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DeepNet: Scaling Transformers to 1,000 Layers
Hongyu Wang , Shuming Ma , Li Dong , Shaohan Huang , Dongdong Zhang , and Furu Wei

Abstract—In this paper, we propose a simple yet effective method
to stabilize extremely deep Transformers. Specifically, we introduce
a new normalization function (DEEPNORM) to modify the residual
connection in Transformer, accompanying with theoretically de-
rived initialization. In-depth theoretical analysis shows that model
updates can be bounded in a stable way. The proposed method
combines the best of two worlds, i.e., good performance of Post-LN
and stable training of Pre-LN, making DEEPNORM a preferred
alternative. We successfully scale Transformers up to 1,000 layers
(i.e., 2,500 attention and feed-forward network sublayers) without
difficulty, which is one order of magnitude deeper than previous
deep Transformers. Extensive experiments demonstrate that DEEP-
NET has superior performance across various benchmarks, in-
cluding machine translation, language modeling (i.e., BERT, GPT)
and vision pre-training (i.e., BEiT). Remarkably, on a multilingual
benchmark with 7,482 translation directions, our 200-layer model
with 3.2B parameters significantly outperforms the 48-layer state-
of-the-art model with 12B parameters by 5 BLEU points, which
indicates a promising scaling direction.

Index Terms—Big models, loss landscape, optimization, training
stability, transformers.

I. INTRODUCTION

R ECENT years have witnessed a trend towards large-scale
Transformer [1] models. The capacity has substantially

increased from millions of parameters [2], [3] to billions [4], [5],
[6], [7], [8], [9], [10], [11], and even trillions [12], [13]. Large-
scale models yield state-of-the-art performance on a wide range
of tasks, and show impressive abilities in few-shot and zero-
shot learning. Despite an enormous number of parameters, their
depths are limited by the training instability of Transformers.

Nguyen et al. [14] found that pre-norm residual connections
(Pre-LN) improve the stability of Transformers based on post-
norm connections (Post-LN). However, the gradients of Pre-LN
at bottom layers tend to be larger than at top layers [15], leading
to a degradation in performance compared with Post-LN. In
order to alleviate the above issue, there have been efforts on
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Fig. 1. The loss surface of 36-layer vanilla Post-LN and DEEPNET at the early
stage of training.

improving the optimization of deep Transformer by means of
better initialization [16], [17], [18], or better architecture [15],
[19], [20], [21]. These approaches can stabilize a Transformer
model with up to hundreds of layers. Yet, none of previous
methods has been successfully scaled to 1,000 layers.

Our aim is to improve the training stability of Transformers
and scale the model depth by orders of magnitude. To this end,
we study the cause of unstable optimization, finding the explod-
ing model update is responsible for the instability. Motivated
by the above observation, we introduce a new normalization
function (DEEPNORM) at residual connections [22], which has
theoretical justification of bounding the model update by a
constant. We adopt the filter normalization [23] to visualize the
loss surface of vanilla Post-LN and DEEPNET on the IWSLT-14
De-En data set at the early stage of training. Fig. 1 shows that
the loss surface of DEEPNET is much smoother compared with
vanilla Post-LN. The proposed method is simple yet effective,
with just lines of code change. The approach improves the
stability of Transformers so that we are able to scale model
depth to more than 1,000 layers. Moreover, experimental results
show that DEEPNORM combines the best of two worlds, i.e.,
good performance of Post-LN and stable training of Pre-LN. The
proposed method can be a preferred alternative of Transformers,
not only for extremely deep (such as > 1000 layers) models, but
also for existing large models.

Extensive experiments demonstrate that DEEPNET has supe-
rior performance across various benchmarks, including machine
translation, language modeling (i.e., BERT, GPT) and vision
pre-training (i.e., BEiT). Notably, our 200-layer model with
3.2B parameters achieves 5 BLEU improvement on a massively
multilingual machine translation benchmark compared to state-
of-the-art model [24] with 48 layers and 12B model size.
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Fig. 2. (a) Gradient norm in the top layers of 18L-18 L models. (b) Gradient norm in the last layer of the models with depths varying from 6L-6 L to 24L-24 L.
(c) Validation loss curves of 18L-18 L models.

This paper includes the analysis for Pre-LN variants and the
experiments for language modeling and vision pre-training of
our ICML 2023 paper [25] which is an extension and applica-
tion of our proposed framework for training stability of deep
Transformers in this work.

II. INSTABILITY OF DEEP TRANSFORMER

We study the causes of the instability for deep Transformers.
Our analysis begins with the observation: better initialization
methods stabilize the training of Transformer. This has also been
verified by previous work [16], [18], [26]. Therefore, we study
the training process of Post-LN with or without proper initial-
ization. With better initialization, we down-scale the weights of
l-th layer by kl = N − l + 1, l ∈ [1, N ] after performing Xavier
initialization. For example, the output projection W l

o of FFN in
l-th layer is initialized as:

W l
o � N

(
0,

1

k2l d
′

)
,

where d′ is an average of input and output dimensions. We name
this model Post-LN-init. Notice that different from the prior
work [16], we narrow the scale of lower layers instead of the
higher layers. We believe that it helps to separate the effect of the
gradient scale from the model update. Besides, Post-LN-init has
the same architecture as Post-LN, which eliminates the impact
from the architecture.

We train 18L-18 L Post-LN and 18L-18 L Post-LN-init on the
IWSLT-14 De-En machine translation data set. Fig. 2 visualizes
their gradients and validation loss curves. As shown in Fig. 2(c),
Post-LN-init converged while Post-LN did not. Post-LN-init has
an even larger gradient norm in the last several layers, although
its weights have been scaled down. Furthermore, we visualize
the gradient norm of the last decoder layer with varying model
depth from 6L-6 L to 24L-24 L. Fig. 2 shows that the gradient
norm of Post-LN-init in the last layer is still much larger than
that of Post-LN, regardless of model depth. It concludes that the
exploding gradients in deep layers should not be the root cause
of instability of Post-LN, while the scale of model update tends
to account for it.

Then we demonstrate that the instability of Post-LN comes
from a chain of several issues, including gradient vanishing as

well as too large model updates. As shown in Fig. 3(a), we first
visualize the norm of model update ||ΔF ||2 at the early stage of
training:

||ΔF ||2 = ||F (x, θi)− F (x, θ0)||2, (1)

where x and θi denotes input, and model parameters after i-th
updates. Post-LN has an exploding update at the very beginning
of training, and then nearly no update shortly. It indicates that the
model has been stuck in a spurious local optima. Both warm-up
and better initialization help alleviate this issue, enabling the
model to update smoothly. When the update explodes, the inputs
to LN become large (see Fig. 3(b) and (c)). According to the
theoretical analysis from Xiong et al. [27], the magnitude of
gradient through LN is inversely proportional to the magnitude
of its input: ∣∣∣∣∣

∣∣∣∣∣∂LN(x)

∂x

∣∣∣∣∣
∣∣∣∣∣
2

= O
( √

d

||x||2

)
.

Fig. 3(b) and (c) show that ||x||2 is significantly larger than√
d (d = 512) without warm-up or proper initialization. This

explains the gradient vanishing problem occurred in the training
of Post-LN (see Fig. 3(d)).

Above all, the instability starts from the large model update
at the beginning of training. It renders the model trapped in
a bad local optima, which in turn increases the magnitude of
inputs to each LN. As training continues, the gradient through
LN becomes increasingly small, thus resulting in severe gradient
vanishing. The vanishing gradients make it difficult to escape
from the local optima, and further destabilize the optimization.
On the contrary, Post-LN-init has relatively small updates, and
the inputs to LN are stable. This relieves suffering from gradient
vanishing, making optimization more stable.

III. DEEPNET: EXTREMELY DEEP TRANSFORMERS

In this section, we introduce our extremely deep Transformers
named DEEPNET. It can stabilize the optimization by mitigating
the exploding model update problem. We first provide the esti-
mation of the expected magnitude of DEEPNET’s model update.
Then we provide the theoretical analysis to show that its updates
can be bounded by a constant with our proposed DEEPNORM.
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Fig. 3. Visualization of the model update, the average input of LNs, and the gradients for the 18L-18 L models at the early stage of training.

A. Architecture

DEEPNET is based on the Transformer architecture. Compared
to the vanilla Transformer, it uses our new DEEPNORM, instead
of Post-LN, for each sub-layer. The formulation of DEEPNORM

can be written as:

xl+1 = LN(αxl +Gl(xl, θl)),

where α is a constant, and Gl(xl, θl) is the function of the l-th
Transformer sub-layer (i.e., attention or feed-forward network)
with parameters θl. Besides, DEEPNET scales the weights θl
inside residual branches by β. Notably, both α and β are con-
stants that only depend on the architecture, and we provide the
derivation in Section III-C.

B. Expected Magnitude of Model Update

Attention is an important part of Transformer. Without loss
of generality, we study the 1-head case. Let Q,K, V ∈ Rn×d

denote the query, key, value, respectively. WQ,WK ,WV ∈
Rd×dk are the input projection matrices, and WO ∈ Rdk×d is
the output projection matrix. Then, the attention module can be
formulated as:

Attn(Q,K, V ) = softmax

(
QWQ(KWK)T√

dk

)
VWV WO

We study the magnitude of the attention module. Lemma 1
proves that WQ and WK do not change the bound of attention
output’s magnitude.

Lemma 1: Given X = (x1,x2, . . .xn)
T ∈ Rn×d, where xi

is i.i.d, V ar[xi] = 1, Mean[xi] = 0 and qi ∈ R for all i ∈
[1, n], it satisfies that

softmax(q1, q2, . . ., qn)X
Θ
= xi,

where
Θ
= stands for equal upper bound of expected magnitude.

In other words, the magnitude of attention output only de-

pends on the value and output projection: Attn(Q,K, V )
Θ
=

VWV WO. In this work, we only consider the magnitude
of model update, so it is sufficiently instructive to study
the case where the hidden dimension equals to 1. For sim-
plicity, we reduce the matrices WV ,WO to the scalars

v, w, which means Attn(Q,K, V )
Θ
= vwV . Similarly, we have

FFN(X)
Θ
= vwX , where v, w denotes the parameters of the

feed-forward network.
We define the model update as ||ΔF ||2 = ||F (x, θ∗)−

F (x, θ)||2. Based on the analysis above, we have the following
theorem to characterize ||ΔF ||2’s magnitude of an N -layer
DEEPNET with N attentions and FFNs.

Theorem 2: Given an N -layer DEEPNET F (x,θ) (θ =
{θ1, θ2, . . ., θ2N}), where θ2l−1 and θ2l denote the parameters
of self-attention and FFN in l-th layer, and each sub-layer is
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normalized with DEEPNORM: xl+1 = LN(αxl +Gl(xl, θl)),
the expected model update ||ΔF ||2 satisfies:

||ΔF ||2 = O
(

2N∑
i=1

√
v2i + w2

i

α

∣∣∣∣∣
∣∣∣∣∣θ∗i − θi

∣∣∣∣∣
∣∣∣∣∣
2

)

Vanilla Post-LN can be regarded as a special case of DEEP-
NET, where α = 1 and vl = wl = 1 at Xavier initialization [28].
Based on Theorem 2, we have ||ΔF ||2 = O(

∑2N
i=1 ||θ∗i − θi||2)

for vanilla Post-LN. It shows that the model tends to accumulate
the update of each sub-layer, which leads to exploding magni-
tude of model’s update and destabilizes the optimization at the
early stage. This explains our findings in Section II.

Besides, Theorem 2 also explains why warm-ups and smaller
initialization can stabilize the training of Post-LN. Warm-ups
can reduce the magnitude of the model update by decreasing
||θ∗i − θi||2, while smaller initialization lowers

√
v2i + w2

i .
Furthermore, we study the magnitude of DEEPNET with an

N -layer encoder and an M -layer decoder. Let Fed(x, y, θe, θd)
denotes the model, where x, y is the input of encoder and
decoder. θe follows the same definition as θ in Theorem 2.
θd = {θd1, θd2, . . ., θd,3M} stands for the parameters of self-
attentions, cross-attentions, and FFNs. We use {αe, Gel} and
{αd, Gdl} to distinguish the notations between the encoder
and the decoder. The following theorem shows the expected
magnitude of the encoder-decoder’s model update ||ΔFed||2 =
||Fed(x, y, θ

∗
e, θ

∗
d)− Fed(x, y, θe, θd)||2.

Theorem 3: Given an encoder-decoder DEEPNET Fed(x, y,
θe, θd) with N encoder layers and M decoder layers, where
each encoder sub-layer is normalized as xl+1 = LN(αexl +
Gel(xl, θel)), and the decoder sub-layer is normalized asxl+1 =
LN(αdxl +Gdl(xl, θdl)), the expected model update ||ΔFed||2
satisfies:

||ΔFed||2

= O
(

M∑
j=1

vd,3j−1wd,3j−1

αd

2N∑
i=1

√
v2ei + w2

ei

αe
||θ∗ei − θei||2

+

3M∑
j=1

√
v2dj + w2

dj

αd
||θ∗dj − θdj ||2

)
(2)

The vanilla encoder-decoder model satisfies that all of {αe,
αd, vei, wei, vdi, wdi} equal to 1, so we have ||ΔFed|| =
O(M

∑2N
i=1 ||θ∗ei − θei||2 +

∑3M
j=1 ||θ∗dj − θdj ||2). It indicates

the similar accumulative effect which leads to fast growth of the
magnitude regarding the model depth (see Fig. 4). Furthermore,
the cross-attention propagates the magnitude from the encoder
to the decoder, which explains why the decoder is more unstable
than the encoder [20].

C. Derivation for DEEPNORM and the Initialization

We show that the expected model updates for DEEPNET can
be bounded by a constant with proper parameters α and β. Our
analysis is based on SGD update, and we empirically verify it
works well for Adam optimizer [29]. We provide the analysis
on the encoder-decoder architecture, which can be naturally

Fig. 4. Model updates of vanilla Post-LN and DEEPNET at the early stage
of training. The visualization is conducted on 64-128-2 tiny Transformers with
depth varying from 6L-6 L to 100L-100 L. It shows that DEEPNET has much
smaller and more stable updates than Post-LN.

extended to encoder-only and decoder-only models in the same
way. Analogous to Zhang et al. [17], we set our goal for the
model update as follows:

GOAL: Fed(x, y, θe, θd) is updated by Θ(η) per SGD
step after initialization as η → 0. That is ||ΔFed||2 =

Θ(η) where ΔFed
Δ
= Fed(x, y, θe − η ∂L

∂θe
, θd − η ∂L

∂θd
)−

Fed(x, y, θe, θd).

For SGD optimizer, the update of each decoder layer ||θ∗di −
θdi||2 equals to η|| ∂L

∂θdi
||2. Xiong et al. [27] proved that Post-LN

decreases the magnitude of backpropagating error signal, so we

have || ∂F
∂θdj

||2 ≤ || ∂F
∂θd,3M

||2. With || ∂F
∂θd,3M

||2 Θ
=

||θd,3M ||2
αd

and

the assumption || ∂L∂F ||2 = O(1), the second term of (2) can be
bounded as:

3M∑
j=1

√
v2dj + w2

dj

αd
||θ∗dj − θdj ||2 (3)

≤ η|| ∂L
∂F

||2 · ||
∂F

∂θd,3M
||2

3M∑
j=1

√
v2dj + w2

dj

αd

Θ
= 3ηM

v2d + w2
d

α2
d

(4)

There are multiple schemes to bound (4) by Θ(η). In order
to balance the effect of residual connections and the initializa-
tion, we set α2

d = (3M)
1
2 , v2d + w2

d = (3M)−
1
2 and vd = wd =

βd due to symmetry, that is αd = (3M)
1
4 , βd = (12M)−

1
4 .

Similarly, we use ve = we = βe = 0.87(N4 M)−
1
16 , αe =

0.81(N4 M)
1
16 to bound the first term in (2). Detailed derivation

is shown in Appendix C, available online.
In comparison with Post-LN, we visualize the model updates

for DEEPNET on IWSLT-14 De-En translation data set at the
early training stage. Fig. 4 shows that the model update of
DEEPNET is nearly constant, while the model update of Post-LN
is exploding. Following Hao et al. [30], we further visualize
the loss landscape and trajectory of the optimization of vanilla
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Fig. 5. Loss landscape and trajectory of DEEPNET (a)–(c) and vanilla Post-LN (d)–(f) at the early stage of training. The visualization is conducted on 64-128-2
tiny Transformers with varying depth. .

Post-LN and DEEPNET with varying model depth. Fig. 5 presents
that the loss landscape of vanilla Post-LN is less smooth with the
increasing model depth, while our model tends to have consistent
smoothness across different depth. Besides, vanilla Post-LN is
easier to be stuck in a spurious local optima, which verifies our
analysis in Section II.

In summary, we apply our approach as follows:

Encoder-decoder architecture
1) Apply standard initialization (e.g., Xavier initializa-

tion) for each encoder and decoder layer.
2) For encoder layers, scale the weights of feed-

forward networks as well as the value projection
and the output projection of attention layers by
0.87(N4 M)−

1
16 , and set the weight of residual con-

nections as 0.81(N4 M)
1
16 .

3) For decoder layers, scale the weights of feed-forward
networks as well as the value projection and the output
projection of attention layers by (12M)−

1
4 , and set the

weight of residual connections as (3M)
1
4 .

The derivation of encoder-only (such as BERT) and decoder-
only architectures can be conducted in the same way (see
Appendix B, available online). We summarize the steps as
follows:

Encoder-only (or decoder-only) architecture
1) Apply standard initialization (e.g., Xavier initializa-

tion) for each layer.
2) For each layer, scale the weights of feed-forward net-

works as well as the value projection and the output
projection of attention layers by (8N)−

1
4 (or (8M)−

1
4 ),

and set the weight of residual connections as (2N)
1
4

(or (2M)
1
4 ).

IV. DEEPNET FOR PRE-LN TRANSFORMER

In this section, we further extend our analysis framework to
Pre-LN variants, which are widely adopted as the architecture
for vision transformers [31] and large language models [5], [32].

We first introduce the architecture of DEEPNET for Pre-LN. Then
we estimate the expected magnitude of model update. More-
over, we show that the model update of Pre-LN-style DEEPNET

grows logarithmically as the depth increases, which can also be
bounded independent of depth with our proposed initialization.

A. Architecture

For DEEPNET, we introduce the extra normalization inside
each sublayer to ease the explosion of activation during training.
Specially, for the multihead attentions, the layer normalization
modules are before the qkv projection and the output projection,
which can be formulated as:

Q,K, V = WQLN(x),WKLN(x),WV LN(x) (5)

MSA(x) = x+WOLN(Attention(Q,K, V )) (6)

where WQ, WK , WV , and WO are the parameters of the
multihead self-attention. For the feed-forward network, we place
the normalizations before the input projection and the output
projection, which are written as:

FC1(x) = W 1LN(x) (7)

FC2(x) = W 2LN(x) (8)

FFN(x) = FC2(φ(FC1(x))) (9)

where W 1 and W 2 are parameters of the feed-forward layers,
and φ is the non-linear activation function.

B. Expected Magnitude of Model Update

Based on the framework before, we study the magnitude of
DEEPNET for Pre-LN with an N -layer encoder under SGD up-
date. With Lemma 1, the query and key projection do not change
the bound of expected magnitude of attention update. Similarly,
we denote the parameters of the encoder θe as {vl, wl}Ll=1, where
wl and vl denote the scale of input and output projection of FFN,
or value and output projection of attention module. We set the
scale of shortcut α as 1 to prevent the exponential accumulation
of model update along residual shortcuts. Above all, we have the
following theorem to characterize the expected model update of
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TABLE I
BLEU SCORES ON THE WMT-17 EN-DE TEST SET FOR DIFFERENT MODELS WITH VARYING DEPTH

an N -layer Pre-LN-style DEEPNET. The proof is detailed in the
Appendix A.4, available online.

Theorem 4: Given an N -layer DEEPNET F (x,θ),
the l-th sub-layer is formulated as xl = xl−1 +
W l,2LN(φ(W l,1LN(xl−1))). Under SGD update, ΔF satisfies:

ΔF=O
(
η

(∑L
l=1

(
1+

v2l
w2

l

)
∑L

n=1 v
2
n

+

L∑
l=1

L∑
k=2

1+
v2l
w2

l∑L
n=1 v

2
n

v2k∑k−1
n=1 v

2
n

))

(10)
where η is learning rate, L equals to 2N .

If we apply standard initialization (e.g., Xavier initialization)
for each sublayer, the output can preserve the variance of input.
Therefore, vl and wl can be estimated as 1 at the beginning of
training. With Theorem 4, we have ||ΔF || = O(logL). It shows
that the expected magnitude of model update for DEEPNET grows
logarithmically as the depth increases, which is much smaller
than that of vanilla Post-LN. It indicates that DEEPNET is easier
to be optimized and can be scaled up to extremely deep models.

C. Derivation

Furthermore, we demonstrate that the expected model update
of DEEPNET can be further bounded with proper initialization.
The detailed derivation can be found in Appendix A.4, available
online. We adopt v = w = β =

√
logL to bound the model

update independent of the depth. In summary, we apply our
initialization as follows:

1) Apply standard initialization (e.g., Xavier initializa-
tion) for each layer.

2) For each layer, scale the weights of feed-forward net-
works as well as the value projection and the output pro-
jection of attention layers by

√
log 2N (or

√
log 2M ).

V. NEURAL MACHINE TRANSLATION

We verify the effectiveness of DEEPNET on the popular ma-
chine translation benchmarks, including IWSLT-14 German-
English (De-En), WMT-17 English-German (En-De), WMT-14
English-German (En-De) and WMT-14 English-French (En-Fr)

data set. We compare our method with multiple state-of-the-
art deep Transformer models, including DLCL [19], Norm-
Former [15], ReZero [21], R-Fixup [17], T-Fixup [18], DS-
init [16], and Admin [20]. We reproduce the baselines with their
open-source code, and set the hyper-parameters the same for a
fair comparison.

We use BLEU as the evaluation metric for all experiments.
Besides, we adopt the in-built BLEU scripts of Fairseq to
evaluate all models. Tables I and II reports the results of the
baselines and DEEPNET on WMT-17 En-De, WMT-14 En-De
and WMT-14 En-Fr translation data set, respectively. According
to their LNs, the baselines are grouped into three categories:
Pre-LN, Post-LN, and No-LN. All the compared models are
base-size with different depths.

Compared with the models with Post-LN, DEEPNET is more
stable, and can successfully scale to 100L-100 L, reaching the
28.9 BLEU on the test set. In contrast, the baselines with Post-LN
lead to unstable optimization when the depth goes to 50L-50 L.
Besides, DEEPNET achieves comparable performance with these
baselines when the models are shallow.

In addition, we compare DEEPNET with the methods
without LN. Both R-Fixup and T-Fixup introduce better
initialization methods, which stabilize the training of No-LN
Transformer with up to 50-50 layers. Yet, their performance
is not as good as those with Post-LN. Besides, half-precision
could destabilize the training of ReZero, leading to its di-
vergence with 18-18 layers. This observation is also reported
by Liu et al. [20]. Moreover, deeper models (50 L-50 L) do
not outperform the shallow models (18L-18 L). In compari-
son, DEEPNET achieves better translation accuracy than these
methods, and scaling to deeper models brings no harm to the
performance.

Compared with the Post-LN baselines, the models with Pre-
LN are more stable. Both vanilla Pre-LN and DLCL can be
scaled to 100L-100 L, and 50L-50 L NormFormer is also trained
successfully. Nevertheless, Pre-LN leads to a 0.5-1.0 BLEU drop
compared with the converged Post-LN models. We presume this
should be caused by the problem that gradients of Pre-LN at
earlier layers tend to be larger than gradients at later layers [15].
We leave it as the future work. In contrast, DEEPNET alleviates
the problem by using Post-LN, and outperforms all the Pre-LN
baselines.
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TABLE II
BLEU SCORES ON THE WMT14 EN-DE AND WMT14 EN-FR TEST SET FOR DIFFERENT MODELS WITH VARYING DEPTH

Fig. 6. BLEU scores on the IWSLT-14 De-En test set for different deep models with varying depth from 10L-10 L to 100L-100 L.

Fig. 7. WMT-17 En-De validation loss curves for 18L-18 L DEEPNET with varying learning rate, batch size and hidden dimension.

Convergence with varying depth: We vary the depths of the
models from 10L-10 L to 100L-100 L with an interval of 10 lay-
ers.All experiments are conducted with mixed precision training,
except ReZero.1 Fig. 6 shows the results on the IWSLT-14 data
set. We train the models for 8,000 steps because we find most
divergence occurs at the beginning of optimization. Overall,
DEEPNET is stable from shallow to deep. It converges fast,
achieving over 30 BLEU in only 8,000 steps while most of the
baselines do not. Moreover, the performance keeps improving
as the model goes deeper.

Large learning rate, batch size, and hidden dimension: We
further scale DEEPNET to larger learning rate, batch size, and
hidden dimension, respectively. For each experiment, we only
change one hyperparameter with the others fixed. Fig. 7 reports
the loss curves on the WMT-17 validation set. It shows that

1According to our experiments, ReZero is unstable with half precision, even
when the model is shallow.

DEEPNET can be trained without difficulty in all the largest
settings. The loss of DEEPNET with 1024 hidden size increases
after 10K steps because of overfitting. Besides, it indicates that
DEEPNET can benefit from the larger settings, resulting in faster
convergence and lower validation loss.

We conduct experiments on the large-scale multilingual ma-
chine translation, which is a good testbed for large models.
We first use OPUS-100 corpus [33] to evaluate our model.
OPUS-100 is an English-centric multilingual corpus covering
100 languages, which is randomly sampled from the OPUS
collection. We scale DEEPNET up to 1,000 layers. The model
has a 500-layer encoder, a 500-layer decoder, 512 hidden size,
8 attention head, and 2,048 dimensions of feed-forward layers.
More details can be found in the Appendix, available online.

Table III summarizes the results of DEEPNET and the base-
lines. It shows that increasing the depth can significantly im-
prove the translation quality of NMT: the baseline of 48 layers
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TABLE III
AVERAGE BLEU FOR DEEPNET AND THE BASELINE ON THE OPUS-100 TEST SETS

Fig. 8. Average BLEU scores for DEEPNET with varying depth on the OPUS-
100 En-X and X-En test sets.

achieves a gain of 3.2 points on average over the 12-layer model.
DEEPNET can successfully scale up the depth to 1,000 layers,
outperforming the baseline by an improvement of 4.4 BLEU.
It is noted that DEEPNET is only trained for 4 epochs, and the
performance can be further improved given more computation
budgets.

VI. MASSIVELY MULTILINGUAL NEURAL

MACHINE TRANSLATION

Scaling law in terms of depth: We train DEEPNET of {12,
20, 100, 200, 1000} layers on the OPUS-100 data set. For
the evaluation, we report the case-sensitive detokenized BLEU
using sacreBLEU [34] for the results of OPUS-100.2. Fig. 8
illustrates the scaling curve. Compared with bilingual NMT,
multilingual NMT benefits more from scaling the depth of the
model because of its hunger in model capacity. We observe
logarithmic growth of the BLEU score for multilingual NMT,
and the scaling law can be written as:

L(d) = A log(d) +B

where d is the depth, and A,B are the constants regarding the
other hyper-parameters.

Comparsion given similar training FLOPs: Following [35],
[36], the training FLOPs can be estimated as 6ND, whereN and
D denote the parameters of the model and the size of training
data, respectively. Therefore, we train DEEPNET of a 48-layer
encoder layers, a 48-layer decoder and 512 hidden dimension

2BLEU+case.mixed+lang.{src}-{tgt}+numrefs.1+smooth.exp+tok.13a+
version.1.4.14

on the OPUS-100 data set, while the baseline [1] has a 12-layer
encoder, a 12-layer decoder and 1024 hidden dimension. Given
the similar training FLOPs, all models are trained with 50K steps
and the same batch size. The other hyperparameters are detailed
in Appendix, available online.

Table IV shows that the deep and narrow DEEPNET outper-
forms the shallow and wide baseline by a gain of 0.6 BLEU on
the test set of OPUS-100 data set, indicating that deepening the
model is a more promising direction given the similar training
FLOPs.

Comparison with the asymmetric encoder-decoder: We
present the comparison of the asymmetric and symmetric
encoder-decoder architecture in Table IV. We train DEEPNET

with a 90-layer encoder and a 6-layer decoder on the OPUS-100
data set. As shown in Table IV, the symmetric architecture (48L-
48 L) outperforms the asymmetric architecture (90L-6 L) by a
gain of 0.5 BLEU on the test set. It shows that a shallow decoder
leads to the degradation of performance on multilingual machine
translation, especially for En → X translation directions.

More data and language directions: To explore the limits of
DEEPNET on multilingual NMT, we then scale up the training
data by using CCMatrix [37]. We also expand the data from
CCAligned [38], OPUS [33], and Tatoeba3 to cover all languages
of Flores101 evaluation sets. The final data consists of 102
languages, 1932 directions, and 12B sentence pairs. With the
data, we train DEEPNET with a 100-layer encoder, 100-layer
decoder, 1,024 hidden dimension, 16 heads, and 4,096 interme-
diate dimension of feed-forward layers. Following [35], [36], the
training FLOPs can be estimated as 5.2 ZFLOPs, resulting in up
to 18 days on 128 TESLA V100-32 GB GPUs. More details can
be found in the Appendix D.4, available online.

We compare DEEPNET with the state-of-the-art multilingual
NMT model M2M-100 [24]. M2M-100 has a 24-layer encoder,
a 24-layer decoder, and 4,096 hidden size, resulting in up to
12B parameters. Compared with M2M-100, DEEPNET is deep
and narrow with only 3.2B parameters. For a fair comparison,
we generate the model with beam size 5 and length penalty 1.

Following M2M-100 [24], we evaluate the models on sev-
eral multilingual translation evaluation data sets, including
WMT [39], [40], [41], [42], OPUS [33], TED [43], and Flo-
res [44]. The language pairs from the WMT data set are
English-centric. There are 10 languages including English, and
most of them are high-resource. For the OPUS data set, we
select the non-English directions from the test set, which has

3https://tatoeba.org/en/

BLEU+case.mixed+lang.protect LY1	extbraceleft srcprotect LY1	extbraceright -protect LY1	extbraceleft tgtprotect LY1	extbraceright +numrefs.1+smooth.exp+tok.13a+penalty -@M version.1.4.14
BLEU+case.mixed+lang.protect LY1	extbraceleft srcprotect LY1	extbraceright -protect LY1	extbraceleft tgtprotect LY1	extbraceright +numrefs.1+smooth.exp+tok.13a+penalty -@M version.1.4.14
https://tatoeba.org/en/
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TABLE IV
COMPARISON FOR DEEPNET AND THE BASELINE GIVEN THE SIMILAR TRAINING FLOPS ON THE OPUS-100 TEST SETS

TABLE V
BLEU SCORES FOR DEEPNET AND M2M-100 ON VARIOUS EVALUATION SETS

TABLE VI
RESULTS ON THE GLUE DEVELOPMENT SET

30 evaluation pairs. The TED evaluation set has 28 languages
and 756 directions, and the data is from the spoken language
domain. The Flores data set has all translation pairs between 102
languages. We use a subset covering the languages supported
by both M2M-100 and DEEPNET, resulting in 87 languages and
7,482 translation directions. We report the results in Table V.
For a fair comparison, we use the same evaluation methods as
the baseline. For WMT, OPUS, and TED, we adopt the same
test sets and evaluation scripts as in M2M-100 [24], and the
results of M2M-100 are directly from the paper [24]. For the
Flores-101 evaluation set, we report the spBLEU4 of M2M-12B
with the public checkpoint and script.5 Table V shows that
DEEPNET has significantly better performance than M2M-100
on all evaluation data sets, indicating that deepening the model
is a very promising direction to improve the quality of NMT
models.

VII. MASKED LANGUAGE MODELING

We compare DEEPNET with Transformer [1] on masked lan-
guage modeling [2], [45]. For a fair comparison, we pre-train
DEEPNET and the baselines on the English Wikipedia and the
Bookcorpus [45] with 12 layers, 768 hidden dimensions, and
3072 FFN dimensions. More details regarding hyperparameters
can be found in the Appendix, available online.

We search the pre-training learning rate among {5e-4, 1e-3},
and choose the largest one that can converge. We fine-tune the
models on the GLUE [46] benchmarks. Table VI demonstrates
the results of DEEPNET and the baselines. It shows that our model

4https://github.com/facebookresearch/flores
5https://github.com/pytorch/fairseq/tree/main/examples/m2m_100

has better performance and training stability than the strong
baselines with a gain of average 0.7 points.

VIII. CAUSAL LANGUAGE MODELING

We implement DEEPNET on causal language modeling, which
is the pre-training task for recent large language models (e.g.,
GPT [5], [47], LLaMA [32], [48], etc). We start with a model
that has the same configuration as GPT-3 Medium (350 M), and
further scale its depth from 24 L to 48 L and 72 L. All models
are trained on an English-language corpus, which is a subset of
the data from [45] and the English portion of CC100 corpus.
We adopt the GPT-2 tokenizer [4] to preprocess the data. The
other training hyperparameters are detailed in the Table 22 of
Appendix, available online.

We compare DEEPNET with GPT-2 [4] and Normformer [15].
Normformer is a state-of-the-art architecture for causal language
modeling. For a fair comparison, we reproduce the results of our
model and the baselines under the same setting. We evaluate
their performance of in-context learning. Following the pre-
vious work [5], we choose Winogrande [49], Winograd [50],
Storycloze [51], and Hellaswag [52] as the benchmark.

Table VII summarizes the results in the zero-shot setting. It
shows that DEEPNET achieves significant improvements over
both GPT-2 and Normformer across different scales. Besides,
DEEPNET tolerates a larger learning rate than the baselines, indi-
cating that our model is more stable in optimization. This allows
DEEPNET to further scale up without pain. Tables VIII and IX re-
port the results in the few-shot setting. DEEPNET is also better at
few-shot learning than the baselines across four data sets, prov-
ing the effectiveness of DEEPNET on causal language modeling.

https://github.com/facebookresearch/flores
https://github.com/pytorch/fairseq/tree/main/examples/m2m_100
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TABLE VII
ZERO-SHOT RESULTS FOR DEEPNET AND THE BASELINES (WGe: WINOGRANDE, WG: WINOGRAD, SC: STORYCLOZE, AND HS: HELLASWAG DATA SET)

TABLE VIII
ONE-SHOT RESULTS FOR DEEPNET AND THE BASELINES (WGe: WINOGRANDE, WG: WINOGRAD, SC: STORYCLOZE, AND HS: HELLASWAG DATA SET)

TABLE IX
FOUR-SHOT RESULTS FOR DEEPNET AND THE BASELINES (WGe: WINOGRANDE, WG: WINOGRAD, SC: STORYCLOZE, AND HS: HELLASWAG DATA SET)

IX. MASKED IMAGE MODELING

We pretrain DEEPNET under masked image modeling frame-
work (BEiT; [53], [54]), and then fine-tune the model on various
downstream vision tasks by appending lightweight task layers.
Specifically, we encourage DEEPNET to reconstruct correspond-
ing discrete visual tokens [54], based on the corrupt input
images.

We compare DEEPNET with the vanilla ViT [31]. All models
are pretrained on the ImageNet-1k [55] with 300 epochs sched-
ule under the same settings for a fair comparison. After that,

we fine-tune them on ImageNet-1k for the image classification
and on ADE20k [56] for the semantic segmentation. Further, we
evaluate the robustness of all fine-tuned models on various Ima-
geNet variants, namely ImageNet-Adversarial [57], ImageNet-
Rendition [58] and ImageNet-Sketch [59]. We summarize the
results of those vision tasks in Table X. The hyperparameters
are detailed in Appendix, available online.

Table X shows that DEEPNET surpasses the vanilla ViT by
0.4% and 0.6% for ViT-Base and ViT-Large on the validation set
of ImageNet, respectively. Moreover, DEEPNET outperforms the
baseline by a significant margin across three ImageNet variants.
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TABLE X
RESULTS ON VISION TASKS

Fig. 9. BLEU scores of DEEPNET on the test set of WMT-14 En-Fr data set for different scales of shortcut (Left) and initialization (Right). Note that α∗ and β∗
denote the parameters of DEEPNORM. All models are trained with an 18-layer encoder and 18-layer decoder.

TABLE XI
ABLATIONS FOR DEEPNORM AND ITS INITIALIZATION ON WMT-14 EN-FR

TEST SET

By appending the UperNet [60] task layer, we conduct semantic
segmentation experiments on ADE20k. For ViT-Base models,
DEEPNET achieves a gain of 0.8% mIoU compared with the
vanilla ViT. For ViT-Large models, DEEPNET can boost the
performance to 54.6%.

X. ABLATION STUDY

In this section, we present the ablation study of DEEPNET

on the WMT-14 English-French (En-Fr) data set. All models
are trained with an 18-layer encoder, an 18-layer decoder and
512 hidden dimensions for 100K steps. The hyperparameters are
detailed in the Appendix, available online. We report the BLEU
scores of all models on the test set.

First we ablate the effect of DEEPNORM and its initializa-
tion. Table XI shows that removing the initialization leads to
the degradation of performance, 0.2 BLEU dropped compared
with DEEPNET. Besides, removing DEEPNORM results in the
divergence.

Moreover, we ablate different values of shortcut scale α and
initialization scale β of DEEPNORM. Let α∗ and β∗ denote the
parameters for DEEPNORM. We set the scale of shortcut as α∗

and vary β from {0.25, 0.5, 1, 2, 4}β∗. Then we set the scale
of initialization as β∗ and vary α from {0.25, 0.5, 1, 2, 4}α∗.
Fig. 9 shows that small shortcut scale and large initialization
scale results in the instability of the training, while large short-
cut scale and small initialization scale tends to undermine the
performance. Therefore, in this work, we use α and β of similar
magnitude to achieve the balance between good performance
and stable training.

XI. RELATED WORK

Transformers have achieved success across many fields, in-
cluding machine translation [1], [61], language modelling [2],
[4], [5], [45], speech recognition [62], vision pre-training [31],
[53], [54] and vision-language pre-training [63]. Despite their
great success, the Transformers suffer a lot from the instability
of their optimization, which increases the cost of the training for
large-scale models. Most successful implementations involve
warmup stage, Adam optimizer and layer normalization.

There are a lot of efforts to understand the effect of these
components and improve the stability of Transformers. For
Post-LN Transformers, Liu et al. [64] claimed that the necessity
of warmup stage comes from reducing large variance of Adam
optimizer at the early stage. They further proposed RAdam to
rectify the variance of the adaptive learning rate. Zhang et al. [16]
showed that a depth-scaled initialization can reduce the output
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variance of residual connections to ease gradient vanishing
through layer normalization. Liu et al. [20] argued that the
gradient vanishing of decoder is eased by Adam, and heavy
dependency on Post-LN’s residual branches amplifies small
parameter perturbations, leads to significant disturbances in the
model output. Wang et al. [19] adopted densely connected layers
to train deep Transformer for machine translation.

Except for Post-LN Transformers, Xiong et al. [27],
Wang et al. [19] and Nguyen et al. [14] empirically validated that
Pre-LN Transformers are easier to be optimized, and the warmup
stage can be safely removed. Xiong et al. [27] found that warmup
stage also helps quiet a lot for other optimizer (e.g. Stochastic
Gradient Descent). They further proved that for Post-LN Trans-
formers, the gradients’ scale in deep layers is larger. Thus they
argued that explosive gradients in deep layers of Post-LN require
warmup stage to stabilize. Ding et al. [65] proposed the precision
bottleneck relaxation and sandwich-LN to stabilize the training.
Normformer [15] introduced head-scaled attention mechanism
and extra normalization to improve the performance and speed
up training for language modeling.

Another line of research aims to train LayerNorm-free Trans-
formers. Bachlechner et al. [21] introduced ReZero, which
removed layer normalization and set the weights of residual
branches as zero. ReZero successfully trained very deep Trans-
former and achieved faster training and better performance
for language modeling. Zhang et al. [17] first showed that a
deep residual network with CNN, MLP blocks can be success-
fully trained without normalization. They proposed a weight
initialization named Fixup to constraint explosive variance of
model’s update, and added extra layers to preserve model’s
capability. Inspired by this work, Huang et al. [18] further
analysed the magnitude of attention module and proposed
a weight initialization named T-Fixup for deep LayerNorm-
free Transformer. With analysis framework of T-Fixup [18],
Xu et al. [26] proposed a data-dependent initialization strat-
egy for vanilla and relation-aware Transformer on pre-trained
encodings.

XII. CONCLUSION

We improve the stability of Transformer and successfully
scale it to 1,000 layers. This is achieved by our DEEPNET

with a novel normalization function called DEEPNORM. It has
theoretical justification to stabilize the optimization with a con-
stant upper bound for model updates. Extensive experimental
results verify the effectiveness of our methods across various
tasks, including machine translation, language modeling (i.e.,
BERT, GPT) and vision pre-training (i.e., BEiT), which makes
DEEPNET a promising option for scaling up any Transformer
models. In the future, we will extend DEEPNET to support more
diverse tasks, e.g., protein structure prediction [66].

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Assoc. Comput. Linguistics: Hum. Lang. Technol., 2019,
pp. 4171–4186.

[3] A. Conneau et al., “Unsupervised cross-lingual representation learning at
scale,” in Proc. Conf. Assoc. Comput. Linguistics, 2020, pp. 8440–8451.

[4] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019. [Online].
Available: https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf

[5] T. B. Brown et al., “Language models are few-shot learners,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2020, pp. 1877–1901.

[6] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 103–112.

[7] C. Raffel et al., “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67,
2020.

[8] D. Lepikhin et al., “GShard: Scaling giant models with conditional compu-
tation and automatic sharding,” in Proc. Int. Conf. Learn. Representations,
2021.

[9] J. W. Rae et al., “Scaling language models: Methods, analysis & insights
from training gopher,” 2021, arXiv:2112.11446.

[10] X. V. Lin et al., “Few-shot learning with multilingual language models,”
2021, arXiv:2112.10668.

[11] S. Smith et al., “Using deepspeed and megatron to train megatron-
turing NLG 530b, A large-scale generative language model,”
2022, arXiv:2201.11990.

[12] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scal-
ing to trillion parameter models with simple and efficient sparsity,”
2021, arXiv:2101.03961.

[13] N. Du et al., “GLaM: Efficient scaling of language models with mixture-
of-experts,” 2021, arXiv:2112.06905.

[14] T. Q. Nguyen and J. Salazar, “Transformers without tears: Improving the
normalization of self-attention,” 2019, arXiv: 1910.05895.

[15] S. Shleifer, J. Weston, and M. Ott, “NormFormer: Improved transformer
pretraining with extra normalization,” 2021, arXiv:2110.09456.

[16] B. Zhang, I. Titov, and R. Sennrich, “Improving deep transformer with
depth-scaled initialization and merged attention,” in Proc. Conf. Empir.
Methods Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. Pro-
cess., 2019, pp. 898–909.

[17] H. Zhang, Y. N. Dauphin, and T. Ma, “Fixup initialization: Residual learn-
ing without normalization,” in Proc. Int. Conf. Learn. Representations,
2019.

[18] X. S. Huang, F. Pérez, J. Ba, and M. Volkovs, “Improving transformer op-
timization through better initialization,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 4475–4483.

[19] Q. Wang et al., “Learning deep transformer models for ma-
chine translation,” in Proc. Conf. Assoc. Comput. Linguistics, 2019,
pp. 1810–1822.

[20] L. Liu, X. Liu, J. Gao, W. Chen, and J. Han, “Understanding the difficulty
of training transformers,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2020, pp. 5747–5763.

[21] T. Bachlechner, B. P. Majumder, H. H. Mao, G. W. Cottrell, and J. J.
McAuley, “ReZero is all you need: Fast convergence at large depth,”
2020, arXiv: 2003.04887.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[23] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 6391–6401.

[24] A. Fan et al., “Beyond english-centric multilingual machine translation,”
J. Mach. Learn. Res., vol. 22, pp. 107:1–107:48, 2021.

[25] H. Wang et al., “Magneto: A foundation transformer,” in Proc. Int. Conf.
Mach. Learn., 2023, pp. 36077–36092.

[26] P. Xu et al., “Optimizing deeper transformers on small datasets,” in Proc.
59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint Conf.
Natural Lang. Process., 2021, pp. 2089–2102.

[27] R. Xiong et al., “On layer normalization in the transformer architecture,”
in Proc. Int. Conf. Mach. Learn., 2020, pp. 10524–10533.

[28] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. Int. Conf. Artif. Intell.
Statist.Titterington, Eds., 2010, pp. 249–256.

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


WANG et al.: DEEPNET: SCALING TRANSFORMERS TO 1,000 LAYERS 6773

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[30] Y. Hao, L. Do ng, F. Wei, and K. Xu, “Visualizing and understanding
the effectiveness of BERT,” in Proc. Conf. Empir. Methods Natural Lang.
Process.-Int. Joint Conf. Natural Lang. Process.,Association for Compu-
tational Linguistics, 2019, pp. 4141–4150.

[31] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2021.

[32] H. Touvron et al., “LLaMA: Open and efficient foundation language
models,” 2023, arXiv:2302.13971.

[33] B. Zhang, P. Williams, I. Titov, and R. Sennrich, “Improving massively
multilingual neural machine translation and zero-shot translation,” in Proc.
Conf. Assoc. Comput. Linguistics, 2020, pp. 1628–1639.

[34] M. Post et al., “A call for clarity in reporting BLEU scores,” in Proc.
3rd Conf. Mach. Translation: Res. Papers„ Association for Computational
Linguistics, 2018, pp. 186–191.

[35] J. Hoffmann et al., “Training compute-optimal large language models,”
2022, arXiv:2203.15556.

[36] J. Kaplan et al., “Scaling laws for neural language models,” 2020, arXiv:
2001.08361.

[37] H. Schwenk, G. Wenzek, S. Edunov, E. Grave, A. Joulin, and A. Fan,
“CCMatrix: Mining billions of high-quality parallel sentences on the web,”
in Proc. 59th Annu. Meeting Assoc. Comput. Linguistics 11th Int. Joint
Conf. Natural Lang. Process., 2021, pp. 6490–6500.

[38] A. El-Kishky, V. Chaudhary, F. Guzmán, and P. Koehn, “CCAligned: A
massive collection of cross-lingual web-document pairs,” in Proc. Conf.
Empirical Methods Natural Lang. Process., 2020, pp. 5960–5969.

[39] O. Bojar et al., “Findings of the 2014 workshop on statistical machine
translation,” in Proc. 9th Workshop Statist. Mach. Transl., The Association
for Computer Linguistics, 2014, pp. 12–58.

[40] O. Bojar et al., “Findings of the 2017 conference on machine translation
(WMT17),” in Proc. 2nd Conf. Mach. Transl., 2017, pp. 169–214.

[41] O. Bojar et al., “Findings of the 2018 conference on machine translation
(WMT18),” in Proc. 3rd Conf. Mach. Translation: Shared Task Papers,
2018, pp. 272–303.

[42] L. Barrault et al., “Findings of the 2019 conference on machine translation
(WMT19),” in Proc. 4th Conf. Mach. Transl., Association for Computa-
tional Linguistics, 2019, pp. 1–61.

[43] Y. Qi, D. S. Sachan, M. Felix, S. Padmanabhan, and G. Neubig, “When
and why are pre-trained word embeddings useful for neural machine trans-
lation?,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics:
Hum. Lang. Technol., Association for Computational Linguistics, 2018,
pp. 529–535.

[44] N. Goyal et al., “The FLORES-101 evaluation benchmark for low-resource
and multilingual machine translation,” 2021, arXiv:2106.03193.

[45] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining ap-
proach,” 2019, arXiv: 1907.11692.

[46] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural lan-
guage understanding,” in Proc. EMNLP Workshop BlackboxNLP: Analyz-
ing Interpreting Neural Netw. NLP, 2018, pp. 353–355.

[47] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.
[48] H. Touvron, “Llama 2: Open foundation and fine-tuned chat models,”

2023, arXiv:2307.09288.
[49] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “WinoGrande:

An adversarial winograd schema challenge at scale,” in Proc. AAAI Conf.
Artif. Intell., 2020, pp. 8732–8740.

[50] H. J. Levesque, E. Davis, and L. Morgenstern, “The winograd schema chal-
lenge,” in Proc. 13th Int. Conf. Princ. Knowl. Representation Reasoning,
2012.

[51] N. Mostafazadeh, M. Roth, A. Louis, N. Chambers, and J. Allen, “LS-
DSem 2017 shared task: The story cloze test,” in Proc. 2nd Workshop
Linking Models Lexical, Sentential Discourse-Level Semantics, 2017,
pp. 46–51.

[52] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi, “HellaSwag:
Can a machine really finish your sentence?,” in Proc. Conf. Assoc. Comput.
Linguistics, 2019, pp. 4791–4800.

[53] H. Bao, L. Dong, S. Piao, and F. Wei, “BEiT: BERT pre-training of image
transformers,” in Proc. Int. Conf. Learn. Representations, 2022.

[54] Z. Peng, L. Dong, H. Bao, Q. Ye, and F. Wei, “BEiT v2:
Masked image modeling with vector-quantized visual tokenizers,”
2022, arXiv:2208.06366.

[55] O. Russakovsky et al., “ImageNet large scale visual recognition challenge,”
Int. J. Comput. Vis., vol. 113, no. 3, pp. 211–252, 2015.

[56] B. Zhou et al., “Semantic understanding of scenes through the ADE20K
dataset,” Int. J. Comput. Vis., vol. 127, no. 3, pp. 302–321, 2019.

[57] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural
adversarial examples,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 15262–15271.

[58] D. Hendrycks et al., “The many faces of robustness: A critical analysis of
out-of-distribution generalization,” in Proc. IEEE Int. Conf. Comput. Vis.,
2021, pp. 8320–8329.

[59] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning robust global
representations by penalizing local predictive power,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 10506–10518.

[60] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual
parsing for scene understanding,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 432–448.

[61] S. Ma et al., “DeltaLM: Encoder-decoder pre-training for language gen-
eration and translation by augmenting pretrained multilingual encoders,”
2021, arXiv:2106.13736.

[62] Q. Zhang et al., “Transformer transducer: A streamable speech recognition
model with transformer encoders and RNN-T loss,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2020, pp. 7829–7833.

[63] W. Wang et al., “Image as a foreign language: BEiT pretraining for all
vision and vision-language tasks,” 2022, arXiv:2208.10442.

[64] L. Liu et al., “On the variance of the adaptive learning rate and beyond,”
in Proc. Int. Conf. Learn. Representations, 2020.

[65] M. Ding et al., “Cogview: Mastering text-to-image generation via trans-
formers,” in Proc. Adv. Neural Inf. Process. Syst.: Annu. Conf. Neural Inf.
Process. Syst., 2021, pp. 19822–19835.

[66] J. Jumper et al., “Highly accurate protein structure prediction with Al-
phaFold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[67] R. Karakida, S. Akaho, and S. Amari, “Universal statistics of fisher
information in deep neural networks: Mean field approach,” in Proc. 22nd
Int. Conf. Artif. Intell. Statist., 2019, pp. 1032–1041.

Hongyu Wang received the BE degree from the
School of Computer Science and Technology, Uni-
versity of Science and Technology of China, Hefei,
China, in 2022. He is currently working toward the
PhD degree with the School of Computer and Con-
trol Engineering, University of Chinese Academy
of Sciences, Beijing, China. His research interests
include deep learning, natural language processing,
and computer vision.

Shuming Ma received the bachelor’s and master’s de-
grees from Peking University, with a focus on natural
language processing. He is a senior researcher with
Microsoft Research Asia. Before joining MSRA, in
2019. His research interests are large-scale language
model pre-training and multilingual NLP. He has pub-
lished 30+ papers at top-tier conferences (e.g. ICML,
ACL, EMNLP, NAACL).

Li Dong received the PhD degree from the School
of Informatics at University of Edinburgh, in 2019.
He is a principal researcher with Microsoft Research
Asia, working on multimodal learning, and human
language technology.



6774 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 10, OCTOBER 2024

Shaohan Huang received the BS and MS degrees
from Beihang University, Beijing, China, in 2014 and
2017, respectively. He is currently a senior researcher
with Microsoft Research Asia, Beijing. His current
research interests include deep learning and natural
language processing.

Dongdong Zhang is a principal researcher with Mi-
crosoft Research Asia. His research interests are neu-
ral machine translation, large-scale language model
pre-training, multilingual generation, etc.

Furu Wei received the BE and PhD degrees from the
Department of Computer Science, Wuhan University,
Wuhan, China, in 2004 and 2009, respectively. He is
currently a partner research manager with Microsoft
Research Asia, Beijing, China, where he is leading the
Natural Language Processing group and overseeing
the team’s research on Foundation Models (across
tasks, languages and modalities) and AGI, NLP, MT,
Speech, and Multimodal AI.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


