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Mutual Voting for Ranking 3D Correspondences
Jiaqi Yang, Xiyu Zhang, Shichao Fan, Chunlin Ren and Yanning Zhang, Senior Member, IEEE

Abstract—Consistent correspondences between point clouds are vital to 3D vision tasks such as registration and recognition. In this
paper, we present a mutual voting method for ranking 3D correspondences. The key insight is to achieve reliable scoring results for
correspondences by refining both voters and candidates in a mutual voting scheme. First, a graph is constructed for the initial
correspondence set with the pairwise compatibility constraint. Second, nodal clustering coefficients are introduced to preliminarily
remove a portion of outliers and speed up the following voting process. Third, we model nodes and edges in the graph as candidates
and voters, respectively. Mutual voting is then performed in the graph to score correspondences. Finally, the correspondences are
ranked based on the voting scores and top-ranked ones are identified as inliers. Feature matching, 3D point cloud registration, and 3D
object recognition experiments on various datasets with different nuisances and modalities verify that MV is robust to heavy outliers
under different challenging settings, and can significantly boost 3D point cloud registration and 3D object recognition performance.
Code will be available at: https://github.com/NWPU-YJQ-3DV/2022 Mutual Voting.

Index Terms—3D point clouds, mutual voting, feature matching, point cloud registration, object recognition

✦

1 INTRODUCTION

POINT cloud feature matching is one of the key problems
in the field of 3D computer vision. As the basis of 3D

computer vision tasks such as 3D reconstruction, 3D object
recognition, 3D object tracking, and point cloud registration,
point cloud feature matching requires the establishment of
correct point-to-point correspondences (a.k.a matches) in
the point cloud sequence. Such correspondences are usually
produced through a two-step procedure: initial correspon-
dence generation and inlier selection.

However, most existing 3D keypoint detectors and de-
scriptors still suffer from limited performance, resulting in
outliers in the initial correspondence set. Additionally, in
real-world applications, nuisances such as noise, varying
data resolutions, clutter, and occlusion will further generate
outliers. In that case, inlier selection is a vital step for ob-
taining geometrically consistent correspondences, however,
remains a very challenging issue at present [1].

For 3D inlier selection, existing geometry-based works
can be categorized as label-based and score-based. For label-
based methods [2], [3], [4], a two-class classifier is designed
to assign binary labels to correspondences. Typically, these
methods generally assume that the correct correspondences
can form a cluster and tend to find these matches with a
one-shot manner. These methods are hand-crafted two-class
classifiers, and usually suffer from limited discriminative
power to distinguish inliers and outliers. For score-based
methods [5], [6], [7], [8], they first calculate the confidence
scores for input correspondences and then rank correspon-
dences based on the scoring results. Feature similarities and
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geometric constraints are two common cues for defining
correspondence scoring functions. Methods relying on fea-
ture similarity constraints are not robust, as the descrip-
tiveness of feature descriptors is not guaranteed. Methods
relying on geometric constraints are more common to 3D
feature matching, whereas voting-based ones have attracted
increasing attention due to their effectiveness and simplicity.
Prior voting-based methods [5], [7] mainly vote in the Eu-
clidean space, which makes it difficult to accurately model
the compatibility relationship among correspondences and
fully exploit the consistency between the inliers. Thus, ex-
isting voting-based methods are still sensitive to heavy out-
liers. For deep-learned works, they generally need massive
data for training and hold poor generalization ability to
different down-stream tasks [1].

Under these considerations, we propose a mutual vot-
ing (MV) method for 3D inlier selection. Existing voting-
based methods follow a “voter→candidiate” one-way vot-
ing scheme, which ignores the potential existence of unreli-
able voters in the voting set and leads to less convincing
voting scores. By contrast, the key insight of our MV is
to achieve reliable scoring results for correspondences by
refining both voters and candidates in a mutual voting
scheme. To the best of our knowledge, MV proposes the
first mutual voting scheme for scoring 3D correspondences.
It first models the initial correspondence set as a compat-
ibility graph, where each nodal represents a single corre-
spondence and each edge between two nodes indicates a
pair of geometrically compatible correspondences. Second,
node clustering coefficients are introduced to preliminarily
remove a portion of outliers and speed up the following
voting process. Third, nodes and edges in the graph are ren-
dered as candidates and voters, respectively. Subsequently,
“node↔edge” mutual voting is performed in the graph, and
voting scores are calculated for all correspondences. Finally,
input correspondences are ranked in a descending order
based on voting scores, and top-ranked ones are recognized
as inliers. To verify the robustness and effectiveness of
MV, we conduct feature matching experiments on datasets
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incorporating various nuisances such as limited overlap,
clutter, occlusion, noise, data resolution variation, and the
results indicate that MV is robust to common nuisances.
In addition, MV’s performance in down-stream tasks are
experimentally verified. Specifically, 3D point cloud regis-
tration and 3D object recognition experiments are deployed
paired with comparisons with the state-of-the-arts. MV also
achieves outstanding point cloud registration and object
recognition performance when served as a drop-in replace-
ment in existing pipelines. The distinctions of MV against
existing methods are:

• Mutual voting: voters and candidates are voted
mutually to refine each other and finally improve
the confidence of voting scores. Unlike existing
voting-based methods [5], [7] that perform voting
in a single ”voter→candidate” line, our MV method
performs voting in a dual ”voter↔candidate” way.
The motivation behind is that convincing voting
scores are based on convincing voters, and the re-
liability of voters can also be evaluated from voters
cast by candidates. This mechanism clearly makes
MV distinctive against existing methods. MV is also
different from a recent graph-based method called
SC2-PCR [9] from two aspects. 1) SC2-PCR is a trans-
formation estimator that outputs a rigid transfor-
mation from correspondences, while MV performs
correspondence selection. 2) Although both meth-
ods execute in a graph space, the definition of the
label/score for a correspondence plays a more vital
role. MV scores correspondences with a novel mutual
voting scheme, while SC2-PCR tends to find a set of
seed correspondences and generate hypotheses from
a few reliable seeds.

• Nodal clustering coefficient: it is introduced to pre-
liminarily remove outliers. We introduce the nodal
clustering coefficient to remove a portion of outlier
nodes in the graph. This can be served as a coarse
module for 3D outlier rejection. It can alleviate the
negative impact of outliers on the following refine
module, i.e., mutual voting.

In a nutshell, this paper presents the following contribu-
tions:

• We propose an MV method for ranking 3D cor-
respondences. A mutual voting mechanism is pre-
sented by refining both voters and candidates to
achieve reliable scoring results. MV is highly selec-
tive even in the presence of limited overlap, clutter,
occlusion, noise, and data resolution variation.

• MV can effectively boost the performance of
correspondence-based down-stream tasks. We feed
the selected correspondences to correspondence-
based pipelines of 3D point cloud registration and
object recognition, and demonstrate that MV can
significantly boost the performance of downstream
tasks including 3D point cloud registration and ob-
ject recognition.

The remainder of this paper is organized as follows.
Sect. 2 gives a brief review on correspondence selection
methods. Sect. 3 provides a detailed description of our MV

method. Sect. 4 presents the experimental setup, results, and
discussions. Sect. 5 draws conclusions and presents future
research directions.

2 RELATED WORK

This paper focuses on the selection process for correct
correspondences, and we will give a review on correspon-
dence selection methods in 2D and 3D domains.

2.1 2D Feature Matching

Traditional methods. Fischler et al. [2] proposed the
random sampling consistency (RANSAC) method, which
can find the optimal parameter model in a set of datasets
containing outliers using an iterative approach, and has
been widely used in image alignment and stitching. For esti-
mating transformations from correspondences, RANSAC it-
eratively performs a hypothesis generation-and-verification
process by randomly draw samples from the given cor-
respondence set. However, RANSAC suffers from limited
accuracy and efficiency in the presence of heavy outliers.
Later, many variants of RANSAC have been proposed to
alleviate these issues [10], [11].

Leordeanu and Hebert [3] proposed a spectral anal-
ysis approach for finding consistent correspondences in
the initial feature matching set by assuming that inliers
usually form a cluster. Torresani et al. [12] scored the ini-
tial correspondences by minimizing an energy function on
correspondence similarity and spatial compatibility. These
two methods usually require the initial correspondence
set to possess a high inlier ratio. To deal with this issue,
some graph-matching-based methods have emerged [13],
[14], [15], [16], [17]. However, most graph-matching-based
methods suffer from limitations such as poor scalability and
limited efficiency [18], [19]. Although some methods can
achieve robust feature matching performance or speed up
the process of outlier rejection [20], [21], [22], it is still a
challenging problem when dealing with heavy outliers [23].

Learning-based methods. Learning-based methods for
2D feature matching serve the inlier selection problem as
a binary classification problem. Yi et al. [24] presented the
first deep-learned feature matcher in 2D domain based
on multi-layer perception networks, however, it fails to
mine local features among correspondences. To address
this issue, several works such as NM-Net [25], and OA-
Net [26] introduce various local feature mining modules to
capture local information. Dai et al. [27] proposed MS2DG-
Net, which considers the semantic information between
two given images’ sparse correspondences. Sun et al. [28]
normalized the feature map using weights estimated in
a permutation equivalent network, and excluded outliers
from this normalization.

In 2D domain, when sufficient training samples are
available, learning-based methods generally achieve better
performance compared to traditional methods. 2D feature
matching concentrates on matching regular images. By
contrast, MV focuses on the matching of unordered and
irregular 3D point clouds. It is more challenging due to
higher data dimensionality and data irregularity.
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2.2 3D Feature Matching

Score-based methods. Most of the early score-based
methods [29], [30] rank 3D correspondences on feature
similarity scores, while local features could be sensitive with
respect to noise and data resolution variation. Rodolà et al.
[6] proposed a game theory matching (GTM) method, which
seeks global consistency between surface points while op-
erating locally. It extends the scope of local descriptors by
actively selecting correspondences that satisfy the global
consistency constraint, enabling generalization to more chal-
lenging scenarios where two point clouds have different
unknown scales. Buch et al. [5] proposed a voting-based
method that combines both local and global constraints
to score correspondences. Yang et al. [7] proposed a con-
sistency voting method, which uses geometric and spatial
constraints to calculate the consistency scores of the pre-
defined voting set and the initial correspondence set for
correspondence ranking. Sahloul et al. [31] followed a two-
stage scoring scheme to rank correspondences, and pro-
posed a single-point superimposition transforms to improve
the stability of local constraint. Chen et al. [9] proposed SC2-
PCR that introduces a second-order spatial compatibility
metric to measure the affinity between correspondences and
employs global spectral technique to rank correspondences;
then, top-scored correspondences are served as seeds to
compute a final rigid transformation for 3D point cloud
registration.

Label-based methods. There are two types of label-
based methods: geometric and deep-learned. 1) Geometric
methods: some label-based methods assume that the correct
correspondences can form a cluster and tend to find these
correspondence in a one-shot manner. For instance, Chen
et al. [32] formed a cluster for each correspondence by
ensuring matches in the cluster are compatible with the
query match, and the largest cluster is supposed to be the
inlier set; Tombari et al. [4] proposed 3D Hough voting,
which first transforms correspondence to a 3D Hough space
and then finds a tight cluster formed by inliers in the
Hough space. Recently, Bustos and Chin [33] presented a
global optimization method called guaranteed outlier re-
moval (GORE) based on branch-and-bound for six-degree-
of-freedom (6-DoF) Euclidean registration; Yang et al. [34]
proposed TEASER++, which reformulates the registration
problems using a truncated least squares (TLS) cost and
introduces a general graph-theoretic framework for out-
lier removal. 2) Deep-learned methods: similar to 2D deep-
learned methods, they try to design a distinctive deep-
learned classifier. Deep global registration (DGR) [35] and
3DRegNet [36] classify a given correspondence by training
end-to-end neural networks and using operators such as
sparse convolution and point-by-point MLP; Yu et al. [37]
proposed CoFiNet, a coarse-to-refine learning framework,
which extracts correspondences from coarse to fine without
keypoint detection; Bai et al. [38] proposed PointDSC, a
deep neural network that explicitly explores spatial consis-
tency for removing outlier correspondences and 3D point
cloud registration.

Although deep-learned methods have achieved remark-
able performance, they usually require plenty of training
data, which are not always available in real-world appli-

cations. In addition, the generalization ability still remains
an issue for deep-learned methods. As such, this paper
focuses on geometric methods. Compared with existing
methods, MV has two distinctions. First, instead of voting
in the Euclidean space, MV performs voting in a graph
space to better model the compatibility relationship among
correspondences. Second, existing voting-based methods
are in a one-way voting fashion, which ignore the fact
that unreliable voters commonly exist and result in per-
formance deterioration. On the contrary, MV is a mutual
voting method that additionally refines voters based on
“candidate→voter” voting to improve the quality of the
voting set. We will show that our method, without massive
training data and GPU computing, yields even better per-
formance than deep-learned ones and achieves pleasurable
performance in both 3D point cloud registration and 3D
object recognition applications.

3 METHODOLOGY

The pipeline of our method is presented in Fig. 1. There
are mainly four steps involved: graph construction, nodal
clustering coefficients calculation, mutual voting, and corre-
spondence ranking. The role of each step in the pipeline is
as follows:

• Graph construction: the initial correspondence set is
modeled as a compatibility graph, where each node
represents a single correspondence, and each edge
between two nodes indicates a pair of geometrically
compatible correspondences. The motivation is to
accurately render the affinity relationship among
unordered correspondences.

• Nodal clustering coefficient calculation: in complex
networks, clustering coefficients are used to measure
the degree to which graph nodes hug the surround-
ings, portraying how dense or sparse the network is.
This concept is introduced to our MV method. It aims
at preliminarily removing a portion of outliers to
present a better base for the following mutual voting.

• Mutual voting: the score of each correspondence is
assigned with a mutual voting scheme, where voters
and candidates are mutually refined to achieve a
convincing scoring result. As high-quality voting sets
are fundamental to convincing voting results, we en-
force “candidate→voter” voting to reduce unreliable
voters, in addition to “voter→candidiate” voting.
This forms a mutual voting scheme.

• Correspondence ranking: all input correspondences
are sorted in a descending order based on the voting
scores. Top-scored ones are served as selected inliers
by MV.

To solve the 3D feature matching problem with heavy
outliers, we present MV that first constructs a graph to
accurately model the compatibility relationship among cor-
respondences and then performs mutual voting to refine
both voters and candidates to achieve convincing scoring
results for correspondences. MV is detailed in the following.
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Fig. 1. Pipelines of the proposed MV method. The input to MV is the initial correspondence set with outliers. First, a compatibility graph is
constructed for the initial correspondence set based on the compatibility score between correspondences. Second, the nodal clustering coefficients
are calculated to preliminarily remove a portion of outliers. Third, mutual voting is performed between nodes and edges. At the node→edge voting
stage, each edge will find its compatible node set (CNS), nodes in this set vote for the edge. At the edge→node voting stage, a node’s adjacent
edges with non-empty CNS vote for the node. Finally, all correspondences are ranked according to the voting scores, and top-scored ones are
served as inliers.

3.1 Graph Construction

The voting process will be performed in a graph. Com-
pared with the Euclidean space, the graph space can better
render the affinity relationship among correspondences. The
initial correspondence set is modeled as a compatibility
graph, where nodes represent correspondences and edges
connect geometrically compatible nodes.

In particular, let ps
i and pt

i denote the points in the source
point cloud Ps and target point cloud Pt, respectively. Then,
the rigidity between the two correspondences ci and cj can
be quantitatively measured as:

Sdist(ci, cj) =

∣∣∣∣∥∥∥ps
i − ps

j

∥∥∥−
∥∥∥pt

i − pt
j

∥∥∥∣∣∣∣ . (1)

The compatibility score between ci and cj is given as:

Scmp(ci, cj) = exp(−Sdist(ci, cj)
2

2d2cmp

), (2)

where dcmp is a distance parameter and Scmp ∈ [0, 1].
Ideally, Scmp(ci, cj) = 1 if ci and cj are inliers.

Subsequently, as shown in Fig.1(a), given a set of initial
correspondences C = {c1, c2, ..., cn}, we model them as a
graph G = (V,E). Here, V = {c1, c2, ..., cn} and E =
{e12, e13, ..., eij} with eij= (ci, cj). Notably, if Scmp(ci, cj)
is greater than a threshold tcmp, ci and cj form an edge and

Scmp(ci, cj) is the weight of the edge. To this end, a graph
is generated for C.

3.2 Nodal Clustering Coefficient Calculation

In complex networks, the clustering coefficients not only
portray how dense and sparse the network is, but also
describe the degree to which the nodes’ neighbors hug each
other [39]. We introduce this to the problem of 3D feature
matching.

3.2.1 Basic Concepts of the Clustering Coefficient

Let the degree of node ci be di, then there are at most
di(di − 1)/2 edges among di neighbor nodes. Let wi denote
the number of edges that actually exist among the neighbor-
ing nodes of node ci. In a weighted network, wi denotes the
sum of the weights of these edges. The clustering coefficient
αi for ci, as illustrated in Fig. 1(b), can be defined as:

αi=
wi

(di ∗ (di − 1))/2
. (3)

The nodal clustering coefficients reflect the significance of
the nodes in the network and the degree of local aggregation
of the network. In addition, average clustering coefficient
α and overall clustering coefficient αoverall can be used to
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express the degree of aggregation of the whole network, as
defined in the following:

α=
1

n

n∑
i=1

αi, (4)

αoverall=

n∑
i=1

wi

n∑
i=1

(di ∗ (di − 1))/2
. (5)

3.2.2 Application of Nodal Clustering Coefficient in MV

i) Remove outliers preliminarily. Inliers are consistent,
and therefore are supposed to be compatible with each
other. As such, inliers are more likely to form cliques in a
graph. It is interesting to note that nodes with greater nodal
clustering coefficients are more likely to be in cliques. There-
fore, we set an adaptive threshold tα to eliminate nodes with
low nodal clustering coefficients, which is defined as:

tα = min(αoverall, α, otsuα), (6)

where otsuα represents the OTSU [40] threshold based on
the nodal clustering coefficients of all nodes. The leverage of
nodal clustering coefficient has two merits. First, a portion of
outliers can be removed, which would alleviate the negative
effects of outliers in the following mutual voting process.
Second, less nodes will be involved in the voting process,
therefore speeding up the selection process.

ii) Be the weight in the voting process. The nodal
clustering coefficient is an informative cue for nodes. It will
participate the “node→edge” voting process (Sect. 3.3)

3.3 Mutual Voting

All nodes in G will be scored in a mutual voting process.
It is intuitive that candidates are nodes. For the definition of
voters, we choose edges. Admittedly, there are other choices
of voters, such as loops and cliques in the graph. However,
searching these types of voters is time-consuming especially
in large-scale graphs. In addition, edges are essential com-
ponents for these voters. Therefore, “node↔edge” mutual
voting, as illustrated in Fig. 1(c) and (d), is designed for
scoring correspondences.

i) Node→edge voting. We perform node→edge voting
to assign weights to edges in the subsequent edge→node
voting process. For each edge, we try to find its “compatible
node set” (CNS). In particular, a node ck is judged as a
compatible node with respect to edge eij if ck is connected
with both ci and cj . The set of such nodes for edge eij
is defined as its CNS, denoted by Ccmp(eij). As shown in
Fig. 1(c), nodes c3, c4, and c5 constitute the CNS for edge
e12.

Specifically, the CNS for an edge can be efficiently re-
trieved as follows. For a node ci in the compatibility graph,
its neighboring node set N(ci) is given as:

N(ci) = {cj |cj ∈ V, eij ∈ E}. (7)

Then, the CNS of eij can be derived by:

Ccmp(eij) = N(ci) ∩N(cj). (8)

At this point, edges are associated with CNSs (could be
empty sets). The voting score of eij is defined as:

S(eij) =
∑

ck∈Ccmp(eij)

αi + αj + αk

3
[Scmp(ci, cj)+

Scmp(ci, ck) + Scmp(cj , ck)].

(9)

Therefore, edges are assigned with voting scores.
ii) Edge→node voting. In this stage, edges become

voters. As illustrated in Fig. 1(d), nodes are voted by its
adjacent edges whose CNS is not empty. More specifically,
the voting score for ci is defined as:

S(ci) =
∑

Ccmp(eij )̸=∅

S(eij) (10)

The initial set of correspondences is then sorted in a de-
scending order according to the voting score S(ci). The
determination of the output of MV is flexible. One is using
OTSU [40] thresholding strategy. The other is selecting the
top-K ones as inliers, where K can be tuned according to
a particular application scenario. By default, we choose the
former one for automatic inlier selection.

3.4 Computational Complexity Analysis
Finally, we present the computational complexity anal-

ysis of MV. The main steps of MV include: graph con-
struction, nodal clustering coefficients calculation, mutual
voting, and correspondence ranking. Assuming a compat-
ibility graph with n nodes and m edges: first, the time
complexity of modeling the initial correspondence set into
a compatibility graph is O(n2); second, calculating the clus-
tering coefficients for all nodes indicates a computational
compatibility O(n3); third, finding the CNSs for edges and
the mutual voting process have computational complexities
of O(n3) and O(n2), respectively; finally, the computational
complexity of ranking correspondences with a fast sorting
algorithm is O(nlog(n)). Therefore, the overall computa-
tional complexity of the method is O(n2)+O(n3)+O(n3)+
O(n2) + O(nlog(n)) = O(n3). In practical applications, the
number of correspondences are generally at the magnitude
of a few thousand [1], and our method is still efficient as
compared with many other 3D feature matchers (verified in
Sect. 4.1.5).

4 EXPERIMENTS

This section presents three types of experiments for
evaluating our proposed method: feature matching, point
cloud registration and 3D object recognition experiments.

4.1 Feature Matching Experiments
4.1.1 Experimental Setup
Dataset. The datasets used for the experiments in this
section are UWA 3D modeling (U3M) [41], Bologna
Mesh Registration (BMR) [42], UWA 3D object recognition
(U3OR) [43], [44], and Bologna Dataset5 (BoD5) [42]. These
datasets have different data modalities, a variety of nui-
sances, and different application scenarios that allow for
an in-depth feature matching performance evaluation. The
details for these datasets are shown in Table 1. Several
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TABLE 1
Properties of feature matching experimental datasets.

Dataset Data modality Nuisances Application scenario # Matching pairs Avg. inlier ratio

U3M [41] LiDAR Limited overlap, self-occlusion Object Registration 496 14.80%
BMR [42] Kinect Limited overlap, self-occlusion, real noise Object Registration 485 5.63%

U3OR [43], [44] LiDAR Clutter, occlusion Object Recognition 188 8.09%
BoD5 [42] Kinect Clutter, occlusion, real noise, holes Object Recogniiton 43 15.75%

(a) U3M (b) BMR

(c) U3OR (d) BoD5

Fig. 2. Sample point clouds from feature matching experimental
datasets.

sample views of these datasets are visualized in Fig. 2.

Evaluation metric. For a correspondence c = (ps,pt), it is
judged as correct if it satisfies:∥∥∥Rgtp

s + tgt − pt
∥∥∥ < dinlier, (11)

where Rgt and tgt denote the ground-truth rotation matrix
and translation vector respectively; dinlier is a distance
threshold, which is set to 5 pr in the experiment. Here, ‘pr’
is a distance unit called point cloud resolution, which is
the mean of the closest distance of a point to the nearest
neighbor in a point cloud. Following [7], [8], we use the
recall of inliers with respect to top-K correspondence subset
as the evaluation metric. By varying the value of K and
recording the number of inliers in the corresponding subset,
a curve can be plotted with respect to different settings of
K . Let CK be the top-K correspondence subset and Cinitial

be the initial correspondence set, the recall of inliers with
respect to K is defined as:

recallK =
#inliers in CK

#inliers in Cinitial
. (12)

Compared methods. We compare MV with nine existing
state-of-the-art feature matching methods. These methods
are similarity score (SS) [43], [45], nearest neighbor simi-
larity ratio (NNSR) [46], spectral technique (ST) [3], search
of inliers (SI) [47], game theory matching (GTM) [6] and
consistency voting (CV) [7], PointDSC [38], TEASER++ [34],
SC2-PCR [9], where SI and CV are voting-based methods as
well.

Implementation details. The experiments were imple-
mented using the point cloud library (PCL) [48]. A previous
research [1] has verified that the correspondence sets com-
puted using the combination of Harris3D [49]+SHOT [42]
have different spatial distributions, different scales, and dif-
ferent inlier ratios, allowing for a comprehensive evaluation
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Fig. 3. Performance of MV with different settings of tα.

TABLE 2
Recall performance (%) of applying different constraints to MV on the

U3M dataset.

Std. of Gaussian noise (pr) 1.0 1.5 2.0 2.5 3.0
Distance+angular 71.39 68.32 60.17 51.51 48.00
Distance-only 74.43 72.92 65.45 64.21 62.95

of feature matching methods. Therefore, we employ the
Harris3D detector for keypoint detection and the SHOT
descriptor for local geometric feature extraction to gener-
ate initial correspondences. We also have tried the other
combinations in Sec. 4.1.4. By default, we empirically set
the compatibility threshold tcmp and the distance parameter
dcmp mentioned in Sec. 3.1 to 0.9 and 10 pr, respectively.

4.1.2 Method Analysis
Compatibility constraints. In addition to the distance con-
straint, the angular constraint, i.e., deviation angles between
normals, is also available for measuring the rigidity between
correspondences during graph construction. To verify the
rationality of applying the distance-only constraint, we com-
pared the recall performance of MV and its variant with the
distance+angular constraint on top-100 sets under different
levels of Gaussian noise. This experiment was conducted on
the U3M dataset.

Results in Table 2 show that adding angular constraint
does not improve the recall performance, because the an-
gular constraint is very sensitive to noise. By contrast, the
distance-only constraint achieves more stable performance.

The rationality of setting clustering coefficient threshold
adaptive. The clustering coefficient threshold tα in Eq. 6 is
used to preliminarily reject outliers. To very the rationality
of making it adaptive, we vary tα from 0 to 0.5 with a
step of 0.1, and compare with the adaptive threshold. The
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Fig. 4. Comparison of MV methods with and w/o nodal clustering coefficient calculation on the four subsets of U3M (NCC denotes nodal clustering
coefficients).
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(a) U3M (linear)
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(b) BMR (linear)
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(c) U3OR (linear)
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(d) BoD5 (linear)
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(g) U3OR (log)
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Fig. 5. Feature matching performance of tested methods on four feature matching datasets.
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Fig. 6. Information in terms of the inlier ratio and the number of inliers of the input correspondence sets under different experimental configurations
on the U3M dataset.

TABLE 3
Feature matching performance (%) on U3M.

Precision Recall F-score
SS [43], [45] 4.81 63.39 8.94
NNSR [46] 9.67 41.63 15.69
ST [3] 4.31 100.00 8.26
GTM [6] 35.63 46.22 40.24
SI [47] 14.28 43.81 21.54
CV [7] 13.31 94.92 23.35
PointDSC [38] 9.09 0.23 0.45
SC2-PCR [9] 49.81 20.74 29.29
TEASER++ [34] 1.03 0.56 0.73
MV 31.00 78.26 44.41

experiment is conducted on the U3M dataset, and the results

TABLE 4
Feature matching performance (%) on BMR.

Precision Recall F-score
SS [43], [45] 2.68 54.41 5.11
NNSR [46] 4.41 29.11 7.66
ST [3] 2.89 100.00 5.62
GTM [6] 23.07 26.07 24.48
SI [47] 4.57 14.00 6.89
CV [7] 8.04 88.29 14.74
PointDSC [38] 5.43 86.03 10.21
SC2-PCR [9] 3.11 100.00 6.03
TEASER++ [34] 19.13 42.53 26.39
MV 18.19 62.8 28.21

of MV under different parameter settings are shown in
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Fig. 7. Robust performance of tested methods with respect to different nuisances on U3M.

TABLE 5
Feature matching performance (%) on U3OR.

Precision Recall F-score
SS [43], [45] 2.40 80.53 4.66
NNSR [46] 6.42 63.45 11.66
ST [3] 1.69 99.49 3.32
GTM [6] 43.55 43.28 43.41
SI [47] 24.27 60.11 34.58
CV [7] 7.34 90.63 13.58
PointDSC [38] 3.84 0.27 0.50
SC2-PCR [9] 62.34 45.14 52.36
TEASER++ [34] 0.19 1.30 0.34
MV 64.62 90.39 75.36

TABLE 6
Feature matching performance (%) on BoD5.

Precision Recall F-score
SS [43], [45] 6.29 52.03 11.22
NNSR [46] 12.84 39.61 19.39
ST [3] 11.12 100.00 20.01
GTM [6] 65.23 50.18 56.72
SI [47] 27.27 41.80 33.01
CV [7] 37.96 99.98 55.03
PointDSC [38] 28.59 96.12 44.07
SC2-PCR [9] 6.59 100.00 12.37
TEASER++ [34] 52.99 82.33 64.48
MV 55.12 94.39 69.60

Fig. 3.

It can be seen from the figure that changing tα has a clear
impact on the feature matching performance. Moreover, our
adaptive threshold achieves the best performance.

Ablation study. To verify the necessity of using the nodal
clustering coefficient to remove a portion of outliers, ab-
lation experiments were conducted to compare the recall
performance of MV with and without the nodal clustering
coefficient calculation step. The experimental results are
presented in Fig. 4.

On the four subsets of U3M, MV with nodal clustering
coefficient calculation consistently achieves the best perfor-
mance. This is because 1) the nodal clustering coefficient
utilizes the geometric information of the cluster structures
in the compatibility graph and has a strong discriminative
power; 2) it reduces the impact of outliers on the subsequent
mutual voting process, which results in a more convincing
judgement on the correctness of correspondences.

4.1.3 Feature Matching Results

Feature matching results of tested score-based methods
on experimental datasets are shown in Fig. 5. For each
dataset, we give two figures with linear and logarithmic
recall axes plots, which can more clearly reflect the perfor-
mance gap with small and large values of K , respectively.

On all the experimental datasets, MV outperforms the
others, indicating that our method can be generalized to
different application scenarios and data modalities. On the
U3OR dataset, MV has a more obvious gap over other
methods. Table 1 shows that the average inlier ratio of U3OR
is relatively low (8.09%), thus validating the robustness of
MV to low inlier ratio. Fig. 8 visualizes the feature matching
results of several tested methods.

To compare with label-based methods as well, we further
present precision, recall, and F-score performance [1] of
both label-based and score-based methods in Tables 3-6. For
score-based methods, correspondence grouping is achieved
using the OTSU technique. For PointDSC, we directly use
the model trained on the 3DMatch dataset on object datasets
to test its generalization ability. For SC2-PCR, because it is a
rigid transformation estimator, we use the correspondences
that are consistent with its estimated transformation matrix
as its judged inliers.

As shown in Tabels 3-6, MV is the best competitor
in terms of the F-score performance on all datasets. The
performance of PointDSC is very poor when applied to
object datasets. The performance of all compared methods
fluctuates significantly in cross-dataset experiments. By con-
trast, our MV achieves stable and outstanding performance
in this case.

4.1.4 Robustness Results

The experiments in this section analyze the robustness of
all compared methods on the U3M dataset in the presence of
Gaussian noise, point density variation, different detector-
descriptor combinations, and varying the number of initial
feature matches. The impacts of these nuisances on the
inputs are statistically shown in Fig. 6. Here, we set K to
100, and the results are shown in Fig. 7.

Gaussian noise. To simulate the real case with noisy point
cloud data, different levels of Gaussian noise are added
to the target point cloud during the experiments, and the
standard deviation of Gaussian noise varies from 1.5 pr to
3.0 pr with a gap of 0.5 pr.

The results in Fig. 7(a) show that MV ranks first when the
standard deviation is less than 1.5 pr, and is only inferior to
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TABLE 7
Varying the number of input correspondences (ms).

# Initial correspondences 600 900 1200 1600 1900
SS [43], [45] 54.40 86.39 135.00 278.64 319.18
NNSR [46] 61.73 97.90 154.56 318.31 366.26
ST [3] 1946.24 3560.74 5983.80 15007.80 17611.20
GTM [6] 36.63 65.65 112.99 288.72 336.87
SI [47] 95.52 150.32 241.58 519.92 600.39
CV [7] 102.76 177.85 297.38 709.77 844.76
MV 39.75 73.52 133.09 399.95 510.14

TABLE 8
Varying the inlier ratio of input correspondences (ms).

Inlier ratio 0%∼5% 5%∼10% 10%∼15% 15%∼20% 20%∼25% 25%∼30%
SS [43], [45] 53.79 54.76 51.23 34.89 41.00 31.00
NNSR [46] 60.94 63.54 59.07 43.89 50.50 38.00
ST [3] 2981.73 3099.22 3060.30 2017.33 2548.50 1580.00
GTM [6] 50.93 52.89 52.77 34.44 43.33 26.67
SI [47] 107.18 112.05 106.07 80.78 93.33 72.33
CV [7] 145.16 151.95 147.43 97.44 130.33 80.00
MV 35.86 57.84 103.30 107.11 207.33 115.33

GTM as the standard deviation further increases. This shows
that MV is robust to different levels of noise.

Density variation. To investigate the effect of point cloud
density variation on the performance of all methods, the
target point cloud is down-sampled. The down-samping
ratio varies from 1 to 0.1 with an interval of 0.1. The
experimental results are shown in Fig. 7(b).

As witnessed by the figure, the performance of MV is
more advantageous than other competitors. Moreover, MV
is still able to achieve a 93% recall with 90% points removed.

Different detector-descriptor combinations. Different com-
binations of keypoint detectors and local feature descriptors
generate different numbers and spatial distributions of ini-
tial correspondences. Two detectors, i.e., Harris3D [49] and
ISS [50], and three local feature descriptors, i.e., SHOT [42],
LFSH [45] and RCS [51], are used in the experiments, re-
sulting a total of six different combinations. We use C1∼C6
to represent the combinations of Harris3D+SHOT, Har-
ris3D+LFSH, Harris3D+RCS, ISS+SHOT, ISS+LFSH, and
ISS+RCS, respectively. The experimental results are shown
in Fig. 7(c).

The results suggest that MV is the best performer under
all combinations. This indicates that MV is suitable for
inputs generated from different detectors and descriptors.

Varying numbers of initial correspondences. Changing the
scale of the input correspondences can be achieved by vary-
ing the non-maximum-suppression radius of the employed
keypoint detector. The results are reported in Fig. 7(d).

When faced with inputs at different scales, our MV con-
sistently achieves the best performance. The gap becomes
more clear for inputs wither greater scales.

4.1.5 Time efficiency
To compare the time efficiency of tested feature matching

methods, two cases are analyzed here: inputs with different
magnitudes and different inlier ratios. For the former, the
number of initial correspondences is set to 600, 900, 1200,
1600, and 1900; for the latter, the input magnitude is fixed
to 1200 and point cloud pairs are divided into six groups,

SS [43], [45] NNSR [46] GTM [6] CV [7] MV

0/50 5/50 19/50 3/50 23/50

3/50 6/50 26/50 18/50 27/50

2/50 17/50 46/50 37/50 46/50

1/50 14/50 48/50 44/50 50/50

Fig. 8. Visual feature matching results of several tested methods. Each
method has two visual results, where the top one is the scoring result
rendered by pseudo-color (red→blue: high → low confidence scores)
and the bottom one is the selection result (x /K indicates x inliers in the
selected K correspondences). Green and red lines refer to correct and
incorrect correspondences, respectively.)

whose inlier ratios range from 0% to 30% with a step of 5%.
The experiments were conducted on the U3M dataset and
the average time costs for matching a single point cloud pair
of tested methods are presented in Tables 7 and 8.

From Table 7, it can be observed that the time cost taken
by each method tends to increase as the input correspon-
dence magnitude increase. In particular, MV is a top-ranked
performer when the number of input correspondences is
smaller than 1600. From Table 8, it can be found that MV
is the most efficient one when the inlier ratio is less than
5%. As the inlier ratio further increases, the time cost of
MV improves but still remains efficient, because it is able
to finish inlier selection with around 0.1 seconds when the
inlier ratio is between 10% and 30%. With more inliers in the
initial correspondence set, more edges could possess CNSs
and the cardinality of CNS will increase, resulting in more
time costs.

Overall, MV is an efficient method for 3D feature match-
ing, and the recall performance of MV is clearly better than
other compared methods.

4.2 Point Cloud Registration Experiments

4.2.1 Experimental Setup
Datasets. We consider four datasets, i.e., the object-scale
dataset U3M, the scene-scale indoor datasets 3DMatch [52]
& 3DLoMatch [53], and scene-scale outdoor dataset
KITTI [54]. 3DLoMatch is the subset of 3DMatch, where the
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TABLE 9
3DMatch and 3DLoMatch test set statistics.

Scene # Point Clouds # Point Cloud Pairs of 3DMatch # Point Cloud Pairs of 3DLoMatch

7-scenes-redkitchen 60 506 525
sun3d-home at-home at scan1 2013 jan 1 60 156 289

sun3d-home md-home md scan9 2012 sep 30 60 208 230
sun3d-hotel uc-scan3 55 226 218

sun3d-hotel umd-maryland hotel1 57 104 158
sun3d-hotel umd-maryland hotel3 37 54 49

sun3d-mit 76 studyroom-76-1studyroom2 66 292 240
sun3d-mit lab hj-lab hj tea nov 2 2012 scan1 erika 38 77 72

Total 433 1623 1781
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(b) Results without using MV selection

Fig. 9. Registration performance of RANSAC-based methods with and
without MV-selected correspondences when using different hypothesis
evaluation metrics on U3M.

overlap rate of the point cloud pairs ranges from 10% to
30%, which is very challenging. The statistics of 3DMatch
and 3DLoMatch test set are shown in Table 9. For KITTI,
we follow [9], [38] and obtain 555 pairs of point clouds
for testing. We use both FPFH [55] (handcrafted descriptor)
and FCGF [56] (learned descriptor) as feature descriptors for
correspondence generation on scene-scale datasets.

Evaluation metric. We follow [57] that employs the root
mean square error (RMSE) metric to evaluate the 3D point
cloud registration performance on the object-scale dataset,
e.g., U3M. Given the estimated rotation matrix Rest and
translation vector test, the point-wise error εp between two
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Fig. 10. Registration performance of tested point cloud registration
methods on U3M.

truly corresponding points ps and pt is defined as:

εp(p
s,pt) = ||Restp

s + test − pt||. (13)

Then, the definition of RMSE is:

RMSE =

√√√√ ∑
ps,pt∈Cgt

ε2p (p
s,pt)∣∣Cgt

∣∣ , (14)

where Cgt represents the ground-truth set of corresponding
points between two point clouds. When the RMSE of a
registration is smaller than a threshold trmse, we judge it
as success.

Also, we employ the rotation error (RE) and translation
error (TE) to evaluate the registration results on scene-
scale dataset. Given the estimated rotation matrix Rest

and ground-truth rotation matrix Rgt, estimated translation
vector test and ground-truth translation vector tgt, RE and
TE can be defined as:

RE(Rest) = arc cos
Tr(Rest

⊤Rgt)− 1

2
, (15)

TE(test) = ||test−tgt||2. (16)

By referring to the settings in [35], the registration is consid-
ered successful when the RE ≤ 15°, TE ≤ 30 cm on 3DMatch
& 3DLoMatch datasets, and RE ≤ 5°, TE ≤ 60 cm on KITTI
dataset. For a dataset, we define its registration accuracy as
the ratio of success cases to the total number of point cloud
pairs to be registered.
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TABLE 10
Registration results (%) on 3DMatch dataset under 1k correspondences setting. The symbol ‘-’ denotes unavailable benchmark record, bold and

underlining indicate the best and the second best results, respectively.

Descriptor Method Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Room MIT Lab Avg.

FPFH

i) Traditional
SM [3] - - - - - - - - 55.88
FGR [58] 44.07 51.28 37.98 46.9 38.46 48.15 26.71 46.75 41.16
RANSAC-1K [2] 60.87 71.15 53.37 67.26 58.65 70.37 44.52 51.95 58.60
RANSAC-10K [2] 77.08 82.69 67.31 82.30 73.08 81.48 61.99 66.23 73.75
GORE [33] 78.06 80.12 66.34 86.54 75.96 83.30 66.09 59.74 74.79
TEASER++ [34] - - - - - - - - 76.27
LTGV [8] 80.63 82.69 67.79 86.73 75.00 85.19 67.47 67.53 76.83
ii) Deep learned
3DRegNet [36] - - - - - - - - 26.31
DGR [35] 69.17 74.36 57.69 68.58 65.38 74.07 56.16 55.84 65.19
PointDSC [38] 76.88 81.41 65.87 83.63 70.19 79.63 61.99 62.34 73.14
MV 82.21 82.69 71.15 86.73 78.85 83.33 69.18 67.53 78.25

FCGF

i) Traditional
SM [3] - - - - - - - - 86.57
RANSAC-1K [2] 71.15 72.44 58.17 80.97 71.15 72.22 63.36 63.64 69.25
RANSAC-10K [2] 74.90 73.72 59.62 81.86 70.19 70.37 62.33 66.23 70.67
TEASER++ [34] - - - - - - - - 86.07
LTGV [8] 95.65 91.67 76.44 94.69 89.42 81.48 82.53 75.32 88.48
ii) Deep learned
3DRegNet [36] - - - - - - - - 77.76
DGR [35] 93.68 91.03 75.00 95.13 89.42 85.19 81.85 67.53 87.31
PointDSC [38] 94.86 91.03 75.48 92.48 87.5 81.48 83.22 71.43 87.55
MV 96.64 93.59 75.96 95.58 93.27 83.33 84.93 74.03 89.71

TABLE 11
Registration results (%) on 3DLoMatch dataset under 1k correspondences setting.

Descriptor Method Kitchen Home1 Home2 Hotel1 Hotel2 Hotel3 Study Room MIT Lab Avg.

FPFH

i) Traditional
FGR [58] 0.38 2.77 4.78 1.83 1.27 4.08 0.42 1.39 1.74
RANSAC-1K [2] 10.29 9.34 16.96 17.43 12.03 32.65 2.92 4.17 11.40
RANSAC-10K [2] 23.24 15.92 27.83 25.69 18.35 38.78 6.25 11.11 20.16
GORE [33] 29.90 21.45 29.56 44.59 26.58 40.82 11.25 11.11 26.50
TEASER++ [34] - - - - - - - - 28.9
LTGV [8] 33.10 22.30 36.90 45.00 30.70 34.10 12.30 21.70 30.38
ii) Deep learned
DGR [35] 19.05 14.53 20.00 37.61 24.05 34.69 8.33 13.89 19.93
PointDSC [38] 24.90 16.00 27.00 27.30 14.60 29.30 5.10 15.90 19.99
MV 34.20 24.50 37.80 47.80 32.10 36.60 13.60 20.30 32.17

FCGF

i) Traditional
RANSAC-1K [2] 18.67 9.69 20.00 19.27 19.62 22.45 12.08 16.67 16.68
RANSAC-10K [2] 18.48 10.03 23.91 17.89 19.62 20.41 7.92 13.89 16.28
TEASER++ [34] - - - - - - - - 42.11
LTGV [8] 55.10 39.70 50.50 57.90 39.40 36.60 40.70 36.20 48.29
ii) Deep learned
DGR [35] 37.90 20.07 35.22 31.19 28.48 28.57 17.50 23.61 29.42
PointDSC [38] 51.40 34.00 52.30 57.40 38.00 36.60 33.50 40.60 45.14
MV 56.40 40.80 50.00 59.30 38.00 36.60 41.10 39.10 48.91

Implementation details. We follow RANSAC-based meth-
ods that estimate a registration pose from a set of corre-
spondences to perform registration. More specifically, we
perform correspondence selection using MV and employ the
output of MV as the input of RANSAC estimator. By default,
we use 5k RANSAC iterations to perform registration. Note
that better estimators could also be considered, which are
complementary to MV because MV’s output is the input of
rigid transformation estimators.

4.2.2 Results on U3M Dataset

We first compare the performance of RANSAC meth-
ods with and without MV, respectively. In particular, ten
RANSAC hypothesis evaluation metrics investigated in [59]
(MAE, MSE, LOG-COSH, EXP, QUANTILE, -QUANTILE,

Inlier Count, HP, PC Dist, #OP) are considered. The RMSE
threshold is varied from 0.5 pr to 5 pr with a step of 0.5 pr.
The results are presented in Fig. 9.

Two observations can be made from the figure. First,
significant performance boosting is achieved under all
RANSAC hypothesis evaluation metrics. For instance, when
trmse equals 5 pr, RANSAC with inlier count metric
achieves more than 30 percentages improvement when
equipped with our MV-selected correspondences than us-
ing the raw correspondence set as the input. Second,
MV+RANSAC achieves more advanced performance with
MAE, MSE, LOG-COSH, QUANTILE, -QUANTILE and PC
Dist hypothesis metrics.

In addition, we perform a more extensive comparison
in Fig. 10. Here, the following methods are tested, includ-
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TABLE 12
Registration results on 3DMatch dataset under 5k correspondences

setting.

FPFH FCGF
RR (%) RE (°) TE (cm) RR (%) RE (°) TE (cm)

i) Traditional
SM [3] 55.88 2.94 8.15 86.57 2.29 7.07
FGR [58] 40.91 4.96 10.25 78.93 2.90 8.41
RANSAC-1M [2] 64.20 4.05 11.35 88.42 3.05 9.42
RANSAC-4M [2] 66.10 3.95 11.03 91.44 2.69 8.38
GC-RANSAC [10] 67.65 2.33 6.87 92.05 2.33 7.11
TEASER++ [34] 75.48 2.48 7.31 85.77 2.73 8.66
CG-SAC [62] 78.00 2.40 6.89 87.52 2.42 7.66
SC2-PCR [9] 83.73 2.18 6.70 93.16 2.09 6.51
ii) Deep learned
3DRegNet [36] 26.31 3.75 9.60 77.76 2.74 8.13
DGR [35] 32.84 2.45 7.53 88.85 2.28 7.02
DHVR 67.10 2.78 7.84 91.93 2.25 7.08
PointDSC [38] 72.95 2.18 6.45 91.87 2.10 6.54
MV 82.62 3.13 9.04 93.47 3.30 9.46

TABLE 13
Registration results on 3DLoMatch dataset under 5k correspondences

setting.

FPFH FCGF
RR (%) RE (°) TE (cm) RR (%) RE (°) TE (cm)

i) Traditional
RANSAC-1M [2] 0.67 10.27 15.06 9.77 7.01 14.87
RANSAC-4M [2] 0.45 10.39 20.03 10.44 6.91 15.14
TEASER++ [34] 35.15 4.38 10.96 46.76 4.12 12.89
SC2-PCR [9] 38.57 4.03 10.31 58.73 3.80 10.44
ii) Deep learned
DGR [35] 19.88 5.07 13.53 43.80 4.17 10.82
PointDSC [38] 20.38 4.04 10.25 56.20 3.87 10.48
MV 36.16 5.07 12.73 59.18 4.99 12.92

ing SAC-COT [57], MV+SAC-COT, OSAC [45], MV+OSAC,
SAC-IA [55], MV+SAC-IA, RANSAC [2], MV+RANSAC,
FGR [58], GO-ICP [60], and PPF [61], where the latter three
are RANSAC-independent methods.

The results indicate that MV+SAC-COT achieves the best
performance. Notably, MV significantly improves all tested
RANSAC-fashion estimators, such as SAC-COT, OSAC,
SAC-IA, and RANSAC.

4.2.3 Results on 3DMatch & 3DLoMatch Datasets
Feature matching are usually performed using the near-

est neighbor search [1] or the mutual nearest neighbor
search [58] in the descriptor space. The two options generate
two settings on 3DMatch and 3DLoMatch datasets, i.e., “5k
correspondences setting” and “1k correspondences setting”.
By default, we use the 5k correspondence setting.

1k correspondences setting. The results under 1k corre-
spondences setting are reported in Tables 10 and 11. The
benchmark records under this setting are taken from [8].

The following conclusions can be drawn: 1) regardless
of which descriptor is used, MV outperforms all compared
methods on both 3DMatch and 3DLoMatch datasets, indi-
cating its strong ability of registering indoor scene point
clouds; 2) even compared with deep-learned methods, our
MV still achieves better performance without any data train-
ing. Fig. 11 gives some visualization examples of the feature
matching and registration results by MV on the 3DMatch
dataset.

5k correspondences setting. Following [9], [38], results
with 5k correspondences setting are shown in Tables 12

TABLE 14
Registration results on KITTI dataset.

FPFH FCGF
RR (%) RE (°) TE (cm) RR (%) RE (°) TE (cm)

i) Traditional
FGR [58] 5.23 0.86 43.84 89.54 0.46 25.72
TEASER++ [34] 91.17 1.03 17.98 94.96 0.38 13.69
RANSAC [2] 74.41 1.55 30.20 80.36 0.73 26.79
CG-SAC [62] 74.23 0.73 14.02 83.24 0.56 22.96
SC2-PCR [9] 99.28 0.39 8.68 97.84 0.33 20.58
ii) Deep learned
DGR [35] 77.12 1.64 33.10 96.90 0.34 21.70
PointDSC [38] 98.92 0.38 8.35 97.84 0.33 20.32
MV 98.92 0.56 10.82 98.20 0.35 20.41

TABLE 15
Registration results under different descriptor settings.

3DMatch 3DLoMatch
RR (%) RE (°) TE (cm) RR (%) RE (°) TE (cm)

FCGF [56] 85.10 3.05 9.42 40.10 6.01 10.32
SpinNet [63] 88.60 2.12 6.86 59.80 3.78 10.75
Predator [53] 89.00 2.11 6.03 59.80 3.12 8.91
FCGF+MV 93.47 (8.37↑) 3.30 9.46 59.18 (19.08↑) 4.99 12.92
SpinNet+MV 95.13 (6.53↑) 2.18 7.01 70.63 (10.83↑) 3.82 11.88
Predator+MV 92.73 (3.73↑) 2.15 6.27 68.60 (8.80↑) 3.38 9.53

and 13. When using FCGF descriptor, our MV achieves
the best performance on both 3DMatch and 3DLoMatch
dataset, indicating that MV is very flexible. When using
FPFH descriptor, MV is the second best one, being slightly
inferior to SC2-PCR.

Different descriptor settings. In addition to FPFH and
FCGF, more recent deep-learned descriptors such as Spin-
Net [63] and Predator [53] are combined with MV for
evaluation.

As show in Table 15, applying MV for outlier rejection
can greatly improve all tested methods. It indicates that
MV has good generalization ability and can be integrated
into deep-learned methods to boost their registration per-
formance.

Potential improvements for MV. Our MV is flexible and
still has a large room for improvement. For instance, we
tried two different methods for graph construction in the
MV pipeline, i.e., the second-order graph (SOG) in SC2-PCR
and the “ground-truth” graph (GTG). In particular, GTG
indicates that edges only connect true inliers in the graph
using the ground-truth information. It can be served as an
ideal case for graph construction. The results are presented
in Table 16.

It can be seen that MV+SOG effectively reduces RE and
TE values, generating more accurate registrations. MV+GTG
significantly improves the RR performance on 3DLoMatch
dataset. It verifies that MV provides a very flexible pipeline
and has a large room for further improvements.

4.2.4 Results on KITTI dataset
In Table 14, the results of DGR [35], PointDSC [38],

TEASER++ [34], RANSAC [2], CG-SAC [62], SC2-PCR [9]
and MV are reported for comparison.

As shown by the table, in terms of the registration recall
performance, MV presents the best and the second best
(0.36% behind the best method) results with FPFH and
FCGF descriptor settings, respectively. Note that outdoor
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Inlier num: 271

Inlier ratio: 33.37%

Recall: 67.89%

Precision: 99.45%
Inlier num: 328

Inlier ratio: 44.93%

Recall: 78.96%

Precision: 97.36%

Inlier num: 138

Inlier ratio: 18.27%

Recall: 88.40%

Precision: 82.99%
Inlier num: 118

Inlier ratio: 9.82%

Recall: 89.83%

Precision: 79.70%

Inlier num: 120

Inlier ratio: 10.81%

Recall: 86.67%

Precision: 88.14%
Inlier num: 75

Inlier ratio: 14.25%

Recall: 80%

Precision: 75%

Inlier num: 42

Inlier ratio: 7.51%

Recall: 90.47%

Precision: 53.52%
Inlier num: 180

Inlier ratio: 13.76%

Recall: 90.55%

Precision: 76.88%

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11. Visual feature matching and registration results by MV on 3DMatch dataset. For each result, from left to right: initial correspondences
rendered based on voting scores (red→ blue: high→low voting scores), selected correspondences by MV (green and red lines respectively denote
correct and incorrect correspondences), and the registration result.

point clouds are significantly sparse and non-uniformly
distributed. The registration experiments on object, indoor
scene, and outdoor scene consistently verify that MV-
selected correspondences can effectively boost point cloud
registration performance in different application contexts.

4.3 3D Object Recognition Experiments
4.3.1 Experimental Setup
Datasets. The two datasets used for the experiments in this
section are Queen [70] and U3OR [43], [44]. The Queen

dataset contains 5 models and 84 scenes, and the U3OR
dataset contains 5 models and 50 scenes. The two datasets
are acquired through different sensing techniques and pos-
sess complex backgrounds, real noise, clutter and occlusion.

Evaluation metrics. We follow [30] and compute the εres
and rov metrics. Assume that the transformation estimation
matrix Mi = (Ri, ti) is obtained in the i-th iteration of
RANSAC, and the model point cloud Ps is transformed
to obtain the point cloud Ptrans. Let pt

i be the point of
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TABLE 16
Potential improvements for MV. SOG: Construct a second-order

compatibility graph instead. GTG: Construct a “ground truth” graph
instead.

3DMatch 3DLoMatch
RR (%) RE (°) TE (cm) RR (%) RE (°) TE (cm)

FPFH
MV 82.62 3.13 9.04 36.16 5.07 12.73
MV+SOG 82.93 2.22 6.78 38.41 4.08 10.34
MV+GTG 98.58 1.61 5.35 86.64 3.26 8.74

FCGF
MV 93.47 3.30 9.46 59.18 4.99 12.92
MV+SOG 93.22 2.13 6.61 58.23 3.81 10.35
MV+GTG 98.40 1.66 5.66 91.63 2.83 7.84

TABLE 17
Object recognition results on Queen dataset (%).

Method Angle Bigbird Gnome Kid Zoe Average
EM [64] - - - - - 81.90

VD-LSD(SQ) [65] 89.70 100.00 70.50 84.60 71.80 83.80
(500 iterations)

Spin image [66] 2.63 51.16 18.42 36.59 9.52 24.14
RoPS [30] 34.21 34.88 44.74 17.07 11.90 28.57
RCS [67] 63.16 76.74 86.84 82.93 57.14 74.38

VOID [68] 84.21 90.70 92.11 95.12 61.94 86.21
Spin image+MV 21.05 67.44 47.37 78.05 47.62 53.69 (29.55↑)

RoPS+MV 60.53 72.09 68.42 58.54 73.81 67.49 (38.92↑)
RCS+MV 92.11 88.37 94.74 95.12 92.86 94.58 (20.20↑)

VOID+MV 94.74 83.72 94.74 100.00 95.24 97.04 (10.83↑)
(1000 iterations)
Spin image [66] 2.63 48.84 18.42 43.90 19.05 27.09

RoPS [30] 39.47 39.53 50.00 24.39 11.90 33.00
RCS [67] 68.42 79.07 86.84 87.80 69.05 79.31

VOID [68] 84.21 83.72 94.74 90.24 71.43 88.18
Spin image+MV 23.68 67.44 50.00 85.37 42.86 56.65 (29.56↑)

RoPS+MV 63.16 74.42 68.42 63.41 69.05 68.47 (35.47↑)
RCS+MV 92.11 86.05 94.74 95.12 95.24 95.07 (15.76↑)

VOID+MV 92.11 74.42 94.74 100.00 95.24 97.04 (8.86↑)
(2000 iterations)
Spin image [66] 5.26 51.16 23.68 46.34 26.19 31.03

RoPS [30] 50.00 51.16 68.42 41.46 26.19 47.52
RCS [67] 71.05 83.72 86.84 95.12 69.05 82.76

VOID [68] 94.74 95.24 100.00 97.56 78.57 93.07
Spin image+MV 23.68 65.12 50.00 80.49 47.62 56.16 (25.13↑)

RoPS+MV 63.16 72.09 71.05 70.73 73.81 70.94 (23.42↑)
RCS+MV 92.11 79.07 94.74 100.00 92.86 95.57 (12.81↑)

VOID+MV 94.74 95.24 100.00 100.00 97.62 97.52 (4.45↑)

Ps, ptrans
i be the point of Ptrans and the nearest neigh-

bor to the point in the point cloud Pt. If the distance
d(pt

i,p
trans
i ) = ||pt

i−ptrans
i || is less than the threshold drec,

which is set to 2 pr, ptrans
i will be classified into the point set

Ptrans
overlap. The point cloud residual error εres and the point

cloud overlap rate rov are defined as:

εres =

∑
ptrans

i ∈Ptrans
overlap

d(ptrans
i ,pt

i)

|Ptrans
overlap|

, (17)

rov =
|Ptrans

overlap|
|Pt|

. (18)

When the residual is less than the threshold dres and the
overlap rate is greater than the threshold toverlap, the trans-
formation estimation matrix Mi is considered to satisfy the
condition and the iteration is stopped. Using this transfor-
mation matrix the model Ps can be identified from the scene
Pt. Following [68], we let dres be 0.75 pr and toverlap be 0.04,
or let dres be 1.5 pr and toverlap be 0.2.

4.3.2 Comparative Results
For 3D object recognition, descriptor-based methods are

main solutions [30]. We tested the recognition performance
of several representative descriptors with and without MV-
selected correspondences under different RANSAC itera-

TABLE 18
Object recognition results on U3OR dataset (%).

Method T-rex Chef Chicken parasaurolophus Average
RoPS [30] - - - - 98.90

TriLCI [69] 97.78 100.00 100.00 62.22 98.90
(500 iterations)

Spin image [66] 35.56 92.00 62.50 40.00 58.51
RCS [67] 88.89 96.00 97.92 84.44 92.02

SHOT [42] 35.56 82.00 52.08 42.22 53.72
FPFH [55] 46.67 100.00 68.75 46.67 66.49
VOID [68] 97.78 100.00 100.00 95.56 98.40

Spin image+MV 68.89 100.00 75.00 57.78 76.06 (17.55↑)
RCS+MV 93.33 100.00 95.83 93.33 95.74 (3.72↑)

SHOT+MV 40.00 98.00 66.67 44.44 63.30 (9.58↑)
FPFH+MV 64.44 100.00 72.92 60.00 75.00 (8.51↑)
VOID+MV 100.00 100.00 100.00 97.78 99.47 (1.07↑)

(1000 iterations)
Spin image [66] 46.67 98.00 64.58 46.67 64.89

RCS [67] 93.33 100.00 95.83 91.11 95.21
SHOT [42] 44.44 84.00 62.50 46.67 60.11
FPFH [55] 44.44 100.00 66.67 51.11 66.49
VOID [68] 97.78 100.00 100.00 97.78 98.94

Spin image+MV 68.89 100.00 72.92 57.78 75.53 (10.41↑)
RCS+MV 95.56 100.00 97.92 93.33 96.81 (1.60↑)

SHOT+MV 44.44 100.00 70.83 44.44 65.96 (5.85↑)
FPFH+MV 60.00 100.00 72.92 60.00 73.94 (7.45↑)
VOID+MV 97.78 100.00 100.00 97.78 98.94

(2000 iterations)
Spin image [66] 51.11 100.00 58.33 97.78 68.62

RCS [67] 100.00 100.00 93.75 97.78 97.87
SHOT [42] 90.00 48.89 37.78 58.33 59.57
FPFH [55] 100.00 53.33 48.89 68.75 68.62
VOID [68] 100.00 100.00 100.00 97.78 99.47

Spin image+MV 71.11 100.00 77.08 57.78 77.13 (8.51↑)
RCS+MV 100.00 95.56 97.78 100.00 98.40 (0.53↑)

SHOT+MV 100.00 51.11 48.89 77.08 70.21 (10.64↑)
FPFH+MV 100.00 55.56 62.22 70.83 72.87 (4.25↑)
VOID+MV 100.00 97.78 100.00 100.00 99.47

TABLE 19
Comparative object recognition results on Queen dataset (%), where IR

denotes inlier ratio.

Method Angle Bigbird Gnome Kid Zoe Average
(IR=1.57%) (IR=1.54%) (IR=2.57%) (IR=1.72%) (IR=0.74%) (IR=1.61%)

RCS+PointDSC 39.47 60.47 34.22 19.51 9.52 33.50
RCS+TEASER++ 86.84 60.47 31.58 24.39 9.52 43.35
RCS+SC2-PCR 42.11 58.14 28.95 29.27 11.98 34.98
RCS+MV 92.11 86.05 94.74 95.12 95.24 95.07

tions. Results on Queen and U3OR datasets are shown in
Tables 17 and 18, respectively.

It can be seen that MV dramatically improves the 3D
object recognition performance on all datasets under all
tested descriptors. This phenomenon is more salient with a
lower number of RANSAC iterations. On the Queen dataset,
MV achieves the most significant improvement for RoPS,
with a 38.92% improvement under 500 RANSAC iterations;
it also has a 10.83% improvement for the best performing
VOID descriptor with 500 iterations. On the U3OR dataset,
MV achieves a 17.55% improvement for spin image with
500 iterations and a 10.64% improvement for SHOT with
2000 iterations. The results suggest that MV holds good
generalization ability and can adapt to different descriptors.
Fig. 12 visualizes several 3D object recognition results by
MV and other competitors.

We also tested the object recognition performance of
three compared feature matching methods, i.e., PointDSC,
TEASER++, and SC2-PCR. In this experiment, 1000
RANSAC iterations are performed on the correspondence
subsets given by these methods. Results are shown in Ta-
bles 19 and 20.

One can see that the results of the three compared
methods are not satisfactory, mainly due to the extremely
low inlier ratio of initial correspondences in the object recog-
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Dataset Initial corr. MV corr. MV single rec. Spin image [66] RCS [67] RCS+MV

Queen

U3OR

Fig. 12. Visualization of 3D object recognition results on Queen and U3OR datasets. From left to right: initial feature correspondences (red→blue:
high→low voting scores), MV-selected correspondences (green and red lines respectively denote correct and incorrect correspondences), single-
object recognition result by RCS+MV, multi-object recognition results by spin image, RCS, and RCS+MV, respectively.

TABLE 20
Comparative object recognition results on U3OR dataset (%).

Method T-rex Chef Chicken parasaurolophus Average
(IR=0.94%) (IR=3.06%) (IR=1.46%) (IR=1.18%) (IR=1.69%)

Spin image+PointDSC 0 0 0 2.22 0.53
Spin image+TEASER++ 4.44 30.00 8.33 8.89 13.30
Spin image+SC2-PCR 4.44 100.00 12.5 8.89 32.98
Spin image+MV 68.89 100.00 72.92 57.78 75.53

nition scenario. For instance, only 1.61% inliers are found in
the initial correspondence sets on the Queen dataset. In this
case, SC2-PCR, which achieves outstanding performance
on the 3DMatch and 3DLoMatch datasets, is not able to
boost the 3D object recognition performance. This indicates
that these compared methods can hardly handle cases with
extremely low inlier ratios. On the contrary, MV manages to
improve the 3D object recognition performance with scarce
inliers.

5 CONCLUSIONS

In this paper, we presented a novel mutual voting
method for ranking 3D correspondences. It reliably assigns
a voting sore to each correspondence by refining both voters

and candidates in a mutual voting scheme. Feature match-
ing, 3D point cloud registration, and 3D object recognition
experiments on various datasets with different challenges
and modalities verify two conclusions: 1) MV is robust to
heavy outliers under different challenging settings; 2) MV
can significantly boost 3D point cloud registration and 3D
object recognition performance with existing pipelines.

In the future, we plan to further investigate the following
two problems. 1) Compatibility metric: MV is based on the
compatibility graph, which is built upon the compatibility
scores between every two correspondences; thus, devel-
oping more advanced compatibility metrics may further
improve MV’s performance. 2) End-to-end voting. At present,
MV-selected correspondences still need an estimator (e.g.,
RANSAC) for 3D point cloud registration and object recog-
nition; we wish to investigate an end-to-end voting process
that directly computes a rigid transformation from raw
correspondences with outliers.
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