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Abstract—We propose that spaceborne polarimetric imagers can be calibrated, or self-calibrated using zodiacal light (ZL). ZL is
created by a cloud of interplanetary dust particles. It has a significant degree of polarization in a wide field of view. From space, ZL is
unaffected by terrestrial disturbances. ZL is insensitive to the camera location, so it is suited for simultaneous cross-calibration of
satellite constellations. ZL changes on a scale of months, thus being a quasi-constant target in realistic calibration sessions. We derive
a forward model for polarimetric image formation. Based on it, we formulate an inverse problem for polarimetric calibration and
self-calibration, as well as an algorithm for the solution. The methods here are demonstrated in simulations. Towards these simulations,
we render polarized images of the sky, including ZL from space, polarimetric disturbances, and imaging noise.

Index Terms—Computational photography, Polarimetric calibration, Astronomy
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1 INTRODUCTION

POLARIMETRIC cameras have various uses in compu-
tational photography [1], machine vision and scien-

tific imaging. Examples include dynamic interferometry [2],
image descattering [3], [4], [5] and lightfield imaging [6].
Polarization plays an important role in studying astronom-
ical sources, a few outstanding examples of which are:
Establishing a unified picture of obscured and unobscured
sources near supermassive black holes using visible light [7],
exploring the symmetry of relativistic radio jets [8], probing
powerful magnetic fields in a γ-ray burst from an exploding
star [9], and most recently, detecting the jet launching region
from a black-hole accretion disk in X-rays [10].

As most scientific tools [11], [12], [13], [14], [15], [16],
[17], [18], [19] polarimetric imagers require calibration. Po-
larization signals tend to be much subtler than radiance.
Therefore, careful calibration is particularly needed and
more challenging in polarimetry, relative to geometry and
radiometry. Polarimetric calibration in a laboratory is well-
established [20], [21], [22]. However, in some cases, calibra-
tion is required in the field. The reason is that outdoors,
over time, instruments tend to degrade and shift away from
their pre-calibrated settings. This problem is especially true
for spaceborne instruments due to harsh conditions during
launch and operation [23]: orbiting instruments experience
extreme repetitive thermal changes in a vacuum, radiation
damage, and exposure to reactive ions.

This paper focuses on polarimetric calibration and self-
calibration of spaceborne imagers. Self calibration requires
observing sources that have a significant degree of polar-
ization and can cover the field of view. Polarimetric self-
calibration on Earth [25], [26] focused on shiny specular
objects. These are uncommon in space. Dedicated onboard
calibration hardware [27], [28] requires resources that are
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Fig. 1. Zodiacal light, photographed [24] at ESO’s La Silla Observatory
in Chile, September 2009.

limited or non-existent in some spacecraft. Specifically, on-
board calibration requires moving parts, which may not
be permitted in some satellites, due to kinetic implications
and reliability risks. Some spacecraft calibrate polarimetric
imagers by observing sunglint reflection on the ocean [29],
[30], [31]. However, this signal is unreliable, being affected
by random winds (that roughen the water) and unknown
aerosol conditions. Variable aerosol conditions also affect
the polarized signals reflecting from solar farms [32]. A
calibrated instrument in one spacecraft can quantify a scene
for cross calibration of another spaceborne instrument [33].
However, in optical wavelengths, currently, there are no
such available systems.

We suggest solving the problem by harnessing the po-
larization of a common, wide source in the solar system:
the faint zodiacal light (ZL), seen in Fig. 1. ZL is created
by a dust cloud measuring several astronomical units (AU),
which is much larger than Earth. So, for spaceborne systems,
ZL is convenient to rely on and has several advantages:
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ZL is insensitive to the camera location, say, of a satellite
in low Earth orbit (LEO) [34]. Hence, ZL can be used to
simultaneously calibrate a constellation of orbiting satellites.
From space, ZL is unaffected by atmospheric scattering or
other terrestrial disturbances. ZL has a significant degree of
linear polarization (DoLP) in a wide field of view. Its signal
changes very slowly in time, on the scale of months, as the
dust cloud orbits the sun. It is thus a quasi-constant target in
realistic calibration sessions. Using ZL, allows for calibration
far from Earth, in deep space missions to other planets
or asteroids. We do not, however, recommend ZL as a
calibration source on Earth, due to atmospheric interference.

This paper is the first to propose ZL as a source for po-
larimetric calibration. We derive a forward model for image
formation. Based on the model, we formulate an inverse
problem for polarimetric calibration and self-calibration in
space. The paper then presents an algorithm for a solu-
tion.1 The present work is timely, as in the coming years,
several polarimetric imagers are expected to be launched
to LEO [34], [35], [36]: Using these planned imagers, these
methods can be demonstrated empirically. Meanwhile, the
methods here are demonstrated in simulations. Toward
these simulations, we create a simulator to render ad-hoc
polarized images of the sky (including ZL) from space,
accounting for noise and polarimetric disturbances.

2 THEORETICAL BACKGROUND

2.1 Interplanetary Dust

Zodiacal light (ZL) is seen Fig. 1. It is created by the scatter-
ing of sunlight and by thermal self-emission from interplan-
etary dust particles (IDPs). Sources of IDPs include comet
dust, asteroidal dust, Kuiper belt dust, and interstellar dust.
Interplanetary dust is significant for understanding the for-
mation and evolution of our solar system and others [37].

IDPs have been studied by several space missions, in-
cluding the Infrared Astronomical Satellite (IRAS) [38], the
Cosmic Background Explorer (COBE) [39], and the Infrared
Space Observatory (ISO) [40]. These and additional stud-
ies [41], [42], [43] advanced knowledge of the dust’s spa-
tial distribution of density, temperature and microphysics
(albedo, shape, size distribution, refractive index, chemical
content). IDPs are often made of silicate or carbonaceous
materials such as graphite. Typical IDP sizes range from
fractions of µm up to tens of µm.

IDPs mainly reside in a non-uniform cloud [44], con-
centrated in and near the ecliptic plane (which includes
Earth’s orbit). The Kelsall model [45] describes the IDP
cloud, based on components having various spatial and
dynamical properties. Based on this model, the dust density
is illustrated in Fig. 2. The cloud is dynamic, as each IDP
is subject to gravitational forces, radiation pressure, and
Poynting–Robertson drag (a radiative process that causes
an IDP to lose angular momentum [46]). From Earth, in the
short-wave infrared range [46], the optical depth of the IDP
cloud is ∼ 5 · 10−8, for absorption and scattering.

1. Our code is available at https://github.com/oravitan/zodiacal-
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Fig. 2. Edge-on (left) and face-on (right) cross-sections of the extinction
coefficient β of the IDPs, based on the Kelsall model.

2.2 Zodiacal Light
The IDP cloud is mainly concentrated between the sun and
the asteroid belt. IDP density, irradiance, and temperature
decrease with distance from the sun (the temperature is
∼ 250◦K near Earth [46]). Hence, ZL is brighter near the
sun. As a result, from Earth, ZL can be seen by the naked
eye near the horizon, around the ecliptic, for a short time
after sunset and before dawn (See Fig. 1). It is very faint,
thus observations require being away from stray light and
atmospheric pollution sources, especially towards the hori-
zon. Using long exposures, ZL is measured at night from
ground stations [47]. The best way to observe it, of course,
is to be in space, away from of any light pollution created
by atmospheric scattering and devoid of atmospheric atten-
uation. This paper uses spaceborne imaging of ZL, thus the
optical models we use have no atmospheric contribution.

Thermal self-emission is unpolarized and it is dominant
only in long-wave infrared. The visible and near-infrared
spectrum of ZL is similar to that of sunlight, which IDPs
scatter. This scattering is partially polarized (ZL DoLP is as
high as 20%), which benefits our calibration goal. The DoLP
is typically higher in viewing directions where the ZL is
fainter [37].

2.3 Zodiacal Light Model
Due to the low optical depth of the IDP cloud, the model of
ZL radiance resembles a haze model as in [48], [49], having
single scattering of sunlight and background of planets and
stars, in addition to thermal self-emission.

Let X denote location in 3D space. Let λ denote wave-
length. The spectral radiance from a region around X is
Lscene(X, λ). The IDP cloud is comprised of various compo-
nents, created by various sources (comets, asteroids, etc.). In-
dex a component by κ = 1 . . . Ncomp. The cloud is optically
very thin, hence components practically do not attenuate or
scatter each other. Hence their contribution to the spectral
radiance of the scene is additive:

Lscene(X, λ) =

Ncomp∑
κ=1

Lκ(X, λ)

[
W

m2 · sr · µm ·AU

]
. (1)

We now describe how each component is expressed. Each
component has spatially varying, wavelength-dependent
particle albedo Aκ,X,λ, phase function Φκ,X,λ

[
sr−1

]
and

temperature Tκ,X,λ. The extinction coefficient (including
both scattering and absorption) βκ,X,λ has units of AU−1.
IDPs are illuminated by solar flux density FX,λ in units
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Fig. 3. Line of sight scattering integration.

of W
m2·µm . Let h, c, kB denote Planck’s constant, the speed

of light in vacuum, and Boltzmann’s constant, respectively.
Thermally emitted radiance by IDPs is approximately de-
scribed by black body radiation, proportional to

Bκ,X,λ =
2hc2

λ5 [exp(hc/kBλTκ,X,λ)− 1]

[
W

m2 · sr · µm

]
.

(2)
Deviations from the black body model are expressed [45] by
a unitless emissivity Eκ,λ.

Accounting both for scattering and self-emission [45], the
volumetric spectral radiance of component κ from a region
around X and wavelength λ is

Lκ(X, λ) = βκ[AκFΦκ + (1−Aκ)EκBκ], (3)

where we omitted the X, λ subscripts on the right-hand
side, for brevity. Due to the very low optical depth of the
IDP cloud, neglecting the attenuation is valid along any line
of sight (LOS) L, and between X and the sun. The ZL is
obtained by LOS integration of Lscene(X, λ) along L:

IZL(L, λ) =
∫

X∈L

Lscene(X, λ)dX

[
W

m2 · sr · µm

]
. (4)

This is illustrated in Fig. 3.

Kelsall’s Model
The Kelsall model [45] sets the parameters above, for short-
wave infra-red bands. The model is based on IRAS, COBE,
and ISO data, and is designed to yield unpolarized ZL
radiance expressed in Eq. (4). The IDP density stemming
from this model is illustrated in Fig. 2. Let X⊙ be the
location of the Sun and XC be the location of the camera.
The direction along L is L̂ = [X − XC]/ ∥X−XC∥. Solar
illumination at a voxel is d̂⊙ = [X−X⊙]/∥X−X⊙∥. Then,
the scattering angle is

θ(X) = arccos(−L̂ · d̂⊙) . (5)

In the Kelsall model, the unpolarized phase function for
scattering at angle θ is parameterized by

Φkelsall
κ,λ (θ) = C

(0)
κ,λ + C

(1)
κ,λθ + exp (C

(2)
κ,λθ). (6)

Ecliptic

Fig. 4. Zodiacal light full-sky image as seen from earth, based on the Kel-
sall model, false-colored: λ = 1.25µm, 2.2µm, 3.5µm are represented
by RGB (channels stretched each to [0,1], then gamma-corrected with
γ = 0.25), simulated for June 14th, 2022, in Mollweide projection. The
area around the sun is excluded (gray).
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Fig. 5. The three dimensional coordinate systems.

The parameters C
(0)
κ,λ, C

(1)
κ,λ, C

(2)
κ,λ are fitted to data that had

been sensed at λ = 1.25µm, 2.2µm, 3.5µm, while the phase
function is normalized. This modeled phase function is
consistent with measurements of the ZL [37].

To demonstrate this, we ran the model of Eqs. (1,2,3,4,6).
Full-sky image results are shown in Fig. 4. The visualization
here is in the Mollweide projection, where the central point
is at (lon, lat) = (0, 0) in ecliptic coordinates, directed
towards the vernal equinox.

3 FORWARD MODEL

3.1 Three-dimensional (3D) Coordinate systems

We use several 3D right-handed coordinate systems [50]
(See Fig. 5).

• The ecliptic system has axes ŷ1 ⊥ ŷ2 ⊥ ŷ3. Axis ŷ1 is
in the ecliptic plane, pointing to the vernal equinox. Axis
ŷ3 is perpendicular to the ecliptic plane, pointing to the
north ecliptic pole.

• In the camera system, axis ŷcam
3 aligns with the optical axis

of the camera. Axes ŷcam
1 , ŷcam

2 are orthogonal to ŷcam
3

and align with the sensor rows and columns, respectively.
• The scattering system is set by the scattering plane which

contains the sun’s projection [XC−X⊙]/ ∥XC −X⊙∥ and
L. The system axes are L̂ and

ŷsca
1 = L̂ × XC −X⊙

∥XC −X⊙∥
, ŷsca

2 = L̂ × ŷsca
1 . (7)
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Fig. 6. The two dimensional coordinate systems.

Rotation between 3D coordinate systems is described by a
3 × 3 rotation matrix G. The matrix Gcam transforms di-
rections in the ecliptic system, where astronomical data are
defined, to the camera system, where images are projected.
For more details on 3D coordinate systems in conjunction to
polarimetric sensor arrays, see [50].

3.2 Two-dimentional (2D) Coordinate systems

We use 2D coordinate systems (see Fig. 6):

• The pixel system, defined by ûpx
1 ⊥ ûpx

2 , which aligns with
the rows and columns of the pixel array.

• The projected scattering system, defined by û∥ ⊥ û⊥.
The vector û∥ aligns with the projection of the scatter-
ing plane to the image plane. The scattering plane in-
cludes the sun, which projects to 2D location x⊙ on
the image plane. LOS L projects to a pixel at x. Hence,
û∥ = [x⊙ − x] / ∥x⊙ − x∥. The angle between the pro-
jected scattering and pixel coordinate systems is αcam. As
seen in Fig. 6, αcam is a function of the pixel location x.

• A retarder coordinate system, which is useful for describ-
ing birefringence. The system is defined by two orthogo-
nal axes: light polarized in one axis experiences a higher
refractive index (slow) than light polarized in the other
(fast) [51] axis. The fast component has angle αbr relative
to the pixel coordinate system. As seen in Fig. 6, αbr is
generally a smooth function of the pixel location x.

Light that is partially linearly polarized is expressed by
a three-element Stokes vector. Let ⊤ denote transposition.
The scene Stokes vector projected by LOS L is

sL(λ) = [IL(λ) QL(λ) UL(λ)]
⊤ . (8)

Here the scene’s radiance is IL(λ), while its angle of polar-
ization is associated with the ratio of QL and UL. In ZL, the
angle of polarization is set by the scattering plane. We then
represent this angle (thus the ratio of QL and UL) in the
projected scattering coordinate system.

Transforming a Stokes vector from any 2D coordinate
system to another is a rotation by angle α, expressed by a
Mueller rotation matrix

R(α) =

1 0 0
0 cos(2α) sin(2α)
0 − sin(2α) cos(2α)

 . (9)

Stress

Camera sensor

Linearly
Polarized

Partially
Elliptically
Polarized

Fig. 7. Imaging optics may induce depolarization, particularly due to
birefringence created by stress, that is exacerbated by thermal changes.
This leads to partial mixing of polarization components. Due to the
system’s point spread function, light along LOS L is spread over a set
of sensor pixels. Each sensor pixel is covered by a small polarizing filter.
The filter angle η depends (and is known) on the sensor pixel location.

3.3 Polarimetric Imaging
Propagating through the camera’s optical elements, as
shown in Fig. 7, light polarization may be affected by
birefringence [20]. This is a particular concern in LEO, as
mentioned in Sec. 1. Generally, a LEO satellite is periodi-
cally either heated strongly by direct solar illumination or
exposed to extremely low temperatures of space, in Earth’s
shadow. Thermal variations lead to temporal changes of
stress on the optical system [52]. These, in turn, may cause
birefringence that varies gradually in orbit. Birefringence
mixes polarization components and is typically modeled as
a linear retarder. A retarder has phase retardance δ between
the fast and slow components (Sec. 3.2). In the retarder
coordinate system the birefringence Mueller matrix is

Mbr(δ) =

1 0 0
0 1 0
0 0 cos δ

 . (10)

In the pixel coordinate system, a birefringence Muller matrix
is

B(δ, αbr) = R−1(αbr)Mbr(δ)R(αbr) . (11)

Let

a = cos2(2αbr) + cos δ sin2(2αbr) , (12)

b = cos(2αbr) sin(2αbr)(1− cos δ) , (13)

c = sin2(2αbr) + cos δ cos2(2αbr) . (14)

From Eqs. (9,10,12,13,14),

B(δ, αbr) =

1 0 0
0 a b
0 b c


3×3

. (15)

Recall that sL(λ) in Eq. (8) is expressed in the projected
scattering coordinate system. Transferring sL(λ) to the pixel
coordinate system and then passing through optical imag-
ing (lens) elements yields

spre(L, λ) = B(δ, αbr)R(αcam)sL(λ) , (16)

based on Eqs. (8,9,10,11). This is the Stokes vector of light
heading towards the detector (sensor) array. Consider cam-
eras where each sensor pixel has an attached linear polar-
izer [2], [50]. Let x(L) be a pixel on the sensor array, to which
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LOS L projects. A pixel is covered by a tiny polarizing filter
at angle η relative to the rows of the pixel array. The filter
has polarizance P ≤ 1. After light passes the filter, it yields
a signal equivalent to radiance

Icam[x(L), λ, η] =
[
1

2

P cos(2η)

2

P sin(2η)

2

]
spre(L, λ),

(17)
in units of W

m2·sr·µm . The optical system’s point spread
function spans several sensor pixels, thus the signal of L
spreads (not spatially resolved) over several nearby pixels.
Term super-pixel a 2 × 2 set of adjacent sensor pixels. The
polarizer angles in this set are η = 0◦, 45◦, 90◦, 135◦. Their
polarizance is P . Because the signal irradiating the sensor
pixels is the same within the super-pixel, we assign the
whole super-pixel the location x. Then, from Eq. (17).

Icam[x(L), λ, 0◦]
Icam[x(L), λ, 45◦]
Icam[x(L), λ, 90◦]
Icam[x(L), λ, 135◦]

 = Vspre(L, λ) , (18)

where

V =
1

2


1 P 0
1 0 P
1 −P 0
1 0 −P


4×3

. (19)

3.4 Light to Electrons
The radiance obtained by Eq. (17) is converted to model
an expected signal N̄ [x(L)] and noise in photoelectrons,
as in [50]. A light detector is sensitive to a narrow spec-
tral band Λ. Let p,∆t,D, f be the camera’s pixel length,
exposure time, lens diameter, and focal length. The optical
train has transmittance τλ. This accounts also for imperfect
transmissivity by a polarizer aligned with the polarization
of an incoming field. A pixel has quantum efficiency QEλ.
Radiance Icam(x, λ, η) corresponding to x yields an expected
number of photo-electrons

N̄(x, η) =

∫
Λ

ΓλIcam(x, λ, η)dλ , (20)

where

Γλ = π∆tτλ

(
D

2f

)2

QEλ

λ

hc
p2

[
m2sr

J

]
. (21)

In a practical camera, Γλ expresses specifications that are
known following unpolarized calibration of radiometry [53],
[54] and geometry [55], [56]. These methods are well es-
tablished, specifically from LEO. The polarized parameters
constitute a set Ψx ≡ {a, b, c, P}. A vector of the expected
number of photo-electrons from the four-pixel elements in a
super-pixel is

n̄(x) =
[
N̄(x, 0◦), N̄(x, 45◦), N̄(x, 90◦), N̄(x, 135◦)

]⊤
.

(22)
A scene is a map S ≡ {sL(λ)}∀L,λ of all Stokes vectors

of the scene, in all potential viewing directions and relevant
wavelengths. A measurement at a state of the spacecraft is
indexed by k. There are K measurements, each yielding a
4-element vector n̄(x) per x, as in Eq. (22). Per k, the camera
is oriented differently, thus a different LOS L(k) projects to
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Fig. 8. Rendering partially polarized sky images, including ZL.

super-pixel x. Denote this projection by L(k) → x. Then,
super-pixel x measures per k a Stokes vector

sk(x) = s{L(k) → x} . (23)

Using Eqs. (16,17,18,19,20,22,23), the forward model is

n̄k =

∫
Λ

ΓλVBRksk(λ)dλ [electrons] , (24)

where Rk = R(αcam
k ), and n̄k is a 4-element column vector.

Define a Stokes vector aggregated over the spectral band as

s̃k =

 Ĩk
Q̃k

Ũk

 ≡
∫
Λ

Γλsk(λ)dλ [electrons] . (25)

We assume Ψx is insensitive to λ within Λ. From Eq. (24,25),

n̄k = VBRks̃k [electrons] . (26)

4 RENDERING THE LEO POLARIZED SKY

The main goal of this paper is to solve an inverse problem
based on data acquired in space, rather than rendering.
However, to test some of our hypotheses using simulations,
we prefer to have a rendering model. This can serve us
in simulating celestial polarization images as if taken by
a spaceborne camera pointing away from Earth. We stress
that this section is not a part of our principle and calibration
methods. A reader uninterested in rendering, but seeks
solely calibration, can skip directly to Sec. 5.

Some rendering models [57] use average ZL maps from
1968, oblivious to spatiotemporal ZL variability. Our render-
ing flow is summarized in Fig. 8. Secs. 3.3 and 3.4 convert a
spectral Stokes vector along a scene LOS sL(λ), to a camera
signal. This section models sL(λ) in an ad-hoc manner.

From Eq. (8), the first component in sL(λ) is the scene
intensity IL(λ). Eq. (4) expresses the ZL intensity along
L. However, a LOS L also observes background planets,
stars, and other objects, e.g., galaxies. Extra-solar objects are
accounted for by integrated starlight (ISL), IISL(L). In our
solar system, each planet p has radiance I

planet
p (λ). Overall,2

the radiance reaching the camera in units of W
m2·sr·µm is

IL(λ) = IZL(L, λ) + IISL(L, λ) +
∑
p∈L

Iplanet
p (λ) . (27)

2. Additional background radiation sources exist, but they can be
neglected in our context.
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Fig. 9. The integrated starlight model in full-sky view (real-color in loga-
rithmic scale), simulated for June 14th, 2022, in Mollweide projection.

Eq. (4) requires Lscene(X, λ). However, the Kelsall model
is only given in short-wave infrared, not visible light. Our
literature search did not find a satisfactory model for visible
light. We found several ad-hoc approximations, which we
use. First, in Kelsall’s model, the extinction coefficient is
insensitive to the wavelength, and indeed, many long ex-
posure images of ZL show it rather colorless. Hence, we
use βκ,X as in the Kelsall model. Second, the unpolarized
phase function is extrapolated in the wavelength domain.
LOS integration over dust properties is performed by the
Zodipy library [58].

We model the non-ZL components similarly to [42]. For
the ISL, object locations and multi-spectral magnitudes are
found by the Two Micron All Sky Survey (2MASS) [59] cat-
alog using AstroQuery [60]. The multi-spectral magnitudes
are fit to Eq. (2), yielding star temperatures and emissions
of visible light. Afterward, we sample these bodies in every
direction by Monte-Carlo simulation and integration. This
yields IISL(L, λ), as shown in Fig. 9.

Per date, the location Xp of planet p is obtained using
Ephemeris from Astropy [61]. A planet has radius Rp. The
Bond albedo Kp is the fraction of incident power that is
scattered back to space. The solar spectral flux density at
planet p is Fp,λ, as in Eq. (3). The scattering angle between
the vector of solar irradiance and the direction from the
planet to the camera is θp. Then [62],

Iplanet
p (λ) =

2Kp
3

R2
p

∥Xp −XC∥22
Fp,λ

[
sin θp − θp cos θp

]
. (28)

An example for the overall IL (Eq. 27) is shown in Fig. 10.
Next, we assign the polarized components QL(λ), UL(λ)

of Eq. (8). ISL is assumed to have negligible3 polariza-
tion [42]. Planetary light can be polarized, but we use the
planets only for geometric calibration, hence we do not
model planetary polarization. Thus, QL(λ), UL(λ) depend
only on the ZL. For ZL, the angle of polarization AoPL is
known: it is perpendicular to the scattering plane, per L.
Hence, in the projected scattering coordinate system

sL = [IL(λ) QL(λ) 0]
⊤ . (29)

3. Resolvable stars are essentially point sources that cover a tiny
fraction of the field of view. Stars are intrinsically unpolarized. Some
star observations sense DoLP ∼ [1 − 2%], due to iron grains in
interstellar dust that align with interstellar magnetic fields [63], [64],
[65]. This small effect is seen mainly in the galactic plane, that is, in the
bright band of the Milky Way. If we wish to avoid (rather than use) this
effect, we may direct our imager away from this bright band.

Zodiacal Light
Ecliptic

Venus

Milky Way

Fig. 10. Full Sky simulated color image (gamma corrected with γ = 0.4),
simulated for June 1st, 2023, in Mollweide projection.

0.00 0.16

Fig. 11. Full sky DoLP image (red channel), simulated for June 14th,
2022, in Mollweide projection.

The component QL(λ) is associated with the corresponding
ZL component, which is modeled analogously to Eqs. (1,4):

QL(λ) ∼ QZL(L, λ) =
∫

X∈L

Ncomp∑
κ=1

LQ
κ (X, λ)dX . (30)

Here LQ
κ (X, λ) is the polarized component of scattered light

at X. It is derived in analogy4 to Eq. (3)

LQ
κ (X, λ) = βκ,X,λAκ,X,λFX,λΦκ,λDoLPIDP[θ(X)] , (31)

where DoLPIDP[θ(X)] is the degree of linear polarization
of light scattered at X, and θ(X) is defined in Eq. (5). Note
that DoLPIDP[θ(X)] depends on the IDPs in voxel X. An
approximation that fits empirical visible-range data [66] is

DoLPIDP[θ] = 0.33 sin5 θ . (32)

A camera senses an integral over a LOS (Eq. 30). The DoLP
of light reaching the camera is QL(λ)/IL(λ). Eqs. (30,31,32)
yield the polarized component of the Stokes vector.

5 POLARIMETRIC CALIBRATION BY ZL
Equation (26) provides a forward model for imaging. This
paper seeks an estimation of the camera’s polarization set
of parameters Ψx, ∀x. The main question is whether S is
known, or at least modeled well enough. If it is, then we
can solve the problem of polarimetric calibration using ZL.
If not, then we can seek self-calibration of some parameters.

4. Thermal emission is unpolarized, hence does not affect LQ
κ (X, λ).
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5.1 Polarimetric Calibration
A known ZL scene S is observed by a camera. Polariza-
tion signals depend on the axial orientation of the camera
relative to the scene, so it is beneficial to sample a set
of orientations. Moreover, a set of multiple measurements
helps to suppress the consequence of random measurement
noise and random inaccuracies in S . Rotating the instrument
around a LOS L yields different values of αcam, which
through Eq. (16) alters the signal filtered by the camera
optics and the sensor-mounted polarizers at x(L). A general
3D rotation (see Sec. 3.1) varies Gcam, thus the LOSs that
correspond to x. Then, pixel x observes a different part of
the known S , diversifying the measurements.

The locations of observable stars and planets are known
and saved in a look-up table. Matching these observed
points with the look-up table determines orientation, using
onboard star trackers [23]. Star trackers are not always
mounted in nano-satellites, due to resource limitations. Nev-
ertheless, we do not need a star-tracker to sense Gcam,
because, by definition, we have an observational camera
that happens to sense these point sources, along with ZL.
Hence Gcam is determined from the image data. Noisy
measurements at x constitute a column vector nmeasure

k (x).
Define a fitting error

E(Ψx,S) =
∑
x

K∑
k=1

|nmeasure
k (x)− n̄(x,Ψx,S,Gcam)|2 .

(33)
The sum over x excludes pixels corresponding to planets
and observable stars, known from the 2MASS catalog. Then,
assuming S is modeled and known, calibration is performed
by solving the optimization problem

Ψ̂x = argmin
Ψx

E(Ψx,S) . (34)

Note that the entire forward model is differentiable. More-
over, there are some parameters for which the forward
model is linear. Hence, optimization can be done efficiently.

We estimate Ψx per camera pixel x using alternating
minimization. We initialize P,B using corresponding values
P prev,Bprev from a previous calibration, done for example
pre-launch in a lab, or from previous spaceborne sessions.
Then, we iterate two steps: {1} Estimate P assuming B and
S are known; {2} Estimate B assuming P and S are known.

Define the 4K × 1 column-stacked data vector

Nmeasure =
[
(nmeasure

1 )
⊤
, (nmeasure

2 )
⊤

. . . (nmeasure
K )

⊤
]⊤

.

(35)
Define the Stokes vector that arrives at the pixel polarizers
after the camera optics,

s̃Pk ≡

 ĨPk
Q̃P

k

ŨP
k

 = BRks̃k . (36)

The matrix B is assumed to be known in step {1}. So, define
known column vectors of length 4K ,

SP =
1

2

[
Q̃P

1 , Ũ
P
1 ,−Q̃P

1 ,−ŨP
1 . . . Q̃P

K , ŨP
K ,−Q̃P

K ,−ŨP
K

]⊤
.

(37)

IP =
[
ĨP1 , ĨP1 , ĨP1 , ĨP1 . . . ĨPK , ĨPK , ĨPK , ĨPK

]⊤
. (38)

From Eqs. (26,33,35,37,38), the forward model is

Nmeasure =
1

2
IP + SPP . (39)

Because SP stems from independent measurements, we use
a pseudo-inverse

P̂ =
(
S⊤
PSP

)−1
S⊤
P (N

measure − IP /2) . (40)

The elements of s̃k = [Ĩk, Q̃k, Ũk]
⊤ defined in Eq. (25)

are known here. Then, step {2} estimates a, b, c as follows.
Define the known terms

gk = Q̃k cos 2α
cam
k − Ũk sin 2α

cam
k , (41)

fk = Q̃k sin 2α
cam
k + Ũk cos 2α

cam
k . (42)

Define a known 4K × 3 matrix FB and a 4K × 1 vector IB :

FB =
P

2

g1 0 −g1 0 . . . −gK 0
f1 g1 −f1 −g1 . . . −fK −gK
0 f1 0 −f1 . . . 0 −fK

⊤

,

(43)

IB =
[
Ĩ1, Ĩ1, Ĩ1, Ĩ1 . . . ĨK , ĨK , ĨK , ĨK

]⊤
. (44)

From Eqs. (19,26,33,35,43,44)

Nmeasure =
1

2
IB + FB [a b c]

⊤
. (45)

Then, pseudo-inverse yieldsâb̂
ĉ

 =
(
F⊤

BFB

)−1
F⊤

B(N
measure − IB/2) . (46)

In typical optical systems, birefringence is generally a
smooth function, thus changing slowly across the field of
view. Therefore, we smooth the pixel-based results â, b̂, ĉ.
We use a spatial mean having a support of 5×5 superpixels.

5.2 Polarimetric Self-Calibration
Current ZL models are not yet good enough for calibration.
We then suggest self-calibration, motivated by [25]. Here, a
camera observes an unknown scene S . We need to solve

Ψ̂x, Ŝ = argmin
Ψx,S

E(Ψx,S) . (47)

The polarizance P of the imager pixels changes slowly
in time. Birefringence, on the other hand, is a fast effect,
caused by thermal variations in a harsh environment. At
the beginning of a mission, the effects of B can be studied,
assuming P is as measured in the lab. Over time, P can
be re-estimated as well. We assume that over the entire
camera, some of the pixels are not degraded since a prior
measurement. They can anchor P .

We generalize Sec. 5.1, by iterating three steps:
(i) Estimate S assuming P and B are known. Initially, we
use P prev and Bprev.
(ii) Estimate P assuming B and S are known.
(iii) Estimate B assuming P and S are known.
We iterate until convergence. Steps (ii) and (iii) are the same
as described in Sec. 5.1. In this section, we describe step (i).

The estimate of the Stokes vector of LOS L is s̃L.
This LOS is sequentially projected to a set of superpixels
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{xk}Kk=1. We align the images using stars and planets, and
then associate L to superpixels by nearest-neighbor interpo-
lation. When L is projected to xk, the measured numbers of
electrons are represented by the 4× 1 vector

nmeasure
L,k =

[
Nmeasure

L,k (0◦) . . . Nmeasure
L,k (135◦)

]⊤
. (48)

Let nmeasure
L be the 4K × 1 vector of measurements corre-

sponding to L, measured at {xk}Kk=1 :

nmeasure
L =

[(
nmeasure
L,1

)⊤
. . .

(
nmeasure
L,K

)⊤]⊤
. (49)

Each super-pixel xk has a different set Ψx, thus correspond-
ing matrices Vxk

,Bxk
. Let 0n×m be an n × m zero matrix.

Using Eq. (19), define the matrices

ṼL =


Vx1 04×3 . . . 04×3

04×3 Vx2 . . . 04×3

...
...

...
04×3 04×3 . . . VxK


4K×3K

, (50)

B̃L =


Bx1

03×3 . . . 03×3

03×3 Bx2
. . . 03×3

...
...

...
03×3 03×3 . . . BxK


3K×3K

. (51)

Using the corresponding rotation Muller matrices {Rk}Kk=1,
define the 3K × 3 matrix

R̃ =
[
R⊤

1 ,R
⊤
2 . . . R⊤

K

]⊤
. (52)

From Eqs. (26,49,50,51,52),

nmeasure
L = ṼLB̃LR̃s̃L ≡ Fss̃L , (53)

where Fs = ṼLB̃LR̃. Using a pseudo-inverse of Eq. (53),

ŝL =
(
F⊤

s Fs

)−1
F⊤

s n
measure
L . (54)

5.3 Constraints
Pseudo-inverse steps do not impose natural constraints on
the variables. Moreover, there is an ambiguity that needs to
be resolved. These matters are handled in this section.

5.3.1 Birefringence
Recall the form of matrix B from Eqs. (10,11,15). Define the
matrices

MQU =

[
1 0
0 cos δ

]
, RQU =

[
cos(2αbr) sin(2αbr)

− sin(2αbr) cos(2αbr)

]
.

(55)
Then,

BQU ≡
[
a b
b c

]
= R−1

QUMQURQU . (56)

Consequently, the eigenvalues of BQU must be {1, cos δ}.
This is a constraint. Section 5.1 yields â, b̂, ĉ. These values
form a matrix that is diagonalized as follows:

B̂QU =

[
â b̂

b̂ ĉ

]
= J⊤

[
e1 0
0 e2

]
J . (57)

Here J is a rotation matrix made of orthonormal eigenvec-
tors, while {e1, e2} are the eigenvalues of B̂QU . The matrix

B̂′
QU = J⊤

[
e1/max(e1, e2) 0

0 e2/max(e1, e2)

]
J (58)

satisfies the eigenvalue constraint. Based on B̂′
QU , the con-

strained values of â, b̂, ĉ are extracted, in matrix elements
corresponding to Eqs. (56,57). This is done in each iteration.

5.3.2 Polarizance
Because 0 ≤ P (x) ≤ 1, then P̂ (x) is clipped to this range in
each iteration. Still, self-calibration has an inherent ambigu-
ity, as the scene is unknown. Consider Eqs. (8,9,10,11,16,17).
Suppose we scale the polarization components of the scene
by a factor ξ, such that QL(λ) → ξQL(λ) and UL(λ) →
ξUL(λ). Simultaneously, suppose that the polarizance is
scaled as P → P/ξ. Then, the measurement Icam in Eq. (17)
is invariant to this scale. Hence, when using only polari-
metric data without a prior, there is a fundamental scale
ambiguity in estimating P .

Our disambiguation uses two priors: {i} Over time,
the polarizance P (x) is monotonically not-increasing. {ii}
Pixels degrade at different rates. Some pixels are least
degraded: their polarizance is very close, or equal to the
corresponding value P̂ prev(x) measured previously (pre-
launch in the lab, or in a previous spaceborne calibration).

Consequently, define χ(x) = [P̂ (x)/P̂ prev(x)]. Con-
sider a re-scaled polarizance P̂ ′(x) = P̂ (x)[maxx χ(x)]

−1.
The map P̂ ′(x) is resistant to scale ambiguity. The least-
degraded pixel yields P̂ ′(x) = P̂ prev(x), correctly when
intact. However, a maximum is not robust to noise. Hence,
sort χ(x). Let x95% be the pixel corresponding to the 95th

percentile of χ(x). We then use P̂ ′(x) = P̂ (x)[χ(x95%)]
−1.

6 SIMULATION

We simulated observations of ZL as in Sec. 4. The simu-
lated imager field of view spans 5◦, having a resolution
of 200 × 300 pixels. The imager parameters are set to
p2 = (7µm)2, D = 16.6mm, f = 24mm, τλ = 0.96,
a red spectral band, 100nm wide and QEλ ≈ 0.8. The
imager has spatially varying ground-truth polarization pa-
rameters Ψtrue

x . Spatial maps of the corresponding ground-
truth P true, atrue, btrue, ctrue appear in Fig. 12.

The simulation was done for June 14th, 2022. As a
baseline (which we deviate from), the imager is directed 17◦

away from the sun, on the ecliptic plane, 65◦ from the vernal
equinox. An example of simulated image data is shown in
Fig. 13. Based on ZL characteristics and specifications of the
simulated camera, we calculated the expected signals. As a
baseline (which we deviate from in an ablation study), we
use exposure time ∆t = 10s and K = 30 measurements,
each at a different camera orientation. To achieve a signal in
the range of thousands of photoelectrons, a long exposure
time of around ∆t = 10s is required in this system. This
induces significant dark noise. To reduce noise variance, in
each measurement k, we capture 20 images (in 3.3 minutes)
and temporally average them. ZL and the background re-
main effectively static during this time.

6.1 Simulation Noise

The actual measured number of electrons is random due to
noise. Photoelectrons are Poisson distributed as

Ñ(x) ∼ Poisson[N̄(x)] . (59)
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Fig. 12. (Left) Synthetic ground-truth spatial maps P true, atrue, btrue,
ctrue. (Center) Calibrated maps. (Right) Self-calibrated maps.

η = 0◦ η = 45◦ η = 90◦ η = 135◦

Fig. 13. Simulated sky images (per polarizer angle angle η), including
ZL and background stars. Simulated for June 14th, 2022, directed 37◦

away from the sun, on the ecliptic plane, 45◦ from the vernal equinox.
For display clarity only, the images are presented gamma corrected with
γ = 0.6.

A camera has dark current BT (in units of electrons per
second), which depends on the sensor temperature T . It
yields dark noise ζdark ∼ N (BT∆t,BT∆t). The readout
electronics have read-noise ζread ∼ N

(
0, σ2

read

)
having a

standard deviation of σread electrons. A pixel full well has
Nfull electrons. The measurement is quantized by b bits. So,
a model [50] for a noisy measurement of photo-electrons is

Ñmeasured(x) =
Nfull

2b

⌊
2b

Nfull

{
Ñ(x) + ζread + ζdark

}⌋
.

(60)

Values of Ñmeasured higher than Nfull are clipped. The sim-
ulation uses noise parameters BT = 3.51s−1, σread = 2.31,
Nfull = 10500, and b = 10.

Camera jitter causes a random motion path, averaged
during the exposure time. We set a jitter [23] amplitude
∼ 0.1◦. Based on the camera specifications above, this
corresponds to blur by a Gaussian kernel having a standard
deviation of 4 pixels, and blur by rotation around the optical
axis (RAOA). Blur by RAOA is simulated by a weighted
sum of rotated images, each indexed i and rotated by angle
αi. Geometric rotation maps to x a pixel xi = Gαi

x , where
Gαi

is a rotation matrix in the image plane. As in Eq. (23),
this mapping leads x to sense light along a projected LOS
L(i) → xi. RAOA also rotates the Stokes vector. This
perturbation is defined by a Muller rotation matrix Rαi

.
Combining these two RAOA effects, a Stokes vector that is
axially rotated and averaged during ∆t is simulated by

sblurx =
∑
i

wiRαi
s{L(i) → xi} , (61)

using the weight wi ∼ exp(−[αi/0.1
◦]2/2). A sensitivity

study we performed shows that jitter having a directional
amplitude of up to 0.2◦ does not affect the results.

6.2 Simulation results
In pre-processing, we remove the bias caused by dark noise,
Nmeasured = Ñmeasured − BT∆t. We assume that calibration
is done occasionally during the mission lifetime, so we
have rough previous estimates P̂ prev, B̂prev that need to
be refined. These values thus initialize the optimization,
and are likely not far from the true values. Hence, we set
the initial values as noisy versions of the ground truth. Let
zP ∼ N (0.02, 0.012) and za, zb, zc ∼ N (0, 0.022). Then, we
set P̂ prev = P true+zP , âprev = atrue+za, b̂prev = btrue+zb,
ĉprev = ctrue + zc and clip the values to the valid domains
of P and B. The matrix B̂prev is formed based on Eq. (15)
using âprev, b̂prev, ĉprev.

We quantify results using root mean squared errors
(RMSE). Let ∥ · ∥12 and ∥ · ∥1F be respectively the ℓ2 norm and
Frobenius norm of arrays. Here the arrays span estimations
at all pixels x and sampled examples. Then,

RMSE(P ) = ∥P true(x)− P̂ (x)∥12 . (62)

RMSE(B) = ∥Btrue(x)− B̂(x)∥1F . (63)

Prior to calibration, RMSE(P ) ≈ 2% and RMSE(B) ≈ 2%.
Calibration optimization converges within 3-4 iterations.
After convergence, calibration reached RMSE(P ) ≈ 0.6%
and MSE(B) ≈ 0.3%. Results are shown in Fig. 12.

In self-calibration, observations were taken by rotating
the camera around its axis. So, self-calibration estimations
are valid in pixels within an ellipse around the center of the
sensor array. Within the ellipse, all pixels are exposed in all
measurements. Self-calibration achieved RMSE(P ) ≈ 0.5%
and RMSE(B) ≈ 0.3%. Self-calibration results are shown in
Fig. 12. Calibration and self-calibration results are assessed
in scatter plots (Fig. 14).

Sec. 5.1 mentions spatial smoothing of â, b̂, ĉ after each
iteration. We made an ablation test. Introducing smoothing
by kernels of sizes 3×3, 5×5 and 9×9 improve RMSE(B)
by ×1.3, ×2, ×2, respectively. So, we settle for a 5×5 kernel.
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Fig. 14. Scatter plots of simulated calibrated (orange) and self-calibrated
(blue) P, a, b, c results. Here ∆t = 10s and K = 30. Displayed points
are 150 randomly sampled representative super-pixels out of the total
array.
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Fig. 15. Self-calibration RMSE(P ) and RMSE(B) as a function of K
with ∆t = 10s [Top], and as a function of ∆t with K = 30 [Bottom].
Fifteen simulations were done, to assess RMSE mean and standard
deviation. Without self-calibration, P and B have RMSE of 2%.

An ablation study tests the effects of K and ∆t. One test
uses K = 30. Then, increasing ∆t from 5s to 30s, improves
the final calibration RMSE(P ) and RMSE(B) by ×1.6
and ×2.8, respectively. Another test uses ∆t = 10s. Then,
increasing K from 10 to 30, improves the final calibration
RMSE(P ) and RMSE(B) by ×1.8 and ×1.9 respectively.
Such trends also appear in tests of self-calibration, as shown
in Fig. 15. From this figure, the product K∆t is 5 minutes.
Since we averaged 20 images per observation, this means
≈ 1.6hours total acquisition time. Increasing the acquisition
time improves the results.

The acquisition time relates to D and the intensity of
ZL. Recall that the baseline test points 17◦ away from the
sun. To avoid lens-flare [67], [68], however, such an angle
requires the sun to be eclipsed. This can be achieved by
being at Earth’s night side while the sun is 17◦ beyond
the horizon. This limits the timing of calibration sessions.

Directions farther from the sun have lower ZL radiance.
So, to achieve similar signals, directing the imager 27◦ or
37◦ away from the sun requires, respectively, ∆t = 30s and
∆t = 60s. The long acquisition time stems from the noise
parameters listed in Sec. 6.1. Larger optics (D) or lower BT

can yield a high signal-to-noise ratio using shorter ∆t and
fewer images.

7 DISCUSSION

Computational imaging contributes to astrophysics, as ev-
ident by [69]. We suggest spaceborne polarimetric camera
calibration and self-calibration using ZL. This principle
exploits a natural phenomenon that occurs at a relatively
large distance at a wide angle. There is wide tolerance to
pose deviations. A natural phenomenon does not require
using special equipment onboard or outside a spacecraft.
ZL changes very slowly and is relatively predictable.

The approach is not limited to LEO. We believe it can
also be helpful for deep space probes, observing ZL, or other
reliable polarized sources. Future research should hopefully
demonstrate these methods using spaceborne data taken by
future missions. The paper already includes many sources
of disturbances: spatially varying birefringence and polar-
izance, integrated starlight, thermal and photon noise, mo-
tion blur, and rotational perturbation to the Mueller matrix
by platform jitter. Real measurements may be affected by
additional sources. Further real-world discrepancies, so far
unaccounted for, can be due to the entry of a comet into the
inner solar system, which adds IDPs in its path. New comets
are tracked. Thus, during calibration, the imager can point
to a sky region that has no overlap with a new comet’s path.

The optimization can explicitly include a prior of spatial
regularity (smoothness) of Ψx. Thus far, computations of
calibration or self-calibration are fast. It takes us less than
a minute on a common laptop to perform 10 alternating
iterations. The process is expected to be offline, once in a
while during a space mission’s lifetime. So, the time and
computation resources needed are small.

ACKNOWLEDGMENTS

We thank Vadim Holodovsky and Roi Ronen for their
support. Yoav Schechner is the Mark and Diane Seiden
Chair in Science at the Technion. He is a Landau Fellow
supported by the Taub Foundation. His work was con-
ducted in the Ollendorff Minerva Center. Minvera is funded
through the BMBF. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(CloudCT, grant agreement No. 810370). Ehud Behar was
supported in part by a Center of Excellence of the Israel
Science Foundation (grant No. 1937/19).

REFERENCES

[1] B. Ghanekar, V. Saragadam, D. Mehra, A.-K. Gustavsson, A. C.
Sankaranarayanan, and A. Veeraraghavan, “PS2F: Polarized spiral
point spread function for single-shot 3d sensing,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pp. 1–12, 2022.

[2] T. Maeda, A. Kadambi, Y. Y. Schechner, and R. Raskar, “Dynamic
heterodyne interferometry,” in Proc. IEEE International Conference
on Computational Photography, 2018, pp. 1–11.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3299526

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



[3] T. Treibitz and Y. Y. Schechner, “Active polarization descatter-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 3, pp. 385–399, 2008.

[4] N. Karpel and Y. Y. Schechner, “Portable polarimetric underwater
imaging system with a linear response,” in Polarization: Measure-
ment, Analysis, and Remote Sensing VI, vol. 5432. SPIE, 2004, pp.
106–115.

[5] Y. Y. Schechner, D. J. Diner, and J. V. Martonchik, “Spaceborne
underwater imaging,” in Proc. IEEE International Conference on
Computational Photography, 2011, pp. 1–8.

[6] R. Horstmeyer, G. Euliss, R. Athale, and M. Levoy, “Flexible
multimodal camera using a light field architecture,” in Proc. IEEE
International Conference on Computational Photography, 2009, pp. 1–8.

[7] R. Antonucci and J. Miller, “Spectropolarimetry and the nature of
NGC 1068,” The Astrophysical Journal, vol. 297, pp. 621–632, 1985.

[8] R. A. Laing, “The sidedness of jets and depolarization in powerful
extragalactic radio sources,” Nature, vol. 331, no. 6152, pp. 149–151,
1988.

[9] W. Coburn and S. E. Boggs, “Polarization of the prompt γ-ray
emission from the γ-ray burst of 6 December 2002,” Nature, vol.
423, no. 6938, pp. 415–417, 2003.

[10] H. Krawczynski, F. Muleri, M. Dovčiak, A. Veledina, N. Ro-
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[60] A. Ginsburg, B. M. Sipőcz, C. Brasseur, P. S. Cowperthwaite, M. W.
Craig, C. Deil, A. M. Groener, J. Guillochon, G. Guzman, S. Liedtke
et al., “Astroquery: an astronomical web-querying package in
Python,” The Astronomical Journal, vol. 157, no. 3, p. 98, 2019.
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