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Abstract—Well-calibrated probabilistic regression models are a crucial learning component in robotics applications as datasets grow
rapidly and tasks become more complex. Unfortunately, classical regression models are usually either probabilistic kernel machines
with a flexible structure that does not scale gracefully with data or deterministic and vastly scalable automata, albeit with a restrictive
parametric form and poor regularization. In this paper, we consider a probabilistic hierarchical modeling paradigm that combines the
benefits of both worlds to deliver computationally efficient representations with inherent complexity regularization. The presented
approaches are probabilistic interpretations of local regression techniques that approximate nonlinear functions through a set of local
linear or polynomial units. Importantly, we rely on principles from Bayesian nonparametrics to formulate flexible models that adapt their
complexity to the data and can potentially encompass an infinite number of components. We derive two efficient variational inference
techniques to learn these representations and highlight the advantages of hierarchical infinite local regression models, such as dealing
with non-smooth functions, mitigating catastrophic forgetting, and enabling parameter sharing and fast predictions. Finally, we validate
this approach on large inverse dynamics datasets and test the learned models in real-world control scenarios.

Index Terms—Hierarchical Local Regression, Generative Models, Dirichlet Process Mixtures, Inverse Dynamics Control
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1 INTRODUCTION

P RINCIPLED data-driven, adaptive, and incremental
learning is desirable in domains in which datasets

are dynamic and accumulate slowly over time. For exam-
ple, robots must build models of their dynamics and the
environment as they interact with the world. Moreover,
these models must be computationally efficient during both
learning and evaluation. In the case of general-purpose
robots, these models must incorporate different modalities
of continuous and discrete stochastic random variables and
possibly incorporate heteroscedastic noise [1], [2]. Predom-
inant and successful regression techniques, such as Gaus-
sian process regression (GPR) [3], artificial neural networks
(ANNs) [4], and local regression (LR) [5], have a mixed set
of properties that are useful in different scenarios.

Gaussian process regression offers a principled Bayesian
treatment that enables continual and incremental learning.
Nonetheless, the vanilla formulation of GPR [3] suffered
from many drawbacks that have been gradually addressed
by recent research. Some of these drawbacks are the func-
tional smoothness assumption [6], [7], [8], limitations when
scaling to large datasets [9], [10], [11], [12], [13], [14] and
difficulties modeling heteroscedasticity [15], [16], [17].

On the other hand, artificial neural networks have
proven themselves as very powerful easy-to-train univer-
sal approximators. They are, however, still susceptible to
over-parameterization [18] and catastrophic forgetting [19].
Moreover, despite major progress on the front of Bayesian
neural networks (BNNs) [20], [21], [22], [23], [24], [25], [26],
new evidence suggests that issues regarding the accuracy of
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uncertainty quantification still need to be tackled [27], [28].
Finally, local regression methods have had great success

in the domain of robotics and control [29], [30], [31], [32],
because of their flexibility, ability to model hard nonlinear-
ities, and to incorporate new data online. More generally,
local regression is a family of generative mixture of experts
(MoE) techniques that take a basis-function approach to
model the input density and automatically induce local
model responsibilities [33], [34], [35], [36], see Figure 1. In
contrast, discriminative MoEs rely on an explicitly input-
conditioned gating to choose the local expert [37], [38], [39].

Two categories of LR exist [40], lazy learners that main-
tain all seen data points in memory [29], [31], and memoryless
learners that compress data by constructing basis functions
in the input space and fitting and storing locally parame-
terized regression models [35]. Prominent examples of the
latter include receptive field weighted regression (RFWR)
[30] and locally weighted projection regression (LWPR) [32].
However, these methods are often difficult to tune as they
possess many hyperparameters.

A limited attempt at a Bayesian treatment of LR is made
in [41] by constructing local nonparametric kernels and
placing gamma priors on the kernel widths to alleviate the
need to tune the basis functions. This approach leads to a
localized GP formulation that needs to retain the training
data in memory, again leading to the computational issues
of vanilla GPR. Local Gaussian regression (LGR) is a further
Bayesian generalization of LR [42]. The authors treat the
local models in a Bayesian framework and couple them
via the loss function that reinforces global coordination.
Nonetheless, both approaches rely on heuristics and thresh-
olds for adding and pruning local models and fall short of
formulating a generative model over input and output.

Following this introduction, we believe that local re-
gression with a proper generative Bayesian treatment can
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Fig. 1: Left, gap data learned with infinite local regression (ILR). The top plot depicts the mean prediction (red) on the
training data (dots) and the true mean function (dashed). The blue area represents the predictive uncertainty of two
standard deviations. The predictive uncertainty in areas lacking training data is large, and the mean prediction falls back
to the prior. Right, the CMB dataset learned by ILR. The top figure depicts the mean prediction (red) with a predictive
uncertainty of three standard deviations (shaded blue). ILR captures the heteroscedastic spread of the data with a handful
of local regression models. The bottom plots show the activation of the models over the input space.

potentially serve as a powerful general-purpose function
approximator. Moreover, as a probabilistic and efficient
representation, it can drive many low-level applications in
control and robotics that favor fast predictions and do not
require deep representations.

We introduce two probabilistic graphical mixture models
for local regression in the upcoming sections. The first, infi-
nite local regression (ILR) [43], is a generative formulation
that relies on the paradigm of Bayesian nonparametrics
(BNP) [44] to automatically grow the mixture size based
on observed data. This technique ultimately results in a
general formulation of related methods that alleviates the
need for any heuristic considerations. However, despite the
effectiveness of ILR, and like other local regression tech-
niques that rely on locally linear or polynomial approxima-
tions, it maintains a one-to-one correspondence between the
activations and local regression units. This effect limits the
model’s capacity to share parameters across the input space
and often forces the generation of duplicate components,
needlessly increasing the overall number of parameters. To
address this limitation, we introduce hierarchical infinite
local regression (HILR), a multi-level development of ILR
that enables multi-modal activations of the same regression
component, giving the model a structure that allows sharing
of regression parameters across repeating local patterns in
the data. This architecture increases the flexibility of the
representation and contributes towards its compression.

For learning these models, we derive two general varia-
tional Bayes (VB) schemes [45] that efficiently infer the pos-
terior parameters and overcome the need for computation-
ally heavy sampling methods. We benchmark the models
on a range of tasks highlighting their strengths, such as
dealing with heteroscedasticity, non-continuous functions,
and multi-modal activation. Additionally, we test on large
real-world high-dimensional datasets to benchmark learn-

ing the inverse dynamics of robotic manipulators. Most im-
portantly, we deploy an instance of ILR to perform inverse
dynamics control on a real Barrett-WAM manipulator.

Alternative Bayesian extensions of the generative mix-
ture of experts exist in the literature. A prominent area of
research focused on Gaussian processes mixtures, in which
local components are modeled by separate GPs [46], [47].
Given that a single Gaussian process is an excellent approx-
imator of nonlinear trends, the motivation for constructing
such experts is not to improve the quality of approximation
but rather to reduce the computational complexity and
memory requirements of GPs by associating every compo-
nent only with a slice of the overall data, thus limiting the
negative effects of cubic scaling. While this motivation is
understandable from a computational standpoint, it is often
unclear how to decompose a nonlinear function into a mix-
ture of nonlinear experts, especially when each expert has
the representational flexibility of a GP. In contrast, models
like ILR and HILR rely on locally linear experts that offer a
natural unit of local approximation.

Finally, the infinite mixtures used in ILR and HILR to
regularize model complexity are rooted in Bayesian non-
parametrics. Here we reference influential work on Markov
chain Monte Carlo (MCMC) techniques for Bayesian non-
parametric density estimation [48], [49], [50], [51], which
developed the first seeds of Bayesian inference for Dirichlet
processes [52], [53]. These concepts inspired comparable
infinite mixture regression models. However, these attempts
exclusively relied on expensive Gibbs sampling algorithms
[54], [55], [56], [57]. Instead, we focus on developing effi-
cient deterministic variational inference (VI) algorithms that
dramatically improve the practical aspects of training and
deploying Bayesian finite and infinite mixture models [58],
[59]. For a detailed discussion on the scalability of different
paradigms of Bayesian inference, we refer the reader to [60].
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This paper is organized as follows. In Section 2, we
review Bayesian linear regression, finite and infinite mixture
models, and variational inference. Section 3 presents the
infinite local regression (ILR) model and a variational Bayes
inference scheme [43]. In Section 4, we introduce the hierar-
chical infinite local regression (HILR), an extension of ILR,
that incorporates multi-modal activations and parameter
sharing. Finally, in Section 5, we test ILR and HILR on a
set of simulated and real-world benchmarks.

2 PRELIMINARIES

This section introduces related concepts, such as Bayesian
linear regression, Bayesian mixture models, Dirichlet pro-
cesses, and variational inference.

2.1 Bayesian Linear Regression
We start by discussing the Bayesian treatment of a single
component of a Bayesian local regression model, namely
Bayesian linear regression [61]. The conditional data like-
lihood takes a feature vector x ∈ Rm as a random input
variable and returns a random response variable y ∈ Rd

according to a linear mapping A : Rm → Rd, a bias vector
c, and additive zero-mean noise with a precision matrix V

y = Ax+ c+ e, e ∼ N(0,V).

For a fully Bayesian treatment, we consider all parameters of
this model to be random variables on which we place proper
conjugate priors. In this case, we place matrix-normal (MN)
and normal-Wishart (NW) priors on the matrix A, the bias
coefficient c, and precision matrix V

p(A, c,V) = MN(A |M,V,K)N(c |θ, ρV)W(V |Φ, η),

where M, the mean of A, is a d × m matrix and V and K
are d×d and m×m that serve as row and column precision
matrices of A, respectively. The mean θ is an m-dimensional
vector, and the scalar ρ modulates the amplitude of the
precision. Finally, the parameters of the Wishart distribution
are the d × d positive definite scale matrix Φ and the
degrees of freedom η. Due to the conjugate nature of the
priors, the joint posteriors p(A, c,V | D) are matrix-normal
and normal-Wishart distributions, conditioned on the data
of N independent and identically distributed data pairs
D = {(x1,y1), . . . , (xN ,yN )}.

2.2 Bayesian Finite Mixture Models
Gaussian mixture models (GMMs) are hierarchical latent
variable models with universal approximation capabilities
for arbitrary continuous densities. This insight is of central
interest when connected to density estimation for local re-
gression models, which are themselves universal nonlinear
function approximators [5]. A finite K-component Gaussian
mixture of a random variable x is a weighted linear combi-
nation of densities

p(x |θ) =
K∑

k=1

p(z = k |π)p(x |θk) =
K∑

k=1

πk N(x |µk,Λk),

with K unique mean vectors µk and precision matrices
Λk. The latent quantity z is a one-hot random variable
distributed according to a categorical distribution p(z) =

Cat(π), governed by the weights π = {π1, . . . , πK} that
satisfy 0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1.

The Bayesian extension of this model [58] introduces a
conjugate normal-Wishart prior on the means and precision
matrices (µk,Λk) ∼ NW(λ), where λ contains the hyper-
parameters. Furthermore, a conjugate Dirichlet prior, with a
concentration parameter α, is placed on the mixing weights
π ∼ Dir(α). This Bayesian perspective has proven effective
in regularizing the shortcomings of GMMs by allowing su-
perfluous components to fall back onto their priors instead
of severely over-fitting to small clusters. This effect can be
understood as sparsification bias over K [62], [63].

2.3 Dirichlet Process and Stick-Breaking
Scaling the finite mixtures in Section 2.2 to infinite com-
ponents requires placing a nonparametric Dirichlet pro-
cess (DP) prior on the parameters of the mixture. A DP
is a distribution over probability measures G. We write
G ∼ DP(α,H), where α is the concentration parameter
and H is the base measure [64], [65]. Intuitively, a Dirichlet
process is a distribution over distributions, meaning each
draw G is itself a distribution. The base distribution H is
the mean of the DP, and the concentration parameter α can
be interpreted as an inverse variance. The larger α is, the
smaller the variance, and the process concentrates more of
its mass around the mean distribution H.

We will rely on the stick-breaking construction [66] of
a DP as an algorithmic realization. Stick-breaking delivers
an infinite sequence of mixture weights πk of an infinite
mixture model from the stochastic process

πk = sk

k−1∏
l=1

(1− sl) , sk ∼ Beta(1, α).

This process is sometimes denoted as π ∼ GEM(α) [64].
The stick-breaking procedure describes how the random
variables sk, representing stick lengths, are drawn from
a beta distribution and combined to obtain the mixture
weights πk. If the concentration parameter α increases, the
magnitude of the mixing weights πk decreases on average,
and the number of possible active components increases.

This representation of DPs can be used to replace the
priors placed on the finite Gaussian mixture model [59]. In
such a setting, the base H is a normal-Wishart distribution,
and the sampled measure G ∼ DP(α,NW) is a draw of an
unbounded number of parameters (µk,Λk) ∼ NW(λ) for
an infinite number of clusters, associated with an infinite
number of weights πk generated by the stick-breaking pro-
cess. These draws from a Dirichlet process are discrete with
probability one, which leads to the clustering effect of the
DP. Eventually, the same parameters will be sampled over
and over, forcing the associated data points to cluster.

2.4 Variational Inference of Structured Models
MCMC [67], and VI [68] have become the two main ap-
proaches for (approximate) probabilistic inference in graph-
ical models. While MCMC constructs a stochastic sampling
process that converges to the posterior, VI formulates the
inference task as a deterministic optimization problem. De-
spite its reliance on a coarser functional posterior approxi-
mation, VI is often preferred in settings with large number
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of parameters. Moreover, the deterministic nature of VI
circumvents the issue of label switching in Monte-Carlo-
based posterior inference of mixture models.

In a nutshell, in variational inference, a typically in-
tractable posterior is approximated by a tractable functional
distribution q(β) that minimizes the Kullback-Leibler diver-
gence (KL) to true posterior p(β | D)

q∗(β) = argmin KL(q(β) || p(β | D)),

where D is observed data and the vector β subsumes both
the parameters θ and hidden indicators z in structured
models. Note that the KL in the above objective is mode-
seeking, meaning it will lock on one mode of a possibly
multi-modal posterior. In general, the posterior p(β | D) is
unknown, because the normalizer p(D) is not tractable.
In consequence, the KL cannot be minimized directly but
rather optimized via a related objective that is equal up to
the constant term equivalent to the evidence p(D)

KL(q || p) = Eq

[
log q(β)

]
− Eq

[
log p(β | D)

]
= Eq

[
log q(β)

]
− Eq

[
log p(D,β)

]
+ p(D)

= Eq

[
log q(β)

]
− Eq

[
log p(D,β)

]
+ const.

This modified objective is denoted as the negative evidence
lower bound (ELBO) and can be reformulated to take the
traditional maximization objective of VI algorithms

ELBO(q) = Eq

[
log p(D,β)

]
− Eq

[
log q(β)

]
= Eq

[
log p(D |β)

]
+ Eq

[
log p(β)

]
− Eq

[
log q(β)

]
= Eq

[
log p(D |β)

]
−KL(q(β) || p(β)).

The choice of the approximate posterior distribution
q(β) is open. In this paper, we focus on variational Bayes
methods that rely on the (structured) mean-field assumption
as a general recipe for maximizing the ELBO [45], [69].
This approximation requires that the posterior factorizes
over the set of the hidden variables q(β) =

∏M
i=1 qi(βi).

It is emphasized that no other assumptions are made about
q(β). The resulting posterior will be determined solely by
the assumed likelihood and priors.

Specifically, we follow the scheme of variational Bayes
expectation-maximization (VBEM) as a probabilistic gener-
alization of expectation-maximization (EM). This approach
constitutes a coordinate ascent scheme that iteratively opti-
mizes the ELBO for individual factors of the approximate
posterior q(β) while holding the others constant

ln qj(βj) = Eqi6=j

[
log p(D,β)

]
+ const.

A more practical version of this optimization can be
achieved by using stochastic variational inference (SVI), a
batched stochastic gradient ascent approach. In the case of
the conjugate exponential family, SVI not only facilitates
scalability over large datasets but also resembles a natu-
ral gradient ascent algorithm on the ELBO with favorable
convergence properties [70].

3 THE INFINITE MIXTURE OF LOCAL LINEAR RE-
GRESSION MODEL

Using the previously presented concepts of Bayesian linear
regression, Bayesian mixture models, and Dirichlet pro-
cesses, we now construct the Bayesian infinite local regres-
sion (ILR) model.

Our approach to tackling the regression problem is a
Bayesian joint density estimation technique over the input
x and target y, both conditioned on a latent discrete label
z. To avoid the need for a fixed number of components
over z, we assume a generative model driven by a stick-
breaking process with a concentration parameter α and a
base distribution H, which is a product of a normal-Wishart,
a Matrix-normal, and Wishart distribution.

The data generation proceeds as depicted in Figure 2.
The stick-breaking process is sampled to generate the cat-
egorical weights π, mixture activations {µk,Λk}∞k=1, and
regression parameters {Ak, ck,Vk}∞k=1

π(s) ∼ GEM(α),

Λk ∼ W(Ψ, ν), µk ∼ N(m, κΛk),

Vk ∼ W(Φ, η), Ak ∼ MN(M,K,Vk), ck ∼ N(θ, ρVk),

and those parameters are used to generate the one-hot labels
zn and input-output data pairs xn,yn

zn ∼ Cat(π(s)), xn ∼ N(µzn ,Λzn),

yn ∼ N(Aznxn + czn ,Vzn).

Notice that the densities over the input space, parameter-
ized by (µk,Λk), naturally play the role of basis functions or
so-called receptive fields as in the receptive field weighted
regression (RFWR) [31] and locally weighted projection
regression (LWPR) [32] algorithms.

Given these modeling assumptions, the regression ob-
jective can be cast as a joint density inference problem
of the posterior p(Z, s,µ,Λ,A, c,V |X,Y), where X =
{x1, . . . ,xN}, Y = {y1, . . . ,yN}, and Z = {z1, . . . , zN}.
The result of this inference is then leveraged to perform
predictions via conditioning and marginalization.

3.1 Variational Bayes for ILR
For inference, we focus on a variational Bayes EM algorithm
that alternates between a variational expectation step (E-
step) and a maximization step (M-step). Deriving such an
algorithm for this model requires pinning down the follow-
ing definitions of the likelihood, prior, and posterior.

Complete Data Likelihood. For the general case of
multivariate regression with m inputs and d outputs, we
assume the following structured joint likelihood over the
inputs, outputs, and indicator variables

p(X,Y,Z | .) = p(Z) p(X |Z) p(Y |X,Z)

=
N∏

n=1

Cat(zn |π(s))

×
N∏

n=1

∞∏
k=1

N(xn |µk,Λk)
znk

×
N∏

n=1

∞∏
k=1

N(yn |Akxn + ck,Vk)
znk ,

where the dimensions of all quantities follow the notation
of Bayesian linear regression.

Infinite Conjugate Prior. We construct a factorized con-
jugate infinite mixture prior

p(s,µ,Λ,A, c,V) = p(s) p(µ|Λ) p(Λ)

× p(A|V) p(c|V) p(V).
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Fig. 2: A unified plate notation for infinite mixtures of Bayesian local regression. Assuming Gaussian and linear Gaussian
densities, the basis parameters (µk,Λk) are sampled from a normal-Wishart distribution, while the regression parameters
(Ak, ck) and precision matrices Vk are sampled from a matrix-Normal-Wishart, for every component k. The latent variables
zn assign every xn and yn to a component and are drawn from a categorical distribution parameterized by π. The mixture
weights π are generated by a stick-breaking process with a concentration parameter α.

This prior assumes that the cluster means µk and precision
matrices Λk are sampled from normal-Wishart distributions

p(µ |Λ) p(Λ) =
∞∏
k=1

N(µk |m0, κ0Λk)W(Λk |Ψ0, ν0),

while matrix-normal-Wishart and normal-Wishart priors are
placed on the regression coefficients (Ak, ck) and the preci-
sion matrices Vk

p(A |V)p(c |V)p(V) =
∞∏
k=1

MN(Ak |M0,K0,Vk)

×N(ck |θ0, ρ0Vk)W(Vk |Φ0, η0).

The parameters πk are generated by a stick-breaking process
πk(s) = sk

∏k−1
l=1 (1 − sl), where the stick lengths s are

independently beta distributed

p(s) =
∞∏
k=1

Beta(sk | 1, α0).

Truncated Mean-Field Posterior. We rely on a structured
mean-field approximation of the posterior [69] that factor-
izes between the labels q(Z) and the remaining parameters
q(s,µ,Λ,A, c,V), thus automatically leading to the decom-
position p(. | D) ≈ q(Z) q(s) q(µ,Λ) q(A, c,V). Further, we
follow [59] by allowing a truncation of the posterior while
maintaining an infinite prior, so that q(sK =1) = 1, implying
that πk = 0 for k > K

p(. | D) ≈
N∏

n=1

Cat(zn | rn)
K−1∏
k=1

Beta(sk | γk, αk)

×
K∏

k=1

N(µk |mk, κkΛk)W(Λk |Ψk, νk)

×
K∏

k=1

MN(Ak |Mk,Kk,Vk)

×N(ck |θk, ρkVk)W(Vk |Φk, ηk),

where rn are the expected responsibilities of the mixture.
During evaluation, the truncation threshold K is chosen to
be very high and is seldom reached.

Variational Expectation Step. In the E-step, the respon-
sibilities are computed by following the recipe of VBEM in
Section 2.4. The responsibilities are the variational parame-
ters of the posterior categorical

log q(Z) = Eq(s)

[
log p(Z |π(s))

]
+ Eq(µ,Λ)

[
log p(X |Z)

]
+ Eq(A,c,V)

[
log p(Y |X,Z)

]
+ const

=
N∑

n=1

K∑
k=1

znk log rnk.

The expectations associated with the data likelihoods of xn

and yn can be straightforwardly computed [71]. However,
the expectations associated with infinite-dimensional cate-
gorical require more careful consideration [59]. We provide
the necessary details in the appendix.

Variational Maximization Step. The M-step updates the
remaining variational distributions given an approximation
of the categorical posterior as follows

log q(s) = Eq(Z)

[
log p(Z |π(s))

]
+ log p(s) + const,

log q(µ,Λ) = Eq(Z)

[
log p(X |Z)

]
+ log p(µ,Λ) + const,

log q(A, c,V) = Eq(Z)

[
log p(Y |X,Z)

]
+ log p(A, c,V) + const .

Each of these updates reflects a conjugate computation of K
log-posterior densities given a log-prior and a log-likelihood
weighted by the responsibilities rnk = E[znk]. We provide
more details and general computational recipes based on
conjugacy rules in the appendix.

3.2 Posterior Predictive Distribution

For predicting the function value ŷ conditioned on a test
query x̂, we marginalize the likelihood over the posterior
parameters to get the joint posterior predictive density. To
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make the marginalization tractable, we replace the true pos-
terior with our approximate variational posterior q(. | D) in-
ferred under a training dataset D. The conditional predictive
for a single component z = k is a conditional multivariate
Student’s t-distribution of the form

p(ŷ | x̂, ẑ=k,D) = Eq(A,c,V)

[
p(ŷ | x̂,Ak, ck,Vk)

]
= T(Mkx̂+ θk, akΦk, ηk + 1) ,

where we have defined

ak = 1− u>
(
Lk + uu>

)−1
u,

with u = [x̂, 1]> and Lk = Block (Kk, ρk).
Additionally, the joint activation of a component k is a

Student’s t-distribution weighted by the expected categori-
cal probability under the posterior stick-breaking process

p(x̂, ẑ=k | D) ∝ Eq(s)

[
p(ẑ=k |π(s))

]
Eq(µ,Λ)

[
p(x̂ |µk,Λk)

]
=

γk
γk + αk

k−1∏
l=1

(
1− γl

γl + αl

)
× T

(
µk,

κk

1 + κk
Ψk, νk + 1

)
.

These K-activation probabilities enable two prediction tech-
niques. A mode-prediction, where the most likely active com-
ponent is selected and used to perform prediction with the
corresponding linear regression model, or a mean-prediction,
that averages the predictions of all components weighted by
their activation probabilities.

3.3 Computational Complexity
We calculate the training-time computational cost to be
O(NK(d + m)3), which can be straightforwardly reduced
to O(LK(d + m)3) by applying stochastic updates [70],
where L is the batch size. This result shows linear scalability
with the data, which is considerably more efficient than
simple variants of GPR. The test-time complexity of a mean
prediction is O(K(d3 + dm)), which combines the input
membership query and the linear matrix transformation for
every model k. This computation is, in contrast to GPR, in-
dependent of the training data size, hence the advantage of
memoryless locally-parametric representations during real-
time critical applications.

4 THE HIERARCHICAL INFINITE MIXTURE OF LO-
CAL LINEAR REGRESSION MODEL

The local regression model presented in Section 3 offers a
very flexible and well-regularized alternative to previously
developed approaches [30], [32], [42]. However, like similar
local regression representations, it cannot account for shift-
invariance across the input space. This drawback can cause
it to generate duplicate regression components to account
for similar local function trends across disconnected regions
of the input space. This limitation results from the hier-
archical design that directly couples activations and local
function units via a one-to-one correspondence and enforces
a uni-modal activation per regression component. This cou-
pling can be observed in the definition of the likelihood in
Section 3, where the activation and the local regression units
share the same assignment variable.

It stands to reason that ILR does not offer enough flexi-
bility and hinders parameter sharing between components.
Therefore, we present a modified formulation of ILR that ex-
plicitly accounts for shift-invariance in the input space and
provides the freedom to create regression units with multi-
modal, theoretically infinitely-modal, activations, if needed.
The resulting model, hierarchical infinite local regression
(HILR), is an infinite mixture over infinite mixtures that
shares similarities with existing representations developed
for hierarchical clustering [72], [73], [74].

We start by describing the generative process of the
hierarchical mixture over mixtures as depicted in Figure 3.
HILR consists of two levels. At the upper level, a meta
Dirichlet process generates the stick-breaking weights ω, the
meta-activations {τm,Λm}∞m=1, and the shared slope and
output precision matrices {Am,Vm}∞m=1

ω(t) ∼ GEM(β),

Λm ∼ W(Ψ, ν), τm ∼ N(m, λΛm),

Vm ∼ W(Φ, η), Am ∼ MN(M,K,Vm),

where β is the concentration parameter of the upper-level
DP and t are the generated stick lengths.

HILR’s ability to account for shift-invariance is a result
of allowing multi-modal activations. That way, every regres-
sion unit can be associated with multiple local regions in the
input space. This structure is realized by endowing every
upper-level component m with its own local DP. These
lower-level DPs, with a concentration parameter α, generate
the weights πm, the activation centers {µmk}∞k=1 and the
shift coefficients {cmk}∞k=1

πm(sm) ∼ GEM(α),

µmk ∼ N(τm, κΛm), cmk ∼ N(θ, ρVm).

We assume here that the lower-level centers µmk and coeffi-
cients cmk are tied via their respective upper-level precision
matrices Λm and Vm.

Finally, given all necessary parameters, the upper- and
lower-level labels hn, zn and the data pairs xn,yn are
sampled according to the likelihoods

hn ∼ Cat(ω(t)), zn ∼ Cat(π(s),hn),

xn ∼ N(µhn,zn ,Λhn
), yn ∼ N(Ahn

xn + chn,zn ,Vhn
).

Notice how the upper-level generative process resembles
the structure of ILR. However, in this model, the meta-
activations (τm,Λm) induce another hierarchy over the
lower-level multi-modal activation centers µmk. Moreover,
the upper-level DP only accounts for the shared slope of the
local regression units Am, whereas the shift coefficients cmk

are induced at the lower level, as they are influenced by the
individual activation centers µmk.

Similar to the procedure in Section 3, we aim to infer a
posterior over the parameters of this model given a set of
inputs X = {x1, . . . ,xN} and outputs Y = {y1, . . . ,yN}.
To that end, we derive a structured variational Bayes
expectation-maximization algorithm for this model. We start
the derivation by defining the complete data likelihood, the
infinite prior, and the mean-field posterior factorization.
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Fig. 3: A unified plate notation for hierarchical infinite tied mixtures of Bayesian local regression models. This model
outlines a two-level architecture that allows sharing of parameters between single components in order to compress the
representation. It can be interpreted as a local regression model with multi-modal activations. Each unit of the upper level
is itself a mixture of local regression models that share the same slope Am and output precision Vm. Each of these m
different slopes can be activated at k unique lower-level input regions centered around µmk and tied via a shared input
precision Λm. Both the upper- and lower-level mixtures are governed by independent Dirichlet process priors.

Complete Data Likelihood. The likelihood model is a
two-level precision-tied joint density over the observations
(X,Y) and the one-hot upper- and lower-labels (H,Z)

p(.) = p(H) p(Z |H) p(X |H,Z) p(Y |H,Z,X)

=
N∏

n=1

Cat(hn |ω(t))

×
N∏

n=1

Cat(zn |π(s),hn)

×
N∏

n=1

∞∏
m=1

∞∏
k=1

N(xn |µmk,Λm)znk×hnm

×
N∏

n=1

∞∏
m=1

∞∏
k=1

N(yn |Amxn + cmk,Vm)znk×hnm ,

where the conditioning of the lower-level labels zn on the
upper-level labels hn manifests as a one-hot selector of the
corresponding lower-level categoricals

Cat(zn |π(s),hn) =
∞∏

m=1

Cat(zn |πm(sm))hnm

=
∞∏

m=1

∞∏
k=1

πznk×hnm

mk .

Infinite Conjugate Prior. We assume a factorized two-
level precision-tied conjugate infinite mixture prior

p(t, s,µ, τ ,Λ,A, c,V) = p(t) p(s)

× p(µ | τ ,Λ) p(τ |Λ) p(Λ)

× p(A |V) p(c|V) p(V).

The meta-activation prior is a normal-Wishart distribution
over the meta-centers τm and precision matrices Λm

p(τ |Λ)p(Λ) =
∞∏

m=1

N(τm |m0, λ0Λm)W(Λm |Ψ0, ν0),

while the activation centers µmk are sampled from a condi-
tional normal distribution

p(µ | τ ,Λ) =
∞∏

m=1

∞∏
k=1

N(µmk | τm, κ0Λm).

The mappings Am and precision matrices Vm are sampled
form a matrix-normal-Wishart

p(A |V)p(V) =
∞∏

m=1

MN(Am |M0,K0,Vm)W(Vm |Φ0, η0).

while the biases cmk are drawn from a K-tied conditional
normal distribution

p(c |V) =
∞∏

m=1

∞∏
k=1

MN(cmk |θ0, ρ0Vm).

Finally, the stick-breaking priors p(t, s) follow the defini-
tions from Section 3

p(t) =
∞∏

m=1

Beta(tm | 1, β0),

p(s) =
∞∏

m=1

∞∏
k=1

Beta(smk | 1, α0).

Truncated Mean-Field Posterior. We assume a struc-
tured decomposition of the posterior that leads to conjugate
computation while maintaining the dependencies between
the discrete labels, the input activations, and the regression
parameters, respectively. Moreover, we apply the truncation
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scheme from [59] to establish a tractable posterior approxi-
mation while maintaining an infinite prior

p(. | D) ≈ q(H) q(Z |H) q(t) q(s) q(µ, τ ,Λ) q(A, c,V)

=
N∏

n=1

Cat(hn |gn)
N∏

n=1

Cat(zn | rn,hn)

×
M−1∏
m=1

Beta(tm | δm, βm)

×
M−1∏
m=1

K−1∏
k=1

Beta(smk | γmk, αmk)

×
M∏

m=1

N(τm |mm, λmΛm)W(Λm |Ψm, νm)

×
M∏

m=1

MN(Am |Mm,Km,Vm)W(Vm |Φm, ηm)

×
M∏

m=1

K∏
k=1

N(µmk | τm, κmkΛm)N(cmk |θmk, ρmkVk),

where gn and rn are the upper- and lower-level posterior
responsibilities, respectively.

Variational Expectation Step. The E-step computes the
joint posterior categorical over joint labels H and Z

log q(Z |H) = Eq(s)

[
log p(Z |H)

]
+ Eq(µ,τ ,Λ)

[
log p(X |H,Z)

]
+ Eq(A,c,V)

[
log p(Y |H,Z,X)

]
+ const

=
N∑

n=1

M∑
m=1

K∑
k=1

hnmznmk log rnmk,

log q(H) = Eq(t)

[
log p(H)

]
+ log q(Z |H) + const

=
N∑

n=1

M∑
m=1

hnm log gnm,

where these expectations can computed in a similar fashion
to Section 3. More details can be found in the appendix.

Variational Maximization Step. The M-step updates the
variational gating, activations, and regression parameters

log q(t) = Eq(H)

[
log p(H)

]
+ log p(t) + const,

log q(s) = Eq(H,Z)

[
log p(Z |H)

]
+ log p(s) + const,

log q(µ) = Eq(H,Z,τ ,Λ)

[
log p(X |H,Z)

]
+ Eq(τ ,Λ)

[
log p(µ | τ ,Λ)

]
+ const,

log q(τ ,Λ) = Eq(H,Z,µ)

[
log p(X |H,Z)

]
+ log p(τ ,Λ)

+ Eq(µ)

[
log p(µ | τ ,Λ)

]
+ const,

log q(c) = Eq(H,Z,A,V)

[
log p(Y |H,Z,X)

]
+ Eq(V)

[
log p(c |V)

]
+ const,

log q(A,V) = Eq(H,Z,c)

[
log p(Y |H,Z,X)

]
+ log p(A,V)

+ Eq(c)

[
log p(c |V)

]
+ const .

As previously stated, these updates resemble posterior com-
putations weighted by the responsibilities gnm = E[hnm]
and rnmk = E[znmk]. The appendix provides further details.

4.1 Posterior Predictive Distribution

Prediction with HILR is akin to that with ILR, as described
in Section 3.2. We briefly state the conditional predictive for
a component h = m and an activation z = k as

p(ŷ | x̂, ĥ=m, ẑ=k,D) = Eq(A,c,V)

[
p(ŷ | x̂,Am, cmk,Vm)

]
= T(Mmx̂+ θmk, amkΦm, ηm + 1) ,

where the computation of amk is similar to that in Sec-
tion 3.2. Further, the weight of the k−th activation of the
m−th component is computed as follows

p(x̂, ĥ=m, ẑ=k | D) ∝ Eq(t)

[
p(ĥ=m |ω(t))

]
× Eq(sm)

[
p(ẑ=k |πm(sm))

]
× Eq(µ,τ ,Λ)

[
p(x̂ |µmk,Λm)

]
=

δm
δm + βm

m−1∏
l=1

(
1− δl

δl + βl

)

× γmk

γmk + αmk

k−1∏
l=1

(
1− γml

γml + αml

)
× T

(
µmk,

κmk

1 + κmk
Ψm, νm + 1

)
.

5 EMPIRICAL EVALUATION

We evaluate the presented models on a range of tasks. Our
goals are (1) to highlight the advantages of ILR and HILR,
such as dealing with out-of-distribution predictions, recov-
ering an input-dependent noise function, hierarchical gat-
ing, sharing parameters, and the ability to perform Bayesian
sequential updates, (2) to benchmark the models on high
dimensional datasets from real robots, and (3) to deploy
the models in a real-world scenario to further empirically
demonstrate its validity. A reference implementation can be
found under https://github.com/hanyas/mimo.

Out-of-distribution Uncertainty. In Figure 1 (left), we
apply ILR on a synthetic dataset with two large gaps. We
observe how the predictive uncertainty strongly reflects the
lack of training data in these regions and how the mean
prediction falls back to the prior values. This example high-
lights the model’s reasonable uncertainty quantification. The
out-of-distribution behavior of ILR is strongly influenced by
the discrete gating and a query’s activation probability that
jointly define the overall membership weights.

Heteroscedastic Noise. We test on two different prob-
lems with input-dependent noise, the cosmic microwave
background (CMB) [75], Figure 1 (right), and a synthetic
dataset from a stochastic sinc function y(x) = sinc(x) + ε,
where the noise ε is distributed according to zero-mean
normal with a standard deviation σε(x) = 0.05 + 0.2(1 +
sin(2x))/(1 + e−0.2x). In Figure 4 (left), we see that ILR can
approximate the nonlinear functions well. In particular, the
heteroscedastic noise function is recovered in great detail.

Hierarchical Parameter Sharing. In Figure 4 (right), we
test HILR’s ability to share slope parameters via multi-
modal activations. We consider a dataset stemming from a
periodic triangle signal overlayed with additive noise. HILR
decides to activate two upper- and two lower-level regions
to match the data structure, despite having more degrees of
freedom at each level.
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Fig. 4: Left, a challenging heteroscedastic example of a sinc function heavily overlayed with input-dependent noise. The
figure shows the mean prediction (red) on the training data (dots) and the true mean function (dashed black) corrupted
by noise (dashed green). The blue dashed lines represent the recovered noise process. Right, hierarchical local regression
with HILR using parameter sharing in shift-invariant functions. The top figure shows the mode-prediction (red) along with
two standard deviations of predictive uncertainty (shaded blue). The bottom plot highlights the multi-modal activation,
leading to shared slope information over non-adjacent regions.
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Fig. 5: Left and middle, learning discontinuous functions with ILR. The top figures show the mode-prediction (red) and
two standard deviations confidence (shaded blue). The left example is a simple step function that can be captured with
linear features, while in the middle, we use a polynomial transformation of the input for more flexibility. Right, we tackle
inverse mapping problems with ILR. This example includes scattered data that maps the input x to multiple output values
y. A discriminative modeling approach fails in these scenarios, as it tries to capture the ambiguous mean of the function
f : x → y. By approximating the joint density over both input and output and using mode-prediction, ILR can reconstruct
these non-unique relations via local linear approximations. The bottom plots show the activation over the input space.

Discontinuous (polynomial) Functions. In Figure 5
(left), a combination of step functions is fitted using mode-
prediction, as described in Section 3.2. By using polynomial
input features, more expressive local models can be realized.
Figure 5 (middle) depicts an example of cubic regressors,
which are still linear in the parameters, fitted to data sam-
pled from noisy cubic polynomials.

Inverse Mapping. One crucial advantage of generative
over discriminative modeling is the ability to deal with
non-unique inverse mapping problems. Such scenarios arise

when the same input can be mapped to multiple output
values. Joint modeling of the input-output data allows for
flexible conditioning and alleviates the directional graph
constraints. In Figure 5 (right), we show a simple example
of how ILR can learn these mappings, adapted from [64].

Bayesian Sequential Updates. In Figure 6, we demon-
strate a sequential learning problem. Data from a chirp
signal arrives in three batches so that the posterior of previ-
ous batches serves as the prior for the next learning phase.
ILR successfully captures the data trend, and no significant
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Fig. 6: Bayesian sequential updates. Mean (red) and a two standard deviations interval (shaded blue) of the predictive
distribution fitted to sequentially arriving data (three batches) from the chirp dataset (gray dots). For the second and third
plots, the posterior fitted to the previous batches is used as a prior to perform a Bayesian sequential update. There is no
catastrophic forgetting of previously learned knowledge, and in regions with no data, the prediction falls back to the prior.

TABLE 1: Accuracy on the SARCOS dataset

MSE NMSE Experts

ILR (4.80± 0.30)× 10−1 (3.40± 0.20)× 10−3 1700
HILR (5.30± 0.40)× 10−1 (3.90± 0.30)× 10−3 1450
LGR∗ 86.00× 10−1 50.00× 10−3 7000
LWPR (26.00± 0.30)× 10−1 (18.00± 0.20)× 10−3 32 000
GPR N/A N/A -

SGPR (8.50± 0.03)× 10−1 (6.000± 0.008)× 10−3 -
rBCM (4.52± 0.05)× 10−1 (2.600± 0.030)× 10−3 315
gPoE (4.60± 0.06)× 10−1 (3.000± 0.075)× 10−3 315

catastrophic forgetting is observed. The approximation er-
rors due to the mean-field posterior factorization assump-
tion have little influence because the posterior updates are
localized in the input domain.

Robot Inverse Dynamics. Next, we use ILR and HILR
to learn the inverse dynamics of anthropomorphic manipu-
lators. The dynamics of these manipulators are governed by
the following equation

u = M(q)q̈+C(q, q̇) +G(q) + ε(q, q̇, q̈),

where (q, q̇, q̈) are joint angles, velocities and accelerations,
and u are torques. M(q) is the inertia matrix, C(q, q̇) are
the Coriolis and centripetal forces, and G(q) is the grav-
ity force. ε(q, q̇, q̈) are general unmodelled nonlinearities
such as sticktion/friction and hydraulic and tendon/cable
dynamics, that motivate a data-driven approach to learn the
mapping (q, q̇, q̈) → u. Later, we use the learned ILR model
for online inverse dynamics control.

We use the mean squared error (MSE), normalized mean
squared error (NMSE), and the number of local experts
as evaluation criteria. These measures cover the prediction
accuracy as well as the complexity of the learned model. We
compare to popular (probabilistic) methods such as local
Gaussian regression (LGR) [42], locally weighted projection
regression (LWPR) [32], Gaussian process regression (GPR)
[3] and sparse Gaussian process regression (SGPR) [10],
and two scalable Gaussian process product of experts: the
robust Bayesian committee machine (rBCM) [12] and the
generalized product of experts (gPoE) [11].

We benchmark the prediction accuracy of all regression
techniques on a high-dimensional dataset collected from a
7-DoF (degrees of freedom) anthropomorphic SARCOS arm

TABLE 2: Accuracy on the Barrett-WAM dataset

MSE NMSE Experts

ILR (2.90± 0.50)× 10−1 (7.0± 0.5)× 10−3 1350
HILR (3.10± 0.65)× 10−1 (8.0± 0.6)× 10−3 1110
LGR∗ 7.70× 10−1 17.0× 10−3 3270
LWPR (10.00± 1.50)× 10−1 (37.0± 10.0)× 10−3 2900
GPR (1.00± 0.01)× 10−1 (2.30± 0.01)× 10−3 -

SGPR (1.80± 0.05)× 10−1 (6.30± 0.02)× 10−3 -
rBCM (3.80± 0.35)× 10−1 (19.00± 1.80)× 10−3 100
gPoE (3.40± 0.13)× 10−1 (16.00± 0.60)× 10−3 100

[32]. The dataset consists of 44484 training points and 4449
test cases. Overall there are 21 input variables (q, q̇, q̈) map-
ping to 7 motor torques u. We also benchmark on an inverse
dynamics dataset from a 4-DoF Barrett-WAM manipulator,
mapping from a 12-D to 4-D space. This dataset contains
25000 training and 5000 test pairs.

Table 1 and Table 2 list the results for both datasets. We
report the MSE, NMSE, and the number of active models
over all joints, averaged over five seeds. We compute the
mean and standard deviation for every cell in the table,
except for LGR∗, because of the unreasonable training times
achieved while using the authors’ code. When evaluating
GPR on the SARCOS dataset, we faced GPU-memory con-
straints (32GB), and we have discarded this evaluation. For
rBCM and gPoE, we assigned an expert to every 1000 data
points, repeated for every output dimension.

The results show that ILR and HILR outperform the
related local regression methods LWPR and LGR, both in
terms of prediction accuracy and number of active experts.
Nonetheless, GPR is still the gold standard when the kernel
size is within memory limits. Interestingly, the figures also
indicate that ILR and HILR are competitive with sparse
Gaussian process regression (SGPR) and the two product of
experts rBCM and gPoE. Finally, the evidence reveals that
HILR tends to activate roughly 10− 15% fewer components
than ILR. This observation hints that HILR may be taking
advantage of shift-invariance patterns in the data and avoid-
ing duplicate regression units. However, this hypothesis is
hard to validate due to the data’s high dimensionality.

Real Inverse Dynamics Control. Finally, we demon-
strate the validity of the learned dynamics in a real-robot
control scenario. In this evaluation, we tackle two exper-
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TABLE 3: Tracking error and torque contributed by the PD-
controller during the Barrett-WAM real robot task.

PD Analytic+PD ILR+PD

T1 MSE 2.33× 10−2 2.16× 10−2 1.03× 10−3

PD-Torque 8.25× 100 7.12× 100 1.40× 100

T2 MSE 2.60× 10−2 2.55× 10−2 9.17× 10−4

PD-Torque 8.71× 100 7.41× 100 1.33× 100

T3 MSE 2.94× 10−2 3.08× 10−2 8.96× 10−4

PD-Torque 9.38× 100 8.06× 100 1.38× 100

iments. In the first, we focus on the Bayesian sequential
learning aspect, whereas the second highlights our model’s
ability to deal with massive amounts of data. Both experi-
ments deploy an ILR model on the Barrett-WAM to track an
8-shaped trajectory in the xy-plane of the end-effector.

For the first experiment, we collect 30000 training sam-
ples (roughly 1 minute) from multiple trajectories with
different velocity profiles and Bayesian sequential learning
over 15 batches for multiple seeds. Figure 7 depicts the
progression of the learning process. We then select the best
model and perform model-based control to track held-out
test trajectories with unseen velocity profiles. ILR predicts
the feed-forward torques while supported by a low-gain
PD-controller for safety considerations. We compare this
controller to one with access to the analytical dynamics and
the same low-gain PD-controller and to a model-free PD-
controller. Figure 8 depicts the tracking performance of the
different controllers on two test trajectories.

In the second experiment, we learn a model covering
a larger region of the state-action space. We generate a
larger Barrett-WAM dataset consisting of 150000 training
examples (roughly 5 minutes). We test the model learned
by ILR on held-out test trajectories and compare it to the
same controller constellation as in the first experiment. As
benchmarking criteria, we evaluate the MSE with respect to
the desired trajectory and the mean torque contribution of
the PD-controller to the overall control signal. The rationale
is that a good inverse dynamics model will consistently
produce a low MSE without relying on the PD-controller’s
assistance. Table 3 shows the benchmarks on three test tra-
jectories. The results indicate that ILR significantly improves
tracking performance with minimal contribution from the
PD-controller. Moreover, we are able to consistently achieve
a prediction frequency of 2000Hz during both tasks, al-
though the Barrett-WAM robot requires only 500Hz.

6 CONCLUSION

In this paper, we presented two probabilistic hierarchical
local regression models, ILR and HILR, and derived an ef-
ficient variational inference technique for data-driven learn-
ing. These representations are based on infinite mixtures
from Bayesian nonparametrics. We situate our contributions
as the next iteration in a large family of local linear regres-
sion techniques such as RFWR, LWPR, and LGR. We have
shown that placing Dirichlet process priors on Bayesian
mixtures of local regression units can regularize model com-
plexity with minor loss in performance and without relying
on heuristics. Moreover, we have highlighted the advantage
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Fig. 7: 8-Shaped trajectory learning. Bayesian sequential
updates on a dataset collected from a Barrett-WAM. We plot
the NMSE for five different seeds on accumulated data over
the number of batches. The NMSE consistently improves
with new data, and no catastrophic forgetting is observed.

0.7

0.8

0.9

1

1.1

y

−0.5 0 0.5

0.7

0.8

0.9

1

1.1

x

y

Fig. 8: 8-shaped trajectory tracking on the Barrett-WAM. We
compare three controllers on two test trajectories (blue), a
low-gain PD (black), a low-gain PD + feed-forward torques
from an analytical model (red), and a low-gain PD + feed-
forward torques from ILR (green). The results indicate that
ILR delivers the best tracking performance.
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of the two-level architecture of HILR in compressing the
learned models and reducing the number of active experts.
Empirical evaluation indicates that the models outperform
LWPR and LGR, and are competitive with sparse GPR and
products of experts. Finally, we have empirically confirmed
the practicality of this approach for online inverse dynamics
control on a Barrett-WAM robot.

Nonetheless, these presented concepts still suffer from
multiple drawbacks. The mean-field assumption is a source
of significant errors in posterior inference. Collapsed formu-
lations of Dirichlet process priors promise better approxima-
tions [76]. In addition, Bayesian mixture models are influ-
enced by a large number of hyperparameters, which cannot
be directly optimized via empirical Bayes [77], leading to
lower predictive performance when compared to optimized
GPR. Nonetheless, the ELBO offers an objective for hyper-
parameter optimization. Naive gradient-based techniques
have proven too brittle due to their reliance on Euclidean
distance metrics. A natural-gradient approach appears to be
a suitable alternative in the future.

Further development of hierarchical local regression
may focus on treating ILR and HILR as layers in a multi-
layered representation. This extension would allow the
models to benefit from intermediate nonlinear projections
into high dimensional spaces that have proven powerful
in deep neural networks. Another practical consideration
is to incorporate physical inductive biases such as inverse
dynamics [78] to facilitate learning meaningful quantities.
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