
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Geometric Back-propagation in Morphological
Neural Networks

Rick Groenendijk, Leo Dorst, and Theo Gevers

Abstract—This paper provides a definition of back-propagation through geometric correspondences for morphological neural
networks. In addition, dilation layers are shown to learn probe geometry by erosion of layer inputs and outputs. A proof-of-principle is
provided, in which predictions and convergence of morphological networks significantly outperform convolutional networks.

Index Terms—Mathematical Morphology, Morphological Neural Networks, Back-propagation, Probe Geometry, Depth Infilling
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1 INTRODUCTION

THERE exists much image-like data that is produced
by contact probing: examples are depth by LiDAR or

from time-of-flight sensors, radar images, and scanning mi-
croscopy. Since Serra’s investigations [1], [2], the underlying
algebraic structure of such data has been known as math-
ematical morphology. A coherent set of operations forms a
consistent alternative framework to the convolution way of
linear diffusion probing [3], [4], [5]. The latter forms the ba-
sis of the convolutional neural network (CNN); and people
have wondered about developing analogous morphological
neural networks (MNNs) to process the morphological type
of data [6], [7], [8]. Convolution does not inherently respect
the separation between pixels in 3D space, treating them as
equidistant neighbors at all times, and cannot process occlu-
sion naturally. On the other hand, morphological operations
such as dilation, allow data to be probed by structuring ele-
ments in space, respecting separation and occlusion.

MNNs have recently seen a variety of successes in complex
vision tasks: [9], [10] show that MNNs have vastly higher
parameter efficiency in tasks such as digit recognition; [11]
successfully removes artefacts in images caused by rain
droplets and their method is extended in [12] introducing
opening-closing networks; [13] shows that morphological
operations and convolutions can supplement each other
and achieve state-of-the-art performance in object boundary
recognition; [14] uses deep MNNs to solve classification
and multi-class segmentation tasks. The authors note that
training becomes increasingly challenging as networks are
deepened with more complex topology; [15] extends the
work of [16] on equivariant scale networks by the use of
morphological scale spaces, though only the first module of
their network is actually morphological.

Even outside the scope of neural networks, morphology is
used to encode rich computational features that are useful
in a variety of contact-related tasks: [17] encodes surfaces of
fractured archaeological objects into a set of morphological
features with the goal of automatically fitting fragments;
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[18] develops a morphological variant of Deep Mode Com-
position that performs 1D image segmentation by the use of
a morphological-convolution hybrid.

Neural networks are trained using back-propagation to
minimize an objective function. Morphological operations
are not fully differentiable however; therefore MNNs cannot
readily be trained using linear back-propagation. As a con-
sequence, three different approaches to back-propagating
errors over sequences of morphological filters are estab-
lished in the literature: (1) approximate (linearly) the min,
max-operations to make them differentiable [10], [19], [20];
(2) use a sub-gradient definition in which the error is only
propagated over min, max-elements – similar to derivatives
over pooling operations for spatial sub-sampling in deep
learning frameworks [21]; and (3) use depth- and point-
wise convolutions in conjunction with pooling operations
[14], [22]. (Optimization-based updating schemes, e.g. the
Convex-Concave procedure in [8], are beyond the scope of
this article.) Most often (2) is used because it is facilitated
by modern deep learning frameworks – see e.g. [9], [11],
[13], [23]. For any of these methods, stable learning and
convergence is not guaranteed. It will be shown that all
these methods can be improved by employing a principled
morphological back-propagation. The theoretical aim of this
paper is therefore to derive a geometric interpretation of
morphological back-propagation and formulate an alternate
updating rule for learning probe geometry by Morphologi-
cal Neural Networks.

The contributions of this paper are:

• A geometric definition of the back-propagation of
morphological operations that does not rely on linear
approximation of morphological operations as pre-
vious works did, but rather on matching slopes of
(locally convex) functions.

• A morphological definition for probe geometry
learning by error bounding, especially suited to data
acquired by an essentially morphological process.

• Confirmation of the theory in practical use on probe
geometry estimation in Scanning Probe Microscopy
(SPM) and depth infilling on NYUv2.
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Figure 1. Schematic overview of a single layer in a neural network.
It shows forward propagation of f− and p by some operation ⊗, and
backward propagation of the error ∂E

∂f+(x)
. From the chain rule, only

the terms ∂E
∂f+(y)

are required to obtain the derivatives of the error with
respect to the input f− and the parameterized probe p (or kernel) of ⊗.

2 METHOD

The goal of this paper is the direct application of morpho-
logical operations to neural networks and to back-propagate
errors during training. As a brief recap, neural networks use
the back-propagation algorithm [24] to update parameters
and approximate a function for which data samples are
available. Consider a network built up of L layers as a
composite function f(x) = fL ◦ fL−1 ◦ . . . f1(x). Consider
also a (sample, target) dataset D = {(xn, tn)}Nn=0 and let
f(xn) = yn be the output of the network. The network is
trained through minimizing a number of training objectives
E(tn, yn), where tn is the target output. The advantage
of the back-propagation algorithm is that updating the
parameters of a single layer can be agnostic of the network
architecture, as long as the local derivative of the error

∂E
∂f+(y) is known at the required point. For the remainder of
this paper, a per-layer notation is therefore used, with input
f−, output f+, probe p, and corresponding derivatives, as
in Figure 1. For MNNs, the terms ∂f+

∂f−
, ∂f+

∂p have to be
redefined because they differ from those in CNNs.

Dilation for functions is defined on the semi-ring
(R−∞,∨,+) where ∨ denotes the supremum operation and
+ is addition. This algebraic system extends the set of reals
R with minus infinity: R−∞ ≡ R ∪ −∞. In MNNs, the
multiplication-addition scheme of convolution is replaced
by an addition-supremum scheme of dilation [6].

A layer input signal f− : RD → R−∞ indexed by in-
dicator variable x, and a structuring element (or probe)
p : RD → R−∞ indexed by indicator variable z are com-
bined to produce the morphological dilation as the layer
output signal:

f+ (x) =
∨
z

f− (x− z) + p (z) . (1)

Morphological back-propagation is derived in Section 2.3
through slope correspondences explained in Section 2.1. As
an intermediate step, the morphological derivative is given
in Section 2.2. Finally, in Section 2.5, elements that do not
contribute to any output in the forward pass, are bounded
by means of morphological erosion in the backward pass
of back-propagation. For brevity, a dilation layer is used
in all derivations, but by morphological duality [1], [2] all
arguments can be made for an erosion layer as well.

Figure 2. Depiction of the forward propagation of a 1D signal f− using
morphological dilation as a single-layer of a larger network. The dilation
of a signal f with (convex) probe p is shown resulting in f+. Clearly here
∇f+ (x+) = ∇f− (x−) = ∇p (z−) which is proven in the main text.

2.1 Slope Correspondences

Geometrically speaking, it is intuitive to regard morpholog-
ical dilation as probing a signal with a mirrored and flipped
structuring element pT (z) ≡ −p (−z) from above, lowering
it until there is at least a single point of contact. As the probe
moves, the reference point of the probe pT traces out the
output signal f+. There may be several points of contact or
even entire ranges where f− and pT can be in touch. On the
other hand, it is never allowed that pT and f− intersect. A
graphical example is shown in Figure 2.

Not all locations x− on the input signal f− lead to an output
point (x+, f+ (x+)) since not all f− (x−) can be touched
by pT . However, all x+ can be traced back to at least one
location x−. For back-propagation of the error –as required
for network learning– the goal is to map an error at x+ back
to any x− that caused it.

Theorem 1 (originally from [3]). There is a provenance
relationship between the slope of any point on the output
signal f+ (x+), and the points that caused it through contact
of the input signal f− (x−) and the probe p (z−). The contact
location points are related through:

x+ = x− + z− , (2)

and the slopes (gradients) obey

∇f+ (x+) = ∇f− (x−) = ∇p (z−) . (3)

Proof: For a point (x+, f+ (x+)), there is always at least
one input location x− at the input signal f− for which the
supremum

∨
z f− (x− z) + p (z) is attained. The contact

location x− implies the existence of a location z− on the
probe p that satisfies z− = x+ − x− where z− ∈ dom(p).
Therefore, Equation 1 can be rewritten in terms of the loca-
tions on f+, f−, and p where the supremum occurs:

f+ (x+) = f− (x+ − z−) + p (z−) . (4)

More specifically, the supremum is attained when the first
derivative of f+ with respect to z− at x+ is zero (there is

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3290615

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



GROENENDIJK et al.: GEOMETRIC BACK-PROPAGATION IN MORPHOLOGICAL NEURAL NETWORKS 3

also a second order condition to make it a supremum rather
than an infimum). As a consequence:

∇z−

(
f− (x+ − z−) + p (z−)

)
= 0 . (5)

The f−-slope at x− now relates to the p-slope at z−:

∇x−f− (x−) =
[
∇x−z−

]
∇z−f− (x+ − z−)

=
[
∇x− (x+ − x−)

] (
−∇z−p (z−)

)
, (6)

= ∇z−p (z−) .

At contact, those slopes are also related to the slope of the
output signal f+, by differentiating Equation 4 to x+:

∇x+f+ (x+) = ∇x+f− (x+ − z−) . (7)

Combining Equation 6 and Equation 7 with the prove-
nance Equation 4 completes the proof.

2.2 Morphological Derivatives
During back-propagation all (x+, f+ (x+)) are known, but
their corresponding x− must be determined. These corre-
spondences, henceforth called the provenance of points, can
be obtained by matching slopes using probe p.

Theorem 2. The morphological derivative of a single-layer
f+ with respect to the input f− is

∂f+ (x+)

∂f−
(x−) =

{
1 ∀ [∇p (x+ − x−) = ∇f+ (x+)]

0 otherwise,
(8)

where ∀[. . . ] denotes the set of points (x+,x−) for which
the equality holds, and ∂f−(x+)

∂f−
(x−) denotes the derivative

of f+ (x+) with respect to f− evaluated at x−, so ∂f+(x+)
∂f−(x−)

as a function of x−.

Proof: The derivative of f+ (x+) in Equation 1 with respect
to f− is 1 if and only if f− (x−) caused f+ (x+). In any other
case, the derivative is zero. Moreover, as a consequence of
Theorem 1 each layer output location x+ relates to a location
x− on the input layer f− that caused the corresponding
f+ (x+) given the current p by means of ∇p (x+ − x−) =
∇f+ (x+) .

There are four subtleties captured in Theorem 2 that are
not immediately apparent. The first concerns undefined
provenances; the latter three concern the for all (i.e. ∀[. . . ])
statement.

Undefined provenance. There may be locations x− that
have caused not a single x+ in the forward pass, resulting in
a derivative in the backward pass that is zero for that x−. At
those locations x− the provenance (i.e. the correspondence
between x− and x+) is undefined. Therefore, Equation 8 is
called a sub-gradient [10], since it is not a local rate of change
with any x−, but rather a zero-valued derivative resulting
from an undefined provenance between x+ to x−.

Multiple x+, single x−. Multiple x+ may have been caused
by a single x−. Equation 8 allows ∂f+(x+)

∂f−
to be back-

propagated to a single x− even when it had caused multiple
x+ in the forward pass; the derivative ∂f+(x+)

∂f−
(x−) is 1

when there exists at least one pair for which the equality
∇p (x+ − x−) = ∇f+ (x+) holds.

Single x+, multiple x−. There may be an f+ (x+) caused
by multiple x−, then f+ at x+ is not differentiable [25]. At
these singular points a one-sided derivative (e.g. left and
right-sided derivatives in 1D) needs to be used to obtain
valid slopes matching an x+ to each x−.

Invertible ∇p. For a strictly convex probe, the location x−
can directly be inferred from matching the slopes of the
probe p and the output signal f+ since then ∇p is invertible.
Using Equation 3, the invertibility of p due to convexity, and
isolating x−:

x− = x+ − (∇p)−1 (∇f+ (x+)) , (9)

which for a convex p implies

∂f+ (x+)

∂f−
(x−) =

{
1 if x+ − (∇p)

−1
(∇f+ (x+)) = x−

0 otherwise.
(10)

2.3 Morphological Back-propagation

With these subtleties noted, the goal is now to define
∂E
∂f−

(x−). The derivative of the error with respect to the
input signal f− is more complicated than the morphological
derivatives because the derivative of E with respect to the
output layer f+ may be different at each x+ caused by a
single x−. Since sets of distinct ∂E

∂f+
(x+) cannot be back-

propagated to a single x−, they have to be aggregated.
Dilation acts as an absolute effect on its input; a morpho-
logical error thus acts absolutely on the terms, not relative
to their magnitudes as in convolution. Therefore, only the
worst case error should back-propagate. To facilitate this,
let EV: RD

−∞ × R → R−∞ return the signed most ex-
treme value of a function f over a subset of the domain
x ⊆ dom(f):

EV (f,x) =


∨
x
f (x) if

∣∣∣∣∨
x
f(x)

∣∣∣∣ ≥ ∣∣∣∣∧
x
f (x)

∣∣∣∣∧
x
f (x) otherwise ,

(11)

where
∧

denotes the infimum operation. Using the signed

most extreme value function EV and combining it with The-
orem 2 provides:

∂E

∂f−
(x−)=

{
EV

(
∂E
∂f+

,x+

)
∀ [∇p (x+ − x−) = ∇f+ (x+)]

0 otherwise.
(12)

In summary, the back-propagated error ∂E
∂f−

(x−) is the
transfer of the worst case positive or negative ∂E

∂f+
(x+) from

the locations x+ to the location(s) x− that caused x+; these
locations are found by matching slopes of the output signal
f+ and probe p, i.e. through their provenance. Parameters of
the probe are updated using gradient descent.

The derivative of the error in the input f+ due to the
structuring element p is obtained similarly, since the dilation
of Equation 1 is symmetric in f− and p. Observe now
that the back-propagated transfer of the error is to the
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provenance vector z− = x+ − x−. Therefore the derivative
of the error with respect to p (z) can be written as

∂E

∂p
(z) =

{
EV

(
∂E
∂f+

,x+

)
∀ [∇p (z) = ∇f+ (x+)]

0 otherwise.
(13)

In practice, for discrete structures such as images, the (rel-
ative) provenance z− has to be recorded for each x+ This
bookkeeping can be memory-intensive since an arbitrary
number of x− may have caused any one x+ due to the
multi-valued nature of dilation, but it prevents issues in
approximating slopes from sampled data. Conversely, for
data that can reasonably be expected to be locally convex
–like SPM– slope matching can theoretically yield a much
higher quality gradient with sub-pixel accuracy.

2.4 Mean Back-propagation

It is worth noting that auto-differentiation tools, such
as PyTorch [26], use another aggregation of linear back-
propagation over multi-valued dilations (and similarly for
max-pooling):

∂E

∂f−
(x−) =

{
1

|x+|
∑

x+

(
1

|x−|
∂E
∂f−

(x+)
)

ifx+ − x− = z−

0 otherwise.
(14)

The error term is averaged over multiple x− that caused
x+ to deal with the multi-valued nature of dilation. Then,
all ∂E

∂f−
(x+) are averaged (or summed depending on E)

rather than bounded at a single x− for all x+ that are
caused by x− to yield a single scalar. In the present context,
averaging over the provenance is considered to be a non-
morphological operation and therefore it is avoided. It can
be surmised, however, that there are practical advantages
especially when networks are composed mainly of (linear)
convolutions.

2.5 Probe Learning by Error Bounding

The main shortcoming of sub-gradient-based morphological
back-propagation is that it fails to propagate information
about the elements that did not cause the error, yielding
undefined provenances at those locations. In morphological
back-propagation, undefined provenance results in a zero-
valued derivative, but there may be better approximations
of the error by bounding: since there are points that did
not cause the supremum in the forward pass, it means that
the error term propagated to those points in Equation 1
can be upper bounded by the points that did cause the
supremum.

To see how, consider a dilation with input f−, output f+,
and structuring element p as before. The objective of a
single layer in the network is to output a f∗

+ such that
the composite function ultimately minimizes a difference
function Q(x) = fL(x) − t(x), where t(x) is the target
function at x. Note here that where the morphological back-
propagation from Section 2.3 was agnostic to the form of
the error function E, the function Q is purely a difference
function used to infer f∗

+ from t.

Figure 3. Graphical depiction of SPM data in 1D. The line depicts an
artificial atomic surface S, the dotted line is the image I after dilating
the true surface with the probing element p. The dilation is the natural
mathematical model of the equipotential (in STM) movement of the
probe across the surface. The striped line depicts the least upperbound
on the recoverable surface R. Notice especially region (A) the image I
and surface S have the same shape at the maxima disregarding some
offset in y; and (B) a blunt probe cannot fully recover surfaces within
crevices between atoms.

The input f− and the ideal output f∗
+ for the layer consid-

ered are related through an unknown optimal probe:

f∗
+(x) ≥

∨
z

f− (x− z) + p∗(z) , (15)

where p∗ is the (optimal) probe to achieve f∗
+ from f−. This

equation is used to bound f∗
+ from below by

∨
z f− (x− z)+

p∗(z), even when no probe p∗ exists to construct f∗
+ from f−

or when data is sparse. For a particular x′ ∈ x, the upper
bound output f∗

+ is given by:

f∗
+(x

′) ≥ f− (x′ − z) + p∗(z) , (16)

and this in turn implies a bound on p∗:

p∗(z) ≤ f∗
+(y

′ + z)− f− (y′) , while y′ = x′ − z . (17)

Letting x′ and hence y′ take all possible values, Equation 17
can be written as an erosion:

p∗(z) ≤
∧
y

f∗
+(y + z)− f− (y) =

(
f∗
+ ⊖ f−

)
(z) . (18)

Therefore, the optimal probe p∗(z) is bounded by the ero-
sion of the desired output f∗

+ with the input f−.

Similarly to the update rule in gradient descent for con-
volutional networks, the structuring element p is updated
over iterations i. Let pi denote the structuring element at a
particular iteration. The update rule for the parameters of p
can be given as

pi+1 (z) = pi (z)−λ∆pi (z) with ∆pi (z) = pi ([z)−p∗i (z) ,
(19)

where λ is a gain parameter. This method of learning by
bounding will be referred to as Probe Learning.

3 PROOF-OF-PRINCIPLE

As a proof-of-principle, this paper shows that when the
input data to the MNN is suitable to morphological op-
erations, networks trained by the proposed Morphologi-
cal Back-propagation and Probe Learning outperform any
convolutional network by a large margin. The modality
of choice is data resulting from the imaging process of
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scanning probe microscopy (SPM). The working principle of
SPM is positioning a probing element above a surface sam-
ple and maintaining constant force in subclass atomic force
microscopy (AFM) or constant current in subclass scanning
tunneling microscopy (STM). These surface-probe interactions
are naturally expressed through mathematical morphology
[27], [28], [29], [30], since that is the mathematics of touch
probing [4] rather than kernel-based diffusion.

Consider an atomic surface function S : R2 → R and man-
ufactured probe function p : R2 → R. The resulting image
function I obtained from SPM is the morphological dilation
of the surface S with the probe p:

I(x) = (S ⊕ p) (x) =
∨
z

S(x− z) + p(z) , (20)

where x, z index spatial locations on the sampling plane for
the surface and probe respectively, and

∨
is the supremum

operation. If the geometry of any two of I, S, or p is known,
the third is related by morphological dilation or erosion.
Even when only the scanned image I is known, blind
reconstruction techniques [30], [31], [32] may be used to
recover an upper bound of the probe p and surface S. For a
graphical overview, see Figure 3. In view of Equation 20,
data from SPM should have excellent characteristics for
testing morphological networks.

In this section, Morphological Back-propagation and Probe
Learning are evaluated on synthetic SPM data. The purpose
is twofold: to validate the theoretical insights and to show
that for appropriate data it is indeed advantageous to incor-
porate morphological operations in neural networks.

3.1 Background

Deep learning is commonly applied in automated analysis
of SPM data [33], [34]. Even though it was established
decades ago that mathematical morphology can model
probe-surface interactions leading to the scanned images
(see e.g. [28], [30], [31]), the default operation in automated
analysis is still the convolution operator. One argument
for using CNNs is that the SPM imaging process is not
fully described using morphology: additional noise may
be introduced through variance in the tunneling gap in
STM or slight cantilever oscillation in AFM [27]. This can
partially be modeled by additive Gaussian noise [31], which
is inherently difficult for morphology to process.

Specifically for AFM, contact between probe and surface can
bring about wear of the material during data collection. As
an example, double apex forming [35] –i.e. loss of probe
convexity– may happen at any time. Consequently, the qual-
ity of the probe geometry has to be monitored constantly.
Estimating probe and surface abrasion is ill-defined because
it may happen to either or both structures [36]: the image
signal results from both the probe and the surface. Estimat-
ing abrasion effects using MLPs and CNNs has previously
been studied in [35], [36], [37], [38], [39], [40]. While results
are promising, directly using the morphological nature of
the problem in its solution is likely to be beneficial.

For the proof-of-principle of the proposed method, SPM
image-surface pairs are required. These are not trivially

Figure 4. Data example. (left) 2D sample used for training and testing
generated by a parabolic probe. Vertical offset added for visualization;
(right) cross-section along a scanline to show image I, surface S, and
reconstruction R. Either S or R may be used as ground truth.

generated and no public dataset exists that provides them.
For example, the authors of [41] provide tools to generate
data, but make use of an idealized spherical probe implicit
in their atomic representation. [40] provides a binary clas-
sification task with negative samples due to a variety of
reasons: sample drift, no probe contact, scanning problems,
etc. These artefacts are not described using mathematical
morphology.

3.2 Implementation

All proposed methods, notably Morphological Back-
propagation and Probe Learning, are implemented using
PyTorch [26]. To create the dataset, three primitives are
chosen to replicate three distinct probe shapes: a parabolic
probe, a pyramid probe, and a parabolic probe with double
apex. Especially the third primitive is relevant for practical
applications since non-convex probes may negatively affect
the quality and validity of AFM measurements. For each
primitive, 8 datasets (Ntrain=1000,Ntest=1000) of synthetic 2D
train are generated with randomized probe geometry. Each
sample consists of a scanned image I , an artificial surface
S, and a best reconstruction R which is the erosion of
the image I with known probe p. This theoretically best
reconstruction R is the least upper bound surface that can
be recovered from I taking into account the non-invertibility
of the measurement. As a result, all evaluations are done
against the best reconstruction R since it cannot reasonably
be expected that a network predicts a surface better than
R. If it would, it could hallucinate erroneous details of the
true atomic surface S. Training is performed on both I → R
and I → S. See Figure 4 for an example of the 2D data,
along with a cross-section along an arbitrary scanline. The
structuring elements of the MNNs are initialized at zero.
Initial experimentation shows no impact on performance for
random initialization, although convergence time may be
slightly affected. For further details, see the publicly avail-
able code at github.com/rickgroen/probe-learning.

3.3 Learning Probe Geometry

Morphological Back-propagation and Probe Learning by
error bounding are evaluated against linear methods and
mean back-propagation in Table 1. Qualitative examples are
shown in Figure 5. There are four aspects to take note of:
First, the single-layer morphological networks outperform,
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Table 1
Performance of linear and morphological networks on synthetic 2D SPM datasets. In the second column, the number of parameters is shown; e.g.
ResNet-50 [42] has roughly 44M parameters, whereas the simple networks have only 289. In the third column, the average magnitude of iterations
is shown until the model converged. In the fourth through ninth column RMSE is shown for predictions measured against the best reconstruction

R. The networks were independently trained and tested 8 times on different datasets for each configuration. In all cases the morphological
networks outperform linear networks. Probe Learning performs best, shown in boldface.

Train I → R, Test R Train I → S, Test R
#Params #Iters parabolic pyramid double parabolic pyramid double

Linear Networks
1-layer 289 1e3 .2525±.1656 .3904±.2383 .3973±.1352 .3744±.1707 .6833±.1561 .4512±.1090
3-layer 296K 1e3 .1908±.0178 .2421±.0338 .3109±.1579 .2967±.0409 .5802±.1252 .3817±.0434
U-Net [43] 13M 1e4 .0803±.0051 .1185±.0049 .1166±.0077 .3042±.0205 .5990±.0514 .3778±.0397
ResNet-50 [42] 44M 1e4 .1120±.0055 .1544±.0074 .1471±.0076 .2950±.0199 .5871±.0483 .3690±.0359

Morphological Networks
Mean Back-prop 289 1e5 .0030±.0005 .0016±.0001 .0024±.0002 .2351±.0149 .4832±.0372 .2896±.0283
Morph. Back-prop 289 1e3 .0000±.0000 .0000±.0000 .0000±.0000 .6883±.1254 .6132±.1327 1.0241±.1050
Probe Learning 289 1e2 .0012±.0007 .0021±.0006 .0023±.0008 .0009±.0006 .0022±.0012 .0117±.0014

(a) Probe Learning (b) Morph. back-prop

(c) Single Layer Linear Network (d) ResNet-50

Figure 5. (a) Predictions from a single-layer MNN that learned probe
geometry by means of the method in Section 2.5. The blue prediction
lines up with the orange target S; predictions are draped around the
true peaks since the network estimates at most within a theoretical
upper bound of reconstructability. (b) Morphological back-propagation
from Section 2.3. (c) Single-layer CNN; (d) ResNet-50. The two CNNs
hallucinate erroneous high frequency details around peaks which is
more pronounced for (d).

by a large margin, the linear methods. Probe Learning
performs best in terms of prediction quality (Figure 5a). For
linear methods, high frequency noise is hallucinated around
object edges. This effect is more pronounced for U-Net and
ResNet (Figure 5d) than for a single-layer CNN (Figure 5c).
Second, convolution can be made to perform better by using
more parameters and introducing additional tricks such
as residual connections. Even so, increasing the amount
of parameters in the network to 44 million (shown in the
second column in Table 1) does not guarantee learning the
data; the single-layer morphological networks can learn the
task by just 289 parameters from a 17×17 probe. Third, the
third column in Table 1 shows the average magnitude until

Figure 6. Qualitative example of double-apex forming in AFM. (left)
atomic surface S in orange, resulting image I in green. Artefacts arise as
false double peaks around the structures in I. Measuring software could
mistake these for surface, whereas they actually arise from a low-quality
probe. (right) the probe used to create the synthetic data in orange, the
predicted reconstruction of the shape in blue. The reconstructed probe
is an upper bound on the true geometry of the probe. The network thus
learns to predict (upper bound) probe geometry.

learning converges. Early stopping after RMSE convergence
over 100 iterations on the training set is applied. Probe
Learning appears to converge always within 100 iterations
of training. Fourth, morphological back-propagation fits the
data perfectly when trained on I → R, but provides wrong
vertical scaling when trained on I → S, though shape is
predicted correctly (Figure 5b). A second MM layer could
compensate for this vertical offset or a bias term could be
used; alternatively, we could change the error aggregation
from Equation 13 to averages (Section 2.4) making the
method less sensitive to extremes.

3.4 Double Apex Detection

Probe or material abrasion is a challenging issue in obtain-
ing high-quality scans [35], [36], [37], [40], [44] in AFM. In
Table 1, in the sixth and ninth column it is shown that Probe
Learning by bounding recovers the best reconstruction R.
Besides surface predictions, the geometric properties of the
probe are learned by the morphological layer. See Figure 6.
The proposed method of probe learning recovers the upper
bound of the shape of the probe, within some margin of un-
certainty between the two peaks. Numerical analysis of the
probe could be integrated with measuring software to de-
termine double-apex forming without the need for complex
CNN architectures: a 300-parameter MNN suffices.
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Table 2
Depth infilling performance of CNNs and MNNs on NYU. Despite a

large number of parameters, CNNs can poorly impute large regions of
zero-valued data. In MNNs, the missing values can initally be set to
minus or plus infinity, and be processed accordingly by the network.

Results are averaged over 10 runs for each model.

#Params RMSE ↓ δ < 1.25 ↑

(i) CNN 492 1.4966 ± 0.0883 0.2062 ± 0.0196
(ii) CNN 46.5K 1.2974 ± 0.0481 0.2657 ± 0.0182

(i) MNN (Mean Back-prop) 492 0.2084 ± 0.0015 0.9743 ± 0.0012
(ii) MNN (Morph. Back-prop) 492 0.2249 ± 0.0011 0.9771 ± 0.0001
(iii) MNN (Probe Learning) 492 0.2241 ± 0.0017 0.9686 ± 0.0007

Figure 7. (left-upper) input raw depth; (right-upper) ground truth in-
filled depth; (left-lower) CNN (ii) prediction; (right-lower) MNN (ii)
prediction. MNNs can deal with sparse data. The size of the structuring
element determines how much missing data is filled for each layer.

4 OBSERVATIONS ON GENERALIZATION

Back-propagation naturally generalizes to networks with an
arbitrary number of layers. The simulated SPM experiments
only address the method on idealized noise-free haptic
data; noise impacts network learning. To demonstrate the
proposed method, it is applied to depth infilling, i.e. aug-
menting incomplete depth data. Though specialized algo-
rithms exist [45], infilling is fundamentally a morphological
task since it is one of separating shapes and overcoming
occlusion.

The depth infilling experiment is performed on NYUv2
(Ntrain=795,Ntest=654) [46]. All networks consist of six layers:
The first three layers down-sample to 1

8

th
resolution, the

latter three layers up-sample to full resolution. MNNs use
dilation and erosion layers alternately, CNNs use convolu-
tions without non-linearities. Networks are trained for 40
epochs using an SGD optimizer and an L2 loss objective.
Quantitative of results are shown in Table 2, visual results
are shown in Figure 7. Since the data are gathered from
real-world indoor scenes, it can be expected that sensor
noise complicates learning. While morphological networks
may be suited to dealing with missing data, noisy data
is challenging: Morphological operations deal with addi-
tive noise by estimating an envelope. For a sequence of

morphological layers, without aggregation, the envelope is
slightly vertically displaced with respect to the signal. To
compensate for this non-morphological type of noise, the
morphological layers have to be extended by a vertical bias
term; convolutional layers use an identical term to deal with
vertical off-set.

5 CONCLUSIONS

In this paper, a geometric definition of Morphological Back-
propagation is proposed that does not rely on linear ap-
proximation of morphological operations but rather on the
geometric provenance of slope correspondences. Second,
Morphological Probe Learning is proposed based on the
natural bounding properties of morphology. Two experi-
ments (SPM surface reconstruction and NYU depth infilling)
confirm that problems of a morphological nature can be
solved accurately with much smaller MMNs than CNNs,
and compete with dedicated solutions. In both experiments,
CNNs are not able to approximate the ground truth even
when many more parameters were introduced. In the case
of SPM data, MNNs also converged orders magnitude faster
than their linear counterparts.

As of now, only relatively simple single-channel networks
were examined. In future research, the proposed update
rules (morphological back-propagation and probe learning)
or combinations of both could feature more prominently in
larger morphological networks. They should then take into
account the composition of the morphological operations
in subsequent layers. Moreover, the morphological update
rules should be adapted to be less sensitive to noise. In
conclusion, when data can reasonably be modelled to result
from probing touch (e.g. haptic data from SPM or LiDAR),
morphological operations are strongly recommended in the
construction of network architectures.
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