
UNDER REVIEW, JULY 24, 2023 1

Diffeomorphic Counterfactuals
with Generative Models

Ann-Kathrin Dombrowski*, Jan E. Gerken*, Klaus-Robert Müller†, Pan Kessel†

Abstract—Counterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple
but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation
and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified
target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either
exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and
validate the quality of the generated counterfactuals using various qualitative and quantitative measures.

Index Terms—Counterfactual Explanations, Explainable Artificial Intelligence, Data Manifold, Generative Models

✦

1 INTRODUCTION

D EEP neural network models are widely used to solve
complex problems from computer vision (e.g. [1], [2],

[3], [4], [5]), strategic games and robotics (e.g. [6], [7], [8]),
to medicine (e.g. [9], [10], [11]) and the sciences (e.g. [12],
[13], [14], [15], [16]). However, they are traditionally seen
as black-box models, i.e. given the network model, it has
been unclear to the user and even the engineer designing
the algorithm, what has been most important to reach a par-
ticular output prediction. This can cause serious obstacles
for applications since, say, networks using spurious image
features that are only present in the training data might
go unnoticed. Such undesired behaviour hampering the
network’s generalization ability has indeed been identified
using explanation methods [17], [18] and is particularly
problematic in safety-critical areas.

Supplying this desired transparency has been the sub-
ject of recent developments in the field of explainable AI
(XAI) [19], [20], [21], [22], [23], ameliorating the aforemen-
tioned challenges. Prominent techniques in this area [19],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35],
[36], [37], [38] construct e.g. saliency maps for classifiers or
regressors [39] which highlight areas of the input that were
particularly important for the classification.

A different approach to explain a neural network is given

• Ann-Kathrin Dombrowski is affiliated with the Machine ML at Berlin
Institute of Technology (TU), 10587 Berlin, a.dombrowski@tu-berlin.de

• Jan E. Gerken is currently with Chalmers University of Technology,
41296 Gothenburg, gerken@chalmers.se

• Pan Kessel is currently with Prescient Design, Genentech, 4070 Basel,
pan.kessel@roche.com

• Klaus-Robert Müller is with the Berlin Institute of Technology (TU
Berlin), 10587 Berlin, the Department of Artificial Intelligence, Korea
University, Seoul 136-713, the Max Planck Institut für Informatik,
66123 Saarbrücken, and with Google Research, Brain Team, klaus-
robert.mueller@tu-berlin.de

* equal contribution
† to whom correspondence should be addressed.

Manuscript received ; revised .

original
not blond

adversarial example
blond (p ≈ 0.99)

counterfactual
blond (p ≈ 0.99)

Fig. 1. Example of a counterfactual from the CelebA dataset. The origi-
nal is classified as not blond. The adversarial is classified with high confi-
dence as blond, but the difference to the original resembles unstructured
noise. The counterfactual is also classified with high confidence as blond
but in contrast to the adversarial example it shows semantic differences
to the original.

by providing counterfactuals to the original inputs [40], [41],
[42]. These are realistic-looking images which are seman-
tically close to the original but differ in distinct features
so that their classification matches the desired target class,
cf. Figure 1. Counterfactuals aim to answer questions like
“Why was this input classified as A and not as B?” or “What
would need to change in the input so that it is no longer
classified as A but instead as B?” [40], [41], [42] and thereby
provide an explanation for the classifier. Unlike attribution
methods, counterfactuals do not provide a relevance map,
but an image that is similar to the original input and serves
as a kind of counter example or hypothetical alternative
for the original prediction. For certain applications, counter-
factuals can yield insights that attribution methods cannot:
for example, if we aim to classify circles and squares in
a data set where all circles are twice as large as squares
then the classifier could pick up on the size of the depicted
object instead of its shape. In this situation, attribution maps
would not be able to detect the size-correlation as they can
only highlight existing features. In contrast, counterfactuals
would show larger squares and smaller circles revealing that
the classifier exploits a spurious correlation.

It is important to emphasize that the counterfactual is

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 2

required to be a realistic sample from the data distribution
in order to elucidate the behaviour of the network on the
data. This requirement poses the greatest practical challenge
to computing counterfactuals since naively optimizing the
output of the network with respect to the input via gradient
ascent yields adversarial examples [43] which essentially
add a small amount of noise to the original input, as illus-
trated in the example given in Figure 1. This behavior can be
understood using the manifold hypothesis: the images are
assumed to lie on a low dimensional manifold embedded in
the high dimensional input space, cf. Figure 2 (a), that can
be learned using a generative model. The gradient ascent al-
gorithm then walks in a direction orthogonal to the decision
boundary which is with high probability also orthogonal to
the data manifold, resulting in a small perturbation which is
not semantic, as illustrated in Figure 2 (b). This is acceptable
for adversarial examples as they aim to flip the classification
by imperceptibly perturbing the input which may then also
lie off the data manifold. In contrast, counterfactuals are
supposed to facilitate the interpretation of the classifier’s
decision by a human operator. As such, unstructured, noisy,
and therefore uninterpretable perturbations are unhelpful
for this task, i.e., the change of the image must take a
semantically meaningful form.

We propose to use insights from the mathematical dis-
cipline of differential geometry to mitigate this problem.
Differential geometry can be understood as analysis on
curved (hyper-) surfaces and thus provides the appropriate
tools to study gradients on the data manifold. It has been
valuable for the field of ML in general [44], [45], [46] and
XAI specifically [47], [48], [49]. A cornerstone of differ-
ential geometry is the idea that geometric quantities can
be described equivalently in different coordinate systems.
However, not all coordinate systems are equally useful in
practice. This phenomenon is ubiquitous in physics: for
instance, the mathematical expressions governing planetary
motions greatly simplify in a heliocentric (sun-centered) co-
ordinate system as opposed to a geocentric (earth-centered)
coordinate system. In heliocentric coordinates, the planetary
motions can be described by simple Kepler ellipses and
thus the relevant degrees of freedom are easily recognizable.
In contrast, the orbits are very complicated in geocentric
coordinates as can be observed in the night sky. As a result,
physical intuition and interpretations are much easier to
deduce in heliocentric coordinates. Similarly, we attribute
the difficulty to construct counterfactuals by optimizing the
output of a neural network classifier with respect to its input
as in Figure 2 (b) to the poor choice of coordinates X in
the input space given by the raw image data. In contrast,
in a suitably chosen coordinate system Z , the data mani-
fold would extend more evenly in all directions, allowing
for an optimization that stays on the data manifold and
thereby producing a counterfactual that has been changed
semantically when compared to the original. In order to
find such a coordinate transformation (called a diffeomor-
phism in differential geometry) between X and Z , we use
a normalizing flow trained on the image data set under
consideration. Since the flow is by construction bijective
and differentiable with a differentiable inverse, it satisfies
the technical conditions for a diffeomorphism in differential
geometry. Furthermore, the base distribution of the flow

is fixed to be a univariate Gaussian and hence free of
pathological directions. Moreover, this change of coordinate
system will lead to no information loss which is in stark
contrast to existing methods for generating counterfactuals.

In our method, the counterfactual is computed by taking
the gradient in the gradient ascent update with respect to
the representation in the base space of the normalizing flow
as opposed to the input of the classifier (Figure 2 (b)). This
method comes with rigorous theoretical guarantees and
we refer to it as diffeomorphic counterfactuals. In particular,
we show that this introduces a metric into the update
step which shrinks the gradient in directions orthogonal to
the data manifold. Furthermore, we propose two separate
methods which only approximately lead to a diffeomorphism.
While these approximate methods come with a lower level
of theoretical guarantees, and can, in practice, lead to some
information loss, they can be scaled easily to very high-
dimensional datasets, as we demonstrate experimentally.
We refer to these methods as approximate diffeomorphic coun-
terfactuals. We theoretically prove that these methods also
stay on the data manifold under suitable assumptions. Our
theoretical analysis therefore provides a unified mathemat-
ical framework for the application of generative models
in the context of counterfactuals. Importantly, we can not
only optimize the output of a classifier network on the data
manifold in this manner, but also that of a regressor.

This analysis is supported by our experimental results
for various application domains, such as computer vision
and medical radiology and a number of architectures for
classifiers, regressors and generative models. Note that we
lay emphasis on using quantitative metrics — as opposed to
only qualitative analysis — to evaluate the proposed meth-
ods; some quantitative results are exemplified in Figure 2 (d)
and (e).

The main contributions of our work are as follows:

1) We outline a simple and theoretically principled
framework for the generation of counterfactual ex-
planations using generative models.

2) We prove rigorously using differential geometry
that the resulting counterfactuals lie on the data
manifold for well-trained generative models.

3) We show that the proposed framework can be
straightforwardly extended to a broad class of tasks
and generative model architectures and demon-
strate this in detailed numerical experiments.

The paper is structured as follows: in Section 2, we
introduce the proposed methods. Specifically, we will in-
troduce diffeomorphic explanations in Section 2.3 and the
approximate versions thereof in Section 2.4. We then anal-
yse the proposed methods theoretically using Riemannian
differential geometry in Section 3. This is followed by Sec-
tion 4 which provides a detailed experimental analysis of
our proposed methods. In Section 6, we give an extensive
discussion of related work. The code for a toy example and
our main experiments is publicly accessible1.

1. https://github.com/annahdo/counterfactuals

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/annahdo/counterfactuals


UNDER REVIEW, JULY 24, 2023 3

target class t

source class high data
density

low data
density

   decision boundary

undesired: gradient ascent in  leads to adversarial examples off data manifold

desired: gradient ascent in  leads to counterfactuals on the data manifold

counterfactuals generalize to simple classifiers counterfactuals resemble real data in both,     and 

original image lies
on the data manifold

generative
model 

classifier 

classifier 

0

25

50

75

ac
c 

ta
rg

et
 c

la
ss

Generalization to simple SVM Nearest neighbours in target class

original

images

gradient

ascent

in 

gradient

ascent

in 

original

images

gradient

ascent

in 

gradient

ascent

in 

0

25

50

75

%
 o

f 
N

N
s

c

ba

d e

0.010

original images grad asc in grad asc in

0 25 50 75
0.00

0.02

0.04

0.000

0.005

distances in distances in

500 1000

0
0.00

0.02

0.04

1000

0.06

d
en

si
ty

de
ns

it
y

0.00

0.01

0.02

distances to original image distances to images of source class

25 50 75
distances in distances in

0 75
0.0

0.1

0.2

0.3

de
ns

it
y

0.000

0.001

0.002

0.003

distances to original image distances to images of source class

500 1000

distances in

25 50

distances in

Euclidean distances between adversarials and originals
 are very small in   but large in  

Euclidean distances between counterfactuals and originals
 are small in both, and  

500

Fig. 2. (a) Image data usually lies on a lower dimensional data manifold, which is embedded in high dimensional space. We want to know what
image features would have to change so that the classification flips. (b) If we follow the gradient of our target class with respect to the input ∂ft

∂x
the

prediction flips but the resulting image is an adversarial example that looks indistinguishable from the original for a human observer. The changes
to the original image are not semantic, but are limited to specific noise. The Euclidean difference between adversarial and original is therefore
very small when measured in X but large when measured in Z, cf. Figure 14. (c) We use to the normalizing flow g to obtain the latent space
representation z = g−1(x) of our original image x. We then perform gradient ascent in the latent space Z. The prediction flips, but this time the
resulting image is a counterfactual. The changes to the original image are semantic. The Euclidean difference between counterfactual and original
is small when measured in X and Z, cf. Figure 14. (d) Left: Quantitative evaluations show that counterfactuals generalize to simple classifiers in
contrast to adversarial examples. Right: Nearest neighbours of counterfactuals are mainly of the target class in contrast to NNs of adversarials.
We show results for the CelebA data set. (e) Histograms for Euclidean distances to training images for original images, adversarial examples and
counterfactuals are indistinguishable when measuring the distances in the input space X . When measuring the distances in the latent space Z we
see that adversarial examples have larger distances. This confirms the hypothesis that adversarial examples lie off the data manifold. We show
results for the CelebA data set.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 4

2 METHODS

In this section, we will introduce in detail our novel diffeo-
morphic and approximately diffeomorphic counterfactuals.
For this, we will start by reviewing the basics of counter-
factual explanations and then present our two proposed
methods.

2.1 Counterfactual Explanations

Consider a classifier2 f : X → RC which assigns to an
input x ∈ X the probability f(x)c to be part of class c ∈
{1, . . . , C}. Counterfactual explanations of the classifier f
provide minimal deformations x′ = x + δx such that the
prediction of the classifier is changed.

In many cases of practical relevance, the data lies approx-
imately on a submanifold D ⊂ X which is of significantly
lower dimensionality ND than the dimensionality NX of the
input space X . This is known as the manifold hypothesis in
the literature (see e.g. [50]). For counterfactual explanations,
as opposed to adversarial examples, we are interested in
deformations x′ which lie on the data manifold. Addition-
ally, we require the deformations to the original data to
be minimal, i.e. the perturbation δx should be as small
as possible. cf. (3) below. The relevant norm is however
measured along the data manifold and not calculated in
the input space. For example, a slightly rotated number in
an MNIST image may have large pixel-wise distance but
should be considered an infinitesimal perturbation of the
original image.

We mathematically formalize the manifold hypothesis
by assuming that the data is concentrated in a small region
of extension δ around D. As we will show in Section 3, this
implies that the support S of the data density p is a product
manifold

S = D × Iδ1 × · · · × IδNX−ND
, (1)

where Iδ = (− δ
2 ,

δ
2 ) is an open interval of length δ (with

respect to the Euclidean distance on the input space X ).
We assume that δ is small, i.e. the data lies approximately
on the low-dimensional manifold D and thus fulfills the
manifold hypothesis. We can think of the Iδ as arising from
the inherent noise in the data.

Furthermore, we define the set of points in S classified
with confidence Λ ∈ (0, 1) as class t ∈ {1, . . . , C} by

St,Λ = {x ∈ S | t = argmaxjfj(x) and ft(x) > Λ} . (2)

A counterfactual x′ ∈ X for class t of the original sample
x ∈ X then is the closest point to x in St,Λ,

x′ ∈ St,Λ and argminydγ(x, y) = x′ , (3)

where dγ(x′, x) is the distance computed by the Riemannian
metric γ on S (which is induced from the flat metric by the
diffeomorphism given by the generative model). We will
review the necessary concepts of Riemannian geometry in
Section 3.1.

2. In Appendix A, we provide a list of the mathematical symbols
used as a convenience for the reader.

2.2 Generation of Counterfactuals
Often, counterfactuals are generated by performing gradient
ascent in the input space X , see [41] for a recent review on
counterfactuals. More precisely, for step size η and target
class t, one performs the gradient ascent step

x(i+1) = x(i) + η
∂ft
∂x

(x(i)) (4)

until the classifier has reached a threshold confidence Λ, i.e.
f(x(i+1))t > Λ. The resulting samples will however often
not lie on the data manifold and differ from the original
image x only in added unstructured noise rather than in
an interpretable and semantically meaningful manner. Es-
pecially when applied to high dimensional image data such
samples are usually referred to as adversarial examples and
not counterfactuals. The reason for the noisy gradients is
that the classifier is trained only on the data manifold, so
gradient directions orthogonal to the data manifold are ill-
specified (e.g. [51]).

We therefore propose to estimate the counterfactual x′

of the original data point x by using a diffeomorphism g :
Z → S. We then perform gradient ascent in the latent space
Z , i.e.

z(i+1) = z(i) + λ
∂(f ◦ g)t

∂z
(z(i)) (5)

with step size λ ∈ R+. This has the important advantage
that the resulting counterfactual will lie on the data man-
ifold. Furthermore, since we consider a diffeomorphism g,
and thus in particular a bijective map, no information will
be lost by considering the classifier f ◦ g on Z instead of the
original classifier f on the data manifold S, i.e. there exists
a unique z = g−1(x) ∈ Z for any x ∈ S. We show pseudo
code for our approach in Algorithm 1.

As illustrated in Figure 3, gradient ascent in X and
Z are well-suited to generate adversarial examples and
counterfactuals, respectively.

Algorithm 1 Generating counterfactuals

Require: x, f, g, g−1, t,Λ, λ,N
1: z ← g−1(x)
2: for i in range(N ) do
3: ∇z ← ∂(f◦g)t

∂z
4: z ← optimizer.step(λ, ∇z)
5: if f(g(z))t > Λ then
6: return g(z)
7: end if
8: end for
9: return None

Note: x is the input for which we desire to find a counter-
factual explanation, f the predictive model, g the generative
model, g−1 the (approximate) inverse of g, t the target class,
Λ the target confidence, λ the learning rate and N the
maximum number of update steps. If the target confidence
could not be reached after N steps, the algorithm returns
None.

For regression tasks there is no explicit decision bound-
ary, but we can still follow the the same algorithm by di-
rectly maximizing (or minimizing) the output r of regressor
f(x) until we reach the desired target regression value.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 5

decision boundary

target class

source class 

counterfactual

data point

adversarial example

                  data manifold

Fig. 3. When the gradient ascent optimization of the target class is
performed in the input space of the classifier, one leaves the data
manifold and obtains an adversarial example. If instead the gradient
ascent is performed in the latent space of a generative model, one stays
on the data manifold, resulting in a counterfactual example.

2.3 Novel Method 1: Diffeomorphic Counterfactuals

We propose to model the map g by a normalizing flow
and will refer to the corresponding modified data x′ as
diffeomorphic counterfactuals in the following.

Specifically, a flow g is an invertible neural network
which equips, by the change-of-variable theorem, the input
space X with a probability density

q(x) = qZ(g
−1(x))

∣∣∣∣det
∂z

∂x

∣∣∣∣ , (6)

where qZ is a simple base density, such as a univariate
normal density, on the latent space Z . The flow can be
trained by maximum likelihood, i.e. by minimizing

KL(p|q) = −Ex∼p log q(x) + const.

≈ − 1

N

N∑
i=1

log(q(xi)) + const. , (7)

where xi ∼ p are samples from the data density p. Since
the flow is bijective on the entire input space X , it will,
in particular, be bijective on the data manifold S ⊂ X .
Furthermore, we will also rigorously show in Section 3.3
that a well-trained flow maps (to very good approximation)
only to the data manifold, i.e. g(Z) ≈ S.

Therefore, flows guarantee that no information is lost
when performing gradient ascent in the latent space Z and
also ensure that the resulting counterfactuals lie on the data
manifold S. Indeed, the flow can be understood as inducing
a certain coordinate change of the input space X which is
particularly suited for the generation of counterfactuals.

2.4 Novel Method 2: Approximate Diffeomorphic Coun-
terfactuals

While the method of the last section is very appealing as
it comes with strong guarantees, it may be challenging to
scale to very high-dimensional data sets. This is because
flows have a very large memory footprint on such datasets
as each layer has the same dimensionality as the data space
X to ensure bijectivity. We therefore posit an alternative
method, called approximate diffeomorphic counterfactuals,
which comes with less rigorous theoretical guarantees, but

can scale better to very high-dimensional data. Specifically,
we propose two varieties of approximate diffeomorphic
counterfactuals:

Autoencoder-based: the reconstruction loss of an au-
toencoder (AE), i.e.

L = Ex∼p||g(e(x))− x||2 , (8)

with encoder e : X → Z and generator g : Z → X is
minimized if the encoder is the inverse of the generator on
the data manifold S, i.e.

e|S = g−1|S . (9)

This implies, in particular, that g(Z) = S if dim(Z) =
dim(S). As for normalizing flows, the image of the autoen-
coder is the data manifold if the model has been perfectly
trained. However, an autoencoder will only be invertible on
the data manifold in this perfect training limit and if the
latent space Z has the same dimension as the data space S.
This is in contrast to normalizing flows which are invertible
on all of X by construction. As a result, the autoencoder
will necessarily lead to loss of information unless the model
is perfectly trained and the latent space dimensionality
perfectly matches the dimension of the data.

GAN-based: Generative Adversarial Networks (GANs)
consist of a generator g : Z → X and a discriminator d :
X → {0, 1}. Training then proceeds by minimizing a certain
minimax loss, see [52] for details. It can be shown that the
global minimizer of this loss function ensures that samples
of the optimal generator g are distributed according to the
data distribution, i.e.

g(z) ∼ p for z ∼ qZ . (10)

We refer to Section 4.1 of [52] for a proof. However, the
optimal generator g is not necessarily bijective on the data
manifold. This implies that even for a perfectly trained
GAN, there may not exist a unique z ∈ Z for a given
data sample x ∈ X such that x = g(z). Furthermore,
there is no manifest mechanism to obtain the corresponding
latent sample z ∈ Z for a given input x ∈ X . This is in
contrast to normalizing flows and autoencoders, since, for
these generative models, the inverse map g−1 : X → Z is
either explicitly or approximately known, respectively.

However, there is an extensive literature for GAN in-
version, see [53] for a recent review. For a given generator
g and data sample x ∈ X , these methods aim to find a
latent vector z ∈ Z such that x ≈ g(z). This is often done
by minimizing the difference between the activations of an
intermediate layer of some auxiliary network, i.e.

z = argminẑ∈Z ||h(g(ẑ))− h(x)|| . (11)

For example, h can be chosen to be an intermediate layer
of an Inception network [54] trained on samples from the
data density p. Note that these inversion methods do not
come with rigorous guarantees as the optimization objective
is non-convex and it is unclear whether the values of the
intermediate layer activations are sufficient to distinguish
different inputs.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 6

3 THEORETICAL ANALYSIS

In this section, we employ tools from differential geometry
to show that for well-trained generative models, the gra-
dient ascent update (5) in the latent space Z does indeed
stay on the data manifold, as confirmed by the experimental
results presented in Section 4. Intuitively, since in (5) we take
small steps in Z , where the probability distribution is, for
example, a normal with unit variance, we do not leave the
region of high probability in the latent space and hence stay
in a region of high probability also in X .

We prove this statement for the case of diffeomorphic
counterfactuals, i.e. for normalizing flows, and – under
stronger assumptions – also for approximate diffeomorphic
counterfactuals, i.e. for autoencoders and generative adver-
sarial networks.

3.1 Differential Geometry
In this section, we briefly introduce the most fundamental
notions of differential geometry used in our discussion
further down. For a comprehensive textbook, see e.g. [55].

Differential geometry is the study of smooth (hyper-
)surfaces. The central notion of this branch of mathematics is
that of an n-dimensional (differentiable) manifoldM which
is equipped with coordinate functions xµ : M → Rn (so-
called charts which are assembled into an atlas). These coor-
dinates allow for explicit calculations in Rn, but geometric
objects (tensors) are independent of the chosen coordinates
and transform in well-defined ways under changes of coor-
dinates. Such a change of coordinates can be interpreted as
a differentiable bijection ϕ :M→M whose inverse is also
differentiable, a so-called diffeomorphism.

At each point p ∈M, we attach an n-dimensional vector
space TpM, the tangent space at p. Coordinates xµ induce a
basis in TpM and we will denote the components of v ∈
TpM in this basis by vµ. Under a diffeomorphism ϕ, the
components of v transform as

vα =
n∑

µ=1

∂ϕα

∂xµ
vµ =

∂ϕα

∂xµ
vµ , (12)

where in the second equality, we introduced the Einstein
sum convention which implies sums over repeated upper
and lower indices (the index in the denominator of the
differential counts as a lower index). We will use this sum
convention in the following to streamline the notation.

To capture the notion of distance (and curvature) onM,
a metric tensor γ(p) : TpM× TpM→ R is used. The metric
defines a canonical isomorphism between TpM and its dual
space T ∗

pM by v⋆ = γ(p)(v, ·) and v = γ−1(p)(v∗, ·).
Following the usual convention in the general relativity
literature, we use lower indices vµ to denote the components
of the dual vector v∗. This implies that in components the
isomorphism reads

vµ = γµνv
ν and vµ = γµνvν , (13)

where the sums over ν are implied and we introduced γµν

for the inverse of γµν , the components of γ in the basis
induced by the coordinates xµ. In short, contraction with
the metric is used to raise and lower indices.

Given a metric, it is natural to consider shortest paths
between points onM. The corresponding curves are called

geodesics. If the length of the tangent vector of a geodesic σ is
constant (as measured by the metric) along σ, the geodesic
is affinely-parametrized. Importantly, the notion of an affinely
parametrized geodesic is coordinate independent and can
therefore itself be used to construct coordinates on M, as
we will see below.

3.2 Mathematical Setup

In order to analyze the gradient ascent (5) in the latent space
Z , we define in this section the necessary manifolds and
coordinates.

As above, let X be an NX -dimensional manifold which
is the input space of the classifier f : X → RC with C
classes. An implementation of the classifier corresponds to
a function on RNX and we denote the coordinates on X in
which our classifier is given by xα. These coordinates could
e.g. be suitably normalized pixel values. We furthermore
use an NZ -dimensional manifold Z as the latent space for
our generative model g : Z → X . For GANs and AEs,
we typically have NZ < NX and for normalizing flows
NZ = NX . In the latter case we have moreover X = Z
and g bijective with differentiable inverse implying that
g is a diffeomorphism. Similarly to the classifier, also the
generative model is implemented in specific coordinates on
Z which we denote by za.

We equip Z with a flat Euclidean metric δab. Then, the
generative model g induces an inverse metric γαβ on g(Z)
by

γαβ = δab
∂gα

∂za
∂gβ

∂zb
. (14)

In the case of NZ < NX , γ is singular. This metric is the
crucial new ingredient when performing the gradient ascent
update in the latent space (5) as opposed to in the input
space (4), as the following calculation shows.

One step of gradient ascent in the latent space Z is
given by the image under g of the update step (5). In xα

coordinates and to linear order in the learning rate λ, it is
given by

gα(z(i+1)) = gα(z(i)) + λ
∂gα

∂za
∂(f ◦ g)t

∂za
+O(λ2)

= gα(z(i)) + λ
∂gα

∂za
∂gβ

∂za
∂ft
∂xβ

+O(λ2)

= gα(z(i)) + λ γαβ ∂ft
∂xβ

+O(λ2) . (15)

If we start from the same points, x(i) = g(z(i)), the differ-
ence between gradient ascent in latent space (5) and input
space (4) is just given by the contraction of the gradient
of f with respect to x with the inverse induced metric
γαβ = ∂gα

∂za
∂gβ

∂za . Hence, in order to understand why the
prescription (5) stays on the data manifold, we will in the
following investigate the properties of γ for the case of well-
trained generative models.

Before returning to γ, we will first discuss the structure
of the data. The probability density of the data on X is
denoted by p : X → R and the probability density induced
by g is denoted by q : X → R. For q in xα coordinates, we
use the notation qx : RNX → R. The data is characterized

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 7

S



X

D

y∥

y⊥

δ
2

σ
p

q

Fig. 4. Construction of the yµ coordinates which are aligned with the
data manifold D.

by S = supp(p) ⊂ X which becomes Sx ⊂ RNX in xα co-
ordinates. We will assume that the data lives approximately
on a submanifold D ⊂ S of X with dimension ND ≪ NX .
In relation to the dimension of our generative model, we
assume that ND ≤ NZ ≤ NX . As a subset of X and in xα

coordinates, D will be denoted by Dx ⊂ RNX . To capture
that the data does not extend far beyond D, we assume
that S has Euclidean extension δ ≪ 1, normal to D in xα

coordinates, i.e.3

Sx =

{
xD + xδ

∣∣∣ xD ∈ Dx, x
α
δ ∈

(
− δ

2
,
δ

2

)}
. (16)

Next, we will define coordinates in a neighborhood of
D which separate the directions tangential and normal to
D as illustrated in Figure 4. Our construction is similar
to the constructions of Riemannian and Gaussian normal
coordinates, adapted for a submanifold of codimension
larger than one. First, we choose coordinates y∥ on D and,
for each p ∈ D, a basis {ni} for the tangent space TpD⊥
of the normal to D at p. Following the usual construction
of Riemannian normal coordinates, we assign coordinates
to a point q in some neighborhood of D by construct-
ing an affinely parametrized geodesic σ : [0, 1] → X
which satisfies σ(0) = p and σ(1) = q and which has
tangent vector σ′(0) ∈ TpD⊥. The coordinates of q are
then y(q) = (y∥(p), y⊥) ∈ RND ⊕ RNX−ND , where the ith

component of y⊥ is given by the ith component of σ′(0) in
the basis {ni}. In a sufficiently small neighborhood around
D, we can find a unique basepoint p ∈ D and geodesic σ for
every q.

One important aspect of this construction is that by
rescaling the basis vectors {ni}, we can rescale the com-
ponents of σ′(0).4 This means we can rescale the y⊥ coor-
dinates arbitrarily and hence we can use this freedom to
bound S in y coordinates by the same δ that appeared in

3. The form (16) restricts the slices S⊥(xD) through S normal to D to
be L1 balls whose size is independent of xD . We make this restriction to
simplify notation but the argument can straightforwardly be extended
to arbitrary shapes of S⊥(xD) by bounding it by an L2 ball of radius
δ/2.

4. Note that this does not change the parametrization of the geodesic,
hence we still have σ(0) = p and σ(1) = q.

(16),

Sy =

{
(y∥, y⊥) ∈ RNX

∣∣∣ y∥ ∈ Dy, y
i
⊥ ∈

(
− δ

2
,
δ

2

)}
. (17)

Furthermore, in g(Z), we can choose the basis {ni} orthog-
onal with respect to the (singular) metric γ and obtain in
some neighborhood of D ∩ g(Z)

γµν(y) =


γ−1
D (y)

γ−1
⊥1

. . .
γ−1
⊥NX−ND


µν

. (18)

Note that this form of the metric together with (17) implies
in particular that S takes the product form mentioned in
(1). In the following, we will show that for well-trained
generative networks and thin data distributions (i.e. for
small δ), γ−1

⊥i
→ 0. To understand the consequences for the

gradient ascent update step, consider (15) in yµ coordinates

γαβ ∂ft
∂xβ

=
∂xα

∂yµ
γµν ∂ft

∂yν

=
∂xα

∂yµ∥
γµν
D

∂ft
∂yν∥

+
∂xα

∂yi⊥
γ−1
⊥i

∂ft
∂yi⊥

. (19)

For γ−1
⊥i
→ 0 and ∂x

∂y⊥
bounded, the second term vanishes

and we arrive at

γαβ ∂ft
∂xβ

→ ∂xα

∂yµ∥
γµν
D

∂ft
∂yν∥

(20)

and hence the orthogonal directions in the update step (15),
leading away from the data manifold D, are suppressed.
Therefore, (15) produces counterfactuals instead of adver-
sarial examples.

3.3 Diffeomorphic Counterfactuals

In this section, we show that for well-trained normalizing
flows, the orthogonal components of the inverse metric
γ−1
⊥i

vanish for thin data manifolds, as formalized in the
following theorem.

Theorem 1. For ϵ ∈ (0, 1) and g a normalizing flow with
Kullback–Leibler divergence KL(p, q) < ϵ,

γ−1
⊥i
→ 0 as δ → 0

for all i ∈ {1, . . . , NX −ND}.

The main argument of the formal proof given in Ap-
pendix B.1 proceeds as follows: First, we show that a
small Kullback–Leibler divergence implies that most of the
induced probability mass lies in the support of the data
distribution, ∫

Sx

qx(x) dx > 1− ϵ . (21)

Next, we write qx as the pull-back of the latent distribution
qz under the flow g using the familiar change-of-variables
formula for normalizing flows. In the yµ coordinates intro-
duced above, the resulting integral then factorizes according
to the block-diagonal structure (18) of the metric with inte-
gration domain [−δ/2, δ/2] for the yi⊥ directions. As δ → 0,

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 8

S



X

D

yi⊥

xD = τ(tD)

x1 = τ(1)

x0 = τ(0)

τ

Fig. 5. Construction of the curve τ used in Section 3.4.

the bound (21) can only remain satisfied if the associated
metric component γ⊥i

diverges, implying that γ−1
⊥i
→ 0.

Following the steps at the end of Section 3.2, we see
that this necessarily implies that the gradient ascent update
(5) stays on the data manifold, since ∂x

∂y⊥
is constant (and

therefore bounded) as δ → 0.

3.4 Approximate Diffeomorphic Counterfactuals

We now present a theorem similar to Theorem 1 for the
case of approximately diffeomorphic counterfactuals, i.e. for
AEs and GANs, showing that these models can also be used
to construct counterfactuals. This will however necessitate
stronger assumptions since the generative model is in this
case not bijective. In particular, we will assume that the
generative model captures all of the data, i.e. thatD ⊂ g(Z),
implying that in y coordinates, although γ is singular for
NZ < NX , the component γD is non-singular. Therefore, we
split the y⊥,i directions into NX − NZ singular directions
and NZ − ND non-singular directions. Since the inverse
metric vanishes by definition in the singular directions, the
theorem focuses on the non-singular directions and can then
be stated as follows,

Theorem 2. If g : Z → X is a generative model withD ⊂ g(Z)
and image g(Z) which extends in any non-singular orthogonal
direction yi⊥ outside of D,

γ−1
⊥i
→ 0

for δ → 0 for all non-singular orthogonal directions yi⊥.

The proof can be found in Appendix B.2 and proceeds as
follows: First, we construct a curve τ : [0, 1]→ Z which cuts
through S along the yi⊥-coordinate line and lies completely
in g(Z), as illustrated in Figure 5. Then, the length L(τ) of
this curve (with respect to γ) computed in yµ-coordinates is,
for small δ, approximately given by

L(τ) ≈
√
γ⊥i(xD) (x1,⊥

i − x0,⊥
i) . (22)

Bounding the difference by δ and using that L(τ) is con-
stant, yields the desired result. As in the case of Theorem 1
above, this implies again that the gradient ascent update (5)
does not leave the data manifold as shown in (20).

 

grad asc in X
grad asc in Z
x

x ′

g(z ′)

Fig. 6. Gradient ascent in X leads to points that lie significantly off-
manifold while gradient ascent in Z moves along the data manifold. The
ground truth for different classes is depicted in orange (source class)
and gray (target class).

4 EXPERIMENTS

Equipped with our theoretical results, we are now ready to
present our experimental findings.

We start by illustrating diffeomorphic explanations using
a toy example in three-dimensional space. This allows us to
directly visualize the data manifold and the trajectories of
gradient ascent in X and Z .

We then apply our diffeomorphic counterfactual
method, using normalizing flows, to four different image
data sets. We use MNIST, CelebA and CheXpert for clas-
sification tasks and the Mall data set for a regression task.
We evaluate the results qualitatively and quantitatively. Fur-
thermore we discuss approximate diffeomorphic counter-
factuals, using VAEs and GANs, which allow us to consider
high resolution data.

For all experiments, we use the same setup: We require
a pretrained generator g and a pretrained classifier f . We
start with a data point x from the test set that is predicted
by the classifier f as belonging to the source class. We
define target class t and target confidence Λ. To produce
an adversarial example, we then update the original data
point following the gradient in X , ∂ft(x)

∂x , until we reach the
desired target confidence. To produce a counterfactual we
first project the original data point into the latent space of
the generative model g by applying the inverse generative
model g−1(x) = z, or an appropriate approximation (for
GANs). We then update the original latent representation z

following the gradient in Z , ∂(ft◦g)(z)
∂z , until we reach the

desired target confidence.
For more details on model configuration, training and

hyperparameters we refer to Appendix C.

4.1 Toy example

We consider data uniformly distributed on a one-
dimensional manifold, a helix, that is embedded in three-
dimensional space and train a simple normalizing flow
that approximates the data distribution. As illustrated in
Figure 6, we divide the data into two classes corresponding
to the upper and the lower half of the helix and train a
classifier.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 9

We then generate counterfactuals by the gradient ascent
optimization in input space X and in the latent space of the
flow Z , i.e. by using (4) and (5) respectively.

Starting from the original data point x, we observe that
gradient ascent in X leads to points that lie significantly off
data manifold S. In contrast to that, the updates of gradient
ascent in the latent spaceZ follow a trajectory along the data
manifold resulting in counterfactuals with the desired target
classification which lie on the data manifold. We illustrate
this in Figure 6.

As we have an analytic description of the data manifold,
we can reliably calculate the distances to the data manifold
for all points found via gradient ascent in X or Z . We
compare 1000 successful optimizations (all optimizations
reach the desired target confidence) in the input space X
and latent space Z . The median value for the distances to
the data manifold when performing gradient ascent in X or
in Z are 2.34 and 0.01 respectively (see also Figure 17 in the
appendix). This intuitively and clearly illustrates the benefit
of performing gradient ascent in the latent space Z .

A non-trivial consequence of our theoretical insights is
that we can infer the tangent space of each point on the
data manifold from our flow g. Specifically, we perform a
singular value decomposition of the Jacobian ∂g

∂z = U ΣV
and rewrite the inverse induced metric as

γ−1 =
∂g

∂z

∂g

∂z

T

= U Σ2 UT . (23)

As we saw in Section 3, for data concentrated on an
ND-dimensional data manifold D in an NX -dimensional
embedding space X , the inverse induced metric γ−1 has
NX −ND small eigenvalues. Furthermore, the eigenvectors
corresponding to the large eigenvalues will approximately
span the tangent space of the data manifold. For our toy
example from Section 4.1, we can directly show the par-
allelepiped spanned by the three eigenvectors in three-
dimensional space. Figure 7 (left) indeed shows that the
parallelepipeds are significantly contracted in two of the
three dimensions making them appear as one dimensional
lines. For the high dimensional image data sets, which are
discussed in Section 4.2, we show the sorted eigenvalues,
averaged over 100 random data points per data set, cf.
Figure 7 (right). Our experiments confirm the theoretical
expectation that the large eigenvectors indeed span the
tangent space of the manifold.

4.2 Image classification and regression
We now demonstrate applications of diffeomorphic coun-
terfactuals to image classification in several domains.

4.2.1 Setup
We use MNIST [56], CelebA [57], CheXpert [58] (a data
set of labeled chest X-rays) and a the Mall data set [59],
[60], [61], [62] (a crowd-counting data set with video frames
from a shopping mall with head annotations of pedestrians).

Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors:Classifiers/Regressors: We train a ten-class CNN on
MNIST (test accuracy of 99%). For CelebA, we train a
binary CNN on the blond attribute (test accuracy of 94%).
For CheXpert, we train a binary CNN on the cardiomegaly
attribute (test accuracy of 86%).

100 101 102 103 104

Eigenvalue index

10-7

10-4

10-1

λ
/
λ

m
a
x

MNIST
CelebA
CheXpert
Mall

Fig. 7. Left: As expected from the theoretical analysis, the paral-
lelepiped spanned by all three eigenvectors of the inverse induced met-
ric scaled by the corresponding eigenvalues is to good approximation
one-dimensional, i.e. of the same dimension as the data manifold, and
tangential to it. Right: The Jacobians of the trained flows have a low
number of large and a large number of small eigenvalues, suggesting
that the images lie approximately on a low-dimensional manifold. Both
axes are scaled logarithmically.

For the Mall data set, we train a U-Net [63] that outputs
a probability map of the size of the image and a scalar
regression value, which corresponds to the approximated
number of pedestrians in the picture. Following the
definitions by Ribera et al. [64], our trained U-Net reaches a
RMSE for the head count of 0.63. When we run our gradient
ascent algorithm, we aim to maximize/minimize merely
the scalar regression value, i.e. the number of pedestrians.

Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models:Generative Models: For diffeomorphic counterfactuals, we
choose a flow with RealNVP-type couplings [65] for MNIST
and the Glow architecture [66] for CelebA, CheXpert
and the Mall data set. For approximately diffeomorphic
counterfactuals, we use a simple convolutional GAN
(dcGAN) and convolutional VAE (cVAE) for MNIST and a
progressive GAN (pGAN) [67] for CelebA.

Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals:Generation of counterfactuals: We start from original
data points x of the classes ‘four’ for MNIST, ‘not blond’
for CelebA and ‘healthy’ for CheXpert. We select the
classes ‘nine’, ‘blond’, and ‘cardiomegaly’ as targets t for
MNIST, CelebA, and CheXpert, respectively, and take the
confidence threshold to be Λ = 0.99. For the Mall data set,
we maximize the regression value r (threshold at r = 10)
if few pedestrians were detected in the original image x
and minimize the regression value (threshold at r = 0.01)
if many pedestrians were detected in the original image x.
We use Adam to optimize in X or Z until the confidence
threshold Λ for the target class t is reached.

As discussed in Section 2.4, GANs, which we use for ap-
proximately diffeomorphic counterfactuals, do generically
not require an encoder during the training process. We
apply GAN inversion methods to find an encoding of the
source image. Specifically, for the low-dimensional MNIST
data set, we find the latent representation z by minimising
the Euclidean norm between the decoded latent representa-
tion g(z) and the original image x. To find the initial latent
representation for more high-dimensional datasets, we use
HyperStyle [68] GAN-inversion techniques.

4.2.2 Qualitative analysis

Our diffeomorphic counterfactuals produced by the normal-
izing flows indeed show semantically meaningful deforma-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 10

Fig. 8. Counterfactuals for MNIST (‘four’ to ‘nine’), CelebA (‘not-blond’ to ‘blond’), CheXpert (‘healthy’ to ‘cardiomegaly’), Mall (‘few’ to ‘many’) and
Mall (‘many’ to ‘few’). Columns of each block show original image x, counterfactual x′, and difference h for three selected datapoints. First row of
each block is our diffeomorphic counterfactuals, i.e. obtained by gradient ascent in Z space. Second row of each block is standard gradient ascent
in X space. Heatmaps h show the difference |x− x′| summed over color channels.

Fig. 9. Counterfactuals for cVAE on MNIST (left block), dcGAN on MNIST (middle block) and pGAN on CelebA (right block). Columns of each block
show original image, decoded latent representation of original, counterfactual and absolute difference |x̃− x̃′| summed over color channels.

tions in particular when compared to adversarial examples
produced by gradient ascent in the data space X .

We show examples in Figure 8. The counterfactuals re-
semble images from the data set that have the target class as
the ground truth label. At the same time the counterfactuals
are similar to their respective source images with respect to
features that are irrelevant for the differentiation between
source and target class.

For MNIST, the stroke width and the writing angle
remain unchanged in the counterfactuals while the gap in
the upper part of the ’four’ changes to the characteristic
upper loop of the ’nine’.

For CelebA, the changes in the counterfactuals are fo-
cused on the hair area as evident from the heatmaps. Facial
features and background stay (approximately) constant.

The counterfactuals for the CheXpert data set mostly
brighten the pixels in the central region of the picture
leading to the appearance of an enlarged heart. The other
structures in the image remain mostly constant.

Also for pictures taken from the Mall data set, we ob-
serve that the counterfactuals remain close to the original
images. When maximizing the regression value, pedestrians
are generated at the picture’s edge or appear around darker
areas in the original image. When minimizing pedestrians,

we observe that the counterfactuals reproduce the darker
parts of the floor and lines between the tiles.

Results for approximately diffeomorphic counterfactuals
are shown in Figure 9 in the middle and right block. The
dcGAN on MNIST produces some random pixel artifacts,
but the generated images are sharper than those produced
by the cVAE. For the CelebA images generated with pGAN,
we see that the decoded optimized latent representation of
the original image deviates slightly from the original. This
is especially visible if the composition is not typical (arm
is not properly reproduced in the first row) or the back-
ground is highly structured (second row). For the approxi-
mate diffeomorphic counterfactuals, we observe even larger
changes in the background. This may be attributed to the
imperfect inversion process and the quality of the pGAN,
i.e. the fact that the diffomorphism is only approximate and
not exact. To demonstrate that approximate diffeomorphic
explanations can scale to very high-dimensional data, we
use a pretrained StyleGAN [69], [70] for images of resolution
1024 × 1024 from the CelebA-HQ data set [67]. Note that
the StyleGAN can also be used at the same resolution
even for the more diverse ImageNet dataset if required,
see [71]. In order to use the same classifier as before, we
downscale the images to 64 × 64 resolution before using

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 11

Fig. 10. Counterfactuals generated with HyperStyle and Celeba-HQ.
Columns show original, decoded latent representation, counterfactual
and absolute difference |x̃− x̃′| summed over color channels.

them as input to the classifier. As demonstrated by Fig-
ure 10, approximate diffeomorphic counterfactuals lead to
semantically meaningful and interpretable results even on
these very high-dimensional data sets. More examples for
diffeomorphic- and approximately diffeomorphic counter-
factuals are printed in Appendix D.

4.2.3 Quantitative analysis
To quantitatively assess the quality of our counterfactuals,
we use several measures, as detailed in the following.

Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle:Oracle: We train a 10-class SVM on MNIST (test accuracy
of 92%) and binary SVMs on CelebA (test accuracy of 85%)
and CheXpert (test accuracy of 70%). The counterfactuals
found by performing gradient ascent in the base space
of the flow generalize significantly better to these simple
models suggesting that they indeed use semantically
more relevant deformations than conventional adversarial
examples produced by gradient ascent in X space.

For the Mall data set, we train a slightly larger U-Net
(RMSE for head count 0.72) and calculate regression values
for the original images, the images modified with gradient
ascent in X -space and the images modified with gradient
ascent in Z-space. As expected, the regression values for the
counterfactuals are significantly closer to the target values
(0.01 for minimizing pedestrians and 10 for maximizing
pedestrians) than those of original images and adversarial
examples. Figure 11 summarizes these findings.

In Figure 12, we show the localization of heads for the
counterfactuals and the adversarial examples for the Mall
data set from Figure 8 using the original and the oracle U-
Net. In order to find the head locations, the regression value
is rounded to the closest integer representing the number of
pedestrians in the image. A Gaussian mixture model with
the number of pedestrians as components is then fitted to
the probability map. Finally the head positions are defined
as the means of the fitted Gaussians. The original U-Net is
deceived by the adversarial examples: When maximizing

MNIST CelebA CheXpert0

25

50

75

ac
c 

ta
rg

et
 c

la
ss

original images grad asc in X grad asc in Z

Mall (max) Mall (min)0.0

2.5

5.0

7.5

re
gr

es
si

on
 v

al
ue

Fig. 11. Left: accuracy with respect to the target class k generalizes bet-
ter to SVM for diffeomorphic counterfactuals. Right: regression values
for oracle are closer to target values for Z-based counterfactuals (bars
show means and errors denote one standard deviation).

original
U-Net

oracle
U-Net

original
U-Net

oracle
U-Net

original
U-Net

oracle
U-Net

Fig. 12. Head locations for pedestrians in counterfactuals and adver-
sarial examples when maximizing pedestrians (upper two rows) and
minimizing pedestrians (lower two rows). The original U-Net is fooled
by the adversarial examples, leading to false positives (second row) and
false negatives (forth row) when detecting pedestrians. The oracle U-
Net generalizes to the diffeomorphic counterfactuals found by gradient
ascent in Z (odd rows) but not to the adversarial examples found by
gradient ascent in X (even rows).

pedestrians (second row) the original U-Net produces
false positives, leading to markers at head locations where
there are no pedestrians. When minimizing pedestrians,
the adversarial examples (forth row) fool the original
U-Net into making false negative errors, that is failing to
detect pedestrians, although they are clearly present. The
oracle U-Net on the other hand produces regression values
and probability maps that enable correct identification
of pedestrian’s head positions (or lack thereof) for the
adversarial examples when maximizing (second row) and
minimizing (forth row) pedestrians. For the diffeomorphic
counterfactuals (first and third row in Figure 12), the
predictions of the two U-Nets are similar, showing that
these counterfactuals generalize to the independently
trained oracle U-Net.

Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours:Nearest neighbours: We compare the original images
and the images modified in X and Z with data from the
data set. We find the k-nearest neighbours (with respect
to the Euclidean norm) and their respective ground truth
classification/regression value. For MNIST, CelebA and
CheXpert, we then check what percentage of the nearest
neighbours was classified as the target class. For Mall, we
check the average number of pedestrians present. Figure 13
shows that the ten nearest neighbours of the diffeomorphic
counterfactuals for MNIST, CelebA and CheXpert share

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 12

MNIST
9

CelebA
blond

CheXpert
cardiomegaly

0

25

50

75

%
 o

f N
N

s
original images grad asc in X grad asc in Z

Mall (max) Mall (min)0

2

4

re
gr

es
si

on
 v

al
ue

Fig. 13. Left: ground truth class for the ten nearest neighbours (NNs)
matches the target value (‘9’, ‘blond’ and ‘cardiomegaly’) more often for
the counterfactuals found in Z. Right: ground truth pedestrian counts
averaged over the three nearest neighbours are closer to target values
for diffeomorphic counterfactuals. Bars show means and errors denote
one standard deviation.

the target classification more often than original images
or adversarial examples. For the Mall data set the three
nearest neighbours of each counterfactual on average
have regression values that more closely match the target
regression value (r = 10 when maximizing and r = 0 when
minimizing).

IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2:IM1 and IM2: Van Looveren and Klaise [72] propose
two metrics to test interpretability: IM1 is defined by

IM1 =
||x′ −AEt(x

′)||
||x′ −AEc0(x

′)||+ ϵ
, (24)

where AEc0 and AEt are two autoencoders which were each
trained on data from only one class (original class c0 and
target class t, respectively) and ϵ is a small positive value.
The second metric IM2 is defined by

IM2 =
||AEt(x

′)−AE(x′)||
||x′||1 + ϵ

, (25)

where AE is an autoencoder trained on all classes.
IM1 and especially IM2 have been repeatedly

criticized [73], [74], [75]. For IM2, we devide by the
one-norm ||x′||1 of the modified image. This value is
large if the image has more bright pixels. Consequently,
images with brighter pixels will tend to have a smaller
IM2, even though they might not be more interpretable.
We therefore limit our evaluation to IM1. In Table 1, we

TABLE 1
Interpretability metric IM1 values for MNIST and CelebA calculated for
original images, adversarial examples and counterfactuals. Low values

mean better interpretability. We show mean and standard deviation.

data set images IM1

MNIST
original 2.250 ± 0.711

gradient ascent in X 1.603 ± 0.317
gradient ascent in Z 1.056 ± 0.233

CelebA
original 1.160 ± 0.303

gradient ascent in X 1.144 ± 0.287
gradient ascent in Z 0.807 ± 0.222

show mean and standard deviation for the interpretability
metric IM1 for two data sets; MNIST and CelebA. We
calculate the values for the original images, the adversarial
examples, produced by gradient ascent in X space, and the
diffeomorphic counterfactuals, produced by gradient ascent
in Z space. A low value for IM1 means the image is better

0 20 40 600.0

0.1

0.2

0.3

de
ns

ity

0 500 10000.000

0.001

0.002

0.003

distances to original image distances to images of source class

0 20 40 60
distances in X

0.00

0.02

0.04

0.06

de
ns

ity

0 500 1000
distances in Z

0.00

0.01

0.02

Fig. 14. Euclidean distances in X and Z for adversarial examples (first
row) and counterfactuals (second row) for the CelebA dataset. Coun-
terfactuals lie closer to their respective source image than adversarial
examples when measured in Z, i.e. along the data manifold.

represented by an autoencoder trained on only the target
class. Diffeomorphic counterfactuals achieve a lower IM1
value than the adversarial examples, suggesting they are
more interpretable.

Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images:Similarity to original images: Counterfactuals are usually
required to be minimal, that is they should be the closest
point to the original data point, that lies on the data
manifold and reaches the desired confidence Λ with
respect to the target class t. Unlike other approaches,
we do not encourage similarity by explicitly minimizing
the Euclidean norm between counterfactual and original
image in X space since the relevant distance is to be
computed by the induced metric on the data manifold S or,
equivalently, the flat metric in the latent space Z . However,
our counterfactuals still preserve high similarity to the
respective source image. We confirm this by calculating the
Euclidean distances in X and Z between counterfactuals
and all images of the source class (this effect is illustrated
for the CelebA dataset in Figure 14).

The average Euclidean norm between counterfactuals
and the respective source images is significantly lower than
the average Euclidean norm between counterfactuals and
all images of the source class. For adversarial examples,
we expect the Euclidean distances in X to the respective
source image to be very small while the Euclidean distances
in Z should be larger. Figure 14 shows the distribution of
distances in X and Z between counterfactuals/adversarials
and their respective source images as well as distances
between counterfactuals/adversarials and all images of the
source class for the CelebA data set.

We refer to the Appendix C.7 for graphs for the other
data sets.

In Table 2, and Table 3 we show the averaged Euclidean
norms of the distances in X and Z for counterfactuals and
adversarials respectively, confirming our expectiations.

5 COMPARISON TO OTHER APPROACHES

In Section 2, we introduced our method to generate diffeo-
morphic and approximately diffeomorphic counterfactuals.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 13

TABLE 2
Euclidean norms L2 in X for adversarial examples found via gradient
ascent in X and counterfactuals found via gradient ascent in Z. We

show mean and standard deviation.

data set img L2 source image L2 source class

MNIST in X 2.54 ± 0.61 8.77 ± 1.25
in Z 4.82 ± 1.20 9.27 ± 1.32

CelebA in X 2.84 ± 1.15 41.13 ± 10.03
in Z 19.10 ± 6.08 40.79 ± 9.19

CheXpert in X 1.59 ± 0.46 33.68 ± 6.49
in Z 13.69 ± 4.54 34.71 ± 6.51

Mall (min) in X 1.34 ± 0.39 19.11 ± 2.67
in Z 10.98 ± 3.66 17.39 ± 3.10

Mall (max) in X 1.33 ± 0.17 9.31 ± 3.40
in Z 15.90 ± 5.28 19.35 ± 6.36

TABLE 3
Euclidean norms L2 in Z for adversarial examples found via gradient
ascent in X and counterfactuals found via gradient ascent in Z. We

show mean and standard deviation.

data set img L2 source image L2 source class

MNIST in X 41.86 ± 2.00 42.12 ± 0.74
in Z 35.26 ± 4.68 39.91 ± 1.61

CelebA in X 473.72 ± 171.49 542.21 ± 149.63
in Z 138.35 ± 23.43 380.24 ± 41.23

CheXpert in X 355.50 ± 114.23 539.18 ± 88.40
in Z 64.90 ± 25.33 400.31 ± 48.49

Mall (min) in X 160.53 ± 33.67 199.45 ± 28.56
in Z 78.56 ± 11.84 180.39 ± 15.78

Mall (max) in X 142.50 ± 7.61 153.96 ± 8.80
in Z 116.85 ± 27.50 161.64 ± 23.99

These methods are independent of the specific classifier and
generative model used. While many approaches to generate
counterfactuals exist (see Section 6), few are independent
of classifier and generative model. As we are interested in
comparing methods to generate counterfactuals rather than
comparing generative models or classifiers, we thus restrict
the comparison of out method to methods that can be ap-
plied to independently trained generative models and clas-
sifiers. We identify three recent approaches that meet these
criteria: Joshi et al. [76], Zhao et al. [77] and Looveren et
al. [72]. We generate counterfactuals for the CelebA dataset,
using the setup detailed in Section 4.2. As the algorithm
by Looveren is not guaranteed to find counterfactuals with
high target confidence, we set the target confidence for all
algorithms to Λ = 0.5, and repeat our experiments for this
value. We show examples of the generated counterfactuals
in Figure 15 and summarize the quantitative evaluation
results in Table 4.

Joshi et al. [76] introduces an algorithm that performs
gradient ascent in the latent space of a generative model
(specifically VAEs and GANs), while minimizing the dif-
ference between original and modified data points. This
method is closely related to ours, as we retrieve our pro-
posed method for λ→ 0 in equation (2) in [76]. Setting λ to a
larger value leads to larger similarities between the original
image and the counterfactual, especially when measured
in the image space. However, the resulting counterfactuals
generalize worse to the independently trained SVM and
Joshi’s algorithm requires a longer runtime compared to
ours until a counterfactual with the desired target confi-
dence is found (see Table 4).

org oursadv Joshi LooverenZhao

Fig. 15. Selected examples for CelebA (‘not blond’ to ‘blond’). From left
to right: original images, adversarial examples, counterfactuals retrieved
with our method, Joshi et al. [76], Zhao et al. [77] and Looveren et
al. [72]. We use the same generative model (Glow) and classifier for
all methods.

Zhao et al. [77] propose to perturb the latent represen-
tation of a Wasserstein GAN using exhaustive search or
continuous relaxation and test the generated images using
the classifier. The algorithm then returns the image for
which the desired target confidence is reached within the
maximum number of iterations. As we test Zhao’s method
on a normalizing flow, the base space dimension and thus
the search space is much larger than for a comparable GAN.
This leads to long computation times (median is 15min).
Furthermore, minimal counterfactuals are less likely to be
found resulting in reduced similarity between original and
counterfactual (see Table 4). We also note that some searches
did not result in counterfactuals as only 438 of 500 runs
were successful. This number can be improved by increasing
the search radius, or the number of sampled images per
iteration at the cost of even longer computation time.

Looveren et al. [72] propose to use a prototype loss that
guides the counterfactuals towards the closest prototype
that does not represent the source class while simultane-
ously minimizing the L1 and L2 norm of the perturbation in
image space. The prototypes are defined in the latent space.
Looveren et al. apply their algorithm to a VAE trained on
MNIST. As we apply their algorithm to CelebA, a much
more diverse data set, the search for prototypes takes very
long ( 6min per image as we search in the training set to
capture more diversity) and the resulting prototypes (the
average over the 5 nearest neighbors that are classified as
the target class) are of mediocre quality. As a consequence,
high-level information of the original image is lost when
generating the counterfactuals, as can be seen in Figure 15.
As a consequence, the SSIM between the generated counter-
factual and the original is substantially lower than for the
other methods. However, the counterfactuals do generalize
well to the independently trained SVM.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 14

TABLE 4
Quantitative comparison between our method and other approaches to generate counterfactuals.

criterion originals adversarials counterfactuals
ours Joshi et al. [76] Zhao et al. [77] Looveren et al. [72]

median SSIM(x, x′) - 0.99 0.91 0.97 0.86 0.70
median L2(x, x′) - 1.16 9.11 3.07 11.97 8.42
median L2(z, z′) - 279.53 132.20 122.75 160.46 148.02

% predicted as t by SVM 13.17 15.70 29.17 20.03 28.75 37.53
successful runs (total=500) - 500 500 499 438 498
average computation time - 00:00:01 00:00:05 00:00:10 00:15:36 00:06:56

In summary, our method produces convincing counter-
factuals (see Figure 15) and shows good performance on
all quantitative evaluation metrics, while being significantly
faster than the algorithms proposed by Joshi et al. [76], Zhao
et al. [77] or Looveren et al. [72].

6 RELATED WORK

In this section, we compare our approach with existing
methods.

This work builds upon and substantially extends our
workshop contribution [78]. Specifically, we introduce both
diffeomorphic and approximate diffeomorphic counterfac-
tuals and discuss their relationship. To this end, we theo-
retically analyze this broader class of generative models in
a unified manner which allows us to compare the relative
strengths and weaknesses of these approaches. In addition,
we provide an expanded discussion of the rigorous con-
struction of the different coordinate systems. In our exper-
imental studies, we consider additional generative models,
specifically GANs and AEs, to find approximately diffeo-
morphic explanations for different data sets demonstrating
that our method scales to a high-resolution data sets. Fur-
thermore, we include experiments for additional datasets,
such as CelebA-HQ and Mall, as well as further tasks, i.e.
regression in addition to classification, and neural network
architectures. We also consider a variety of quantitative
evaluations of counterfactuals to evaluate the performance
of the proposed methods.

6.1 Counterfactuals with generative models

A comparatively small number of publications consider
normalizing flows, which started to gain attention relatively
recently, in the context of generating counterfactuals.

Sixt et al. [79] train a linear binary classifier directly
in the base space of the flow. Adding the weight vector
corresponding to the target class to the base space repre-
sentation and projecting back to image space then produces
a counterfactual with semantically changed features. Unlike
our method, this approach requires training of a classifier
and does not work for a general classifier of arbitrary
architecture. In addition to that, their approach relies on the
classifier being linear and binary so that the direction in
which the image is modified can be determined analytically.
Our method is more modular in the sense that the classifier
can be pretrained and is independent of the generative
model. Furthermore, we allow for the classifier to be non-
binary as well as non-linear and we apply our framework
for regression.

Our approach is closest in spirit to the one taken by Joshi
et al. [76], as discussed above in Section 5.

Other works also use autoencoders to generate counter-
factuals.

Dhurandhar et al. [80] use elastic net regularization to
keep the perturbation δ to the original data small and
sparse. Furthermore, they use an autoencoder to minimize
the reconstruction loss of the modified image and thus
make sure the counterfactual lies on the data manifold. This
approach was expanded by adding a prototype loss [72],
as discussed in Section 5 above. Both approaches apply
their algorithm on tabular data and MNIST. Our approach
differs from these works as we are not using generative
models as a regularizer but directly modify the latent space
representation. Our method also does not require access to
labelled training data in order to compute prototypes, is
applicable to high dimensional image data sets, and has no
hyperparameters weighting different loss components.

A number of references such as Zhao et al. [77] discussed
in Section 5 above, use GANs to generate counterfactuals.

Samangouei et al. [81] propose to use classifier pre-
diction specific encoders together with a GAN which are
trained to generate a reconstruction, a counterfactual, and
a mask indicating which pixels should change between
the counterfactual and the original. A similar approach is
proposed by Singla et al. [82] as they also train a GAN,
that is conditioned on the classifier predictions, jointly with
an encoder to produce realistic looking counterfactuals. In
both works, the classifier is incorporated in the training
process of the GAN. After the training, the GAN generates
counterfactuals without querying the classifier. As a con-
sequence information about the classifier is integrated into
the GAN purely during training, while our approach can
be applied to independently trained models, which allows
us to find counterfactuals for different classifiers using the
same generative model.

Goetschalckx et al. [83] learn directions in the latent
space by differentiating through a classifier and the gen-
erator so that cognitive properties of generated images,
such as memorability, can be modified by moving in those
directions. They do not specifically aim to produce coun-
terfactuals but their approach touches on related concepts.
A difference to our work is that the latent representation
is restricted to be modified along a single direction, while
for our method the direction of change is dictated by the
gradient over several update steps.

Lius et al. [84] use a GAN specifically trained for edit-
ing that they condition on the original query image and
the desired attributes. They apply gradient descent to find
attributes that cause the GAN to generate an image that

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 15

the classifier predicts as the target class, while at the same
time enforcing the image to be close to the original. In
contrast to this approach, we directly modify the latent
representation rendering our approach independent of the
exact structure of the generative model. We also observe that
our counterfactuals stay close to the original image without
explicitly enforcing similarity.

Finally, generative models have been used before in the
context of adversarial examples. Song et al. [85] optimize
in the latent space of a (conditioned) GAN to generate
adversarial examples which are unrelated to any data point
(unrestricted adversarial examples) and validated against hu-
man observers. Lin et al. [86] use adversarial training in the
latent space of a generative model (they use StyleGAN) to
improve robustness against adversarial attacks. A further
line of research studies learned latent manifolds in the
context of enhanced sampling methods for GAN training,
see [87], [88].

We present the results from a detailed qualitative and
quantitative comparison between our method and other
approaches that generate counterfactual explanations in Ap-
pendix 5.

6.2 Quantitative Metrics for Counterfactuals

Many of the above works are limited to qualitative as-
sessment of counterfactuals. The quantitative assessment of
counterfactuals is still an active research area, a summary of
quantitative measures can be found in [73].

The most reliable evaluation of counterfactuals can be
obtained by a large study that lets human agents evalu-
ate the generated counterfactuals. As those are relatively
costly to conduct and can introduce unexpected biases if
not designed carefully, their application is often infeasible.
Nevertheless, a few works [77], [79], [89], [90] undertake
small user studies (9 ≤ N ≤ 60) on a relatively limited set
of generated counterfactuals. We aim to approximate an in-
dependent human evaluation by testing our counterfactuals
on newly trained models that serve as oracles.

Some works [82], [91], [92] apply a metric commonly
used for generative model evaluation, the Fréchet Incep-
tion Distance (FID) score [93], measuring the quality of
the generated explanation compared to samples from the
data set. As we find counterfactuals by moving directly
in latent space the FID for our counterfactuals would be
very similar to the FID of the generative model itself. We
therefore do not consider the FID to be a meaningful metric
for (approximate) diffeomorphic counterfactuals.

Van Looveren and Klaise [72] propose two metrics to
test interpretability: IM1 (defined in (24) above) uses two
autoencoders which were each trained on data from only
one class and computes the relative reconstruction error
of the counterfactual. The second metric IM2 (defined in
(25) above) calculates the normalized difference between a
reconstruction of an autoencoder trained on the target class
and an autoencoder trained on all classes. Van Looveren
and Klaise use these two metrics to compare how different
loss functions effect the relative interpretability measured
by IM1 and IM2 for the MNIST data set. We limit the
quantitative evaluation of our counterfactuals to IM1, since
IM2 has been subject to controversies.

Other works [81], [92] check substitutability. They train
classifiers on a training set consisting of generated coun-
terfactuals and compare their performance on the original
test data set to a classifier trained on the original training
set. As we can generate counterfactuals that are classified
with very different confidence, this method may not be
useful as results may be highly dependent on the choice
of confidence.

Other methods aim to evaluate explanations by replac-
ing pixel values or entire regions based on the importance
of features in the explanation [27], [81], [94], [95], [96] and
testing the performance of a classifier on the modified
images. Those methods may suffer from creating images
that lie off the data manifold, so that a thorough comparison
may require extensive retraining [97].

7 CONCLUSION

In this work, we proposed theoretically rigorous yet prac-
tical methods to generate counterfactuals for both classi-
fication as well as regression tasks, namely exact and ap-
proximate diffeomorphic counterfactuals. The exact diffeo-
morphic counterfactuals are obtained by following gradi-
ent ascent in the base space of a normalizing flow. While
approximate diffeomorphism are obtained with the help
of either generative adversarial networks or variational
autoencoders. Our thorough theoretical analysis, using Rie-
mannian differential geometry, shows that for well-trained
models, our counterfactuals necessarily stay on the data
manifold during the search process and consequently ex-
hibit semantic features corresponding to the target class. Ap-
proximate diffeomorphic counterfactuals come with the risk
of information loss but allow excellent scalability to higher
dimensional data. Our theoretical findings are backed by
experiments which both quantitatively and qualitatively
demonstrate the performance of our method on different
classification as well as regression tasks and for numerous
data sets.

The application of our counterfactual explanation
method is straightforward and requires no retraining, so
that it can be readily applied to investigate common prob-
lems in deep learning like identifying biases for classifiers
or training data or scrutinizing falsely classified examples
— all common tasks for applications in computer vision.

For future work, we intend to investigate the benefit
of our counterfactuals in the sciences, in particular for
medical applications such as digital pathology [11] or brain
computer-interfaces [98].

Furthermore, the method presented in this work is not
restricted to the generation of counterfactuals for image data
or in computer vision. In particular, one could imagine ap-
plications e.g. in chemistry and physics where the technique
proposed here may be used to optimize desired properties
of stable molecules which are restricted to minima of the
associated potential energy surface [14], [99], [100], [101].

In practical applications, it is often beneficial to in-
corporate symmetries as inductive bias following a well-
established paradigm in machine learning [102], [103]. It is
straightforward to incorporate symmetries into our method
by employing equivariant normalizing flows as constructed
e.g. in [104].

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 16

In conclusion, our method is applicable to a broad range
of computer vision problems and beyond as it provides a
way to optimize the output of a predictive model on the
data manifold given only indirectly by a trained generative
model.

ACKNOWLEDGMENTS

This work was supported by the Berlin Institute for the
Foundations of Learning and Data (BIFOLD). KRM was
partly supported by the Institute of Information & Commu-
nications Technology Planning & Evaluation (IITP) grants
funded by the Korea government(MSIT) (No. 2019-0-00079,
Artificial Intelligence Graduate School Program, Korea Uni-
versity and No. 2022-0-00984, Development of Artificial
Intelligence Technology for Personalized Plug-and-Play Ex-
planation and Verification of Explanation). This work was
supported by the German Ministry for Education and
Research (BMBF) under Grants 01IS14013A-E, 01GQ1115,
1GQ0850, 01IS18025A and 01IS18037A. JG is supported by
the Swedish Research Council and by the Knut and Alice
Wallenberg Foundation. PK is supported by Prescient De-
sign, Genentech. PK also wants to thank Shinichi Nakajima
and Maximilian Alber for insightful discussions. Correspon-
dence to PK and KRM.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137–1149, 2017.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 4, pp. 834–848, 2017.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[5] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural networks, vol. 61, pp. 85–117, 2015.

[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot et al., “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, p.
484, 2016.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT
press, 2005.

[8] D.-O. Won, K.-R. Müller, and S.-W. Lee, “An adaptive deep
reinforcement learning framework enables curling robots with
human-like performance in real-world conditions,” Science
Robotics, vol. 5, no. 46, p. eabb9764, 2020.

[9] T. Lengauer, O. Sander, S. Sierra, A. Thielen, and R. Kaiser,
“Bioinformatics prediction of hiv coreceptor usage,” Nature
biotechnology, vol. 25, no. 12, p. 1407, 2007.

[10] D. Capper, D. T. Jones, M. Sill, V. Hovestadt, D. Schrimpf,
D. Sturm, C. Koelsche, F. Sahm, L. Chavez, D. E. Reuss et al.,
“DNA methylation-based classification of central nervous system
tumours,” Nature, vol. 555, no. 7697, p. 469, 2018.

[11] A. Binder, M. Bockmayr, M. Hägele, S. Wienert, D. Heim,
K. Hellweg, M. Ishii, A. Stenzinger, A. Hocke, C. Denkert et al.,
“Morphological and molecular breast cancer profiling through
explainable machine learning,” Nature Machine Intelligence, vol. 3,
no. 4, pp. 355–366, 2021.

[12] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic
particles in high-energy physics with deep learning,” Nature
communications, vol. 5, p. 4308, 2014.

[13] F. Noé, S. Olsson, J. Köhler, and H. Wu, “Boltzmann generators:
Sampling equilibrium states of many-body systems with deep
learning,” Science, vol. 365, no. 6457, p. eaaw1147, 2019.

[14] O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, I. Poltavsky,
K. T. Schütt, A. Tkatchenko, and K.-R. Müller, “Machine learning
force fields,” Chem. Rev., vol. 121, no. 16, pp. 10 142–10 186, 2021.

[15] O. T. Unke, S. Chmiela, M. Gastegger, K. T. Schütt, H. E.
Sauceda, and K.-R. Müller, “Spookynet: Learning force fields
with electronic degrees of freedom and nonlocal effects,” Nature
communications, vol. 12, p. 7273, 2021.

[16] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese,
T. Ewalds, R. Hafner, A. Abdolmaleki, D. de Las Casas et al.,
“Magnetic control of tokamak plasmas through deep reinforce-
ment learning,” Nature, vol. 602, no. 7897, pp. 414–419, 2022.

[17] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek,
and K.-R. Müller, “Unmasking clever hans predictors and assess-
ing what machines really learn,” Nature communications, vol. 10,
p. 1096, 2019.

[18] C. J. Anders, L. Weber, D. Neumann, W. Samek, K.-R. Müller, and
S. Lapuschkin, “Finding and removing clever hans: Using expla-
nation methods to debug and improve deep models,” Information
Fusion, vol. 77, pp. 261–295, 2022.

[19] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe,
K. Hansen, and K.-R. Müller, “How to Explain Individual Clas-
sification Decisions,” Journal of Machine Learning Research, vol. 11,
no. 61, pp. 1803–1831, 2010.

[20] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey
on explainable artificial intelligence (xai),” IEEE access, vol. 6, pp.
52 138–52 160, 2018.

[21] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R.
Müller, Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning. Lecture Notes in Computer Science, Springer Nature
Switzerland, 2019.

[22] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R.
Müller, “Explaining deep neural networks and beyond: A review
of methods and applications,” Proceedings of the IEEE, vol. 109,
no. 3, pp. 247–278, 2021.

[23] A. Holzinger, G. Langs, H. Denk, K. Zatloukal, and H. Müller,
“Causability and explainability of artificial intelligence in
medicine,” Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, vol. 9, no. 4, p. e1312, 2019.

[24] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Con-
volutional Networks: Visualising Image Classification Models
and Saliency Maps,” in 2nd International Conference on Learning
Representations, ICLR, 2014.

[25] M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” in Computer Vision - ECCV - 13th
European Conference, Proceedings, Part I, 2014, pp. 818–833.

[26] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
“Striving for Simplicity: The All Convolutional Net,” in 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, Workshop Track Proceedings, 2015.

[27] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and
W. Samek, “On Pixel-Wise Explanations for Non-Linear Classifier
Decisions by Layer-Wise Relevance Propagation,” PLoS ONE,
vol. 10, no. 7, p. e0130140, 2015.

[28] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why Should I Trust
You?”: Explaining the Predictions of Any Classifier,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1135–1144.

[29] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling, “Visualizing
Deep Neural Network Decisions: Prediction Difference Analy-
sis,” in 5th International Conference on Learning Representations
(ICLR), 2017.

[30] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning Impor-
tant Features Through Propagating Activation Differences,” in
Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, 2017, pp. 3145–3153.

[31] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Inter-
preting Model Predictions,” in Advances in Neural Information
Processing Systems 30. Curran Associates, Inc., 2017, pp. 4765–
4774.

[32] P. Dabkowski and Y. Gal, “Real Time Image Saliency for Black
Box Classifiers,” in Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., 2017, pp. 6967–6976.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 17

[33] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg,
“SmoothGrad: removing noise by adding noise,” in Workshop on
Visualization for Deep Learning, International Conference on Machine
Learning (ICML) 2017, Sydney, Australia, Aug 10, 2017.

[34] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic Attribution for
Deep Networks,” in Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, 2017, pp. 3319–3328.

[35] R. C. Fong and A. Vedaldi, “Interpretable explanations of black
boxes by meaningful perturbation,” in IEEE International Confer-
ence on Computer Vision (ICCV). IEEE, 2017, pp. 3449–3457.

[36] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R.
Müller, “Explaining nonlinear classification decisions with deep
Taylor decomposition,” Pattern Recognition, vol. 65, pp. 211–222,
2017.

[37] P.-J. Kindermans, K. T. Schütt, M. Alber, K.-R. Müller, D. Erhan,
B. Kim, and S. Dähne, “Learning how to explain neural networks:
PatternNet and PatternAttribution,” in International Conference on
Learning Representations (ICLR), 2018.

[38] B. Kim, M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. B.
Viégas, and R. Sayres, “Interpretability Beyond Feature Attri-
bution: Quantitative Testing with Concept Activation Vectors
(TCAV),” in Proceedings of the 35th International Conference on Ma-
chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, pp. 2673–2682.

[39] S. Letzgus, P. Wagner, J. Lederer, W. Samek, K.-R. Müller, and
G. Montavon, “Toward explainable artificial intelligence for re-
gression models: A methodological perspective,” IEEE Signal
Processing Magazine, vol. 39, no. 4, pp. 40–58, 2022.

[40] T. Miller, “Explanation in artificial intelligence: Insights from the
social sciences,” Artificial intelligence, vol. 267, pp. 1–38, 2019.

[41] S. Verma, J. Dickerson, and K. Hines, “Counterfactual Explana-
tions for Machine Learning: A Review,” NeurIPS 2020 ML-RSA
Workshop, 2020.

[42] I. Stepin, J. M. Alonso, A. Catala, and M. Pereira-Fariña, “A
survey of contrastive and counterfactual explanation genera-
tion methods for explainable artificial intelligence,” IEEE Access,
vol. 9, pp. 11 974–12 001, 2021.

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
International Conference on Learning Representations (ICLR), 2014.

[44] S.-i. Amari, Information geometry and its applications. Springer,
2016, vol. 194.

[45] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst, “Geometric deep learning: going beyond euclidean
data,” IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18–42,
2017.

[46] H. Shao, A. Kumar, and P. Thomas Fletcher, “The riemannian
geometry of deep generative models,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 315–323.

[47] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-
R. Müller, and P. Kessel, “Explanations can be manipulated
and geometry is to blame,” in Advances in Neural Information
Processing Systems, 2019, pp. 13 567–13 578.

[48] C. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and
P. Kessel, “Fairwashing explanations with off-manifold deter-
gent,” in International Conference on Machine Learning. PMLR,
2020, pp. 314–323.

[49] A.-K. Dombrowski, C. J. Anders, K.-R. Müller, and P. Kessel,
“Towards robust explanations for deep neural networks,” Pattern
Recognition, vol. 121, p. 108194, 2022.

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[51] J. C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, and K. Burke,
“Finding density functionals with machine learning,” Physical
review letters, vol. 108, no. 25, p. 253002, 2012.

[52] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative ad-
versarial nets,” Advances in neural information processing systems,
vol. 27, 2014.

[53] W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang,
“Gan inversion: A survey,” arXiv preprint arXiv:2101.05278, 2021.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision. 2015,”
pp. 2818–2826, 2016.

[55] J. Lee, Introduction to Smooth Manifolds, 2nd ed., ser. Graduate
Texts in Mathematics. New York: Springer-Verlag, 2012.

[56] L. Deng, “The MNIST database of handwritten digit images
for machine learning research,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[57] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep Learning Face
Attributes in the Wild,” in Proceedings of International Conference
on Computer Vision (ICCV), December 2015.

[58] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute,
H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya et al., “CheX-
pert: A large chest radiograph dataset with uncertainty labels
and expert comparison,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, 2019, pp. 590–597.

[59] K. Chen, C. C. Loy, S. Gong, and T. Xiang, “Feature mining
for localised crowd counting.” British Machine Vision Conference
(BMVC), vol. 1, no. 2, p. 3, 2012.

[60] K. Chen, S. Gong, T. Xiang, and C. Change Loy, “Cumulative
attribute space for age and crowd density estimation,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2013, pp. 2467–2474.

[61] C. Change Loy, S. Gong, and T. Xiang, “From semi-supervised to
transfer counting of crowds,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2013, pp. 2256–2263.

[62] C. C. Loy, K. Chen, S. Gong, and T. Xiang, “Crowd counting and
profiling: Methodology and evaluation,” in Modeling, simulation
and visual analysis of crowds. Springer, 2013, pp. 347–382.

[63] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015,
N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds.
Cham: Springer International Publishing, 2015, pp. 234–241.

[64] J. Ribera, D. Guera, Y. Chen, and E. J. Delp, “Locating objects
without bounding boxes,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 6479–
6489.

[65] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation
using RealNVP,” 5th International Conference on Learning Repre-
sentations, ICLR, 2017.

[66] D. P. Kingma and P. Dhariwal, “Glow: Generative Flow with
Invertible 1x1 Convolutions,” in Advances in Neural Information
Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran
Associates, Inc., 2018.

[67] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” Interna-
tional Conference on Learning Representations, ICLR, 2018.

[68] Y. Alaluf, O. Tov, R. Mokady, R. Gal, and A. H. Bermano, “Hy-
perstyle: Stylegan inversion with hypernetworks for real image
editing,” arXiv preprint arXiv:2111.15666, 2021.

[69] T. Karras, S. Laine, and T. Aila, “A style-based generator archi-
tecture for generative adversarial networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 4401–4410.

[70] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila,
“Analyzing and improving the image quality of stylegan,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 8110–8119.

[71] A. Sauer, K. Schwarz, and A. Geiger, “Stylegan-xl: Scaling style-
gan to large diverse datasets,” ACM SIGGRAPH 2022 Conference
Proceedings, 2022.

[72] A. Van Looveren and J. Klaise, “Interpretable counterfactual ex-
planations guided by prototypes,” in Machine Learning and Knowl-
edge Discovery in Databases. Research Track, N. Oliver, F. Pérez-
Cruz, S. Kramer, J. Read, and J. A. Lozano, Eds. Cham: Springer
International Publishing, 2021, pp. 650–665.

[73] F. Hvilshøj, A. Iosifidis, and I. Assent, “On quantitative evalua-
tions of counterfactuals,” arXiv preprint arXiv:2111.00177, 2021.

[74] D. Mahajan, C. Tan, and A. Sharma, “Preserving causal con-
straints in counterfactual explanations for machine learning clas-
sifiers,” Neural Information Processing Systems (NeurIPS), 2019.

[75] L. Schut, O. Key, R. Mc Grath, L. Costabello, B. Sacaleanu, Y. Gal
et al., “Generating interpretable counterfactual explanations by
implicit minimisation of epistemic and aleatoric uncertainties,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 1756–1764.

[76] S. Joshi, O. Koyejo, W. Vijitbenjaronk, B. Kim, and J. Ghosh, “To-
wards realistic individual recourse and actionable explanations
in black-box decision making systems,” Safe Machine Learning
workshop at ICLR, 2019.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://www.deeplearningbook.org


UNDER REVIEW, JULY 24, 2023 18

[77] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial
examples,” International Conference on Learning Representations
(ICLR), 2018.

[78] A.-K. Dombrowski, J. E. Gerken, and P. Kessel, “Diffeomorphic
explanations with normalizing flows,” in ICML Workshop on In-
vertible Neural Networks, Normalizing Flows, and Explicit Likelihood
Models, 2021.

[79] L. Sixt, M. Schuessler, P. Weiß, and T. Landgraf, “Interpretability
Through Invertibility: A Deep Convolutional Network With Ideal
Counterfactuals And Isosurfaces,” Preprint, 2021.

[80] A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P. Ting, K. Shan-
mugam, and P. Das, “Explanations based on the missing: To-
wards contrastive explanations with pertinent negatives,” Ad-
vances in Neural Information Processing Systems (NeurIPS), pp. 590–
601, 2018.

[81] P. Samangouei, A. Saeedi, L. Nakagawa, and N. Silberman, “Ex-
plainGAN: Model Explanation via Decision Boundary Crossing
Transformations,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 666–681.

[82] S. Singla, B. Pollack, J. Chen, and K. Batmanghelich, “Explana-
tion by Progressive Exaggeration,” in International Conference on
Learning Representations, 2020.

[83] L. Goetschalckx, A. Andonian, A. Oliva, and P. Isola, “Ganalyze:
Toward visual definitions of cognitive image properties,” in
Proceedings of the ieee/cvf international conference on computer vision,
2019, pp. 5744–5753.

[84] S. Liu, B. Kailkhura, D. Loveland, and Y. Han, “Generative
Counterfactual Introspection for Explainable Deep Learning,” in
2019 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 2019, pp. 1–5.

[85] Y. Song, R. Shu, N. Kushman, and S. Ermon, “Constructing
unrestricted adversarial examples with generative models,” in
Advances in Neural Information Processing Systems, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[86] W.-A. Lin, C. P. Lau, A. Levine, R. Chellappa, and S. Feizi, “Dual
manifold adversarial robustness: Defense against lp and non-lp
adversarial attacks,” in Advances in Neural Information Processing
Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 3487–
3498.

[87] J. Cao, Y. Guo, Q. Wu, C. Shen, J. Huang, and M. Tan, “Adver-
sarial learning with local coordinate coding,” ser. Proceedings of
Machine Learning Research, vol. 80. PMLR, 2018, pp. 707–715.

[88] ——, “Improving generative adversarial networks with local
coordinate coding,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 1, pp. 211–227, 2022.

[89] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee,
“Counterfactual visual explanations,” in International Conference
on Machine Learning. PMLR, 2019, pp. 2376–2384.

[90] O. Lang, Y. Gandelsman, M. Yarom, Y. Wald, G. Elidan, A. Has-
sidim, W. T. Freeman, P. Isola, A. Globerson, M. Irani et al.,
“Explaining in style: Training a gan to explain a classifier in
stylespace,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 693–702.

[91] R. Rombach, P. Esser, and B. Ommer, “Making sense of CNNs: In-
terpreting deep representations & their invariances with INNs,”
Lecture Notes in Computer Science, Springer, vol. 12362, 2020.

[92] H. Kim, S. Shin, J. Jang, K. Song, W. Joo, W. Kang, and I.-C.
Moon, “Counterfactual fairness with disentangled causal effect
variational autoencoder,” Association for the Advancement of Artifi-
cial Intelligence (AAAI), 2021.

[93] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium,” Advances in neural information
processing systems, vol. 30, 2017.

[94] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R.
Müller, “Evaluating the visualization of what a Deep Neural
Network has learned,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, pp. 2660–2673, 11 2017.

[95] L. Arras, G. Montavon, K.-R. Müller, and W. Samek, “Explaining
recurrent neural network predictions in sentiment analysis,” in
Proceedings of the 8th Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis. Copenhagen,
Denmark: Association for Computational Linguistics, Sep. 2017,
pp. 159–168.

[96] R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, and
A. Preece, “Sanity Checks for Saliency Metrics,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp.
6021–6029, Apr. 2020.

[97] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, “A Bench-
mark for Interpretability Methods in Deep Neural Networks,” in
Advances in Neural Information Processing Systems, 2019, pp. 9734–
9745.

[98] S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. Müller, “Introduc-
tion to machine learning for brain imaging,” Neuroimage, vol. 56,
no. 2, pp. 387–399, 2011.

[99] N. Gebauer, M. Gastegger, and K. Schütt, “Symmetry-adapted
generation of 3d point sets for the targeted discovery of
molecules,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[100] N. W. Gebauer, M. Gastegger, S. S. Hessmann, K.-R. Müller, and
K. T. Schütt, “Inverse design of 3d molecular structures with
conditional generative neural networks,” Nature communications,
vol. 13, p. 973, 2022.

[101] V. Garcia Satorras, E. Hoogeboom, F. Fuchs, I. Posner, and
M. Welling, “E (n) equivariant normalizing flows,” Advances in
Neural Information Processing Systems, vol. 34, 2021.

[102] S. Chmiela, H. E. Sauceda, K.-R. Müller, and A. Tkatchenko,
“Towards exact molecular dynamics simulations with machine-
learned force fields,” Nature communications, vol. 9, p. 3887, 2018.

[103] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T.
Schütt, and K.-R. Müller, “Machine learning of accurate energy-
conserving molecular force fields,” Science advances, vol. 3, no. 5,
p. e1603015, 2017.

[104] J. Köhler, L. Klein, and F. Noé, “Equivariant flows: exact like-
lihood generative learning for symmetric densities,” in Interna-
tional Conference on Machine Learning. PMLR, 2020, pp. 5361–
5370.

Ann-Kathrin Dombrowski received a Bache-
lor’s Degree in 2014 and a Master’s Degree
in 2017 in Computational Engineering Science
from RWTH Aachen. She received her Ph.D. in
2022 under supervision of Prof. Müller at the
Machine Learning Group at TU Berlin.

Jan E. Gerken obtained his Ph.D. in String
Theory in 2020 at the Max Planck Institute for
Gravitational Physics. After a postdoc position
at the department for mathematical sciences at
Chalmers in Gothenburg, he worked as a post-
doctoral researcher in the ML Group of TU Berlin
and at the Berlin Institute for the Foundations of
Learning and Data. Currently, he works as an
assistant professor in mathematics for AI foun-
dations at Chalmers in Gothenburg.

Klaus-Robert Müller is a Professor of com-
puter science at TU Berlin and is director of the
Berlin Institute for the Foundations of Learning
and Data. In 2017 he became external scientific
member of the Max Planck Society. In 2012, he
was elected member of the German National
Academy of Sciences–Leopoldina, in 2017 of
the Berlin Brandenburg Academy of Sciences
and in 2021 of the German Academy of Sci-
ences and Enigneering. He is also an ISI Highly
Cited researcher in the cross-disciplinary area.
Pan Kessel obtained his Ph.D. in String Theory
in 2017 at the Max Planck Institute for Gravita-
tional Physics after which he joined the Machine
Learning Group of TU Berlin and at the Berlin In-
stitute for the Foundations of Learning and Data
as a postdoc. He is now a senior machine learn-
ing scientist at Prescient Design, Genentech.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 19

APPENDIX A
LIST OF SYMBOLS

As a convenience for the reader, we summarize the
mathematical notation used in order of appearance.

X input (data) space
NX dimensionality of X
C number of classes

f : X → RC classifier
D ⊂ X data manifold

ND dimensionality of D
Dx ⊂ RND D in xα-coordinates

Iδ =
(
− δ

2 ,
δ
2

)
interval of length δ

p : X → R probability density of the data
S = supp(p) support of p
Sx ⊂ RNX S in xα-coordinates

t ∈ {1, . . . , C} target class of adversary / counterfactual
Λ ∈ (0, 1) threshold confidence of target class

η ∈ R+ step size for adversarial attacks
Z base- / latent space of generative model

NZ dimensionality of Z
g : Z → X generative model

λ ∈ R+ step size for counterfactuals
qZ : Z → R probability density in base space of g
q : X → R probability density induced by g on X

qx : RNX → R q in xα-coordinates
xα coordinates on X
za coordinates on Z
δab components of Euclidean metric on Z
γ metric induced by g on g(Z) ⊂ X

γαβ components of γ in xα-coordinates
γαβ components of γ−1 in xα-coordinates

σ : [0, 1]→ X affinely parametrized geodesic
ni basis vector of TpD⊥

y = (y∥, y⊥) coordinates in S aligned with D
γµν components of γ−1 in y-coordinates
γµν
D components of γµν along D

γ−1
⊥i

components of γµν orthogonal to D

APPENDIX B
PROOFS

B.1 Proof of Theorem 1
In this section, we provide the proof for Theorem 1, which
we repeat here for completeness.

Theorem 1. For ϵ ∈ (0, 1) and g a normalizing flow with
Kullback–Leibler divergence KL(p, q) < ϵ,

γ−1
⊥i
→ 0 as δ → 0

for all i ∈ {1, . . . , NX −ND}.

Since normalizing flows are diffeomorphisms, g−1 exists
and is differentiable, Z = X and γ is a non-singular metric
on all of X . Furthermore, the base distribution q : X → R
transforms like a density,

qx(x) = qz(g
−1(x))

∣∣∣∣ ∂za∂xα

∣∣∣∣ , (26)

where qx,z denote q in za and xα coordinates, respectively,
qx,z : RNX → R. We will assume that qz is the univariate
Gaussian distribution.

We assume that the Kullback–Leibler divergence be-
tween p and q is small, i.e. that

KL(p, q) < ϵ (27)

for some small ϵ ∈ (0, 1). Then, since ln(1/a) ≥ 1− a,

ϵ >

∫
Sx

px(x) ln

(
px(x)

qx(x)

)
dx

≥
∫
Sx

px(x)

(
1− qx(x)

px(x)

)
dx

= 1−
∫
Sx

qx(x) dx (28)

and therefore ∫
Sx

qx(x) dx > 1− ϵ . (29)

Intuitively, this means that most of the induced probability
mass lies in the support of p.

We now write q in za coordinates using (26) and then
evaluate the integral in yµ coordinates,

1− ϵ <

∫
Sx

qz(g
−1(x))

∣∣∣∣ ∂za∂xα

∣∣∣∣ dx
=

∫
Sy

qz(g
−1(x(y)))

∣∣∣∣ ∂za∂xα

∣∣∣∣ ∣∣∣∣∂xα

∂yµ

∣∣∣∣ dy . (30)

Using the block-diagonal form (18) of the metric in yµ

coordinates, the integration measure simplifies to∣∣∣∣ ∂za∂xα

∣∣∣∣ ∣∣∣∣∂xα

∂yµ

∣∣∣∣ = √
|γµν | =

√
|γD|

NX−ND∏
i=1

√
|γ⊥i
| . (31)

Therefore, we have

1− ϵ <

∫
Dy

√
|γD|

NX−ND∏
i=1

∫ δ/2

−δ/2

√
|γ⊥i
|qz(z(y)) dyi⊥ dy∥ .

(32)

Since qz is bounded, as δ → 0, we need |γ⊥i | → ∞ in order
to keep the integral above the bound. Therefore, γ−1

⊥i
→ 0

for δ → 0.

B.2 Proof of Theorem 2
In this section, we provide the proof for Theorem 2, which
we repeat here for convenience.

Theorem 2. If g : Z → X is a generative model withD ⊂ g(Z)
and image g(Z) which extends in any non-singular orthogonal
direction yi⊥ outside of D,

γ−1
⊥i
→ 0

for δ → 0 for all non-singular orthogonal directions yi⊥.

For any xD ∈ D, let x0 ∈ S be on the negative yi⊥(xD)
coordinate line such that p(x0) < ϵ for some small ϵ and
let x1 ∈ S be on the positive yi⊥(xD) coordinate line
such that p(x1) < ϵ, as illustrated in Figure 5. Then, the
assumption that g(Z) extends beyond D in non-singular
directions implies that the segment of the yi⊥(xD) coordinate
line between x0 and x1 lies entirely in g(Z).

Let τ : [0, 1] → S be the coordinate-line segment
between x0 and x1. In summary, we have

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 20

1) τ(0) = x0 and τ(1) = x1 with p(x0) < ϵ and
p(x1) < ϵ

2) ∃ tD ∈ [0, 1] such that τ(tD) = xD ∈ D
3) τ j⊥ = 0 for j ̸= i, τ∥ = const.

In particular, 3) implies that the tangent vector of τ
points along the yi⊥ coordinate vector: τ ′(t) ∝ ∂yi

⊥
.

Let L(τ) denote the length of τ , i.e.

L(τ) =
∫ 1

0

√
γ(τ ′(t), τ ′(t)) dt (33)

=

∫ 1

0

√
γµν(τ(t))

dτµ

dt

dτν

dt
dt . (34)

Following point 3) above, we can perform the implicit sums
over µ and ν and get

L(τ) =
∫ 1

0

√
γ⊥i

(τ(t))
∣∣∣dτ i
dt

∣∣∣ dt (35)

=

∫ x1,⊥
i

x0,⊥i

√
γ⊥i

(yi⊥) dy
i
⊥ . (36)

Since S has, by construction, (Euclidean) extension δ orthog-
onal toD in yµ coordinates, with δ ≪ 1, we perform a Taylor
expansion of the metric around xD

γµν(τ(t)) = γµν(xD) +O(τρ(t)− xρ
D) (37)

and obtain to first order

L(τ) ≈
√
γ⊥i

(xD) (x1,⊥
i − x0,⊥

i) . (38)

Again, since S has range δ in yi⊥-direction, we have (x1,⊥
i−

x0,⊥
i) < δ and therefore

γ⊥i
>
L2(τ)

δ2
. (39)

We now change the xα- and yµ coordinates such that
δ → 0, corresponding to a data distribution which is more
and more concentrated on D. As we change coordinates,
L(τ) is constant as a geometric invariant5 and we obtain
from (39)

γ−1
⊥i
→ 0 , (40)

as desired.

APPENDIX C
DETAILS ON EXPERIMENTS

C.1 Toy Example

The flow used for the toy example is composed of 12
RealNVP-type coupling layer blocks. Each of these blocks
includes a three-layer fully-connected neural network with
leaky ReLU activations for the scale and translation func-
tions.

For training, we sample from the target distribution
defined by

5. Since τ lies entirely in g(Z), there is a curve σ in Z whose image
under g is τ . Together with the properties 1) and 2) of τ this implies in
particular that L(τ) = L(σ) is not infinitesimal.

Fig. 16. From left to right: distribution in the base space of the flow, target
distribution, learned distribution

x3 ∼ U(−4, 4) ,
x2 = cos(x3) ,

x1 = sin(x3) .

We train for 5000 epochs using a batch of 500 samples
per epoch. We use the Adam optimizer with standard pa-
rameters and learning rate λ = 1× 10−4. This takes around
10 minutes on a standard CPU. After successful training
we can map samples from a multivariate standard Normal
distribution to the data distribution, see Figure 16.

In order to train a classifier we first define the ground
truth: points with z-coordinate smaller than zero belong to
the one class and points with z-coordinate bigger than zero
belong to the other class. We train a neural network with
256 hidden neurons with ReLU activations and one output
neuron with sigmoid activation to near perfect accuracy on
this classification task.

We then run the gradient ascent optimization in image
space X and in the base space of the flow Z . We start from
samples from the true data distribution and set the target to
0.1 if the network predicted a value larger than 0.5 for the
original data point, otherwise we set the target to 0.9.

Figure 17 shows that counterfactuals found in Z lie
significantly closer to the data manifold than adversarials
found in X

For more details we refer to our github implementation6.

C.2 Data sets:
We test our method on four different data sets.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We use training and test data as specified in
torchvision. We use 10% of the training data for validation.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We take the training and test data set as spec-
ified in torchvision. We use 10% of the training images
for validation. We scale and center crop the images to
64×64 pixels. We augment the training data by horizontally
flipping the images.

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: We choose the first 6500 patients from the
training set for testing. The remaining patients are used for
training. We select the model based on performance on the
original validation set. We only consider frontal images and
scale and crop the images to 128×128 pixels.

Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall: We resize the images so that the shortest side has
128 pixels. We then take a 64×64 pixel cutout (starting from

6. https://github.com/annahdo/counterfactuals/blob/main/toy
example.ipynb

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/annahdo/counterfactuals/blob/main/toy_example.ipynb
https://github.com/annahdo/counterfactuals/blob/main/toy_example.ipynb


UNDER REVIEW, JULY 24, 2023 21

in X in Z
gradient ascent

0

1

2

3

4

di
st

an
ce

 to
 h

el
ix

Fig. 17. Statistics for 1000 counterfactuals/adversarials. Boxes extend
from lower to upper quartile, red lines mark the medians, whiskers mark
the 1.5×IQR and circles mark outliers.

pixel [r = 64, c = 100]) We use 1620 images for training, 180
images for evaluation and 200 images for testing.

C.3 Flows
We show generated samples for all Flows in Figure 18.

Architecture: We use the RealNVP 7 architecture for
MNIST and the Glow 8 architecture for CelebA and CheX-
pert.

Training: We use the Adam optimizer with a learning
rate of 1× 10−4 and weight decay of 5× 10−4 for all flows.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: we train for 30 epochs on all available training
images. Bits per dimension on the test set average to 1.21.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: we train for 8 epochs on all available training
images. We use 5 bit images. Bits per dimension on the test
set average to 1.32.

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: we train for 4 epochs on all available training
images. Bits per dimension on the test set average to 3.59.

Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall: we train for 47 epochs on all available training
images. Bits per dimension on the test set average to 0.96.

C.4 Classifier
Architecture: All classifiers have a similar structure consist-
ing of convolutional, pooling and fully connected layers. We
use ReLU activations and batch normalization. For MNIST
we use four convolutional layers and three fully connected
layers. For CelebA and CheXpert we use six convolutional
layers and four fully connected layers.

Training: We use the Adam optimizer with a weight
decay of 5× 10−4 for all classifiers.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We train for 4 epochs using a learning rate of
1× 10−3. We get a test accuracy of 0.99.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We train a binary classifier on the blond at-
tribute. We partition the data sets into all images for which
the blond attribute is positive and the rest of the images.
We treat the imbalance by undersampling the class with
more samples. We train for 10 epochs using a learning rate
of 5 × 10−3. We get a balanced test accuracy of 93.63% by
averaging over true positive rate (93.95%) and true negative
rate (93.31%).

7. https://github.com/fmu2/realNVP
8. https://github.com/rosinality/glow-pytorch

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: We train a binary classifier on the car-
diomegaly attribute. For the training data the cardiomegaly
attibute can have four different values: blanks, 0, 1, and -1.
We label images with the blank attribute as 0 if the no find-
ing attribute is 1, otherwise we ignore images with blank
attributes. We also ignore images where the cardiomegaly
attribute is labeled as uncertain. Using this technique, we
obtain 25717 training images labelled as healthy and 20603
training images labelled as cardiomegaly. We do not treat
the imbalance but train on the data as is. We train for 9
epochs using a learning rate of 1× 10−4. We test on the test
set, that was produced in the same way as the training set.
We get a balanced test accuracy of 86.07% by averaging over
true positive rate (84.83%) and true negative rate (87.27%).

C.5 U-Net:

The U-Net [63] follows an hour glass structure. The first
part consists of multiple convolutional, batch normalization,
ReLU and pooling layers that gradually reduce the spa-
tial dimensions while increasing the channel dimensions.
The second block consists of upsampling, concatenation
of feature maps from the first part, convolutional, batch
normalization and ReLU activation layers. The last layer
has the same spacial dimension as the input but only one
channel corresponding to a probability map. For using the
U-Net in order to count pedestrians, Ribera et. al. [64] add
an additional fully connected layer with ReLU activations
that combines the information from the last layer and the
central encoding layer to estimate the number of objects of
interest present 9.

C.6 Optimization of counterfactuals and adversarial ex-
amples

Counterfactuals and adversarial examples are found us-
ing the Adam optimizer with standard parameters. We
vary only the learning rate λ. For our main experiments
we use the base space of normalizing flows to find the
counterfactuals. We set the threshold for the confidence of
the target class high when searching for counterfactuals
and adversarial examples. We therefore get more visually
expressive results. Of course in practice one might whish
to find counterfactuals with lower target confidence. We
show an example optimization with different confidence
thresholds in Figure 19.

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We use λ = 5× 10−4 for conventional adversar-
ial examples and λ = 5 × 10−2 for counterfactuals found
via the flow. We do a maximum of 2000 steps stopping
early when we reach the target confidence of 0.99. We
perform attacks on 500 images of the true class ‘four’. All
conventional attacks and 498 of the attacks via the flow
reached the target confidence of 0.99 for the target class
‘nine’.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We use λ = 7 × 10−4 for conventional adver-
sarial examples and λ = 5× 10−3 for counterfactuals found
via the flow. We do a maximum of 1000 steps stopping early
when we reach the target confidence of 0.99. We perform
attacks on 500 images of the true class ‘not-blond’. 492
conventional attacks and 496 of the attacks via the flow

9. https://github.com/javiribera/locating-objects-without-bboxes

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/fmu2/realNVP
https://github.com/rosinality/glow-pytorch
https://github.com/javiribera/locating-objects-without-bboxes


UNDER REVIEW, JULY 24, 2023 22

(a) (b) (c) (d)

Fig. 18. Generated samples for all normalizing flows used in the paper: RealNVP on MNIST (a), Glow on CelebA (b), Glow on CheXpert (c) and
Glow on Mall (d).

0.1 0.25 0.5 0.75 0.99

Fig. 19. Top row: original image and evolution throughout optimization.
Numbers indicate confidence with which the image is classified as
‘blond’. Second row: absolute differences to original image summed over
color channels.

reached the target confidence of 0.99 for the target class
‘blond’.

CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert:CheXpert: We use λ = 5× 10−4 for conventional adver-
sarial examples and λ = 5× 10−3 for counterfactuals found
via the flow. We do a maximum of 1000 steps stopping
early when we reach the target confidence of 0.99. We
perform attacks on 1000 images of the true class ‘healthy’.
All conventional attacks and 990 of the attacks via the flow
reached the target confidence of 0.99 for the target class
‘cardiomegaly’.

Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall:Mall: We use λ = 1 × 10−4 for conventional adversarial
examples and λ = 5 × 10−3 for counterfactuals found via
the flow. We do a maximum of 5000 steps stopping early
when we reach the target regression value of 10 when we are
maximizing pedestrians and 0.01 when we are minimizing
pedestrians. We perform attacks on 100 images with few
people (average regression value of 0.7) and 100 images with
many people (average regression value of 3.6). All attacks
reached the target values.

GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs:GANs: For counterfactuals found in the latent space of
GANs we do a maximum of 1000 steps with λ = 5 × 10−3

for MNIST, CelebA and CelebA-HQ.
VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs:VAEs: For counterfactuals found in the latent space of

the VAE trained on MNIST we do a maximum of 1000 steps
with λ = 5× 10−3.

C.7 Similarity to source images

To evaluate the proximity between counterfactu-
als/adversarials and their corresponding source images

we calculate the Euclidean differences in X space as
well as in Z space and compare them to the respective
Euclidean differences for all images of the source class.
For MNIST, CelebA and CheXpert we calculate the
Euclidean differences for a maximum of 2000 test images
for each counterfactual/adversarial. For the Mall data set
we calculate the distances to 400 training images with
r < 1 when considering counterfactuals/adversarials for
which we maximized r and we calculate the distances
to 400 training images with r > 3 when considering
counterfactuals/adversarials for which we minimized
r. In addition we calculate all l2 differences between
counterfactuals/adversarials and their respective source
images. We show the distribution of distances to the
respective source images and to all images of the source
class in Figures 20, 21, 22, 23, and 24. As expected the
Euclidean differences between adversarial examples and
their respective source images are very small when
measured in X space but a lot larger when measured in
Z space. The Euclidean differences for counterfactuals
measured in X are larger than those for adversarials but
we can still observe that counterfactuals are significantly
closer to their respective source image than to other images
of the same class. The Euclidean distances measured in Z
space are significantly smaller for counterfactuals than for
adversarials, indicating that the latter may lie off manifold.
The effect is less pronounced for images from the Mall data
set, as those have little variance in the background.

C.8 Similarity between all images

We calculate the Euclidean distances in X and Z of ran-
domly selected test images (all classes), adversarial exam-
ples and counterfactuals to randomly selected images from
the training data set (all classes). Figure 25 shows the dis-
tribution of distances for the data sets MNIST, CelebA and
CheXpert. We note that for distances in X the distributions
for original images, adversarial examples and counterfactu-
als are very similar while for distances in Z the distribution
of distances for adversarial examples is notably shifted to
the right, meaning that adversarial examples are further
away from random data samples when the distances are
measured in Z , that is on the manifold. The effect is most
notable for CelebA and CheXpert, for which the distances

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 23

0 5 100.0

0.2

0.4

0.6

de
ns

ity

0 20 400.0

0.2

0.4

distances to original image distances to images of source class

0 5 10 15
distances in X

0.0

0.1

0.2

0.3

de
ns

ity

20 30 40
distances in Z

0.0

0.1

0.2

0.3

Fig. 20. Euclidean distances in X and Z for adversarial examples (top
row) and counterfactuals (bottom row) for the MNIST data set.

0 25 50 750.0

0.1

0.2

0.3

de
ns

ity

500 10000.000

0.001

0.002

0.003

distances to original image distances to images of source class

0 25 50 75
distances in X

0.00

0.02

0.04

0.06

de
ns

ity

200 400 600
distances in Z

0.00

0.01

0.02

Fig. 21. Euclidean distances in X and Z for adversarial examples (top
row) and counterfactuals (bottom row) for the CelebA data set.

in Z of counterfactuals closely match the distribution of
distances between images from the data set.

The original distribution of images from the Mall data
set is strongly skewed towards few pedestrians. We can
therefore not expect to achieve insights from comparing
distributions of manipulated images.

C.9 GANs

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We use a Deep Convolutional GAN10 that we train
for 170 epochs using the Adam optimizer with weight decay
of 5× 10−4 and learning rate of 2× 10−4.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: We use a progressively grown GAN11 and train
on 600000 randomly selected training images.

CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ:CelebA-HQ: We use the pretrained HyperStyle12 [68]
network.

C.10 VAEs

We use Adam without weight decay and with a learning
rate of λ = 5× 10−3 for all VAEs.

10. https://github.com/AKASHKADEL/dcgan-mnist
11. https://github.com/rosinality/progressive-gan-pytorch
12. https://github.com/yuval-alaluf/hyperstyle

0 20 40 600.0

0.2

0.4

de
ns

ity

0 500 10000.000

0.002

0.004

distances to original image distances to images of source class

20 40 60
distances in X

0.00

0.05

0.10

de
ns

ity

200 400 600
distances in Z

0.00

0.02

0.04

Fig. 22. Euclidean distances in X and Z for adversarial examples (top
row) and counterfactuals (bottom row) for the CheXpert data set.

0 10 200

1

2

de
ns

ity

140 160 1800.000

0.025

0.050

0.075

distances to original image distances to images of source class

10 20 30 40
distances in X

0.00

0.05

0.10

de
ns

ity

100 150 200 250
distances in Z

0.00

0.01

0.02

0.03

Fig. 23. Euclidean distances in X and Z for adversarial examples (top
row) and counterfactuals (bottom row) for the Mall data set. Source
images have few pedestrians (r < 1).

MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST:MNIST: We train a simple convolutional VAE for 80
epochs. To evaluate the IM1 and IM2 measures we train
two additional VAEs with the same structure on only the
training images with label four and nine respectively for
100 epochs.

CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA:CelebA: The VAEs for CelebA are only used to evaluate
the IM1 and IM2 measures. We train 3 simple convolutional
VAEs for 100 epochs on the complete training set, all train-
ing images with blond attribute equal to one and all training
images with blond attribute equal to 0.

C.11 Quantitative evaluation

Nearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighboursNearest neighbours: For MNIST, CelebA and CheXpert
we search for the 10 nearest neighbours considering the
complete test set (excluding the image the counterfac-
tual/adversarial originated from), making sure there is an
even distribution over classes present. For Mall, we search
for the three nearest neighbours considering the complete
training set (as the test set is relatively small and the data
is unevenly distributed (many images with few pedestrians
and very few with many pedestrians)). We use the Euclidean
norm as a distance measure.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/AKASHKADEL/dcgan-mnist
https://github.com/rosinality/progressive-gan-pytorch
https://github.com/yuval-alaluf/hyperstyle


UNDER REVIEW, JULY 24, 2023 24

0 10 20 300.00

0.25

0.50

0.75

de
ns

ity

100 2000.000

0.005

0.010

0.015

distances to original image distances to images of source class

10 20 30
distances in X

0.0

0.1

0.2

de
ns

ity

100 200
distances in Z

0.00

0.02

0.04

Fig. 24. Euclidean distances in X and Z for adversarial examples (top
row) and counterfactuals (bottom row) for the Mall data set. Source
images have many pedestrians (r > 3).

5 10 150.0

0.2

M
N

IS
T

20 30 400.0

0.2

0.4

original images grad asc in X grad asc in Z

0 25 50 750.00

0.02

0.04

C
el

eb
A

500 10000.000

0.005

0.010

0 20 40 60
distances in X

0.000

0.025

0.050

C
he

X
pe

rt

0 250 500 750
distances in Z

0.000

0.005

Fig. 25. Distributions of Euclidean distances in X and Z for test images,
adversarial examples and counterfactuals for three data set.

APPENDIX D
EXAMPLES FOR COUNTERFACTUALS

D.1 Counterfactuals of different generative models
side by side

We proposed an algorithm to generate diffeomorphic coun-
terfactuals using normalizing flows and approximately dif-
feomorphic counterfactuals using non-bijective generative
models, such as GANs and VAEs. While the exact visual
qualities of the counterfactual depend on the generative
model used, some properties are preserved by all gener-
ative models. In Figure 26, we show diffeomorphic coun-
terfactuals side by side with approximately diffeomorphic
counterfactuals for some sample images of the MNIST data
set. Writing angle and stroke width are mostly preserved by
all generative models.

Fig. 26. Selected examples for MNIST (‘four’ to ‘nine’). From left to
right: original images, adversarial examples, counterfactuals retrieved
with realNVP, counterfactuals retrieved with dcGAN, counterfactuals
retrieved with cVAE.

D.2 Counterfactual generation for different targets
In Section 4, we presented counterfactuals for only one
selected target per data set. However, we can generate coun-
terfactuals for different targets. We show a few examples in
Figure 27. Some transitions (for example from “hat” to “no
hat”) are easier accomplished than others. We suspect that
this is due to the fact that certain features (such as people
with hats in the CelebA data set) are less frequent in the data
set and therefore learning these regions of the data manifold
is challenging.

D.3 Additional examples
In Figure 28, 29, 30, 31, and 32, we present diffeomorphic
counterfactuals for randomly selected images from the four
data sets. For the heatmaps, we visualize both the sum over
the absolute values of color channels as well as the sum over
the color channnels.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 25

→→
→

→ → →

Fig. 27. Selected examples for different targets for CelebA and MNIST.

original counterfactual diff abs sum diff sum

Fig. 28. Randomly selected examples MNIST ‘four’ to ‘nine’

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 26

original counterfactual diff abs sum diff sum

Fig. 29. Randomly selected examples CelebA ‘not blond’ to ‘blond’

original counterfactual diff abs sum diff sum

Fig. 30. Randomly selected examples CheXpert ‘healthy’ to ‘car-
diomegaly’

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



UNDER REVIEW, JULY 24, 2023 27

original counterfactual diff abs sum diff sum

Fig. 31. Randomly selected examples Mall ‘few people’ to ‘10 people’

original counterfactual diff abs sum diff sum

Fig. 32. Randomly selected examples Mall ‘many people’ to ‘0.01 peo-
ple’

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3339980

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


	Introduction
	Methods
	Counterfactual Explanations
	Generation of Counterfactuals
	Novel Method 1: Diffeomorphic Counterfactuals
	Novel Method 2: Approximate Diffeomorphic Counterfactuals

	Theoretical analysis
	Differential Geometry
	Mathematical Setup
	Diffeomorphic Counterfactuals
	Approximate Diffeomorphic Counterfactuals

	Experiments
	Toy example
	Image classification and regression
	Setup
	Qualitative analysis
	Quantitative analysis


	Comparison to other approaches
	Related work
	Counterfactuals with generative models
	Quantitative Metrics for Counterfactuals

	Conclusion
	References
	Biographies
	Ann-Kathrin Dombrowski
	Jan E. Gerken
	Klaus-Robert Müller
	Pan Kessel

	Appendix A: List of symbols
	Appendix B: Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Appendix C: Details on Experiments
	Toy Example
	Data sets:
	Flows
	Classifier
	U-Net:
	Optimization of counterfactuals and adversarial examples
	Similarity to source images
	Similarity between all images
	GANs
	VAEs
	Quantitative evaluation

	Appendix D: Examples for Counterfactuals
	Counterfactuals of different generative models side by side
	Counterfactual generation for different targets
	Additional examples


