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Abstract—In multi-view environment, it would yield missing observations due to the limitation of the observation process. The most
current representation learning methods struggle to explore complete information by lacking either cross-generative via simply filling in
missing view data, or solidative via inferring a consistent representation among the existing views. To address this problem, we
propose a deep generative model to learn a complete generative latent representation, namely Complete Multi-view Variational
Auto-Encoders (CMVAE), which models the generation of the multiple views from a complete latent variable represented by a mixture
of Gaussian distributions. Thus, the missing view can be fully characterized by the latent variables and is resolved by estimating its
posterior distribution. Accordingly, a novel variational lower bound is introduced to integrate view-invariant information into posterior
inference to enhance the solidative of the learned latent representation. The intrinsic correlations between views are mined to seek
cross-view generality, and information leading to missing views is fused by view weights to reach solidity. Benchmark experimental
results in clustering, classification, and cross-view image generation tasks demonstrate the superiority of CMVAE, while time
complexity and parameter sensitivity analyses illustrate the efficiency and robustness. Additionally, application to bioinformatic data
exemplifies its practical significance.

Index Terms—Multi-view learning, incomplete multi-view problem, representation learning, deep generative models.

✦

1 INTRODUCTION

MULTIPLE views of data in real-world applications are
collected by different measurements to represent var-

ious characteristics of an object. Concrete examples include
reporting news in different languages, describing events
with images, audio and text, and detecting organs through
different imaging mechanisms to obtain multi-modal med-
ical images. These semantically coherent multi-view sam-
ples are connected by a consensus representation. Typically,
limitations or deviations in measurement methods result in
individual views containing insufficient information, while
different views can complement each other [1]. In several
radical cases, there may even be missing views, making it
difficult to obtain complementary information from other
views, so-called incomplete multi-view problem.

In recent years, there has been a growing body of
research in multi-view representation learning, which is
concerned with the problem of exploiting complementary
information to learn integrated representations. Representa-
tive techniques include correlation-based [2], [3], similarity-
based [4], [5], graphical model-based [6], [7] and neu-
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ral network-based [8], [9] multi-view learning approaches.
They perform model learning based on the assumption that
all views of each sample are fully observed. However, for
incomplete multi-view data, these methods will inevitably
degrade or even collapse.

To solve the incomplete multi-view problem, various
incomplete multi-view learning algorithms have been pro-
posed recently. In concrete, the prevalent solutions can be
roughly classified into three strategies. The first strategy
attempts to fill in the missing view data by assuming that
the learned multi-view representation contains complete
information, followed by off-the-shelf task driving process-
ing. [10], [11] presented the approaches to first impute
the missing values by matrix completion, and then per-
formed weighted non-negative matrix factorization (NMF)
by setting the filled data lower weight. Besides, generative
adversarial networks (GAN) based approaches [12], [13]
leveraged the power of generative network to impute the
missing views. However, this strategy relies heavily on the
effectiveness of data completion and is usually ineffective
when the missing rate is high. The second strategy is to
group samples into multiple paired subsets according to
the availability of data sources by assuming the data for
each subset is complete and then learn multiple models
on these groupings for post-fusion [14], [15]. Although it
is more efficient than learning on each individual view, this
inflexible grouping strategy greatly increases computational
complexity when facing data with a large number of views.
The last strategy focuses on inferring the latent informa-
tion on the missing views by assuming that the cross-
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views are generative. Partial multi-view clustering [16], [17]
presented a joint partial alignment method to explore the
complementary and consensus information of the available
views. In [18], [19], the embedding space of both views was
learned by cross-view learning, followed by distilling latent
information across views. This allows for more efficient
usage of available views to infer potentially shared infor-
mation, but the completeness of the latent representation
is not guaranteed. To deal with general requirements, we
summarize the following desiderata for incomplete multi-
view representation learning:

1) Completeness. The learned multi-view representa-
tion contains complete information, which describes
task-relevant information for all different views of
observation.

2) Cross-generative. Multi-view representation
learned from available views has the ability
to generate missing samples, which can also
corroborate the completeness of the learned
representation.

3) Solidative. There exists conservative information
inherent to multi-view sampling that is not altered
by the absence of views, e.g., the weight of views,
the intrinsic correlations between views. Making
full use of this information can enhance the solida-
tive of the learned representation.

In this paper, we propose a deep generative model
for multi-view representation learning, namely Com-
plete Multi-view Variational Auto-Encoders (CMVAE). As
demonstrated in Fig. 1, multi-view observations are con-
sidered to be generated from a shared latent variable con-
taining various attributes, which is therefore assumed to be
a mixture of densities from multiple variational posteriors.
For incomplete multi-view problem, CMVAE seeks to learn
a complete generative latent representation accompanied by
view-invariant information. First, view-peculiar latent vari-
ables are inferred from the corresponding posteriors. Then,
the implicit information of the missing views can be pre-
dicted from the existing views by the intrinsic correlations
between them. By weighting the integration of multiple
view-peculiar latent variables, a complete generative latent
variable is finally obtained.

The main contributions of our work are as follows,

• A deep multi-view generative model is proposed
to learn complete generative latent representations.
By using variational inference, a novel variational
lower bound of joint likelihood is developed with
the introduction of joint variational posterior as a
Gaussian mixture.

• By optimizing the posterior for each view, a shared
Gaussian mixture distribution variable can be in-
ferred, from which multi-view variants can be de-
rived to cross-generate data samples from another
view.

• View-invariant information is learned to enhance the
solidative of the latent representation when encoun-
tering view missing. Precisely, the implicit informa-
tion of missing views can be predicted by modelling
the linear transformations between view-peculiar la-
tent variables, resulting in the view weights being

invariant to ensure the accurate depiction of mixture
Gaussian distributions.

• From both quantitative and qualitative perspectives,
the results of the benchmark experiments demon-
strate the superiority of the learned generative yet
complete latent representation, while the time com-
plexity and parameter sensitivity analyses illustrate
the efficiency and robustness of CMVAE. In addition,
the application on bioinformatics data verifies its the
practical value.

2 RELATED WORKS

2.1 Multi-view Representation Learning

Multi-view representation learning is defined as a repre-
sentation learning procedure for discovering the underlying
patterns of multi-view data. Canonical Correlation Analysis
(CCA) [20] and its variants [2], [3], [21], [22] are typical
representation learning model for two views data. CCA-
based methods aim to learn the consistent representations
by maximizing the total correlation. Recently, many notable
multi-view representation learning approaches have been
proposed to handle more than two views. MDcR [23] applies
kernel matching to regularize the correlation between mul-
tiple views in the common low-dimensional latent space.
DMF-MVC [24] extracts consistent representation by lever-
aging semi-non-negative matrix factorization. MULPP [25]
utilizes pairwise and higher-order correlations to realize
flexible view consistency while maintaining local structure
to obtain complementary information. To combine infor-
mation specific to each single view, SIMM [26] introduces
confusion adversarial loss and orthogonality constraints
to exploit view-shared and view-specific representations.
DGF [27] explicitly models both multi-view consistency as
well as multi-view inconsistency in a unified optimization
model. In addition, there are many outstanding works lever-
aging probabilistic generative models for representation
learning, which will be introduced in detail in Section 2.3.
Intuitively, the consistency information between views de-
creases with the number of views, while the inconsistency is
opposite, making multi-view consensus learning methods
difficult to handle. This paper focuses more on extracting
complete information from multiple views to preserve the
characteristics of different views.

2.2 Incomplete Multi-view Representation Learning

To deal with the incomplete multi-view problem, an increas-
ing number of studies have recently focused on incomplete
multi-view representation learning. They can be classified
into three categories based on the exploitation of cross-view
information. (1) Missing filling method aims at imputing
the missing data to form the complete multi-view data
and then utilizing conventional multi-view learning tech-
nique. CoKL [28] collectively completes the kernel matrices
of the datasets by optimizing the alignment of common
instances. MVL-IV [29] generates incomplete view data
from the shared subspace learned from the observed view.
CRA [30] stacks residual autoencoders to learn complex
relationship among multiple views to impute the missing
data. VIGAN [12] utilizes GAN to generate the missing

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3346869

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

views and then learns the shared latent space of all views. (2)
Grouping-and-learning method is to group samples into
multiple paired subsets based on available data, which are
then divided into multiple learning tasks. iMSF [14] divides
samples based on the availability of data sources, and then
uses sparse learning to learn shared feature sets. IMG [31]
separates the samples into complete and incomplete multi-
view data. A compact global structure is then learned by
using Laplacian graphs of complete instances in a low-
dimensional space. MoPoE-VAE [15] trains different multi-
view models by different subsets of groupings to cope
with different view missing cases. (3) Cross-view learn-
ing method infers potential information on the missing
data by performing cross-view learning directly from the
existing view data. PVC [16] projects the incomplete data
into a low-dimensional common subspace regularized by
lF -norm and l1-norm. iCmSC [19] explores correlations be-
tween incomplete cross-view data and learns a consistent
subspace representation to improve clustering performance.
CPM-nets [17] partitions partial multi-view data by focusing
on the completeness and generality of the learned repre-
sentations. GSRIMC [32] focuses on exploring the useful
information behind the subgraph structure, while avoid-
ing to perform complex feature recovery tasks. DCP [33]
unifies consistent representation learning and missing data
recovery by jointly optimizing dual constraint loss and dual
prediction loss from an information-theoretic perspective.
This paper is concerned with this category, i.e., making full
use of existing data to predict the hidden features of missing
views and integrate them into a unified representation.

2.3 VAE in Multi-view Scheme
We begin with a natural assumption that there is a shared
latent variable on multiple observations generated from
multi-view measurment [34]. Once the variant samples
are well generated together, the completeness of the la-
tent representation is achieved. However, the intractable
integral calculations involved make it difficult to optimize
this generative model directly, i.e., maximizing the joint
likelihood function. Variational inference technique is one of
the solutions used to convert the difficult computation prob-
lem into optimization problems. Variational Auto-encoders
(VAE) [35] is a successful paradigm on single-view data by
combining the deep neural network under the framework
of Stochastic Gradient Variational Bayes (SGVB).

Recently, many generative models leveraging the VAE
framework have been proposed for multi-view represen-
tation learning. We review the models for constructing
variational lower bounds by introducing different joint vari-
ational posteriors that elaborate specific inference processes
for latent representations. VCCAP [3] utilizes dual varia-
tional autoencoders to nonlinearly project two view data
into a consistent latent space by maximizing the correla-
tion between views. In DMVC-VAE [40], an auto-weighted
fusion module is embedded into the posterior inference
process to obtain the shared latent representation which is
set as a mixture of Gaussian distributions for clustering.
MVAE [36] models the joint posterior as a Product-of-
Experts (PoE) [37]. PoE produces a clearer distribution by
aggregating information from multiple unimodal posteri-
ors, but this is not conducive to optimizing the individual

posteriors, which is important for learning a balanced dis-
tribution. MMVAE [38] assumes that the joint posterior is
a Mixture-of-Experts (MoE). MMVAE only takes unimodal
posteriors into account during training by pairwise opti-
mization, such that the latent representation of any view can
reconstruct observations from other views and its own view.
The drawback is that information from other posteriors
cannot be combined in one-pass inference. mmJSD [39], on
the other hand, adds learning of a common latent variable to
aggregate view-peculiar latent variables. MoPoE-VAE [15]
combines PoE and MoE to construct the variational lower
bound of joint likelihood, theoretically combining the ad-
vantages of each. They are computationally scalable to the
number of views, it decomposes all m view data into 2m

subsets, and optimizes the 2m combined encoders sepa-
rately to deal with any missing view. However, this would
render the method intractable to handle for tasks with
a large number of views. The aforementioned incomplete
multi-view learning methods either suffer from high com-
putational complexity or ignore the difference information
between views, which motivates the proposed CMVAE to
reduce the computational complexity of multi-view VAEs
and learn generative yet complete representations to im-
prove the performance of clustering or classification.

3 PROPOSED METHOD

In this section, a generic multi-view probabilistic generative
model, the vanilla multi-view VAE (VMVAE), is first pro-
posed for multi-view representation learning. To efficiently
optimize the latent variable model, a variational lower
bound for the joint likelihood function is constructed by
introducing a mixture of Gaussian distributions as the joint
variational posterior. Next, to meet the three desiderata for
incomplete multi-view representation learning, we present
CMVAE where a novel joint variational posterior is pro-
posed, which extract implicit correlations among views and
learns invariant weights across views to realize a complete
generative latent representation.

3.1 Vanilla Multi-view VAE

Given a m views dataset X = {X(v) ∈ Rn×dv}mv=1,
each view collection consisting of n i.i.d samples, X(v) =

{x(v)
1 ,x

(v)
2 , ...,x

(v)
n }. We denote uniform sampling from this

finite dataset as p̃(X ). To estimate the true density of multi-
view variables, one aims to approximate the real distribu-
tion p(X ) ∈ P from the hypothesis space of distribution
family P by p̃(X ) nicely via minimization their KL diver-
gence,

minDKL (p̃(X )∥p(X )) = maxEp̃(X ) [log p(X )]

= max
1

n

n∑
i=1

log p({x(v)
i }mv=1), (1)

Note that minimizing the KL divergence is equivalent to
maximizing the log likelihood. To ease the reading, we will
omit the subscript i and denote {∗(v)}mv=1 as {∗(v)} in the
following.

Under the assumption that the density p({x(v)}) is
achieved through the marginalization of a shared latent
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(a) Vanilla Multi-view VAE (b) Complete Multi-view VAE

Fig. 1. The solid arrows represent the process of generation, the solid lines indicate the intrinsic correlations between views, while the dashed
arrows represent the process of variational inference. (The sampling operation is omitted). (a) Multi-view observations are obtained from a shared
latent variable through different generative processes. The latent variable is assumed to represent a mixture of multiple posteriors mixing different
semantic properties. (b) Complete multi-view VAE is proposed to model the intrinsic transformations between views and preserve the weight of
views, which can facilitate the synthesis of the complete latent variable.

continuous variable z, the generation process of multi-view
variables can be formulated by,

p({x(v)}) =
∫ m∏

v=1

pθ(v)(x(v)|z)p(z)dz. (2)

Since the integral is intractable, it is potentially difficult
to directly calculate the marginalization. Similar to VAE [35],
we turn to maximize the Lower BOund on the Evidence
(ELBO) LELBO(p({x(v)})) by introducing a joint variational
posterior q(z|{x(v)}),

log p({x(v)}) ≥LELBO({x(v)})

=−DKL

(
q(z|{x(v)})∥p(z)

)
+ Eq(z|{x(v)})

[
log p({x(v)}|z)

]
. (3)

The former is KL divergence from the prior p(z) to the joint
variational posterior q(z|{x(v)}), which drives variational
inference close to our hypothesis on z. The latter reveals the
process of variational inference and generation.

Once a specific posterior model is established, a shared
latent representation can be learned from multiple variables
through the inference process. Therefore, it is crucial to
choose a highly expressive and easily computable density
as the joint variational posterior. Different strategies for
modelling the joint posterior inference process are discussed
in Section 2.3. We believe that the complete implicit semantic
information of events is complexly distributed, where only
limited properties are actually observed at once. Therefore,
we prefer to model the joint variational posterior with a
mixture of Gaussian distributions,

q(z|{x(v)}) =
m∑
v=1

λvqϕ(v)(z|x(v))

=
m∑
v=1

λvN (z; µϕ(v)(x(v)), Σϕ(v)(x(v))), (4)

where λv denotes the non-negative normalized coefficient
for the v-th component, satisfying λv ≥ 0 and

∑m
v=1 λv = 1.

The mean and covariance of multivariate Gaussian distribu-
tion w.r.t z can be obtained from the encoder with param-

eters ϕ(v). Consequently, the lower bound on the evidence
p(x(v)) can be rewritten as,

LELBO =−DKL

(
m∑
v=1

λvqϕ(v)(z|x(v))∥p(z)
)

+
m∑
v=1

λvEq
ϕ(v) (z|x(v))

 m∑
j=1

log pθ(v)(x(j)|z)

 .
Note that the KL divergence term is difficult to compute
analytically, we turn to approximate its upper bound.

Lemma 1. For all non-negative measurable functions fi :
R → [0,∞) satisfying

∫
fi(x)dx = 1, defining a weighting

function g(x) =
∑m
i λifi(x),with λi ≥ 0 and

∑m
i λi = 1,

one has∫ m∑
i

λifi(x) log g(x)dx ≤
m∑
i

λi

∫
fi(x) log fi(x)dx.

Proof. Let fi be a probability density function, and g(x) be
a mixture of density with m components of fi. Consider
Efi(x)

[
log g(x)

fi(x)

]
, by utilizing Jensen’s inequality, we have,

Efi(x)
[
log

g(x)

fi(x)

]
≤ E

[
fi(x)

g(x)

fi(x)

]
= log

(∫
g(x)dx

)
= 0.

Thus, it can be showed that
∫
fi(x) log g(x)dx ≤∫

fi(x) log fi(x)dx.
With Lemma 1, the new objective of VMVAE is formu-

lated by,

LVMVAE = −
m∑
v=1

λvDKL

(
qϕ(v)(z|x(v))∥p(z)

)

+
m∑
v=1

λvEq
ϕ(v) (z|x(v))

 m∑
j=1

log pθ(v)(x(j)|z)


≤ LELBO. (5)

The proposed VMVAE is enlightened by Eq. (5). The sum-
mation of KL-divergences drives the unimodal variational
posteriors to approach the prior individually, while the sum-
mation of their expectations reveals alternatively variational
inference followed by full view generation. Notably, the
greater expectation of v-th view over all views, indicating
the more complete information it contains, and therefore
the greater the weight λv . The whole model is illustrated
in Fig. 1(a).
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3.2 Complete Multi-view VAE

The proposed vanilla multi-view VAE faces a pitfall when
dealing with missing views. When there are m views, 2m

inference paths need to be constructed [15] and thus render
the method intractable as the number of views increases.
Either the inference about missing views is abandoned,
which would be biased by the view weights and cause
a large ELBO slack. To tackle this issues, one can exploit
the intrinsic correlations between views, thereby using the
extracted representation to engineer a learning function to
deal with incomplete multi-view problem. Let ({z(v)}, c)
denote the view-peculiar and complete generative latent
variables. The two type of latent variable can be modeled by
a linear transformation z(w) = z(v)Cvw, Cvw ∈ Rdz×dz . This
correlation enables interconversion in linear spaces of the
same dimension, and will not change due to unobservable
views. For a random variable obeying the Gaussian distri-
bution, given y ∼ N (µ, Σ), whose linear transformation
distribution is yC ∼ N (µC, CTΣC) under the statistical
principle. It is noted that, similar to work [41], under the
assumption of nonlinearity, correlations between views can
be more flexible and fitted by using neural networks.

In this way, we introduce a novel joint variational poste-
rior as,

q({z(v)}, c|{x(v)})

=
m∑
v=1

λvq({z(v)}, c|x(v))

=
m∑
v=1

λvqψ(c|{z(v)})
m∏
w ̸=v

q(z(w)|z(v))qϕ(v)(z(v)|x(v)), (6)

where q(z(w)|z(v))qϕ(v)(z(v)|x(v)) =

N (z(w); µϕ(v)(x(v))Cvw, CTvwΣϕ(v)(x(v))Cvw). Here
the generative latent variable qψ(c|{z(v)}) is obtained from
multiple view-peculiar variables under the fusion network
with parameter ψ, i.e., c ∼ N (µψ({z(v)}), Σψ({z(v)})).

Under the joint inference model (6), the framework of
complete multi-view VAE is shown in Fig. 1(b). All view-
peculiar encoders are optimized to learn a balanced repre-
sentation, and the fusion network is leveraged to aggregate
information from all views. When one view is missing, the
latent representation can be predicted by other available
view information and learned invariant correlations. For
example, given an available view v and an unobservable
view u, the inference process for view u can be formulated
by,

λuq({z(v)}, c|x(u))

= λuqψ(c|{z(v)})
m∏
w ̸=u

q(z(w)|z(u))q(z(u)|z(v))qϕ(v)(z(v)|x(v)).

(7)

Eq. (7) shows how the weights of the learned distribu-
tions remain valid once the latent variables of the unobserv-
able views are modeled.

To correctly model the correlations between view-
peculiar latent variable, it is desired to approximate the true

transformations by minimizing the KL-divergence,

minDKL

(
p(z(w)|z(v))∥q(z(w)|z(v))

)
= maxEp(z(w)|z(v))

[
log q(z(w)|z(v))

]
. (8)

Therefore, the objective of CMVAE can be rewritten as,

LCMVAE =−
m∑
v=1

λvDKL

(
q({z(v)}, c|x(v))∥p(c)

)

+
m∑
v=1

λvEq({z(v)},c|x(v))

 m∑
j=1

log pθ(v)(x(j)|c)


+

m∑
v=1

m∑
w ̸=v

Ep(z(w)|z(v))

[
log q(z(w)|z(v))

]
. (9)

Note that the third term of Eq. (9) calculates only the
available paired views.

Lemma 2. For any multivariate random variable x ∈ RJ ,
and its density function p(x), given q(x) = N (x;µ, I), we
have,

Ep(x) [log q(x)] ≤ −J
2
log 2π < 0.

Proof. By using Monte Carlo estimation to approximate the
expectation, we take T samples of xt from the density p(x),

Ep(x) [log q(x)]

=
1

T

T∑
t=1

log
1√
(2π)J

exp(−1

2
(xt − µ)T (xt − µ))

= −J
2
log 2π − 1

2T

T∑
t=1

∥xt − µ∥22

≤ −J
2
log 2π < 0.

With Lemma 2, by simply setting the covariance matrix
of q(z(w)|z(v)) as identity matrix, the objective of CMVAE
can be seen as the lower bound of the joint likelihood func-
tion, i.e., log p({x(v)}) ≥ LELBO({x(v)}) ≥ LCMVAE({x(v)}).
Finally, the maximization of the joint likelihood function is
converted into the maximization of the CMVAE objective.

3.3 Numerical Scheme to Solve CMVAE

The Eq. (9) characterize an unified objective function for
optimizing the parameters of view-peculiar encoders, pair-
wise correlation matrices, fusion network and multiple de-
coders. For optimization using Stochastic Gradient Varia-
tional Bayes (SGVB), the sampling operations of ({z(v)}, c)
should be mapped to the deterministic functions. By the
reparameterization trick [35] for the continuous variable, we
sample the t-th latent representations by,

z
(v)
t = µϕ(v) +Rϕ(v)ϵ

(v)
t (10)

ct = µψ +Rψϵt (11)

where Rϕ(v)RT
ϕ(v) = Σϕ(v) , ϵ

(v)
t ∈ N (0, I) and RψR

T
ψ =

Σψ, ϵt ∈ N (0, I).
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Algorithm 1 Optimization Procedure of CMVAE
Input: Multi-view dataset X ; Statistical model of the prior
p(c) = N (0, I); Setting T = 1 and the dimensionality of
latent variables.
Parameter: Initialize parameters {ϕ(v)}, {θ(v)}, ψ with
random values, λv = 1

m and Cvw with identity ma-
trix.

1: while not reaching the maximal epochs do
2: for v in m views do
3: Calculate (µϕ(v)(x(v)), Σϕ(v)(x(v))) through v-th

encoder and then sample z
(v)
t by Eq. (10);

Implement z(w) = z(v)Cvw,∀w ∈ 1, 2, ...,m, w ̸=
v;
Calculate (µψ({z(v)}), Σψ({z(v)})) through the fu-
sion network and then sample ct by Eq. (11);

4: for j in m views do
5: Generate {x(v)} by m decoders.
6: end for
7: end for
8: Update {ϕ(v)}, {θ(v)}, ψ, Cvw, λv by maximizing

Eq. (12).
9: end while

Output: The complete generative latent representation c.

By using Monte-Carlo estimators, the objective of CM-
VAE can be further written as,

LCMVAE({x(v)})

=
m∑
v=1

λv
T

T∑
t=1

[ m∑
j=1

log pθ(v)(x(j)|ct)− log qψ(ct|{z(v)t })

−
m∑
w ̸=v

log q(z
(w)
t |z(v)t )− log qϕ(v)(z

(v)
t |x(v)) + log p(ct)

]

− 1

2

m∑
v=1

m∑
w ̸=v

∥z(w)
t − µϕ(v)(x(v))Cvw∥22, (12)

where T denotes the number of Monte Carlo samples and is
usually set to be 1. The partial derivatives of each parameter
combination are then calculated and used in the stochastic
back-propagation technique. The partial derivatives of each
parameter combination are then calculated as follows,

∂L
∂θ(v)

=
m∑
j=1

λj
T

T∑
t=1

∂

∂θ(v)
log pθ(v)(x(v)|c(j)t ), (13)

∂L
∂ψ

=
m∑
v=1

λv
T

T∑
t=1

∂

∂c
(v)
t

[ m∑
j=1

log pθ(v)(x(j)|c(v)t )

+ log p(c
(v)
t )

]
·
(
∂µψ
∂ψ

+
∂Rψ

∂ψ
· ϵt
)

− ∂

∂ψ
log qψ(c

(v)
t |{z(v)t }), (14)

TABLE 1
Statistics on tested nine datasets

Datasets # Samples # Views # Classes Dimensionality

MSRC-V1 240 5 7 24,576,512,256,254

Notting-Hill 550 3 5 2000,3304,6750

Handwritten 2000 5 10 240,76,216,47,64

Caltech101-20 2386 6 20 48,40,254,1984,512,928

BDGP 2500 2 5 1750,79

Animal 10158 2 50 4096,4096

PolyMNIST 60000 5 10 784,784,784,784,784

Multiome PBMC 11909 2 11 36601,108377

Multiome BMNC 69249 2 22 13431,116490

∂L
∂Cvw

=
λv
T

T∑
t=1

∂

∂c
(v)
t

[ m∑
j=1

log pθ(v)(x(j)|c(v)t ) + log p(c
(v)
t )

]
(
∂µψ

∂z
(w)
t

+
∂Rψ

∂z
(w)
t

· ϵt
)
· z(v)t − ∂

∂Cvw
log q(z

(w)
t |z(v)t )

+ (zwt − µϕ(v)(x(v))Cvw) · µϕ(v)(x(v)), (15)

∂L
∂ϕ(v)

=
λv
T

T∑
t=1

∂

∂c
(v)
t

[ m∑
j=1

log pθ(v)(x(j)|c(v)t ) + log p(c
(v)
t )

]
(
∂µψ

∂z
(v)
t

+
∂Rψ

∂z
(v)
t

· ϵt
)
·
(
∂µϕ(v)

∂ϕ(v)
+
∂Rϕ(v)

∂ϕ(v)
· ϵ(v)t

)
− ∂

∂ϕ(v)
log qϕ(v)(z

(v)
t |x(v)), (16)

∂L
∂λv

=
1

T

T∑
t=1

m∑
j=1

log pθ(j)(x
j |c(v)t )

− log q({z(v)t }, c(v)t |x(v)) + log p(c
(v)
t ). (17)

The concrete optimization procedure of CMVAE is sum-
marized in Algorithm 1.

4 EXPERIMENTAL RESULTS

We evaluate the effectiveness of multi-view latent represen-
tations based on three different aspects. The approximation
of the joint data distribution is measured in terms of log-
likelihood. The completeness is assessed by the cluster-
ing task and classification task compared to state-of-the-
art incomplete multi-view learning algorithms. The cross-
generative of the latent representation is demonstrated by
qualitative results of cross-view image generation. In ad-
dition, the efficiency and stability of the proposed model
are verified by time complexity and parameter sensitivity
analysis. Finally, the practical significance of the model
is demonstrated by applying it on real-world generated
bioinformatic data.

4.1 Experimental Settings
Model setup: For the clustering and classification task, the
architectures of qϕ(v)(z(v)|x(v)) and pθ(v)(x(v)|c) are fully
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(a) VMVAE-Handwritten (b) CMVAE-Handwritten (c) Caltech101-20

Fig. 2. The variation of the objective values in terms of training iteration for (a) VMVAE, and (b) CMVAE, on the Handwritten dataset. The
convergence values reached by ELBO decrease as the missing rate increases, while CMVAE ultimately achieves a higher ELBO value. (c) The
pronounced difference in ELBO values on the Caltech101-20 dataset verifies that CMVAE has a tighter lower bound, especially with large amounts
of information missing.

connected networks with dv-500-500-1204-256 and 256-1024-
500-500-dv neurons, respectively, where dv is the dimen-
sionality of each view. The fusion network q(ψ)(c|{z(v)})
concatenates multiple view-peculiar latent representations,
followed by a fully connected layer with dimensionality D.
For cross-view image generation, we set up the encoders
and decoders as CNN network, whose specific architecture
follows MoPoE-VAE [15]. Adam optimizer [42] is utilized to
maximize the objective function, and set the learning rate to
be 0.001 with a decay of 0.9 for every 10 epochs.

Datasets: We adopt the following seven benchmark
datasets ranging from small samples to large-scale and two
real-world bioinformatic datasets, and the detailed statistics
are shown in Table 1.

• MSRC-V1 [43] consists of 240 images and 9 object
categories. We select 7 of the whole object classes,
namely tree, building, airplane, cow, face, car and
bicycle, and extract HOG, LBP features as 2 views.

• Notting-Hill [44] is widely used video face dataset
for clustering, which collects 4660 faces across 76
tracks of the 5 main actors from the movie ’Notting
Hill’. We use the multi-view version provided in [45],
consisting of 550 images with three kind of features,
i.e., LBP, gray pixels, and Gabor features.

• Handwritten digit [46] contains 2000 samples with
10 numerals from 0 to 9 with five views which are
respectively extracted by Fourier coefficients, profile
correlations, Karhunen-Love coefficient, Zernike mo-
ments, and pixel average extractors.

• Caltech101-20 is a subset of the object recognition
dataset [47] containing 20 classes and 6 different
views with a total of 2386 samples, including Gabor
features, wavelet moments, CENTRIST features, his-
togram of oriented gradients, GIST features and local
binary patterns.

• BDGP [48] contains 2500 images in 5 categories, and
each sample is described by a 1750-D image vector
and a 79-D textual feature vector.

• Animal [49] contains 10158 animal images divided
into 50 categories. Two types of deep features ex-
tracted by [50] and [51] respectively are considered
as two views.

• PolyMNIST [15] dataset consists of a total of 60,000
samples of 5 different MNIST images that have dif-
ferent backgrounds and writing styles, but have the
same numerical labels.

Compared algorithms: Two baselines and six state-of-
the-art algorithms are used to compare the clustering per-
formance, including:

• Best Single View (BSV) selects the best k-means
clustering results among all single views.

• Concat method stacks the features of all views and
conducting k-means clustering on it.

• DCCA [2] extracts flexible nonlinear representations
with respect to the correlation objective measured on
two views data.

• DCCAE [22] extends DCCA by using autoencoders
to extract common low-dimensional embeddings,
and jointly optimizes the correlation objective and
reconstruction loss.

• VCCAP [3] leverages deep generative models to
implement a natural idea that multiple views can be
generated from a shared latent variable.

• UEAF [52] reconstructs the hidden information of
missing views with preserving the local structure,
and considers the adaptive importance of different
views.

• CPM [17] learns a unified latent representation
by jointly considering completeness and structure,
which is highly flexible and generalizable to incom-
plete multi-view data.

• COMPLETER [33] learns informative and consistent
representations by maximizing the mutual informa-
tion between different views, and recovers missing
views by minimizing the conditional entropy of dif-
ferent views through dual prediction.

Incomplete data construction: To preprocess the dataset
according to the settings in [17], we set the missing rate
η = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, then randomly selected η ×
n×m samples as missing data. Then random instances were
removed from each view, in the case that all samples were
guaranteed to retain at least one view.
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(a) MSRC-V1 (b) Notting-Hill (c) Handwritten

Fig. 3. Clustering performance comparison in terms of NMI and Accuracy by tested ten methods under different missing rates, on (a) MSRC-V1,
(b) Notting-Hill, and (c) Handwritten.

(a) Caltech101-20 (b) BDGP (c) Animal

Fig. 4. Clustering performance comparison in terms of NMI and Accuracy by tested ten methods under different missing rates, on (a) Caltech101-20,
(b) BDGP, and (c) Animal.
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TABLE 2
Classification accuracy comparison under different missing rate on three datasets (mean±standard deviation). Higher values indicate better

performance. The optimal and suboptimal results are in bold and underlined, respectively.

Datasets Methods 0 0.1 0.2 0.3 0.4 0.5

MSRC-V1

BSV 72.84±1.21 70.95±1.62 63.30±3.27 55.70±3.15 49.28±3.41 40.01±4.55
Concat 69.47±2.84 55.54±3.06 45.43±5.04 40.31±5.41 38.34±4.60 34.79±6.32

DCCA [2] 74.23±2.65 72.00±4.54 62.16±4.55 56.97±6.64 41.67±8.86 30.78±3.43
DCCAE [22] 80.46±3.02 78.20±3.46 70.82±4.62 65.47±5.89 59.36±6.14 50.12±5.18
VCCAP [3] 81.24±2.84 70.56±2.54 62.80±3.58 57.20±5.57 50.77±7.21 44.49±5.07
UEAF [52] 85.45±1.54 85.67±3.07 83.63±4.05 80.86±6.19 73.96±4.62 70.83±6.20
CPM [17] 90.14±1.08 88.69±1.28 87.14±2.98 87.50±2.47 77.90±4.81 72.38±5.08

COMPLETER [33] 88.16±2.78 83.65±3.55 80.78±4.84 78.15±4.74 76.34±6.47 69.20±5.65
VMVAE 89.45±1.45 88.20±3.60 85.71±3.56 80.20±4.85 77.07±3.97 72.91±5.92
CMVAE 90.86±0.94 90.47±2.26 88.09±2.34 87.45±3.91 85.45±4.37 81.85±4.48

Notting-Hill

BSV 64.45±1.87 66.22±1.21 61.65±1.37 51.40±2.36 44.17±2.79 37.79±3.00
Concat 48.14±3.10 35.97±0.96 30.95±1.52 28.65±2.57 26.11±1.27 24.93±2.94

DCCA [2] 71.54±1.17 69.50±0.77 58.91±1.61 50.46±3.92 41.48±3.29 37.30±5.15
DCCAE [22] 78.45±1.24 76.48±1.18 74.47±1.77 71.28±2.57 64.47±1.63 62.72±2.39
VCCAP [3] 77.59±2.14 73.37±0.48 69.17±1.06 64.71±2.47 60.37±1.68 58.47±2.05
UEAF [52] 89.54±1.78 84.67±1.95 82.31±1.74 81.84±1.36 78.77±2.77 73.57±2.35
CPM [17] 97.28±1.65 97.77±1.10 97.66±1.31 96.72±2.12 96.40±3.10 96.06±2.20

COMPLETER [33] 96.86±1.45 95.15±1.32 95.04±1.42 92.57±3.45 93.08±2.72 92.17±2.75
VMVAE 90.08±2.87 89.55±3.35 88.52±2.18 85.81±1.73 84.35±1.88 81.02±1.91
CMVAE 96.12±0.81 94.81±1.71 94.61±1.69 94.37±1.14 93.37±1.41 93.19±1.73

Handwritten

BSV 83.15±0.35 82.59±0.45 76.82±0.65 65.82±0.58 59.31±1.55 51.40±1.42
Concat 94.65±1.04 95.32±0.53 93.82±0.86 92.60±0.66 90.25±0.69 87.47±1.12

DCCA [2] 85.45±1.36 78.58±2.54 68.90±1.65 60.25±2.19 51.44±1.45 37.65±2.15
DCCAE [22] 91.27±1.81 88.26±1.56 80.26±1.36 70.45±2.48 59.34±2.45 50.06±1.89
VCCAP [3] 71.54±2.74 64.83±1.44 60.15±1.85 50.83±4.57 45.41±3.60 38.59±4.88
UEAF [52] 93.64±1.98 92.48±1.47 92.85±1.83 92.23±2.07 92.22±2.46 91.57±1.78
CPM [17] 94.78±0.48 94.82±0.85 93.67±1.70 93.56±1.84 92.66±2.40 91.03±2.10

COMPLETER [33] 96.18±1.48 95.68±1.30 95.45±1.02 93.81±2.05 92.51±1.67 91.91±2.54
VMVAE 95.23±1.68 94.45±1.21 94.21±2.20 93.53±2.60 93.18±2.30 92.64±3.05
CMVAE 96.69±0.65 96.25±0.35 96.24±1.31 95.75±1.48 95.50±1.45 94.82±1.65

4.2 Joint Likelihood Approximation

The value of the variational lower bounds affects the por-
trayal of the data distribution, as well as the accuracy of the
inference of the posterior. This conclusion can be derived
from the following equation,

log p({x(v)})
= DKL(q(z|{x(v)})∥p(z|{x(v)})) + LVMVAE

= DKL(q({z(v)}, c|{x(v)})∥p({z(v)}, c|{x(v)}))

−
m∑
v=1

m∑
w ̸=v

Ep(z(w)|z(v))

[
log q(z(w)|z(v))

]
+ LCMVAE.

It can be seen that when the variational lower bound is
larger, the smaller the KL divergence term is, which means
that the variational posterior is closer to the true posterior.
We conduct experiments on the datasets Handwritten and
Caltech101-20 for VMVAE and CMVAE, respectively, and
the results are shown in Fig. 2. By observing the results,
three conclusions can be drawn: i) The ELBO of both

VMVAE and CMVAE decrease to different degrees as the
missing rate increases, which verifies that the more difficult
it is to estimate the joint data distribution as the missing rate
increases. ii) CMVAE converges more slowly in the initial
stage, which is caused by the increased complexity of the
posterior inference process, but the ELBO value is larger
than that of VMVAE in the final stage, which indicates that
the posterior inference of CMVAE is better than that of VM-
VAE. iii) CMVAE is less sensitive to the missing rate, which
can be seen more clearly in Fig. 2(c). This demonstrates
that learning view-invariant information has a facilitating
solidative on latent representation learning in the case of
missing views.

4.3 Clustering Performance Evaluation

To further verify the effectiveness of the learning of latent
representation by VMVAE and CMVAE, we conduct k-
means directly on the latent representation z and c, respec-
tively.
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TABLE 3
Classification accuracy comparison under different missing rate on three datasets (mean±standard deviation). Higher values indicate better

performance. The optimal and suboptimal results are in bold and underlined, respectively.

Datasets Methods 0 0.1 0.2 0.3 0.4 0.5

Caltech101-20

BSV 52.45±2.21 50.95±1.62 53.30±1.27 45.70±1.15 39.28±2.41 30.01±2.55
Concat 67.91±2.08 65.54±1.06 55.43±1.04 50.31±1.41 45.34±0.60 32.79±0.32

DCCA [2] 56.78±1.92 52.00±0.54 52.16±1.55 46.97±1.64 41.67±1.86 36.78±1.43
DCCAE [22] 56.60±1.35 57.20±1.46 56.82±0.62 55.47±0.89 49.36±1.14 50.12±1.18
VCCAP [3] 58.17±3.18 50.56±0.54 47.80±0.58 44.20±0.57 46.77±1.21 44.49±1.07
UEAF [52] 76.15± 0.95 74.67±1.07 72.63±1.05 71.86±1.19 68.96±1.62 66.83±2.20
CPM [17] 90.84±0.52 91.10±1.28 90.85±0.98 89.40±1.24 87.23±1.18 84.39±2.38

COMPLETER [33] 91.48±0.84 89.65±0.55 88.68±0.84 86.15±1.74 85.14±1.47 84.80±1.65
VMVAE 92.58±0.78 90.10±1.60 89.65±0.65 87.88±1.85 86.68±2.07 84.51±3.32
CMVAE 92.48±0.65 92.21±0.45 91.45±0.64 90.45±0.55 89.55±0.90 87.65±1.58

BDGP

BSV 69.48±0.87 68.22±1.21 61.65±1.37 51.40±1.36 44.17±1.79 37.79±1.01
Concat 68.45±1.77 62.97±0.96 50.95±1.52 41.65±1.57 36.11±2.27 34.93±2.94

DCCA [2] 82.60±2.10 78.50±0.77 65.91±1.61 58.46±1.92 46.48±1.29 42.30±1.15
DCCAE [22] 86.16±1.20 82.48±1.18 79.87±0.77 75.28±1.57 72.17±1.93 69.72±2.39
VCCAP [3] 86.75±2.46 86.37±1.48 79.17±1.76 77.71±3.47 69.37±2.68 58.47±2.05
UEAF [52] 96.42±0.58 93.67±1.25 90.11±1.74 87.84±1.36 85.77±2.77 82.57±3.35
CPM [17] 96.12±0.75 94.90±1.40 92.06±0.91 88.52±2.12 85.12±1.19 78.56±1.20

COMPLETER [33] 95.15±0.85 94.15±1.32 92.04±1.42 91.37±1.45 90.08±1.72 87.17±2.25
VMVAE 98.28±0.32 97.45±0.43 96.60±0.68 95.40±0.80 94.22±1.20 91.20±1.80
CMVAE 98.58±0.45 98.60±0.40 98.12±0.45 97.60±0.60 95.80±1.10 93.20±1.60

Animal

BSV 53.14±1.54 37.59±0.45 33.90±0.69 28.22±0.52 24.31±0.51 8.40±0.62
Concat 76.78±0.85 74.52±0.83 70.82±0.89 67.40±1.26 60.52±1.66 57.47±1.15

DCCA [2] 45.86±1.25 7.68±0.36 6.61±0.46 6.22±0.19 5.21±0.41 5.56±0.35
DCCAE [22] 54.24±0.82 27.26±1.26 22.21±1.36 20.50±0.98 15.30±0.43 12.00±1.39
VCCAP [3] 72.54±1.36 70.83±0.84 62.05±0.85 52.38±1.17 46.01±0.68 38.95±0.68
UEAF [52] 85.65±1.10 82.04±1.49 77.35±1.48 74.68±2.07 72.49±2.44 69.70±2.74
CPM [17] 85.14±0.58 83.52±1.55 77.98±1.70 74.86±1.90 73.06±1.49 70.73±2.16

COMPLETER [33] 86.45±0.64 84.16±1.30 80.27±2.02 76.81±2.55 72.71±2.47 70.91±2.50
VMVAE 82.54±1.35 79.78±0.81 77.21±0.76 75.45±1.23 72.94±1.81 69.54±2.15
CMVAE 84.28±0.60 82.24±0.45 79.56±0.38 77.65±0.78 74.65±1.05 72.12±1.16

For BSV, Concat, DCCA, DCCAE, and VCCAP methods,
we simply impute missing data as the mean of all samples
in each view. Since CCA-based models can only handle two
view data, we tested all two view combinations and finally
reported the best clustering score.

For fairness, the parameter settings for the compared
methods are done according to their authors’ suggestions
for their best clustering performances. All algorithms were
replicated 10 times on the six datasets and the mean and
standard deviation were recorded.

Evaluation metrics: For a comprehensive analysis, we
use two popular clustering metrics including Normalized
Mutual Information (NMI), Accuracy (ACC). The higher
the values of these indicators, the better the clustering
performance.

Clustering results and analysis: We tested ten methods
on six multi-view datasets, suffering from different missing
rates. The experimental results are summarized in Fig. 3 and
Fig. 4. It can be observed that i) the multi-view learning
approaches uniformly outperform the BSV and Concat clus-

tering methods, especially when the samples are corrupted
by missing views. The reason is that neither the BSV nor the
Concat method exploits the relationship between different
views. ii) CCA-based methods generally underperform than
incomplete multi-view learning approaches, because filling
missing values directly with the mean is inefficient, while
targeted handling of missing data can more accurately mine
missing view information. iii) The performance drop of all
models is more pronounced as the missing rate increases for
datasets with two views compared to datasets with three
or more views. Because under the same missing rate, for
samples with missing views, the fewer views have more
missing information, making it difficult to recover complete
view information.

By comparing the proposed model CMVAE with other
incomplete multi-view clustering approaches, CMVAE is
not the best performer when the view missing rate is
small, but as the missing rate increases, the robustness of
CMVAE is the best across six datasets. Taking the results of
Caltech101-20 as an example, when η = 0.1, the ACC of
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(a) Samples with missing view (b) MoPoE-VAE (c) VMVAE (d) CMVAE

Fig. 5. Visualization on cross-view image generation. (a) For each sample of 0, 4, 6, and 9, there are only one view are observed, while the others
are missing. For the sample 7, there are only one missing view. The observed samples are used for generating the remaining view images by (b)
MoPoE-VAE, (c) VMVAE, and (d) CMVAE. As can be seen, CMVAE shows the best detail in terms of figures structure and background, which is
clearly contrasted in the first view, highlighted by the green box.

CMVAE is 55.61%, while COMPLETER is the best score of
60.34%, and when η = 0.5, CMVAE achieves the best score
of 50.78%, while COMPLETER drops to 49.78%. Besides, it
can be observed that CMVAE has less fluctuation in clus-
tering performance at each missing rate compared to other
incomplete multi-view learning methods. This illustrates the
improvement from a more complete representation is more
pronounced compared to other learning techniques.

On the other hand, comparing VMVAE and CMVAE,
it can be seen that the clustering performance of CMVAE
degrades to a weaker extent than VMVAE as the missing
rate increases. This side-by-side confirms the point made
in Section 4.2 that CMVAE has a better posterior inference
capability and extracting view invariant information plays
a role.

4.4 Classification Performance Evaluation
In this section, we evaluate the effectiveness of VMVAE and
CMVAE for classification task on six datasets with different
missing rates. The multi-view unified latent representations
z and c are respectively fed into fully connected layers
with the softmax activator. Network parameters are jointly
optimized by adding cross-entropy loss.

For conventional multi-view learning methods, missing
views are filled with mean values based on available sam-
ples in the same class. The CCA-based model reported the
best classification scores for two views.

We divide 80% of the dataset as training set and 20%
as testing set. All algorithms were repeated 10 times of
five-fold cross-validation on six datasets according to the
parameter settings suggested by the authors, and the mean
and standard deviation of the accuracy were calculated.

Classification results and analysis: The experimental
results are summarized in Table 2 and Table 3. Combined
with the clustering results, the following three conclusions
can be drawn: i) Compared with the conventional multi-
view learning method, the incomplete multi-view learning
method maintains advantages in the classification task un-
der different missing rates, and due to the addition of labels,
it is more robust to the missing view data than the clustering
task. ii) CMVAE is still the best performing algorithm on the
six datasets and the most robust to missing data. A total of
22 optimal performances and 5 sub-optimal performances

were obtained across 30 classification metrics across six
datasets. The second place is the CPM model, which has
won 6 first places and 9 second places. It is worth noting
that in the case of the Notting-Hill dataset and low missing
rates, the adversarial strategy employed by CPM forces the
generated data to obey the distribution of the observed data
bringing an advantage to latent representation learning. On
the other hand, when the missing rate is large, CMVAE has
a large margin to lead. For example, when the missing rate
is 0.5, CMVAE has an average accuracy advantage of 4.95%
compared to CPM. iii) Compared with VMVAE, CMVAE
also has a significant improvement in classification tasks.
Combined with the results of clustering, it can be explained
that mining the correlation between views and making full
use of view invariant information is helpful for learning
complete latent representations in the absence of views.

4.5 Cross-view Image Generation

To test the cross-generative of the latent representation, we
conducted cross-view image generation experiments com-
paring MoPoE-VAE [15] on PolyMNIST dataset, and the
qualitative results are shown in Fig. 5. We selected five digits
[0, 4, 6, 7, 9], which are more difficult to distinguish among
handwritten digits, and constructed five training sets for
each digit. MoPoE-VAE, VMVAE and CMVAE were trained
on these five subsets to obtain five models for cross-view
image generation under the following five given conditions:
(1) digit 0 containing only view 1. (2) digit 4 containing
only view 2. (3) digit 6 containing only view 3. (4) digit 9
containing only view 4 and (5) digit 7 containing views 2, 3,
4, 5.

It can be seen that in the first four cases, the quality of
the images generated by CMVAE is significantly improved
compared to MoPoE-VAE and VMVAE, as evidenced by the
clarity of the data and the background details. The possible
reason is that MoPoE-VAE poorly preserves view-specific
factors of variation, while CMVAE captures the underline
transformations of background, allowing learning a more
complete latent representation. And comparing the first four
cases to the fifth, there is a further improvement in the
quality of the generation, suggesting that more complete
view data can provide tighter evidence lower bounds. This
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(a) BDGP (b) Caltech101-20 (c) Animal

Fig. 6. Classification accuracy of latent variable dimensions D under different missing rate η on (a) BGDP, (b) Caltech101-20, and (c) ANIMAL
datasets. The number of classes is denoted by K.

TABLE 4
Time complexity and running time analysis for Handwritten dataset.

Methods Time complexity Running time /s

CPM [17] O(nmdD +md) 4.10±0.12

COMPLETER [33] O(nmdD +m2D2) 3.85±0.15

MoPoE-VAE [15] O(n2mdD + nmdD) 28.45±1.20

VMVAE O(nmdD) 2.78±0.10

CMVAE O(nmdD +m2D2) 3.64±0.12

also confirms the benefit of CMVAE having a larger ELBO
value than VMVAE.

4.6 Time Complexity and Parameter Sensitivity Analy-
sis

The previous experiments on clustering, classification and
cross-view image generation demonstrate the superiority
and effectiveness of CMVAE in learning to generative yet
complete multi-view representations from quantitative and
qualitative perspectives, respectively. Furthermore, the effi-
ciency and stability of CMVAE are illustrated by analyzing
the time complexity and parameter sensitivity.

Time complexity. Denotes input data with batch size
as n, the maximal dimension across all views as d and
the dimension of the latent representation as D. The com-
putational complexity of the encoder and decoder for m
views is O(nmdD) for CPM, COMPLETER, VMVAE and
CMVAE. The computational complexity of the discriminator
for m views is O(md) for CPM, and the complexity of the
latent variable transformations is O(m2D2) for CMVAE and
COMPLETER. Due to the need to face meet view missing
cases, MoPoE-VAE construct 2m posteriori inferences with
computational complexity O(n2mdD). In general, d > n≫
D > m, so the theoretical time complexity ranking is
MoPoE-VAE>CPM>COMPLETE=CMVAE>VMVAE.

Additionally, we tested the runtime for 20 iterations on
the Handwritten dataset on a computer equipped with an
NVIDIA® RTX 2070 GPU, where n = 256 and D = 10. The
mean and standard deviation of the 10 tests are computed

and summarized in Table 4.The results show that VMVAE
has the fastest running time, followed by CMVAE, which is
close to COMPLETER. The actual test runtime are generally
consistent with the theoretical results.

Parameter sensitivity. To investigate the effect of the
output neurons of fusion network q(ψ)(c|{z(v)}), i.e., the
dimensionality of latent variable c, on the classification
accuracy. We chose three datasets BDGP, Caltech101-20 and
Animal corresponding to cluster classes K of 5, 20, 50
respectively. The dimensionality of the latent variable were
selected from D = [K, 16, 32, 64, 128, 256] in turn, and
classification test was performed at the missing rate of
η = [0, 0.1, 0.2, 0.3, 0.4], respectively.

The results are shown in Fig. 6, where it can be seen that
no matter what the missing rate is, the classification accu-
racy changes only slightly when the dimensionality D ≥ K ,
and decreases significantly when comparing D < K. This
illustrates the stability of the model with respect to the
dimensionality of the latent variables, and can also provide
a basis for the operator to set the number of neurons, which
is most directly done by setting D = K .

4.7 Application to Bioinformatic Data

The seven benchmark datasets analyzed in Table 1 rely on
artificially incomplete multi-view data, where the proposed
model achieves superior performance compared to state-
of-the-art multi-view learning methods. This does not re-
flect the real-world situation, in which data may encounter
measurement bias and flexible correlations between views.
We therefore seek to demonstrate CMVAE on bioinformatic
multi-omics data including Multiome PBMC and Multiome
BMMC datasets. (1) Multiome PBMC1. Human peripheral
blood mononuclear cell (PBMC) profiles generated by the
10× Genomics Multiome ATAC and RNA kit with 11,909
cells, measuring 36,601 genes and 108,377 open chromatin
peaks simultaneously. (2) Multiome BMMC [53]. Single-cell
multi-omics data collected from bone marrow mononuclear
cells (BMMC) from 12 healthy human donors. Half of the
samples were measured using paired RNA and ATAC kits,

1. https://support.10xgenomics.com/single-cell-multiome-atac-gex/
datasets/1.0.0/pbmc granulocyte sorted 10k
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(a) MOFA+ (ARI: 71.58%) (b) Seurat-v4 (ARI: 74.34%) (c) MultiVI (ARI: 65.37%) (d) CMVAE (ARI: 75.53%)

Fig. 7. Visualization results of multi-view latent representations using UMAP on Multiome PBMC dataset. Different colors represent different cell
types. Through CMVAE, NK cells are more distinctly divided into two clusters in the embedding space, and the best cell typing performance for the
ARI indicator is obtained.

(a) MOFA+ (ARI: 25.86%) (b) Seurat-v4 (ARI: 61.19%) (c) MultiVI (ARI: 60.27%) (d) CMVAE (ARI: 68.17%)

Fig. 8. Visualization results of multi-view latent representations using UMAP on Multiome BMMC dataset. Different colors represent different cell
types. Through CMVAE, Plasma cell cluster can be more clearly separated, and the best cell typing performance for the ARI indicator is obtained.

and half were measured using single-cell gene expression
kits only, for a total of 69,249 cells, 13,431 genes, and 116,490
open chromatin peaks. Quality control and preprocessing is
performed on both datasets. Gene expression is filtered for
high variant genes as 4,000 genes per cell and log(x + 1)
transformed. In addition, open chromatin peaks are bi-
narized and 40,000 variable peaks are selected and log-
normalized.

We compare CMVAE to other state-of-the-art cellular
typing methods (1) MOFA+ [54] utilizes computationally ef-
ficient variational inference to reconstruct low-dimensional
representations of data and model variation in multi-
omics single-cell genomic data. (2) Seurat-v4 [55] introduces
”weighted nearest neighbor” analysis to understand the
relative utility of each genomic feature in each cell for com-
prehensive analysis of multi-omics data. (3) MultiVI [56]
leverages three variational autoencoders for gene expres-
sion, chromatin accessibility, and protein abundance and
estimates integrated cellular states by aligning and merging
three modal latent states, driving missing view imputation
from consistent information. For MOFA+ and MultiVI, we
run with default parameters. In Seurat-v4, we first compute
the Weighted Nearest Neighbor (WNN) graph, and then to
obtain embeddings in the latent space, we run supervised
PCA using the default parameters.

We directly perform Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) [57] on

the latent variables learned by MOFA+, Seurat-v4, MultiVI
and CMVAE. Fig. 7 and Fig. 8 are the visualization results
on the Multiome PBMC and BMMC datasets respectively.
As shown in Fig. 7, the clusters obtained by CMVAE and
Seurat-v4 are overall tighter, while the significant differ-
ences between CMVAE and the other models are marked by
red circles. CMVAE clearly divides the NK cell population
into two clusters, which implies that NK can be classified
into two subtypes, and this is in fact the case, as [58] has
classified NK cells in the Multiome PBMC dataset into two
subtypes CD56 (bright) NK cells and CD56 (dim) NK cells.
In addition, as shown in Fig. 8, CMVAE and Seurat-v4 have
better discrimination for Plasma cells in the hidden variable
distribution. This suggests that CMVAE makes it possible
to detect more subtle differences in the hidden variable
distribution by mining the correlations between RNA and
ATAC, which is biologically meaningful.

To quantitatively assess the performance of the differ-
ent methods, we use some common biological protection
metrics the same as in [59], including Adjusted Rand Index
(ARI), Normalized Mutual Information (NMI), Average Sil-
houette Width (ASW) of cell type which measure the degree
of retention of biological variation. The results are summa-
rized in Table 5, where CMVAE achieved the best perfor-
mance in both multi-omics datasets. Specifically, in the fully
paired Multiome PBMC dataset, CMVAE performs close to
Seurat-v4, while far outperforming MultiVI in the NMI and
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TABLE 5
Performance comparison of cell typing. Larger values indicate better

performance. The optimal and suboptimal results are in bold and
underlined, respectively.

Datasets Methods NMI ARI ASW

Multiome PBMC

MOFA+ [54] 79.12 71.58 62.14

Seurat-v4 [55] 81.68 74.34 60.59

MultiVI [56] 77.68 65.37 59.48

CMVAE 81.85 75.53 62.80

Multiome BMMC

MOFA+ [54] 60.63 25.86 53.40

Seruat-v4 [55] 73.67 61.19 58.98

MultiVI [56] 75.10 60.27 59.28

CMVAE 78.56 68.17 59.89

ARI metrics at 4.17% and 10.16%, respectively, whereas, in
the incompletely paired Multiome BMMC dataset, the CM-
VAE is still substantially ahead of MultiVI, while MultiVI
outperforms Seurat-v4. This suggests that (i) the specific
settings of the incomplete view learning method play a role
in incomplete view data. (ii) The proposed complete multi-
view representation learning outperforms the multi-view
consistent learning in the view complete or missing case
because learning complete information helps to distinguish
small differences between samples.

5 CONCLUSION

In this paper, we put forward the complete multi-view
VAE (CMVAE) to learn a complete generative latent rep-
resentation under view absence. Specifically, view-invariant
information mining is introduced into the inference process
of latent variables, allowing the missing view information to
be compensated. The variational inference process includes
exploiting the intrinsic transformations between views for
interconversion and keeping the view weights invariant to
avoid misrepresentation of the latent variable. Benchmark
experiments, time complexity and parameter sensitivity
analysis, and bioinformatics applications are conducted to
demonstrate the effectiveness, efficiency, robustness and
practical significance of the proposed multi-view variational
lower bound under the VAE framework.
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