scheme using
the true previous word, towards a less guided scheme which
mostly uses the model generated word instead. We applied
this strategy using various schedules for the competition, and
found that it improved up to 1.5 BLEU-4 points over using the
standard training objective function.

5.2.4 Ensembling

Ensembles [49] have long been known to be a very simple
yet effective way to improve performance of machine learn-
ing systems. In the context of deep architectures, one only
needs to train separately multiple models on the same task,
potentially varying some of the training conditions, and
aggregating their answers at inference time. For the compe-
tition, we created an ensemble of five models trained with

Scheduled Sampling and 10 models trained with fine-tuning
the image model. The resulting model was submitted to the
competition, and it further improved our results by 1.5
BLEU-4 points.

5.2.5 Beam Size Reduction

In order to generate a sentence with our proposed approach,
we described in Section 3.1 the use of BeamSearch, where
we maintain a list of the top-k sequences of words generated
so far. In the original paper, we tried only two values for k: 1
(which means only keep the best generated word according
to the model at each time step) and 20.

For the competition, we actually tried several more
beam sizes, and selected the size which generated the best
sequences of words according to the CIDER metric, which
we consider to be the metric most aligned with human
judgements. Contrary to our expectations, the best beam
size turned out to be small: 3.

Note that, as the beam size increases, we score more can-
didate sentences and pick the best according to the obtained
likelihood. Hence, if the model was well trained and the
likelihood was aligned with human judgement, increasing
the beam size should always yield better sentences. The fact
that we obtained the best performance with a relatively
small beam size is an indication that either the model has
overfitted or the objective function used to train it (likeli-
hood) is not aligned with human judgement.

We also observed that, by reducing the beam size (i.e.,
with a shallower search over sentences), we increase the nov-
elty of generated sentences. Indeed, instead of generating
captions which repeat training captions 80 percent of the
time, this gets reduced to 60 percent. This hypothesis sup-
ports the fact that the model has overfitted to the training set,
and we see this reduced beam size technique as another way
to regularize (by adding some noise to the inference process).

Reducing the beam size was the single change that
improved our CIDER score the most. This simple change
yielded more than two BLEU-4 points improvement.

5.3 Competition Results

5.3.1 Automatic Evaluation

All the teams were allowed up to five submissions to the
evaluation server on a large, unseen set of test images. The
leaderboard allowed for teams to monitor progress, and it
motivated us to keep improving the accuracy of our model
up to the deadline. Despite the automatic metrics not fully
characterizing the quality of the captions, strong correla-
tions were present (i.e., improving an automatic metric gen-
erally implied a better captioning system).

Since we submitted our paper, and thanks to all the
improvements, our BLEU-4 score improved by 8 points
absolute (see Section 5.2). The top five submission according
to the automatic metrics on the test set (sorted by CIDER,
and using five ground truth captions) are presented in
Table 9:

5.3.2 Human Evaluation

The most promising 15 submissions to the MSCOCO chal-
lenge, as well as a human baseline, were evaluated on five
different metrics

TABLE 8
A Summary of All the Improvements Which We

Introduced for the MSCOCO Competition

Technique BLEU-4 Improvement

Better Image Model [24] 2
Beam Size Reduction 2
Fine-tuning Image Model 1
Scheduled Sampling [47] 1.5
Ensembles 1.5

The Reported Improvements Are on BLEU-4, But Similar Improve-
ments Are Consistent Across all the Metrics.
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M1 Percentage of captions that are evaluated as better or
equal to human caption.

M2 Percentage of captions that pass the Turing Test.
M3 Average correctness of the captions on a scale 1-5

(incorrect-correct).
M4 Average amount of detail of the captions on a scale

1-5 (lack of details-very detailed).
M5 Percentage of captions that are similar to human

description.
Note that M1 and M2 were the ones used to decide the

winner. The others were merely experimental, but are
reported here for completeness.

Results are available on the Leaderboard of the competi-
tion website at http://mscoco.org/dataset/#captions-
leaderboard. The top five submissions according to these
metrics (sorted by M1+M2) are shown in Table 10:

Finally, we show in Fig. 6a few example images together
with the caption obtained by our original model, compared
with the caption obtained by the final model submitted to
the competition. We took a random sample of 20 images
from the development set, and picked the ones that looked
most interesting (all of them had a better caption except for
one). It is clear that the overall quality of the captions have
improved significantly, a fact that should be obvious given

the overall improvement in BLEU-4 from the improvements
that we showed in this section was 8 points absolute.

6 CONCLUSION

We have presented NIC, an end-to-end neural network
system that can automatically view an image and generate a
reasonable description in plain English. NIC is based on
a convolution neural network that encodes an image into a
compact representation, followed by a recurrent neural net-
work that generates a corresponding sentence. The model is
trained to maximize the likelihood of the sentence given the
image. Experiments on several datasets show the robustness
of NIC in terms of qualitative results (the generated senten-
ces are very reasonable) and quantitative evaluations, using
either ranking metrics or BLEU, a metric used in machine
translation to evaluate the quality of generated sentences.
Based on our initial results, we participated in the 2015 MS
COCO challenge comparing approaches on the task of
image captioning. We presented and analyzed in this paper
the various improvements we have made to our basic NIC
model and described the competition results which ranked
our model in first position using both automatic and human
evaluations. It is clear from these experiments that, as

TABLE 9
Automatic Scores of the Top Five Competition Submissions

CIDER METEOR ROUGE BLEU-4 Rank

Google [46] 0.943 0.254 0.53 0.309 1st
MSR Captivator [34] 0.931 0.248 0.526 0.308 2nd
m-RNN [28] 0.917 0.242 0.521 0.299 3rd
MSR [23] 0.912 0.247 0.519 0.291 4th
m-RNN (2) [28] 0.886 0.238 0.524 0.302 5th

Human 0.854 0.252 0.484 0.217 8th

TABLE 10
Human Generated Scores of the

Top Five Competition Submissions

M1 M2 M3 M4 M5 Rank

Google [46] 0.273 0.317 4.107 2.742 0.233 1st
MSR [23] 0.268 0.322 4.137 2.662 0.234 1st
MSR Captivator [34] 0.250 0.301 4.149 2.565 0.233 3rd
Montreal/Toronto [31] 0.262 0.272 3.932 2.832 0.197 3rd
Berkeley LRCN [30] 0.246 0.268 3.924 2.786 0.204 5th

Human 0.638 0.675 4.836 3.428 0.352 1st

Fig. 6. A selection of evaluation images, comparing the captions obtained by our original model (InitialModel) and the model submitted to the compe-
tition (BestModel).
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the size of the available datasets for image description
increases, so will the performance of approaches like NIC.

Despite the exciting results on captioning, we believe it is
just the beginning. The produced descriptions are one of
many possible image interpretations. One possible direction
is the have a system which is capable of more targeted
descriptions—either anchoring the descriptions to given
image properties and locations or being a response to a user
specified question or task. Further research direction are
better evaluation metrics or evaluation through higher level
goals found in application such as robotics.
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