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Abstract—Deep reinforcement learning agents usually need to
collect a large number of interactions to solve a single task. In
contrast, meta-reinforcement learning (meta-RL) aims to quickly
adapt to new tasks using a small amount of experience by leveraging
the knowledge from training on a set of similar tasks. State-of-the-
art context-based meta-RL algorithms use the context to encode
the task information and train a policy conditioned on the inferred
latent task encoding. However, most recent works are limited to
parametric tasks, where a handful of variables control the full
variation in the task distribution, and also failed to work in non-
stationary environments due to the few-shot adaptation setting. To
address those limitations, we propose MEta-reinforcement Learn-
ing with Task Self-discovery (MELTS), which adaptively learns
qualitatively different nonparametric tasks and adapts to new tasks
in a zero-shot manner. We introduce a novel deep clustering frame-
work (DPMM-VAE) based on an infinite mixture of Gaussians,
which combines the Dirichlet process mixture model (DPMM) and
the variational autoencoder (VAE), to simultaneously learn task
representations and cluster the tasks in a self-adaptive way. Inte-
grating DPMM-VAE into MELTS enables it to adaptively discover
the multi-modal structure of the nonparametric task distribution,
which previous methods using isotropic Gaussian random variables
cannot model. In addition, we propose a zero-shot adaptation
mechanism and a recurrence-based context encoding strategy to
improve the data efficiency and make our algorithm applicable
in non-stationary environments. On various continuous control
tasks with both parametric and nonparametric variations, our
algorithm produces a more structured and self-adaptive task latent
space and also achieves superior sample efficiency and asymptotic
performance compared with state-of-the-art meta-RL algorithms.

Index Terms—Meta-reinforcement learning, task inference, task
adaptation, Bayesian nonparametric model, robotic control.

I. INTRODUCTION

R EINFORCEMENT learning (RL) methods have demon-
strated their ability to learn specific tasks and even surpass

human performance. However, they are still limited in general-
izing knowledge to new tasks compared to humans. Humans
can innately leverage past experiences to accomplish new and
similar tasks. For example, those who are good at skiing may
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find it easy to learn snowboarding, as they have already mastered
maneuvering on snow. Instead of training on each task individ-
ually, meta-RL trains on a group of tasks, usually a distribution
of Markov decision processes (MDPs) with the same state and
action space. Thereafter, it can learn to perform new tasks from
a similar task distribution using only a small number of inter-
actions. Meta-RL algorithms are usually classified into three
types, namely, gradient-based [1], [2], recurrence-based [3],
[4], and context-based [5], [6]. Across these three categories,
recent context-based meta-RL algorithms, such as PEARL [5],
have been shown to achieve superior sample efficiency and
asymptotic performance [7].

Context-based meta-RL involves training a universal policy
that is conditioned on a probabilistic task embedding, consisting
of a task inference network for learning the embedding and
a policy network conditioned on the inferred task belief. For
instance, PEARL utilizes a variational auto-encoder to encode
historical data into latent task representations, enabling online
probabilistic inference for the tasks and policy network con-
ditioning [5]. Task distributions are categorized as parametric
or nonparametric [8], where parametric tasks involve specific
parameter variations, while nonparametric tasks are qualitatively
distinct and cannot be described by parameter variations. Pre-
vious context-based meta-RL approaches have been effective
for parametric tasks but struggle with generalizing to diverse
nonparametric tasks due to the limited expressiveness of single
Gaussian priors in modeling multi-modal structure.

We can view learning task representations while discovering
a latent structure for nonparametric tasks as a problem of simul-
taneous representation learning and clustering, also known as
deep clustering [9]. By formalizing the concept of parametric
and nonparametric variability using Gaussian mixture models
(GMMs), our recent algorithm, CEMRL, is applicable to a
variety of meta-RL settings, such as non-stationary environ-
ments and broad task distributions [7]. However, CEMRL is still
limited in two aspects: (1) it assumes that the number of clusters
(mixtures) is known, but this information may be hidden in meta-
RL; (2) the number of clusters in GMMs is fixed so it cannot
adapt dynamically when there is a new task cluster. Note that a
stationary environment refers to an MDP that is fixed during an
episode and only changed between episodes. A non-stationary
environment, in contrast, refers to an MDP that can potentially
change every timestep. Therefore, an algorithm must perform
zero-shot adaptation to solve such an environment [10].

In this work, we design an approach to leverage deep cluster-
ing and Bayesian nonparametric models to tackle the challenge
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of meta-RL with broad nonparametric task distributions. We
propose MEta-reinforcement learning with Task Self-discovery
(MELTS), an off-policy context-based meta-RL algorithm that
can discover both parametric and nonparametric tasks in a
self-adaptive way. This algorithm also works in non-stationary
environments and adapts in a zero-shot manner. The novelty
of our algorithm is based on two concepts: (1) We propose
a simultaneous representation learning and clustering method
(DPMM-VAE) that combines the Dirichlet process mixture
model (DPMM) and the variational autoencoder (VAE). Com-
pared with previous deep clustering methods, our method can
self-adapt to the varying complexity of the data, scale to an
infinite mixture, and additionally learn the distribution of each
cluster. DPMM-VAE enables MELTS to automatically identify
nonparametric tasks and generate a more structured latent space
than previous context-based meta-RL algorithms using a single
Gaussian model or a Gaussian mixture model. (2) We propose
a novel recurrent encoder-decoder strategy for learning task
embeddings. We train our task-inference network by recur-
rently encoding several transitions and reconstructing the task’s
Markov decision process. Previous meta-RL methods using
recurrent networks [3], [4], [6] maintain the hidden state over the
whole transition history of a task. We demonstrate that enough
task information can be learned from just a few transitions and
subsequently make our recurrent encoder-decoder compatible
with non-stationary environments.

We evaluate the DPMM-VAE on the MNIST dataset, and
it achieves superior prediction accuracy compared with other
types of VAE. We evaluate MELTS on continuous robotic con-
trol tasks with parametric and nonparametric distributions. Ex-
perimental results show that MELTS significantly outperforms
state-of-the-art meta-RL methods in terms of sample efficiency
and asymptotic performance. To the best of our knowledge,
MELTS is the first meta-RL algorithm that can explicitly identify
qualitatively distinct tasks without any prior information about
the task distribution. We provide an open-source implementation
of our framework and encourage readers to further explore and
extend our work on this basis.1

II. BACKGROUND

A. Meta-Reinforcement Learning

Meta-learning algorithms seek to learn how to perform var-
ious tasks without training for each task from scratch. Meta-
learning is regarded as a promising step toward achieving strong
and versatile AI [11], [12]. The fundamental principle underly-
ing meta-learning is often referred to as “learning to learn”. The
objective is to train a meta-learner that can extract commonalities
across a set of training tasks. By leveraging the acquired meta-
information from these tasks, the meta-learner can then facilitate
more efficient learning of related tasks. Typically, an inner loop
employing a standard learner is employed to learn the specifics
of each task, a process commonly referred to as “adaptation”
in the literature. Simultaneously or iteratively, the outer loop
focuses on training the meta-learner. The optimization of both

1https://github.com/Ghiara/MELTS

the inner and outer loops depends on the specific algorithm being
employed. In the context of meta-RL, a task is represented as a
Markov Decision Process (MDP) and is assumed to be drawn
from a task distribution denoted as Ti ∼ p(T ):

Ti = {Si, Ai, Ri(s, a), pi(s, a), pi(s0)}. (1)

Here, Ti represents the MDP corresponding to the i-th task, with
Si and Ai denoting the state and action spaces, respectively.
The functions Ri(s, a), pi(s, a), and pi(s0) describe the reward
function, transition dynamics, and initial state distribution for
the i-th task, respectively. In meta-RL, we have separate task
sets, DTtrain

and DTtest , which contain different tasks with no
overlap. Meta-RL usually contains two phases: During meta-
training, we only access the tasks in DTtrain

. During meta-
testing, we test how quickly and how well our meta-RL agent can
adapt to tasks in DTtest that are not seen during meta-training.
Therefore, the optimization objective of the policy Π is based
on the performance on DTtest :

Π∗ = argmax
Π

ET ∼DTtest

[
Eτ∼p(τ |Π)

[∑
t

γtrt

]]
, (2)

where τ = (st,at, rt, st+1) contains the state, action, reward,
and the next state. γ represents the discount factor, with values
ranging from 0 to 1.

B. Parametric & Non-Parametric Task Distribution

The configurations of the task distribution can also vary, and
we categorize them into two distinct groups.
� Parametric task distribution: In a task distribution char-

acterized by parametric variation, a collection of Markov
Decision Processes (MDPs) exhibits significant common-
alities. The disparities among these MDPs, including the
state spaceS, action spaceA, transition probability p(s, a),
and reward function R(s, a), can be expressed through a
set of continuous parameters. For instance, tasks involving
a robot running at various velocities represent parametric
variation, as their differences primarily rely on the reward
functions, which can be fully described by the velocity
parameter.

� Non-parametric task distribution: A task distribution
demonstrating non-parametric variation is less uniform
and presents greater challenges. This type of distribution
encompasses qualitatively distinct tasks that cannot be dis-
tinguished solely by continuous parameters. For instance,
in the Meta-World benchmark [8], the discrepancy between
“reach puck” tasks and “open window” tasks represents
non-parametric variation. Although we can parameterize
all “reach puck” tasks using the puck position, the same
parametrization cannot be applied to “open window” tasks.

To build a task distribution that facilitates training for general-
ization across a wide array of tasks, it is essential to include both
parametric and non-parametric variations. In such a distribution,
each qualitatively-different non-parametric base task is accom-
panied by a set of subtasks exhibiting parametric variation.

https://github.com/Ghiara/MELTS
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III. RELATED WORK

A. Simultaneous Representation Learning and Clustering

Simultaneous representation learning and clustering, referred
to as deep clustering, deals with the problem of learning through
a deep neural network while discovering the clusters of the data
at the same time. It is one of the most promising approaches
in unsupervised learning [13]. The benefit of this method is
usually shown in self-supervised learning, where we can gener-
ate pseudo-labels or surrogate tasks from unlabeled data based
on the learned clustering assignments. We can categorize the
methods in this domain by whether they use two-step optimiza-
tion or one-step optimization. With two-step optimization, Xie
et al. [14] use a k-means model with a Student’s t-distribution
as a kernel to measure the distance between feature embeddings
and the cluster centroids, and then alternately optimize the neural
network parameters and the cluster centroids, leveraging soft
cluster assignments. DeepCluster [15] uses a k-means model,
and it alternates between optimizing the clustering objective and
improving the learned representations via cross-entropy loss.

The second category of methods based on one-step optimiza-
tion does not seek to combine neural networks with a standard
clustering framework like k-means. Instead, they design a single
objective to push similar data closer together. Notable exam-
ples are invariant information clustering (IIC) [16], in which
the objective is the maximal mutual information between the
cluster assignment of data pairs, and each data pair consists of
the original data point and the augmented version representing
the same instance. Deep robust clustering (DRC) [17] turns
maximizing mutual information into minimizing constructive
loss and shows that maximizing the similarities for positive
pairs and minimizing them for negative pairs can lead to robust
clustering results. Although the one-step optimization approach
circumvents the problem of error propagation in the alternative
two-step optimization, it has the drawback of relying mainly
on data augmentation to construct data pairs, which can be
difficult when learning in an RL setting. It also does not pro-
duce parametrization for the learned cluster, which reduces the
method’s ability to reason on uncertainties. For this reason, we
also use the two-step optimization strategy in our work.

Bayesian nonparametric models have been incorporated into
deep clustering. Stick-breaking VAE [18] replaces the param-
eters of the isotropic Gaussian prior with the stick-breaking
proportions of a Dirichlet process. Each latent dimension is a
line segment of the stick and can therefore be viewed as its
own cluster. However, the line segment informs only about the
cluster membership, not the shape and density of the individ-
ual cluster. Besides, the decision to embed a Dirichlet process
directly in the network architecture means that the variational
inference methods for learning the Dirichlet process are limited
to stochastic gradient variational Bayes, which may suffer from
noisiness and a local optimum [19]. Deep nonparametric Bayes
(DNB) [20] directly incorporates a Dirichlet process mixture
model and adopts the two-step optimization approach. It has an
additional step of self-labeling, and the network parameters are
updated using the loss with pseudo-labels. Our method is also
based on DPMM, but we eliminate the self-labeling step and

keep the reconstruction loss of the standard VAE. In our work,
the learned cluster assignments only modulate the VAE through
the KL divergence.

B. Meta-Reinforcement Learning

In recent works, most meta-RL algorithms fall into three main
categories.

Recurrence-based methods utilize recurrent neural networks
(RNNs) such as LSTM or GRU to implicitly retain task infor-
mation in hidden states. They can work in conjunction with
on-policy RL algorithms. An example of this category is RL2

[3], which uses GRU hidden states to encode relevant task infor-
mation over time steps. Our work employs a GRU-based encoder
as well, but we do not maintain hidden states over episodes like
RL2. Instead, we obtain “fresh” hidden states from local contexts
of a few time steps, enabling applicability to non-stationary
environments. In general, recurrence-based meta-RL algorithms
do not have an explicit task-belief, and they are on-policy and
comparably sample-inefficient.

Gradient-based meta-RL algorithms learn effective gradient
descent rules to facilitate quick adaptation to new tasks during
meta-testing. MAML [1] is a prominent representative, aiming to
learn a highly sensitive weight initialization for rapid adaptation
with few gradient steps. In this way, the model is expected
to learn a good initialization of the neural network without
overfitting on any particular task. This initialization serves as
an inductive bias for fast adaptation to new tasks. MAML [1]
has been extended to facilitate continuous adaptation in non-
stationary environments [2], [21]. In the GrBAL algorithm [2],
the transition from episodic adaptation to zero-shot adaptation
involves considering each segment of M time steps as a distinct
task. We employ a similar idea to achieve zero-shot adaptation
in our work.

Context-based meta-RL explicitly models the belief over
the task distribution based on essential task information. This
approach enables online probabilistic inference to identify new
tasks and act optimally accordingly. Many recent works have
leveraged the advantages of learning latent embeddings to cap-
ture diverse skills. Notable algorithms in this category include
PEARL [5] and VariBAD [6], decouple the learning of task
representation from the policy training. MetaCURE [22] fur-
ther separates the policy learning of PEARL into an explorer
and an exploiter, where the explorer specializes in collecting
experiences with rich task-relevant information to improve task
inference. These context-based methods use off-policy learning,
substantially improving sampling efficiency. A limitation of the
aforementioned models is their reliance on isotropic Gaussian
priors, which may prove inadequate when dealing with complex
tasks exhibiting nonparametric variation. One possible approach
to address this limitation is to employ a graph neural network
architecture in the encoder, as proposed by Wang et al. [23].
Alternatively, Ren et al. [24] suggested the use of Dirichlet
random variables for the task latent space to accommodate
the multi-modality of task distributions. However, using the
Dirichlet prior requires a pre-defined number of base tasks K.
Ren’s model was evaluated on a point-robot navigation task,
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which only involved parametric variation. Our work extends
on this approach by proposing a model where the number of
base tasks is unknown and can be self-discovered by the model,
allowing for evaluation with more complex nonparametric task
distributions.

Our work is also related to other studies that combine
Bayesian nonparametrics with meta-learning. While MAML
focuses on learning a single set of weight initialization dur-
ing meta-training, there are extensions proposed by Nagabandi
et al. [25], Jerfel et al. [26], and Wang et al. [27] that incorpo-
rate a mixture model to handle different tasks’ model param-
eters. These works employ Bayesian nonparametric methods,
specifically the Chinese restaurant process (CRP), to control
the mixture model. Additionally, they optimize the mixture
model jointly with the MAML algorithm using the expectation-
maximization (EM) procedure.

IV. BAYESIAN NONPARAMETRICS PRELIMINARIES

This section first presents a brief introduction to Bayesian
nonparametrics, which serves as the theoretical foundation of
our deep clustering method DPMM-VAE. Specifically, we start
with the Dirichlet process and define it constructively via the
stick-breaking process. We then show how to extend the finite
mixture to an infinite mixture with the Dirichlet process mixture
model. Finally, we explain the memoized online variational
inference, which is used in large-scale training of Bayesian
nonparametric models.

A. Bayesian Nonparametrics

Traditional parametric probabilistic models are concerned
with learning a finite set of parameters within a model class to
explain the observed data. They have been a popular choice for
machine learning. However, they can only have a fixed number
of parameters, which leads to several limitations. First, in many
parametric models, we require the distributions to lie within
a certain parametric family. Second, model misspecification in
these cases can lead to inconsistent estimators of parameters.
Third, the number of parameters in the model is also usually
fixed. This means that we need to select the proper number of
parameters via model selection, which can be cumbersome. Con-
crete examples include choosing the number of components in a
Gaussian mixture model or choosing k for k-means clustering. If
we specify the wrong number of components, the model can be
over-fitting or under-fitting. Moreover, if we observe more data
that provide additional information, a parametric model with a
fixed number of parameters cannot adjust its model complexity
to adapt to the increased data complexity or the changing data
structure. Therefore, these models are not a natural choice for
meta-learning, continual learning, or lifelong learning.

Bayesian nonparametric models have been developed to over-
come these limitations. “Nonparametric” here does not mean the
model has no parameters. Rather, the model has the capacity
to use an infinite set of parameters. The prior distributions
for the nonparametric models usually have the space of all
distributions as their support and therefore are not limited to
particular parametric families [28]. With the possible set of

Fig. 1. (a) Stick-breaking process, where we break πi off the stick at the i-th
iteration. (b) Histogram based on draws from a Dirichlet process with α = 5
and H = N (0, 1).

parameters being infinite, the nonparametric models can decide
how many parameters to utilize given the data, and the model
should be able to adapt with the growing data. In the following,
we briefly introduce the Bayesian nonparametric models and
the variational inference methods, and readers are encouraged
to read the references for more details.

B. Dirichlet Process and Stick-Breaking

The Dirichlet process (DP) is a distribution over probability
measures, where its marginal distribution has to be Dirichlet-
distributed. Hence, draws from a DP are random distributions.
Let H be a distribution over the sample space Θ and α be a pos-
itive scalar. A random probability distribution G is distributed
according to a DP with the base distributionH and concentration
parameterα, i.e.,G ∼ DP(α,H). We refer to [28] for a complete
explanation of the basic properties of DPs.

Dirichlet process mixture models (DPMMs) are commonly
used to tackle the problem of the infinite mixture. For k ≥ 1, we
define a DP constructively using the so-called stick-breaking
(SB) process [29]:

βk ∼ B(1, α), πk = βk

k−1∏
i=1

(1− βi). (3)

This constructive definition derives from imaginatively breaking
up a unit-length stick into an infinite number of segments πk,
with α being a positive scalar. First, we sample β1 ∼ B(1, α)
from a Beta distribution and break the stick at π1 = β1. Then
we sample β2, and the length of the second segment will beπ2 =
β2(1− β1). Continuing this process, we will have

∑∞
k=1 πk =

1, and the resulting π follows a Griffiths-Engen-McCloskey
(GEM) distribution π ∼ GEM(α). Fig. 1(a) demonstrates the
SB process.

A random distribution G drawn from a DP is discrete, so we
can write it as a weighted sum of point masses [30], [31]:

G =
∞∑

k=1

πkδθ∗
k
, (4)

where δθ∗
k

is the point mass located at θ∗k: it equals 1 at θ∗k
and equals 0 everywhere else. If we sample the weights πk

according to (3) and sample θ∗k from a base distribution θ∗k ∼ H ,
then we can say that G ∼ DP(α,H), that is to say, G is a
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Fig. 2. Probabilistic graphic model of (a) the Gaussian mixture model and (b) the Dirichlet process mixture model. Compared with GMM that can has fixed
numbers of clusters, DPMM can model an infinite number of clusters.

Dirichlet process with the base distributionH and concentration
parameter α. Fig. 1(b) shows a draw from a DP with α = 5.

C. Dirichlet Process Mixture Model

The Dirichlet process mixture model (DPMM) is one of
the most widely used Bayesian nonparametric models. It is an
infinite mixture model where the number of cluster components
is decided by the data instead of being pre-specified. A set of
observations x = {x1, . . ., xN} is modeled by a set of latent
parameters θ = {θ1, . . ., θN}, where θi is independently draw
G. Here we assume xi has distribution F (θi) parameterized by
θi. Then we have:

G|α,H ∼ DP(α,H),

θi|G ∼ G,

xi|θi ∼ F (θi). (5)

Because of the discreteness and the clustering property of the
Dirichlet process G, θi will take on repeated values, and we will
obtain a clustering on all the θi’s. Then all xi’s drawn with the
same value of θi can be seen as one cluster. The number of unique
values of θi’s is the active number of cluster components for a
DPMM. During inference, the active number of components can
be dynamically inferred from the observed data.

Let vi be a cluster assignment variable, which takes on value
k with probability πk that is drawn from a categorical distri-
bution (Cat). Then (5) can be equivalently expressed via the
stick-breaking process [28] as follows:

θ∗k|H ∼ H ,

π|α ∼ GEM(α),

vi|π ∼ Cat(π),

xi|vi, ∼ F (θ∗vi
). (6)

Here we assume xi has distribution F (θ∗vi
), and θ∗vi

are the pa-
rameters that parameterizeF . In mixture modeling terminology,
π is the mixing proportion, θ∗k are the cluster parameters, F (θ∗vi

)
is the distribution over data in cluster k, and H is the prior over
cluster parameters. Typically, F is a Gaussian distribution. The
main difference between GMM and DPMM is that for DPMM,
the mixing proportion π is sampled from a GEM distribution,
and the prior H(λ) over the cluster parameters is the base

distribution of an underlying Dirichlet process G(α,H). Fig. 2
illustrates this generative model of the GMM and DPMM.

D. Variational Inference for DPMM

So far, we have introduced the Dirichlet process mixture
model (DPMM) as a generative model. In practice, however,
we want to approximate the posterior density for the models
based on the observed data. For a Gaussian mixture model, we
can use the expectation-maximization (EM) algorithm to find
the maximum likelihood estimates of the parameters. Inference
for Bayesian nonparametric models is not as easy in compar-
ison. Various methods have been developed using split-merge
sampling [32], sequential Monte Carlo [33], and variational
inference (VI) [34]. We focus on the variational methods since
they are typically faster and more scalable compared with Monte
Carlo methods.

The basic idea of variational inference is to convert the infer-
ence problem into an optimization problem. From (3) and (6),
we write the joint probability for DPMM as:

p(x,v,θ,β) =
N∏

n=1

F (xn|θvn
)Cat(vn|π(β))

×
∞∏

k=1

B(βk|1, α)H(θk|λ). (7)

When the true posterior p(v,θ,β|x) is intractable, we aim to
find the best variational distribution q(v,θ,β), such that the KL
divergence with the exact conditional is minimized:

q∗(v,θ,β) = argmin
q

KL(q(v,θ,β)

× ||p(v,θ,β|x)), (8)

KL(q(v,θ,β)||p(v,θ,β|x)) = E[log q(v,θ,β)]

− E[log p(v,θ,β|x)]
= E[log q(v,θ,β)]

− E[log p(v,θ,β,x)]

+ log p(x). (9)

Notice that log p(x) does not depend on q, so instead of mini-
mizing the KL divergence directly, we maximize the so-called
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evidence lower bound (ELBO), which is:

ELBO(q) = E[log p(x,v,θ,β)]− E[log q(v,θ,β)]. (10)

We can rearrange the terms in the ELBO and rewrite it as follows:

ELBO(q) = E[log p(v,θ,β)] + E[log p(x|v,θ,β)]
− E[log q(v,θ,β)]

= E[log p(x|v,θ,β)]−KL(q(v,θ,β)||p(v,θ,β)).
(11)

The first term,E[log p(x|v,θ,β)], is the expected log-likelihood
of the data. It encourages the variational distribution to favor
parameter values that best explain the observed data. The second
term,KL(q(v,θ,β)||p(v,θ,β)), is the KL divergence between
two priors p(v) and q(v), which forces the variational distribu-
tion to stay close to the prior. Therefore, we can interpret the
optimization of the ELBO as finding a solution to sufficiently
explain the observed data with minimal deviation from the prior.

For the DPMM model, based on the idea of variational
inference, we define the variational distribution q following
the mean-field assumption, where each latent variable has its
variational factor and is mutually independent of each other [19]:

q(v,θ,β) =
N∏

n=1

q(vn|r̂n)
K∏

k=1

q(βk|α̂k1
, α̂k0

)q(θk|λ̂k), (12)

qvn
= Cat(vn|r̂n1:nK

),

qβk
= B(βk|α̂k1

, α̂k0
),

qθk = H(θk|λ̂k). (13)

We mark variables with hats to distinguish parameters of varia-
tional factors q from parameters of the generative model p. The
categorical factor qvn

is limited to only K components to make
the computation possible. Since the variational distribution is
merely approximate, the true posterior remains infinite. If K is
large, the variational distribution can be reasonably close to the
infinite posterior through ELBO optimization.

We consider a special case where both H and F in (6) belong
to the exponential family:

pH(θk|λ0) = E[λT
0 t0(θk)− a0(λ0)], (14)

p(xn|θk) = E[θTk t(xn)− a(θk)]. (15)

Hughes and Sudderth [19] showed that in this case, we can
express the ELBO in terms of the expected mass N̂k and the
expected sufficient statistic sk(x) of each component k:

ELBO(q) =

K∑
k=1

(
Eq[θk]

T sk(x)− N̂k[a(θk)] + N̂k[log πk(β)]

−
N∑

n=1

r̂nk log r̂nk

+Eq

[
log

B(βk|1, α)
q(βk|α̂k1

, α̂k0
)

]
+Eq

[
log

H(θk|λ)
q(θk|λ̂k)

])
.

(16)

Then each variational factor can be updated individually in an
iterative manner. First, we update the local variational param-
eters in the categorical factor qvn

for each cluster assignment:

r̃nk = exp(Eq[log πk(β)] + Eq[log p(xn|θk)]), (17)

r̂nk =
r̃nk∑K
l=1 r̂nl

. (18)

Next, we update the global parameters in the factors for the stick-
breaking proportions qβk

and the factors for the base distribution
qθk :

N̂k =

N∑
n=1

r̂nk, αk1 = α1+N̂k, αk0 = α0+

N∑
l=k+1

N̂l,

sk(x) =

N∑
n=1

r̂nkt(xn), λ̂k = λ0 + sk(x). (19)

The calculation of the summary statistics Nk and sk(x) requires
the full dataset. For inference on a large dataset, we need
a batch-based approach such as stochastic variational Bayes
(soVB), which is based on stochastic gradient updates, and
memoized online variational Bayes (memoVB) [19], which
breaks the summary statistics of the entire dataset into a sum
of the summary statistics of each batch.

The nonparametric nature of DPMM allows the model to
adapt to the changing number of clusters. Therefore, we can
develop additional heuristics to dynamically insert new clusters
and remove redundant clusters. This is particularly helpful in
escaping a local optimum when using batch-based variational
inference approaches.

In memoVB, a birth move to create new clusters is made
by first collecting subsamples x′ that are poorly described by a
single cluster when passing through each batch. After passing
through all the batches, a separate DPMM model is fitted on
x′ with K ′ initial clusters. Assuming that the active number of
clusters before the birth move isK, we can either accept or reject
the new cluster proposals by comparing the result of assigning
x′ to K +K ′ with that of assigning x′ to K. To complement
the birth move, a merge move potentially combines a pair of
clusters into one. Two clusters are merged if the merge improves
the ELBO objective, leaving K − 1 clusters after the merge.
The birth move helps to escape the local maximum in ELBO
optimization, which can occur in gradient-based soVB. The birth
and merge moves control the number of clusters in this infinite
model while maintaining a non-decreasing ELBO.

V. SIMULTANEOUS REPRESENTATION LEARNING

AND CLUSTERING

We introduce our methods in two parts. In this section, we
introduce DPMM-VAE, a deep clustering framework that com-
bines Bayesian nonparametric models and a variational autoen-
coder. In the next section, we focus on our meta-RL algorithm
MELTS, where we adapt our DPMM-VAE framework as part
of the task self-discovery module.
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Fig. 3. Overview of the DPMM-VAE. We optimize the DPMM and the VAE
alternately. When updating the DPMM, we use the current latent sample z
obtained from the VAE. When updating the VAE, we assign the outputs of the
encoder to the clusters of the current DPMM and minimize the KL divergence
with respect to the assigned cluster.

Given an unlabeled set of data with n points {xi}ni=1 ∈ X ,
we design a deep clustering method, DPMM-VAE, that simul-
taneously learns: (1) The latent representation zi of each xi in
a latent space Z and the corresponding mapping from the data
space X to Z, namely fθ : X −→ Z (the dimension of Z is a
fixed hyperparameter D). (2) The number of clusters K and
the distribution on each cluster. (Since we assume Gaussian
distribution, we learn the mean μk and covariance matrix Σk

for each cluster k.) (3) The cluster assignment vi of each xi,
where vi ∈ {1, . . . ,K}.

DPMM-VAE combines a standard variational auto-encoder
(VAE) for learning representations and a Dirichlet process mix-
ture model for learning the total number of clusters and the
cluster distributions. The cluster assignments depend jointly on
the learned representation and the learned distribution of each
cluster. Our algorithm uses an alternative optimization scheme:
First, we update the DPMM model using the latent variables zi,
which are sampled from the encoder using the reparametrization
trick during the last VAE update. Then we fix the parameters
of the DPMM model and update the parameters of the VAE.
Here we use the DPMM model to assign each zi to a previously
learned cluster and minimize the KL divergence with respect
to the assigned cluster. An overview of our proposed method is
illustrated in Fig. 3.

A. Updating the DPMM Model

When updating the parameters of the DPMM model, we fit
a DPMM model on the latent samples zi’s obtained from the
VAE. We define the generative process of assigning data points
to clusters according to the stick-breaking process. We assume
a generative process as follows:

1) The mean μk and covariance matrix Σk of each clus-
ter k are drawn from a normal-Wishart distribution. We

assume a normal-Wishart prior because normal-Wishart
distribution is the conjugate prior for a diagonal Gaussian
with unknown means and unknown covariance matrix. We
first sample Σk from the Wishart distribution with scale
matrix W and degree of freedom ν. Then we sample μk

from a multivariate normal distribution with mean μ0 and
variance (λΣk)

−1:

Σk ∼ W(W, ν), (20)

μk ∼ N (μ0, (λΣk)
−1). (21)

For simplicity, we assume Σk is a diagonal covariance
matrix, assuming the latent space is D-dimensional.

μk =

⎛
⎜⎜⎜⎜⎝

μk1

μk2

...

μkD

⎞
⎟⎟⎟⎟⎠ ,Σk =

⎛
⎜⎜⎜⎜⎝

λ−1
k1

λ−1
k2

. . .

λ−1
kD

⎞
⎟⎟⎟⎟⎠ .

(22)

2) The probabilities of each cluster are drawn from a GEM
distribution with concentration parameter α. In practice,
we view it as a stick-breaking process where we first
sample βi ∼ B(1, α) and then πk = βi

∏
i<k(1− βi).

π ∼ GEM(α). (23)

3) The cluster assignment vn is drawn from a discrete dis-
tribution Cat(π) based on the cluster probabilities we
previously obtained.

vn ∼ Cat(π). (24)

4) In our DPMM model, when the latent variable zi is as-
signed to a cluster vn = k, we assume that it is generated
from a multivariate Gaussian with mean μk and variance
Σk.

zi|vn = k ∼ N (μk,Σk). (25)

5) Finally, the original data are assumed to be generated
by the decoder, namely fθ(zi) = xi, where θ are the
parameters of the decoder neural network.

Given the overall generative process, the DPMM has a joint
probability:

p(z,v,β,μ,Σ) =

N∏
i=1

N (zi|μvn
,Σvn

)Cat(vn|π(β))

∞∏
k=1

B(βk|1, α)

∞∏
k=1

N (μk|μ0, (λΣk)
−1)W(Σk|W, ν).

(26)

We then use variational inference to find the posterior estimates
for the parameters. We construct the variational distribution q



BING et al.: CONTEXT-BASED META-REINFORCEMENT LEARNING WITH BAYESIAN NONPARAMETRIC MODELS 6955

Algorithm 1: DPMM-VAE.
Require: Dataset D, batch size B, DPMM optimization steps T
Ensure: Learned parameters η of the encoder and φ of the decoder, total number of clusters K, learned parameters of each
DPMM cluster π1:K , μ1:K , σ1:K

1: Initialize parameters η and φ for the VAE
2: Initialize the DPMM with K = 1, including initializing the parameters (μ0, λ,W, ν) for the NW-distribution and the

parameter α for the Beta-distribution
3: repeat
4: Sample mini-batch of data M = {x0, . . . , xB} ∼ D
5: With the VAE, obtain latent variables {z0, . . . , zB} and save to a buffer Z = Z

⋃
{z0, . . . , zB}

6: With the current DPMM model, obtain the cluster assignments {v0, . . . , vB} and the corresponding assignment
probabilities for each latent variable.

7: Compute LKL using (28) for hard assignment or (29) for soft assignment
8: Compute Lrecon and update η and φ with gradients of the ELBO according to the training of standard VAE
9: if it is time to update the DPMM (e.g., at the end of an epoch) then
10: for step i = 1, 2, . . ., T do
11: Use data in Z as input and the current DPMM model as prior
12: Update random variables of the DPMM, μ̂0, λ̂, Ŵ , ν̂, r̂n1:nk

, α̂k1
, α̂k0

13: Attempt birth moves to potentially add new clusters
14: Attempt merge moves to potentially combine pairs of clusters
15: Reset buffer Z = ∅
16: until convergence

with the following factorization:

q(v,β,μ,Σ) =
N∏

n=1

q(vn)
K∏

k=1

q(βk)q(μk,Σk)

=
N∏

n=1

Cat(vn|r̂n1
, . . . , r̂nk

)
K∏

k=1

B(βk|α̂k1
, α̂k0

)

K∏
k=1

N (μk|μ̂0, (λ̂Σk)
−1)W(Σk|Ŵ , ν̂). (27)

In each optimization step, we update the parameters μ̂0, λ̂, Ŵ , ν̂
of the normal-Wishart distribution. We then use the memoized
online variational Bayes method described in Section IV-D to
update the parameters for the stick-breaking process, r̂n1:nk

,
α̂k1

, and α̂k0
, to estimate the cluster probabilities and the cluster

assignments. Finally, throughout the DPMM optimization steps,
we also dynamically adjust the total number of clusters K by
adding birth-and-merge moves described in Section IV-D. A
complete update for our DPMM model thus breaks down to
updating three sets of parameters.

We perform the updates on the DPMM model after each
training epoch of the VAE. Because we alternate between up-
dating the DPMM model and the VAE, the DPMM model is
not required to converge in each update, nor do we need to fit a
new DPMM model from scratch every time. In each update, we
initialize the DPMM model with the parameters learned from
the previous updates and apply this model to new latent samples
produced by the updated VAE. This makes sure that we keep
updating the same DPMM model while incorporating the latest
changes in the latent space mappings.

B. Updating the VAE

When training the VAE, we jointly minimize the reconstruc-
tion lossLrecon and the KL divergence lossLKL. The reconstruc-
tion loss Lrecon is the mean squared error between the observed
data x and the decoder’s output. We keep the reconstruction loss
from the standard VAE. The LKL is simply the KL-divergence
between two isotropic Gaussian distributions. Detailed explana-
tions can be found at [35].

1) Hard Assignment: For the calculation of LKL, we first ob-
tain the cluster assignment vi = k of each latent sample zi using
the current DPMM model. According to the DPMM, the mean
and covariance matrix for assigned cluster k isμk andΣk. On the
other hand, according to the VAE, zid = μd(x;η) + σd(x;η)ε
for d ∈ {1, 2, . . . , D}, where μ(xi;η) and σ(xi;η) are the out-
puts of the VAE’s encoder and ε ∼ N (0, 1). The KL divergence
between two multivariate Gaussian distributions is calculated as
follows:

DKLik
=

1

2

[
log

|Σk|
|Σ(xi;η)|

−D + tr{Σ−1
k Σ(xi;η)}

+ (μk − μ(xi;η))
TΣ−1

k (μk − μ(xi;η))

]
. (28)

We name this method of assigning a data point to the most
probable cluster hard assignment because it only involves one
single cluster in the KL calculation.

2) Soft Assignment: The cluster assignment made by the
hard assignment might not always be correct, and the wrongly-
assigned samples will introduce errors into the training by
calculating the KL divergence with respect to the wrong cluster.
To eliminate the harm of prematurely assigning a sample to
a definite cluster, we may additionally take into account the
probabilities of the cluster assignments. From the DPMM model,
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Fig. 4. Overview of our meta-RL algorithm MELTS, which includes four components, namely, the context encoding, the task discovery, the reconstruction
training, and the policy training.

we compute the probability pik of assigning the latent sample zi
to cluster k for all possible k ∈ {1, 2, . . . ,K}. Then we define
the KL divergence as a weighted sum of the KL divergences
calculated with respect to each cluster:

DKLi
=

K∑
k=1

pikDKLik
. (29)

Although one can use a more complex weighting strategy, we
found this simple weighting by probabilities to be sufficient
empirically. We summarize our algorithm for DPMM-VAE in
Algorithm 1.

VI. META-RL

In this section, we introduce our meta-RL algorithm, MELTS.
It decouples the learning of latent task encoding and the learning
of a universal policy conditioned on the inferred task. The model
for latent task encoding can incorporate the DPMM-VAE we
proposed in Section V to get a more structured latent space, or a
standard isotropic Gaussian VAE for comparison. The DPMM-
VAE-based task encoding allows the agent to adaptively discover
nonparametric tasks in a self-guided way. Note that, for robotic
tasks the mixtures in the Dirichlet process mixiture model are
used to model the non-parametric base tasks and each component
is used to model the parametric sub-tasks conditioned on its base
task category.

A. Overview

MELTS is a context-based off-policy meta-RL algorithm. It
works in both stationary and non-stationary environments and
can solve task distributions with both parametric and nonpara-
metric variations. Fig. 4 shows a graphic representation of the
algorithm. We decompose our algorithm into four modules:
context encoding, task self-discovery, reconstruction training,
and policy training. The first three modules together form our
task inference network. We will discuss each module in detail
in the following sections, but first, we provide an overview of
the meta-training and meta-testing procedure as follows. Note

that the training tasks DTtrain
and the testing tasks DTtest are

sampled from the task distribution p(T ) with no overlaps.
1) Meta-Training: During a meta-training epoch, we first

randomly sample a subset of training tasks fromDTtrain
and roll

out each task for several episodes to collect replay experiences.
We maintain the current context from one episode and obtain
a task encoding from the context encoder on a per-time-step
basis while rolling out the task. The policy during roll-outs is
conditioned on the task encoding and the collected episodes are
appended to the replay buffer.

Second, we update the task inference network, which consists
of the context encoding module, the task self-discovery module,
and the reconstruction training module.
� For each iteration in the training epoch, we sample a set

of contexts from the replay buffer according to a sampling
strategy Sc (see Section VI-B2). These samples are fed to
an encoder based on a gated recurrent unit (GRU) network,
and we obtain the task encoding z via posterior sampling.

� An information bottleneck constrains the task encoding
to stay close to a (learned) prior. We have developed two
variants for the prior (see Section VI-C). (1) In our vanilla
VAE setting, the prior is the standard Gaussian N (0, I).
(2) In the DPMM-VAE setting, the encoding is assigned to
a cluster by the DPMM model from the last epoch, and the
prior is the distribution of the cluster.

� We use a dynamics prediction network and a reward pre-
diction network as the decoder of the task inference module
(see Section VI-D). The two networks reconstruct the
next state st+1 and the reward rt from the state, action,
and inferred task encoding (st, at, zt) of one time step.
The reconstruction loss encourages the encoding to cap-
ture the most informative information about the current
task.

We update the DPMM model at the end of the training epoch.
The input data to the DPMM are the task encodings obtained
from the last training step of the task inference network, and the
rules to update the DPMM are the same as in Section V-B. In
policy training, we sample from the replay buffer again to train
the agent using the soft actor-critic (SAC) algorithm [36]. We
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Algorithm 2: Meta-Reinforcement Learning With Task Self-Discovery (MELTS).

Require: Training and test tasks DTtrain
and DTtest

∼ p(T )
1: Initialize encoder qη , decoder pφ, policy πν , Q networks Q1w , Q2w , target Q networks QT

1w
, QT

2w
and replay buffer B = ∅

2: repeat
3: Roll out randomly sampled tasks from DTtrain

using the policy πν and append episodes into B
4: for each task-inference training step do
5: Sample mini-batch M1 = {C1, C2, · · · CM1

} ∼ B with sampling strategy Sc

6: Obtain context encodings h(Ci) ∀i ∈ {1, 2, . . . ,M1} �Section VI-B
7: Obtain task latent samples zi ∼ qη(zi|h(Ci)) ∀i ∈ {1, 2, . . . ,M1}
8: Compute LKL according to the type of the VAE �Section VI-C
9: Compute Lrecon with (37) �Section VI-D
10: Update θ, φ with gradients of the ELBO
11: if Use DPMM-VAE for task self-discovery then
12: Fit DPMM on zi’s from the last task-inference training step
13: Update the DPMM model �Section V-B
14: for each policy training step do
15: Randomly sample mini-batch M2 ∼ B
16: Infer task encoding zi = qη(zi|h(Ci)) ∀i ∈ {1, 2, . . . ,M2}
17: Concatenate zi to the SAC inputs and update πν , Q1w , Q2w , Q

T
1w

, QT
2w

18: until SAC convergence

obtain the task encoding from the task inference network online
and use it as an auxiliary input to the SAC.

2) Meta-Testing: We evaluate each task in DTtest with zero-
shot adaption, which means we infer a new task encoding at
each time step when rolling out the task-conditioned policy. We
summarize our algorithm MELTS in Algorithm 2.

B. Context Encoding

In context-based meta-RL, the context refers to the raw ex-
perience collected from the roll-out, which contains rich infor-
mation about the task being executed. We denote the experience
obtained at a single transition as a tuple ct = (st, at, rt, st+1).
For a given time step t < N from a trajectory T0:N , we define
the context as the experiences we collected over a time window
of the nw most recent transitions (nw < N) and denote it as

Ct = (ct−nw+1, ct−nw+2, . . . , ct−1, ct). (30)

We use a single replay buffer for MELTS to access all the past
contexts in an off-policy training. We append the newly obtained
trajectory to the end of the replay buffer when we execute a
training task. To get a training sample during meta-training, we
sample an index t from the replay buffer and retrieve the context
Ct. It can be the case that, if t is sampled at the beginning of a task
trajectory, there are fewer transitions than nw for the sampled
task, and Ci contains some transitions from the previous task. In
practice, we choose nw to be much smaller than the length of the
task trajectory N so that noisy samples occur only occasionally.
Another reason for keeping nw small is to ensure the zero-shot
adaptation capability of the algorithm. Tasks can switch at any
time step in a non-stationary environment, so ideally, nw should
be smaller than the switching interval. Therefore, we push our
algorithm to learn to infer the task from a minimal amount of
past experiences.

Fig. 5. Context encoding. We pass ct = (st, at, rt, st+1) sequentially to a
GRU-based context encoder. The context encoding of the whole context Ct =
(ct−nw+1, . . . , ct) is the final hidden state h after passing the step t.

1) Feature Extraction With GRU: Our context is high-
dimensional, so it can be difficult to directly encode the con-
texts into latent task representations. We want to provide the
subsequent task encoder with more succinct features. Thus, as
visualized in Fig. 5, we train a GRU network to extract features
from the context. Since contexts are samples from sequential
interactions between the agent and the environment, the GRU
can learn the correlation among elements within the sequence.
After we pass the whole context step-by-step up to ct, we take the
final hidden state as the input for the task encoder. Our decoder
network design differs from that of RL2 [3] or VariBAD [6] in
terms of handling variable-length contexts. In [3] and [6], the
context consists of the full history up to the current time step,
and the hidden state is not reset between episodes. However, this
setup has limited adaptability in facing non-stationary scenarios.
Here we hypothesize that enough information about the task
can be learned from just a few time steps. This is why we use
GRU over LSTM, as GRU operates directly on the hidden state
and does not require an additional internal memory unit as in
LSTM. Our proposed feature extraction method only use few
recent transitions for context encoding. This departure from
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stringent stationary assumptions enhances its adaptability in
addressing non-stationary scenarios. Furthermore, it enables fast
task discovery and performance convergence even in zero-shot
trials.

2) Sampling With Priority: We sample from the same replay
buffer for training the context encoding and training the pol-
icy. However, we use different sampling strategies. For policy
training, we sample uniformly from the entire replay buffer.
The transitions in the replay buffer are highly-correlated. A
mini-batch of random samples alleviates the problems with
non-i.i.d data and improves the stability of the policy training. On
the other hand, for context encoding, we sample with a linearly
weighted sampling strategySc. According toSc, when the replay
buffer has a total of T transitions, the probability of sampling
the ith transition is:

wi =
i∑T
t=0 t

=
2i

T (T + 1)
. (31)

The sampling strategy is important because of the difference
between training a VAE in the usual unsupervised learning
setting or the RL setting. In unsupervised learning, the training
data at each epoch is the whole training dataset. In the RL setting,
although the task inference network resembles the structure of a
VAE, the training data at each epoch are different samples from
the replay buffer. Data in the replay buffer are built cumulatively
with a policy that is updated constantly during training. The VAE
will be insufficiently trained on the most recent samples if we
use a uniform sample strategy, which will also harm the stability
of the task encoding inference during adaptation.

C. Task Self-Discovery

Similar to other context-based meta-RL algorithms, the policy
in MELTS is conditioned on the task encoding z, where z is
unknown and has to be learned through the agent-environment
interactions. Formally, we define a generative process where we
assume each transition ct = (st, at, rt, st+1) is generated from
a latent variable zt with a likelihood of p(ct|zt).

As in a standard VAE, the nonlinearity of neural networks
means that the exact inference on the posterior p(zt|ct) is in-
tractable. Therefore, we use a variational distribution q(zt|ct)
as the approximate posterior. q(zt|ct) is parameterized by a
neutral network (task encoder), which we train on the output
of the context encoder. The context encoder takes a sequence of
transitions Ct = (ct−nw+1, ct−nw+2, . . . , ct−1, ct) and outputs
a single hidden state h(Ct). When we feed h(Ct) to the task
encoder, we get a single latent variable zt. Since we make the
implicit assumption that all transitions in Ct are generated from
the same task, we can also assume that z applies to all transitions,
namely z = zt−nw+1 = zt−nw+2 = · · · = zt−1 = zt. The like-
lihood p(ct|zt) is also parameterized by the decoder network.
We can then express the evidence lower bound (ELBO) as:

L(ct,η)=Ezt∼qη(zt|ct)[log pφ(ct|zt)]−KL(qη(zt|ct)||p(zt))

≤ p(ct), (32)

where η are the parameters of the encoder network (includ-
ing both the context encoder parameters ηcontext and the task

Fig. 6. Task self-discovery (Gaussian-VAE). The context encodingh = h(Ct)
is fed into a task encoder to obtain the single task encoding z, representing the
task for all time steps in Ct. The training of the task encoder and the calculation
of LKL resemble a standard VAE.

encoder parameters ηtask), and φ are the parameters of the
decoder network. Incorporating the fact that all transitions from
the trajectory T0:N of a single task should share the same task
encoding and taking into account that the encoder network’s
input is the hidden state h(Ct), we can optimize the whole task
inference network by maximizing:

L(Ct,η) =
N−1∑
t=0

Ezt∼qη(zt|hη(Ct))[log pφ(ct|zt)]︸ ︷︷ ︸
Lrecon

− βKL KL(qη(zt|hη(Ct))||p(zt))︸ ︷︷ ︸
LKL

, (33)

where βKL controls the degree of regularization by the KL
divergence. We focus on LKL in this section and discuss Lrecon

in Section VI-D.
We regard task self-discovery as the model’s ability to cor-

rectly capture the whole structure of the task distribution, in-
cluding both parametric and nonparametric variations. For a
task distribution containing both types of variation, we name
the qualitatively distinctive tasks with nonparametric variation
“base tasks”. The tasks within a base task that have only para-
metric variations are called “subtasks”.

The prior p(zt) in LKL expresses our beliefs about the task
distribution before seeing any data. In this study, we design
alternative priors to better capture the complex task distributions
in many real-world meta-RL settings. Alternative priors have
also been proposed to model the latent task space in context-
based meta-RL [7], [24]. However, our work is the first that can
discover the number of base tasks dynamically based on the data
and aims to solve the non-parametric task environment.

To explore the influence of different priors on task self-
discovery ability, we propose two compositions for the task
encoder and LKL:

1) Gaussian-VAE, which is the standard VAE with a fixed
N (0, I) prior.

2) DPMM-VAE, which we adapt from our own deep cluster-
ing framework proposed in Section V.

1) With Fixed Gaussian Prior: Our first configuration is the
uninformative and fixed standard Gaussian prior N (0, I). Fig. 6
depicts this configuration. Since the context encoder has already
extracted the features, our task encoder has only one MLP
layer and outputs the mean μ and variance Σ of the posterior
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Gaussian. Our hypothesis is that with Gaussian-VAE, we can
capture the parametric variation of tasks but may not capture the
nonparametric variation very well due to the lack of clustering
capability in the Gaussian-VAE.

2) With the DPMM Model: Our final composition with the
DPMM-VAE adds a parametrized distribution for each cluster
on top of the stick-breaking process. Our DPMM-VAE uses a
distributional prior, meaning that we can just replace the prior
p(z) and keep the architecture of the standard VAE. In addition,
with the hard assignment approach, we obtain a configuration
where data belonging to different clusters can occupy truly
disjoint subspaces in the latent space, which matches our belief
in a disjoint base task distribution.

In contrast to the previous two compositions using a fixed prior
to compare the observations with our initial knowledge, the prior
in DPMM-VAE is learned from the data itself. The prior for the
latent q(z|h(Ct)) is one of the clusters of DPMM, which is es-
sentially an infinite mixture of Gaussians. We update the mixture
regularly during training based on the posterior z obtained from
the previous optimization step, including adjusting the number
of clusters, the distribution of the individual cluster, and the
cluster assignments. In the meta-RL setting, we can interpret
the generative process of the DPMM-VAE in Section V in a
new way to match the structure of the task distribution, where
the cluster assignment represents the assignment to the distinct
base task. The task encoding is sampled from the distribution of
subtasks of the assigned base task.

v ∼ p(v) = Cat(π), base task distribution (34)

z ∼ p(z|v) = N (μ(v),Σ(v)). sub-task distribution (35)

We hypothesize that with the DPMM-VAE, we can capture both
the parametric variation and the nonparametric variation in the
task distribution. The clustering controlled by a stick-breaking
process can capture the nonparametric variation. In addition,
each cluster is parametrized by an individual Gaussian distribu-
tion, implying that we can also capture the parametric variation
within a cluster.

D. Reconstruction Training

We need a way to encourage the task encoding to capture
sufficient information so that it can distinguish one task from
another. PEARL [5] uses the Bellman error from the SAC to
indirectly supervise the learning of the task encoding. Here we
decouple the task inference training from the policy training via
dedicated decoder networks to reconstruct the task MDP given
the task encoding as our recent algorithm [7]. For this reason,
we design two neural networks to approximate these functions:
One dynamics prediction network with parameters φdynamics

to predict the next state st+1, and one reward prediction network
with parameters φreward to predict the reward rt. Both use
the state st, action at, and the sampled task encoding zt from
time step t as inputs. Both networks are implemented with MLP
layers, and the complete decoder is illustrated in Fig. 7.

Fig. 7. Reconstruction training. We concatenate the task encoding z to the
state st and action at as input to two decoder networks. The dynamics prediction
network predicts the next state st+1, and the reward prediction network predicts
the reward rt.

Based on the above observation, we can express the log-
likelihood of the reconstruction term log p(C|zt) as:

log p(C|zt) = log p((s1:N , r1:N )|s0:N−1, a0:N−1; zt)

=
N−1∑
t=0

log p(st+1|st, at; zt)

+

N−1∑
t=0

log p(rt|st, at; zt). (36)

The reconstruction loss from the decoder is then:

Lrecon = Ldynamics(zt;φdynamics) + Lreward(zt;φreward)

=
1

dim(s)

N−1∑
t=0

||st+1−log pφdynamics
(st+1|st, at; zt)||2

+
1

dim(r)

N−1∑
t=0

||rt − log pφreward
(rt|st, at; zt)||2,

(37)

where we normalize the loss with the dimension of the state and
reward to make the contribution from the two losses relatively
equally important.

VII. EXPERIMENTS

We conduct two sets of experiments in this study. First, we
demonstrate the application of the deep clustering framework on
the MNIST dataset to highlight its capacity for simultaneous data
clustering and deep latent representation learning. Second, we
evaluate the performance of MELTS on robotic tasks within both
parametric and nonparametric task environments. For further
details please refer to our open sourced implementation.1

A. Simultaneous Representation Learning and Clustering
on MNIST

We evaluate the performance of our DPMM-VAE and its
variants in the setting of unsupervised learning. We focus on its
performance in three aspects, namely, unsupervised clustering,
representation learning and dynamic adaptation.
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TABLE I
UNSUPERVISED CLUSTERING ACCURACY (%) ON MNIST TEST SET

1) Experiment Setup: The MNIST dataset of hand-written
digits [37] is commonly used for evaluating various types of
VAEs [38] and deep clustering algorithms [14], [15]. The dataset
contains 50,000 training digits and 10,000 testing digits, with
each digit as a 28-by-28 pixel image that is centered and
size-normalized. In our approach, we utilize a basic structure
comprising 2 convolutional layers as the backbone for the VAE
and select the Adam optimizer. To initialize the DPMM model,
we assume only a single cluster K = 1 initially and set the Beta
prior to B(1, 5) for the stick-breaking proportion.

For comparison, we include one of the state-of-the-art frame-
work GMVAE [39] and we select GMM and VAE with isotropic
Gaussian as the baselines. The GMVAE adopts a Gaussian
mixture model (GMM) in its prior space and jointly learns
clustering and feature representation. However, it requires the
number of clusters in the prior space to be predefined before
training (in our case, we select K = 5, 10). In contrast, our
DPMM-VAE framework dynamically determines the cluster
components based on the input data and performs inference in an
online manner, eliminating the need for predefining the number
of clusters.

2) Experiment Results:
Evaluation of Clustering: The quantitative evaluation of clus-

tering performance is conducted from three perspectives. First,
we employ the widely accepted unsupervised clustering accu-
racy as a metric, which has been used in prior studies such as [40]
and [39]. Each framework is trained for 100 epochs, and each
trial is repeated with at least five random seeds. The average
test accuracy and corresponding 95% confidence intervals are
reported in Table I. In this comparison, we assume Gauss-VAE
has only one component in its prior space. As shown in Ta-
ble I, our DPMM-VAE outperforms all baselines on the MNIST
test set with an average accuracy exceeding 91%. Notably, it
demonstrates competitive performance even when compared to
supervised approaches.

Furthermore, we visualize the learned structure of the la-
tent space to further inspect the clustering qualitatively. Fig. 8
shows the latent representations after t-SNE projection [41]
for DPMM-VAE and Gaussian-VAE, respectively. Compared
with Gaussian-VAE, we observe that for the DPMM-VAE the
latent representations of the same class are closer to the cluster
centroid, and different cluster centroids are further away from
each other. This indicates that our DPMM-VAE has better intra-
cluster cohesion and inter-cluster separation capabilities. There
is no assumption on the number of clusters in our DPMM-VAE
model (K = 1 at the start of the training); rather, the model

Fig. 8. The t-SNE projections of the latent representations learned by
Gaussian-VAE and DPMM-VAE, colored by the input true label.

Fig. 9. Latent representations learned by the DPMM-VAE (after T-SNE pro-
jection). Data points are colored by the cluster membership assigned internally
by the DPMM model. The DPMM model in our DPMM-VAE learns 2 or 3
sub-clusters for each digit. The label ”0 (sub -1)” represents the first sub-cluster
of the digit “0”.

Fig. 10. Selectively generated samples from the individual clusters learned by
DPMM-VAE.

learns to best adapt to the data. Hence there is not always a
one-to-one mapping between the true labels and the learned
DPMM clusters. Fig. 9 shows the t-SNE projection of learned
latent samples from DPMM-VAE, colored by clusters.

Evaluation of Representation Learning: The reconstruction
quality serves as an indicator of the usefulness of the learned
latent representations. To assess this aspect, we utilize the de-
coder to reconstruct images and evaluate its performance in an
intuitive manner. The generation results are illustrated in Fig. 10.
Notably, it is evident that each component of DPMM captures
one digit and effectively reconstructs clearly clustered images.
Furthermore, it is interesting to observe that our DPMM-VAE
results exhibit hierarchical clustering on the MNIST data. The
same digit is mapped to two or three DPMM clusters, with each
DPMM cluster capturing a slightly different style of writing
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Fig. 11. Samples from the Gaussian-VAE.

Fig. 12. Test unsupervised clustering accuracy of DPMM-VAE on MNIST
with dynamic changing features. We introduce dynamic feature in training phase,
where the model was initially trained on 3 digits, and the number of digits is
increased to 5, 7, and 10 at epochs 30, 60, and 90.

that digit. For example, Fig. 10(a), (b), and (c) are generative
samples from the three learned DPMM clusters corresponding
to the digit “0”. These clusters appear to capture different tilting
and roundness of the digit.

A distinct benefit of the DPMM-VAE is that we can generate
samples from each learned cluster. To generate an image with the
Gaussian-VAE, we use samples from the Gaussian priorN (0, I)
and feed them to the decoder. This gives us the generated images
of all digits, for example, as shown in Fig. 11, whereas generating
an image for a specific digit is not possible out of the box. With
the DPMM-VAE, we can sample random noises from the learned
distribution N (μk,Σk) of each DPMM cluster and then use the
decoder to obtain generated images for a specific digit. Fig. 10
shows that we can obtain generative samples for any single digit
with the DPMM-VAE.

Evaluation of Dynamic Feature Adaptation: Moreover, to
demonstrate the superiority of DPMM-VAE over normal Gauss-
VAE and other state-of-the-art baselines, we conduct evaluations
in a more challenging scenario. In this setting, the frameworks
are tasked with classifying data inputs from a dataset with
dynamically changing features, particularly with an increasing
number of features.

We employed the MNIST dataset to simulate a scenario
where dynamic changing features are encountered. Initially, the
frameworks are trained with 3 types of digits, and after several
epochs, we increase the number of accessible digits to 5, 7, and
10 at epochs 30, 60, and 90, respectively. The models run for a
total of 120 epochs, and after each epoch, we evaluate and report
their performance on the test dataset. We utilize the unsupervised
clustering accuracy as metric for comparison, which has been
widely accepted in prior studies [39], [40].

TABLE II
CONFIGURATION FOR THE EIGHT BASE TASKS IN OUR BENCHMARK

ENVIRONMENT HALF-CHEETAH 8-TASK

The test result is shown in Fig. 12. As new features are
added to the dataset, the DPMM-VAE dynamically “births” new
components to accommodate them. This may cause a temporary
decrease in accuracy during the early stages of training when
both the VAE and DP components are not yet converged. How-
ever, once training on the new subset is converged, the accuracy
returns to the best possible performance. In contrast, the baseline
framework GMVAE lacks this dynamic-adaptive capability in
facing non-parametric features. As the number of features ex-
ceeds the number of components, the test accuracy of GMVAE
displays a stepwise decline. Furthermore, since the Gauss-VAE
model can be considered to have only one component in its prior,
the standard Gauss-VAE fails in this experimental setup.

B. Meta-RL for Robotics

1) Experiment Setup: The OpenAI Gym [42] toolkit pro-
vides a set of benchmarks and functions that helps RL algorithms
to communicate with the environment. We use the environments
Half-Cheetah-v2, Ant-v2, Hopper-v2 and Walker-v2 in Ope-
nAI Gym to set up a distribution of high-dimensional contin-
uous control tasks for our experiments. In these environments,
the agent observes the kinematic properties of the robot in the
continuous state space. The action of the agent controls the
torques applied to the joints of the robot. These environments are
used extensively to evaluate meta-RL and multi-task RL algo-
rithms [3], [5], [6], [7]. We modify the environments by adjusting
the reward function to create non-parametric base tasks, such as
“run forward”, “front flip”, or “jump”. Additionally, to introduce
parametric variations within each base task, we randomize the
target state, such as the target velocity for the “run forward”
base task, ranging from 1m/s to 5m/s. This ensures that the
agent learns a more generalized task distribution. Fig. 13 shows
the eight base tasks of Half-Cheetah environment, the specific
configuration for the Half-Cheetah 8-Task environment is pro-
vided in Table II, while the details of other utilized environments
can be found in our open-sourced implementation. To align with
the meta-learning setting, in Half-Cheetah 8-Task we initialize in
total 120 variations for these base tasks, which are then split into
two groups. During the meta-training phase, the agent has access
to 80 train sub-tasks, while during the meta-testing phase, it is
tested on other 40 test tasks that were not seen during training.
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Fig. 13. Eight base tasks in the benchmark environment Half-Cheetah 8-Task.

We use three common measures to compare our method with
previous meta-RL algorithms.
� Asymptotic performance: We measure the asymptotic per-

formance by the average return on the test tasks DT test.
� Sample efficiency: An algorithm is more sample-efficient

if it can make better use of the collected experiences and
achieve a better result on the learning curve with fewer
training samples.

� Latent representation: Another important goal of our ex-
periments is to show the capability of task self-discovery
by inspecting the structure of the task latent space.

We compare our algorithms with all three types of meta-
RL algorithms as outlined in Section II-A: We select RL2

[3] to represent recurrence-base methods, ProMP [43] to rep-
resent gradient-based methods, and PEARL [5] to represent
context-based methods. Our framework is developed with Py-
Torch. We conduct each experiment using at least five ran-
dom seeds and report their mean value and corresponding
95% confidence interval for comparison, where the random
seeds restrict the selection of goal space for each base task
and framework initial parameters. Common hyperparameters
are used as they had already been well fine-tuned (refer to
Appendix Table III, available online). Additionally, we fine-
tune the hyperparameters of DPMM on MNIST, and further
details are provided in the Appendix Tables IV and V, available
online.

2) Experiment Results:
Half-Cheetah 8-Task: We compare the MELTS (DPMM) and

MELTS (Gauss) with three baseline frameworks PEARL [5],
RL2 [3], and ProMP [43]. For PEARL, MELTS with DPMM-
VAE, and MELTS with Gaussian-VAE, we use the same latent
dimension D = 8 for a fair comparison. We conducted training
for our framework with 2000 epochs. Within each epoch, we
initially sample sub-tasks from the task distribution DTtrain

and collect corresponding transitions. Subsequently, we sample
batches from the collected replay buffer and perform network
updates. Following the completion of each training epoch, we
evaluate the performance of our framework on the meta-test
task distribution DTtest

. We report the overall average return
achieved through zero-shot adaptation for our framework, while
for other baselines, we provide performance results for few-shot
adaptation. For a detailed account of the training process, we
refer readers to Algorithm 2 and our open source code.1 Fig. 14
shows the average return on the test tasks versus the number of
transitions collected during meta-training for all experiments.
The shaded regions represent the confidence intervals corre-
sponding to the average test rewards. We observe that all of

Fig. 14. Meta-testing performance versus accumulated samples collected
during meta-training for the Half-Cheetah 8-Task, x-axis is shown in log-scale.
All versions of our algorithm MELTS outperform the baselines in terms of
sampling efficiency and asymptotic performance.

Fig. 15. Visualization of the latent task representations learned by MELTS
(Gauss) and MELTS (DPMM). The task latent space learned with DPMM-
VAE exhibits clustering based on the base tasks, while the space learned with
Gaussian-VAE does not.

our MELTS experiments significantly outperform all baselines
in terms of sampling efficiency and asymptotic performance.
MELTS with DPMM-VAE achieves better asymptotic perfor-
mance than MELTS with Gaussian-VAE. Videos show the be-
havior of the agent when solving an individual test task during
zero-shot adaptation.2

To inspect the structure of the task latent space, we sample
contexts from the replay buffer that belongs to roll-outs of
different tasks at the end of the training. We then use the context
and task encoder to obtain the latent task variables for the
sampled contexts. We visualize the latent task encodings with
t-SNE projection, as shown in Fig. 15. All the task encodings in
the latent space visualization for MELTS (Gauss) are centered

2[Online]. Available: https://videoviewsite.wixsite.com/melts

https://videoviewsite.wixsite.com/melts
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Fig. 16. Snapshot comparison of “Run forward” between (a) MELTS
(DPMM) and (b) MELTS (Gauss). Note that even MELTS (Gauss) is able to
reaches close to the individual task target, the behavior of Half-Cheetah robot
is inaccurate, such actions are unacceptable in the real physical world2.

around zero, which is the effect of using a single Gaussian prior.
We observe that in some local regions, task encodings from the
same base tasks are close to each other. However, overall the
task encodings are scattered, and there is no obvious clustering
phenomenon. In comparison, we observe in the latent space of
MELTS with DPMM-VAE that the latent task encodings are
clearly clustered according to the base tasks. In fact, the internal
DPMM model identifies K = 8 clusters after the training. For
tasks run backward, run forward, front flip, back stand, goal in
front, goal in back, and jump, we can find a one-to-one mapping
between the learned DPMM cluster and the base task. For the
forward stand task, the DPMM learns two separate clusters that
correspond to this task. This is not problematic as long as task
encodings for different base tasks occupy different regions in
the latent space.

Importantly, our MELTS framework, incorporating DPMM-
VAE, demonstrates superior performance compared to Gauss-
VAE in terms of overall return value and sample efficiency.
Additionally, the contribution of DPMM is also reflected in
the downstream action patterns captured by the agent. Improp-
erly inferred task conditioning may interfere with or damage
downstream policy learning, leading to incorrect action patterns
executed by the agent in corresponding tasks. Such differences
may not be intuitively observed on the learning curve. A clear
example can be observed in both our released videos2 and
Fig. 16. For instance, in the task “Run forward”, MELTS
(DPMM) learns a normal action behavior for forward running
motion, while MELTS (Gauss) produces inaccurate action pat-
terns due to its entangled and unclear clustering inference.

3) Ablation Study: In this section, we thoroughly assess the
individual contributions of each component in our framework,
considering both parametric and non-parametric task settings.
Specifically, we compare two variations of our MELTS frame-
work: MELTS with DPMM-VAE and MELTS with Gauss-VAE,
alongside the original PEARL framework, which serves as a
baseline for comparison. This evaluation allows us to understand
the impact of reconstruction training module (illustrated in
Fig. 4), and further assess the specific contribution of DPMM
in enhancing the overall performance of our framework when
compared to MELTS with Gauss-VAE.

Parametric Task Distribution: To assess the scalability
and efficiency of the proposed MELTS algorithm, we con-
duct experiments in four independent parametric base tasks:

Fig. 17. Meta-testing performance versus accumulated transitions collected
during meta-training for four parametric tasks. Our algorithm MELTS is more
sample-efficient than PEARL in all four base tasks and outperforms PEARL
in asymptotic performance in Half-Cheetah: Direction, Hopper:Velocity and
Walker2D:Velocity.

(1) The HalfCheetah: Direction task, involving stationary tar-
get directions. (2) The HalfCheetah: Velocity task, which fo-
cuses on stationary target velocities. (3) The Hopper: Velocity
task, which targets stationary velocities of the Hopper robot.
(4) The Walker2D: Velocity task, involving stationary target
2-dimensional velocities. For each base task, we prepare 100
task variations for training and evaluate the overall performance
on another 30 variations. These task sets were also employed to
evaluate the performance of the PEARL framework [5], allowing
us to directly compare our results with PEARL. For conducting
the comparison, we utilize the original code and parameters of
PEARL [5]. It is important to note that our approach always
reports the performance with zero-shot adaptation, meaning
the reward is evaluated within the first episode of a test task.
In contrast, PEARL adopts a few-shot adaptation approach,
where the agent collects data on a new task for several episodes
before evaluating its performance. This distinction ensures a
clear assessment of our algorithm’s effectiveness in comparison
with PEARL. Additionally, it is worth mentioning that we do
not evaluate RL2 [3] and ProMP [43] in this study, as they have
been outperformed by the PEARL framework in the specific
evaluation scenarios.

We show the average rewards on the test tasks versus the accu-
mulated number of transitions collected during meta-training on
the four tasks in Fig. 17. Our algorithms achieve better sampling
efficiency and asymptotic performance than PEARL in Half-
Cheetah:Direction, Hopper:Velocity and Walker2d:Velocity and
are more sample efficient than PEARL in all four base envi-
ronments. We tested two compositions for task self-discovery:
Gaussian-VAE and DPMM-VAE. We observe almost no differ-
ences in performance between the two compositions, which is
expected because both tasks have only one base task and, there-
fore, no real clustering for the base tasks. Our DPMM model
stays with K = 1 cluster during the meta-training because the
parametric variation of the two tasks is adequately captured by
a single Gaussian distribution.
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Fig. 18. Meta-testing performance versus accumulated transitions collected
during meta-training for three nonparametric tasks. MELTS outperforms
PEARL on all tasks.

Non Parametric Task Distribution: We proceed to evaluate
our algorithm in simple nonparametric task environments with
two base tasks. We construct two task environments: (1) Half-
Cheetah with tasks of reaching different goal positions in front
of it and reaching different goal positions behind it. (2) Ant with
tasks of reaching different goal positions and moving at different
velocities. The state space is 20-dimensional for Half-Cheetah,
and 29-dimensional for Ant.

From Fig. 18, we observe that MELTS outperforms PEARL
in terms of both sampling efficiency and asymptotic perfor-
mance in both tasks. On Half-Cheetah tasks, the MELTS with
DPMM-VAE and MELTS with Gaussian-VAE compositions
show almost no differences in performance. On Ant tasks,
they are comparable in sampling efficiency but MELTS with
DPMM-VAE achieves better asymptotic performance. This is
expected as both versions of MELTS can successfully represent
different tasks as there are only two nonparametric tasks in this
setting.

Contribution of Task Self-Discovery: To assess the impact of
task self-discovery on the performance of MELTS, we compare
two variations of our algorithms: MELTS (DPMM) and MELTS
(Gauss), to investigate the contribution of the DPMM+moVB in
upstream task inference and its influence on downstream policy
learning. We conduct the experiment using a stream of four non-
parametric Half-Cheetah tasks, including the sequences “Run
forward”, “Run back”, “Front stand”, and “Goal in front”. The
agent has access to only one base task at a certain phase interval
(2 M steps for each sub-phase). For each base task, we randomly
sample 10 variations for training, and for testing, we use all
sampled task variations for evaluation. Each trial runs three times
with different seeds. The results are shown in Fig. 19, with the
dotted vertical lines indicating the split sub-phases. It is evident
that, starting from the second stage when the agent switches to
a new base task, the reward value of MELTS (DPMM) rapidly
converges to a higher average reward level after the short decline.
This means the agent with DPMM+moVB can quickly identify
the current tasks and adaptation new action patterns to fit to
the new tasks while preserving the knowledge it has acquired.
Consequently, its performance in the overall task substantially
improves. In contrast, MELTS (Gauss) fails to distinguish be-
tween tasks due to the assumption of a single Gaussian in its prior
space, leading to ill-inferred task conditioning that may interfere
with downstream policy learning, resulting in inaccurate action

Fig. 19. Average test performance on all sampled tasks versus accumulated
transitions collected during training for four non-parametric Half-Cheetah tasks.
The training of Half-Cheetah 4-Tasks is conducted sequentially, with each sub-
phase delimited by black vertical dotted lines. During each sub-phase, the agent
has access to only one base task for training. The training sequence follows the
order: “Run forward” → “Run back” → “Front stand” → “Goal in front”.

patterns or even task failures. Furthermore, to further support
our claim, we provide an intuitive visualization example for
comparison in their final performance.2

VIII. CONCLUSION

We presented MELTS, a context-based off-policy algorithm
for meta-reinforcement learning in broad and non-parametric
task distributions. We include Bayesian nonparametric mod-
els for task self-discovery, which enables our model to self-
adaptively recognize the qualitatively different base tasks in the
task distribution as distinct clusters in the task latent space. It also
learns the parametrization for each cluster distribution in order
to capture the parametric variations in the subtasks of a base
task. We further introduced a zero-shot adaptation mechanism on
the basis of our recurrence-based encoder-decoder strategy. On
both parametric and nonparametric meta-RL task benchmarks,
MELTS outperforms previous meta-RL algorithms in terms of
sampling efficiency and asymptotic performance.
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