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Multiview Tensor Spectral Clustering
via Co-Regularization

Hongmin Cai , Senior Member, IEEE, Yu Wang , Fei Qi , Zhuoyao Wang ,
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Abstract—Graph-based multi-view clustering encodes multi-
view data into sample affinities to find consensus representation,
effectively overcoming heterogeneity across different views. How-
ever, traditional affinity measures tend to collapse as the feature
dimension expands, posing challenges in estimating a unified align-
ment that reveals both cross-view and inner relationships. To tackle
this challenge, we propose to achieve multi-view uniform clustering
via consensus representation co-regularization. First, the sample
affinities are encoded by both popular dyadic affinity and recent
high-order affinities to comprehensively characterize spatial distri-
butions of the HDLSS data. Second, a fused consensus representa-
tion is learned through aligning the multi-view low-dimensional
representation by co-regularization. The learning of the fused
representation is modeled by a high-order eigenvalue problem
within manifold space to preserve the intrinsic connections and
complementary correlations of original data. A numerical scheme
via manifold minimization is designed to solve the high-order
eigenvalue problem efficaciously. Experiments on eight HDLSS
datasets demonstrate the effectiveness of our proposed method in
comparison with the recent thirteen benchmark methods.

Index Terms—High-order affinity, clustering, fusing affinity,
manifold optimization, tensor, spectral graph.
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I. INTRODUCTION

C LUSTERING is one of the crucial topics in unsupervised
learning [1], [2], [3]. The goal of clustering is to partition

unlabeled data into different subgroups. Traditional clustering
methods have been extensively studied and have found wide
applications in bioinformatics, computer vision, and other fields
[4]. In real-world scenarios, the universal adoption of multi-view
data is driven by the acquisition of data from different sources or
multiple feature extractors [5], [6]. Consequently, the seamless
integration of heterogeneous data has become a paramount focus
in the realm of multi-view clustering [7], [8].

Recent studies have proposed different strategies to integrate
complementary correlations from different views, with the aim
of improving clustering performance [9], [10]. An intuitive ap-
proach begins by directly concatenating the data from different
views as vectors. Subsequently, the conventional single-view
methods are applied to the concatenated data [11]. However, this
manner ignores the heterogeneity and difference of scale among
multi-view data. Graph-based multi-view clustering methods
are proposed to align the affinity graphs for the uniform repre-
sentation [12]. Intuitively, the harmonization of heterogeneous
multi-view data can be accomplished by employing affinities
with same scale, thus reducing the disparities between different
views. To achieve multi-view clustering, a joint analysis of the
graphs across multiple views is required to extract consensus and
complementary correlations. Accordingly, various approaches
have been proposed to refine a consensus representation from
multiple graphs [13]. For example, Kumar et al. [14] pro-
posed to refine the affinity matrix via performing co-training
of spectral results. However, there is a critical prerequisite in
aforementioned methods: the data relationship can be accurately
described by pairwise affinity. This can be challenging in real
applications, especially for high-dimension m yet low-sample-
size n (HDLSS) data when n� m [15], [16]. The clustering
performance of HDLSS data is hindered by the concentra-
tion effects, also known as the “curse of dimensionality” [17].
The collapse of pairwise distances in high-dimensional feature
spaces presents a formidable challenge for clustering algorithms
reliant on pairwise affinity, impeding accurate clustering [18].

For relieving the curse of dimensionality caused by HDLSS
data, recent works have proposed to utilize high-order affinity to
describe the spatial distribution of multiple samples. Employing
high-order affinities is anticipated to mitigate the concentration
effects on dyadic affinity and unveil crucial relationships within
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Fig. 1. Description of the CRMATS method. CRMATS demonstrates proficiency in accurately acquiring latent representations from multiple views on the manifold
space. Specifically, given a multi-view dataset X(1), . . . ,X(N), the corresponding pairwise affinities, third-order and fourth-order affinities are computed. Next,

the local structure of the intrinsic subspace is encoded and low-dimensional representations V (1)
1 , . . .,V

(N)
1 are obtained by employing the manifold constraint.

To align the representations of each view, we incorporate co-regularized learning, resulting in a consensus representation W . Additionally, a self-weighting fusion
module is adopted to compute the corresponding weights λ(1), . . . , λ(N) during the alignment process. Finally, we use spectral clustering on the consensus
representation to obtain results.

the data. Along this line, Mei et al. [19] leveraged first and
second-order affinities to mine the local structure of pairwise
points, incorporate third-order similarity with a low-rank con-
straints for enhanced clustering performance and consensus
correlations. Also, Ghoshdastidar [20] demonstrated a relation-
ship between the relaxation of hypergraph clustering and the
multilinear singular value decomposition with consideration of
multiply affinities. Furthermore, IPS2 [21] validates that the
higher-order affinities can be a complementary description of
pairwise relations to enhance clustering performance. Following
this vein, our previous work [22] unifies different order affinities
to overcome the concentration effects, leading to remarkable
estimating the spatial distribution of HDLSS data. The afore-
mentioned methodology exhibits a deficiency to integrate multi-
view data, thereby impeding the extraction of heterogeneous
correlations.

To solve the key problems of extracting consensus cor-
relations and accurately revealing relationships from multi-
view data, especially for HDLSS data, we propose the
Co-Regularized multi-view clustering via Manifold Alignment
on Tensor Spectral embedding (CRMATS) method. Our method
presents a unified multi-view clustering framework, which is
based on the accurate description of intra-view sample relation-
ships through the introduction of multi-order affinities. The low-
dimensional representations from each view are co-regularized

on the manifold space, aiming to minimize the geodesic distance
and achieve alignment. This alignment process enhances the
quality of the consensus representation, ultimately leading to
improved partitioning performance as feedback. To accelerate
the solution of the unified model, an efficient iterative strategy
is designed to solve this model efficaciously. Extensive experi-
ments on both synthetic and real-world datasets validate nice
performance of our method. The framework of CRMATS is
shown in Fig. 1, and the main contributions of this paper are
summarized as follows:
� To precisely uncover the intra-view spatial correlations

of HDLSS data, the incorporation of high-order affinities
is employed, facilitating the capture of intricate sample
interactions and effectively eliminating the concentration
effects within each view.

� For effective integration multi-view data with hetero-
geneous correlations, co-regularized learning and man-
ifold constraint are employed to align the respective
low-dimensional representations, effectively leveraging
cross-view spatial complementarity of HDLSS data.

� To improve computational efficiency, a singular value
decomposition-based method is utilized to solve the
quadratic problem on the manifold space.

The remainder of this paper is organized as follows. Section II
introduces the background on multi-view and tensor spectral
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clustering. Section III presents the proposed method and its
optimization algorithm. In Section IV, we report the experimen-
tal results on the comparative datasets and methods. Finally, we
draw a conclusion in Section V.

II. BACKGROUND ON MULTIVIEW TENSOR SPECTRAL

CLUSTERING

Notations: In this paper, we use bold calligraphy, uppercase
letter, and lowercase letter to represent a tensor, matrix, and
a vector, i.e., (X ,X,x), respectively. For a matrix X ∈ R

n×n,
the j-th column is denoted as X :,j , the trace of X is represented
as Tr(X), and I represents the identity matrix. The square of
the Frobenius norm of X is denoted as ||X||2F . The Khatri-Rao
and Kronecker products are denoted by ∗ and ⊗, respectively.
For a third-order tensor X ∈ R

n×n×l, we denote the v-th frontal
slices of X as X(v) ∈ R

n×n.

A. Tensor Based Approaches for Multiview Clustering

Tensor-based clustering techniques harness the high-order
representation of multi-view data through tensors, thereby eluci-
dating the intricate inter-view relationships prior to performing
cluster analysis [23]. In this process, most of the early works
relied on tensor decomposition techniques. For example, Yu
et al. [24] stacked the original data into a tensor and applied
tensor-based factorization to obtain factor matrices that capture
high-order relationships. Similarly, Nie et al. [13] proposed a
co-clustering method via tensor factorization to learn a low-rank
approximation for discovering high-order relationships. Follow-
ing this approach, Guo et al. [25] utilized tensor logarithmic
Schatten-p norm to obtain a more compact low-rank structure,
which explores complementary information and characterizes
the high-order correlations among multiple views. Meanwhile, Ji
et al. [26] employed tensor decomposition to generate consistent
and complementary tensors, while refining a tighter approxima-
tion of the tensor rank to explore the high-order consistency
in consistent tensor. Similarly, Li et al. [27] stacked pairwise
affinities into a tensor and employed a hypergraph-induced
regularization for tensor factorization, enabling them to learn
a consistent representation that preserved high-order correla-
tions and improved performance. The aforementioned methods
require the assurance that data relationships can be accurately
described by pairwise affinities, which is difficult to hold in
HDLSS data. Additionally, the utilization of tensors to represent
high-order information between views does not leverage the
high-order relationships between samples.

B. Revisiting Classical Spectral Clustering

Spectral clustering is a classical method that employs dyadic
affinity to learn an optimal low-dimensional embedding from
raw data for clustering purposes. Given a data matrix X ∈
R

n×m, where n is the number of samples and m is the feature
dimension, the objective of spectral clustering is to divide these
n samples into c subgroups by reformulating the clustering
problem as a minimum cost problem of graph-cut. The cru-
cial step of this method is to construct a similarity graph by

calculating the dyadic affinity matrix A ∈ R
n×n. Specifically,

the (i, j)-th element of A is calculated as Aij = d(xi,xj),
where d(·, ·) is a pairwise metric. The i-th diagonal element of
the degree matrix D ∈ R

n×n is denoted as Dii =
∑n

j=1 Aij .

The Laplacian matrix is then defined as L = I −D−
1
2AD−

1
2 .

The spectral clustering seeks a low-dimensional embedding by
minimizing the following objective model:

min
V

Tr(V �LV ) s.t.V �V = I (1)

Equation (1) can be equivalently solved by seeking the dom-
inant eigenvector of the Laplacian matrix, and thus degenerates
to a standard eigenvalue problem. Moreover, this equation can
be seen as a formulation that addresses the maximum partition
problem in graph-cut, as described in [28]. Alternatively, one
can define a normalized dyadic affinity matrix L̂ =
D−

1
2AD−

1
2 , other that the early ones to impose a strong positive

definite Laplacian graph. The spectral clustering can also be
popularly expressed as a maximization problem :

max
V

Tr(V �L̂V ) s.t.V �V = I (2)

Then, one can perform a clustering task like k-means on the
obtained embedding.

C. Tensor Spectral Clustering

The core of model (2) is to maximize the intra-cluster affinity,
thereby preserving the volume of each subgraph after graph cut.
In our previous work [22], we introduced a normalized affinity
entropy measurement, which effectively evaluates the volume
of affinity using any number of samples.

Definition 1. The total normalized similarity: Let C be
a group of samples belonging to the dataset X , and S ∈
R

n1×n2···×nr be an order-r similarity tensor. The total normal-
ized similarity of the samples in C is defined as follows:

Sim(C) =
∑

xi1
,xi2

,...,xir∈C
Lxi1

,xi2
,...,xir

(3)

where L represents the normalized order-r affinity tensor. Let
the samples X partitioned by k sets, i.e., C1,C2, . . . ,Ck, the
normalized associativity (NAssoc) of the resulting clustering is
defined:

NAssoc(C1,C2, . . . ,Ck) =
k∑

i=1

Sim(Ci)

|Ci|k (4)

where |Ci| denotes the cardinality of cluster Ci.
Definition 2: mode-k product The mode-k product between

an order-m tensor T ∈ R
n1×n2×···×nm and a matrix V ∈

R
p×nk , denoted by T ⊗k V ∈ R

n1×···×nk−1×p×nk+1×···×nm ,
with

(T ⊗k V )i1...ik−1jik+1...im

=

nk∑
ik=1

T i1...ik−1ikik+1...imV jik . (5)

Let H = [h1,h2, . . . ,hk] ∈ R
n×k denote the latent repre-

sentation, whereHik = |Ck|−1 ifxi ∈ Ck, and zero otherwise.
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To obtain an optimal sample assignment C1, . . . ,Ck, the max-
imization of the normalized associativity in (4) is pursued. This
can be achieved through algebraic manipulation, which allows
us to reformulate the problem as follows:

max
C1,...,Ck

k∑
j=1

(L⊗r hj ⊗r−1 hj · · · ⊗1 hj) (6)

Due to the NP-hardness of the maximum normalized asso-
ciativity problem, it is necessary to use relaxation techniques to
make the problem more tractable. One such technique involves
relaxing the binary assignment matrix to an orthonormal matrix
V ∈ R

n×k, where V �V = I . This relaxation reduces the strict
binary assignment requirement and simplifies the problem as:

max
V �V =I

k∑
j=1

L⊗r vj ⊗r−1 vj · · · ⊗1 vj (7)

where vj represents the j-th column of V .

D. Co-Regularized Multiview Clustering

In multi-view clustering, learning a consensus representation
is the common approach to capture the local view-specific struc-
ture [29]. Based on this hypothesis, co-regularized learning is
applied to align the low-dimensional representation of different
views, reducing the impact of noise or errors and enhancing the
quality of the consensus representation [30]. Given multi-view
data X ∈ R

n×m×l with n samples, m features, and l views,
one can construct the corresponding affinities L(i) ∈ R

n×n of
each view and project into the low-dimensional space to ob-
tain representations V (i) ∈ R

n×k. The corresponding strategy
is to align diverse low-dimensional representations and obtain
a consensus representation W ∈ R

n×k. This alignment essen-
tially establishes a consensus representation by minimizing the
geodesic distance on the manifold [31], and the measurement of
geodesic distance can be:

dist2proj

({
V (i)

}l

i=1
,W

)
=

l∑
i=1

dist2proj

({
V (i)

}
,W

)

=

l∑
i=1

[k − Tr(V (i)V (i)�WW�)]

= kl −
l∑

i=1

Tr(V (i)V (i)�WW�) (8)

where V (i) is obtained through (2) to learn the low-dimensional
representations within a single subspace, and the optimization
of (8) aims to minimize geodesic distances and promote inter-
subspace proximity [32]. Building upon these principles, the
co-regularized learning process can be as:

max
V (i)∈Mk,
W ,λ(i)

l∑
i=1

Tr(V (i)�L̂
(i)
2 V (i) + V (i)V (i)�WW�)

s.t. W�W = I (9)

where L̂
(i)
2 ∈ R

n×n is the pairwise affinity of the i-th view.
However, noise or errors of different views can adversely affect
multi-view performance [33]. In order to tackle this challenge,
λ(i) is introduced to control the influence of the deteriorating
views, and the final co-regularized model with the manifold
constraints can be as:

max
V (i)∈Mk,
W ,λ(i)

l∑
i=1

Tr(V (i)�L̂
(i)
2 V (i) + λ(i)V (i)V (i)�WW�)

s.t. W�W = I (10)

where λ(i) is used to measure the weight of the i-th view.

III. MULTI-VIEW TENSOR SPECTRAL CLUSTERING VIA

CO-REGULARIZATION

Existing multi-view methods primarily rely on linear spaces,
rendering them inadequate for analyzing multi-dimensional data
characterized by intrinsic complex structures. Fortunately, man-
ifolds can be conceptualized as the low-dimensional smooth
surfaces embedded within higher-dimensional euclidean spaces,
providing a framework that enables the effective capture and
comprehension of the intricate structures in high-dimensional
data [34], [35]. Follow this vein, Khan et al. [36] introduce
manifold-based methods that effectively capture complex struc-
tures, leading to significant improvements in clustering perfor-
mance. These techniques enable the representation of spatial
structures, making them particularly advantageous for analyz-
ing HDLSS data. Inspired by these manifold-based work, a
unified tensor clustering model can be developed by combin-
ing high-order affinities, mitigating the concentration effects
in HDLSS data. To enhance the discriminative power of the
low-dimensional representation for HDLSS tasks, we impose a
constraint that restricts the embedding to the manifold space. In
this paper, to demo the effectiveness of our framework in han-
dling both odd-order and even-order affinities, we introduce the
third and fourth-order affinities. Thus, a model that incorporates
high-order affinities and manifold constraints is proposed:

min
V ∈Mk

k∑
j=1

−L̂2 ⊗2 vj ⊗1 vj −L3 ⊗3 vj ⊗2 vj ⊗1 vj

−L4 ⊗4 vj ⊗3 vj ⊗2 vj ⊗1 vj (11)

where Mk = {V ∈ R
n×k|V �V = I} is the Stiefel manifold,

L3 andL4 are triadic and tetradic affinity tensors for quantifying
similarities among triplets and quadruplets data.

A. Co-Regularized Multi-View Clustering via Manifold
Alignment on Tensor Spectral Embedding

Equation (11) achieves the low-dimensional representation on
the manifold space by integrating multi-order affinities. Building
upon this, a co-regularized learning step with the manifold
constraints is introduced for handling the concentration effects
and extracting heterogeneous correlations in multi-view HDLSS
clustering. The goal of the proposed method is to effectively
leverage cross-view correlations in HDLSS data by combining
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(11) and (10). Consequently, a Co-Regularized multi-view clus-
tering via Manifold Alignment on Tensor Spectral embedding
(CRMATS) method is proposed as follows:

min
V

(i)
1 ∈Mk,

W ,λ(i)

−
l∑

i=1

Tr

(
V

(i)�
1 L̂

(i)

2 V
(i)
1 +

(
V

(i)
1 ∗ V (i)

1

)�
L̂

(i)

3 V
(i)
1

+
(
V

(i)
1 ∗ V (i)

1

)�
L̂

(i)

4

(
V

(i)
1 ∗ V (i)

1

)

+λ(i)
(
V

(i)
1 V

(i)�
1 WW�

))

s.t. W�W = I (12)

where L̂3 and L̂4 are the normalized unfold form of tensor
affinities, calculated by:

L̂3 = D̂
− 1

2

31
T̂ 3D̂

− 1
2

32
, L̂4 = D̂

− 1
2

4 T̂ 4D̂
− 1

2

4 (13)

where D̂31 and D̂32 are the diagonal matrices with diagonal
elements obtained by taking the square root of the Khatri-Rao
product of the column-wise sums and the column-wise sums of
T 3, respectively. D4 is a diagonal matrix in which the elements
on the diagonal are computed as the reciprocal square root of the
sum of each row of T 4. The matrices T̂ 3 and T̂ 4 are the unfold
form of third and fourth order affinity tensors. Tensor affinities
T 3 and T 4 can be defined as:

T 3ijk = 1− < (xi − xj), (xk − xj) >

dijdjk
(14)

T 4ijkl
= exp

(
−σ dij + dkl

dik + djl + ε

)
(15)

for i, j, k, l ∈ n, where dij denotes the distance between sam-
ples xi and xj , and σ is an scaling constant. However, the
computation in (12) involves high-order polynomial function
that may lead to numerical difficulties. To circumvent this, one
can introduce a slack variable V

(i)
2 to approximate the term

V
(i)
1 ∗ V (i)

1 in (12). Furthermore, we introduce γ1, γ2 to trade
off the affinities term and co-regularization term. The final model
can be:

min
V

(i)
1 ∈Mk,

V
(i)
2 ,W ,λ(i)

−γ1
l∑

i=1

Tr

(
V

(i)�
1 L̂

(i)

2 V
(i)
1 + V

(i)�
2 L̂

(i)

3 V
(i)
1

+ V
(i)�
2 L̂

(i)

4 V
(i)
2

)
− γ2

l∑
i=1

λ(i)Tr
(
V

(i)
1 V

(i)�
1 WW�

)

s.t. V
(i)
1 ∗ V (i)

1 = V
(i)
2 , i = 1, . . . ,N; W�W = I (16)

Equation (16) aims to fuse multiple affinities to produce a
consistent representation that is robust against noise and con-
centration effects. The clustering task is then accomplished by
applying spectral clustering, leading to the final group assign-
ments.

B. Numerical Scheme to Solve CRMATS

An efficient alternating direction minimization strategy is
employed to solve CRMATS. Using the Augmented Lagrange
formulation methodology, the corresponding function of (16),
defined as L, is obtained by:

L

(
V

(i)
1 ,V

(i)
2 ,Y i,W , λ(i),Z, μ

(i)
1 , μ2

)

= −γ1Tr
l∑

i=1

(
V

(i)�
1 L̂

(i)

2 V
(i)
1 + V

(i)�
2 L̂

(i)

3 V
(i)
1

+ V
(i)�
2 L̂

(i)

4 V
(i)
2

)
− γ2

l∑
i=1

λ(i)Tr(V
(i)
1 V

(i)�
1 WW�)

+ < Z,W�W − I > +

l∑
i=1

μ
(i)
1

2

∥∥∥V (i)
1 ∗ V (i)

1 − V
(i)
2

∥∥∥2
F

+

l∑
i=1

< Y i,V
(i)
1 ∗ V (i)

1 − V
(i)
2 > +μ2

2 ‖W�W − I‖2F
(17)

where Y i and Z are Lagrange multipliers, μ(i)
1 and μ2 > 0 are

penalty parameters. Our goal is to minimize L by dividing it
into several subproblems. We accomplish this by considering
the following variables alternatively and solving each variable
while keeping the others fixed.

Step 1): Solving the subproblem with respect to the variable
V

(i)
1

When keeping the related items, (17) can be:

min
V

(i)
1 ∈Mk

γ1

l∑
i=1

Tr

(
V

(i)�
1

(
−
(
L̂

(i)

2 +
γ2
γ1

λ(i)WW�
))

V
(i)
1

−2V (i)�
1

(
1
2 L̂

(i)�

3 V
(i)
2

))
+

μ
(i)
1

2

∥∥∥∥V (i)
1 ∗ V (i)

1 −V (i)
2 + Y i

μ
(i)
1

∥∥∥∥
2

F

(18)

In (18), we encounter a quadratic term −(L̂(i)

2 + γ2

γ1
λ(i)

WW�) and a first-order term 1
2 L̂

(i)�

3 V
(i)
2 . By incorporating

the manifold constraint, (18) can be simplified as a quadratic
optimization problem within each view. To solve this prob-
lem, we introduce a universal Stiefel manifold Mp = {V ∈
R

n×k|V �V = I}. The quadratic and first-order terms for each
view are denoted as A and B.

min
V ∈Mp

Tr(V �AV − 2V �B) (19)

where A ∈ R
n×n is a symmetric matrix. In order to solve the

problem in (19), it can be relaxed into:

max
V ∈Mp

Tr(V �ÂV + 2V �B) (20)

where Â = αI −A ∈ R
n×n. The parameter α is an arbitrary

constant such that Â is a positive definite matrix. A closed-form
solution to (20) can be achieved through the corresponding
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Algorithm 1: Generalized Power Iteration Method (GPI).

Input: The matrix A ∈ R
n×n, matrix B ∈ R

n×k and α
Output: The orthonormal base V of Stiefel manifold

Mp = {V ∈ R
n×k|V �V = I}.

1: Initialize a random orthonormal base of Stiefel
manifold, definite matrix Â = αI −A via α.

2: while Not Converged do
3: Compute the gradient, M ∈ R

n×k ← 2ÂV + 2B.
4: Calculate M = FΣR� via the compact SVD of M .
5: Update V ∈ R

n×k ← FR�.
6: end while
7: returnThe orthonormal base V .

partial derivative M [37]. Suppose that M ← FΣR� rep-
resents the details of the singular value decomposition, in which
F ∈ R

n×n, Σ ∈ R
n×k R ∈ R

k×k. Thus, (20) can be solved
equally:

max
V ∈Mk

Tr(V �M) (21)

Then we have the following equations:

Tr(V �M) = Tr(V �FΣR�) = Tr(ΣR�V �F )

= Tr(ΣZ) =

k∑
i=1

σiizii (22)

where Z = R�V �F ∈ R
k×n. Apparently, we conduct that

zii ≤ 1 since ZZ� = I . In this way, Tr(V �M) reaches max-
imum when the matrix Z = [I,0] ∈ R

k×n. Thus, the optimal
solution of V can be:

V = FZ�R� = F [I;0]R� (23)

Algorithm 1 provides a concise description of the quadratic
optimization algorithm on the manifold. For a comprehensive
analysis of its convergence, we refer readers to Section A of
the supplementary materials, available online. Once we have
derived the objective function for the subproblem, we can uti-
lize Algorithm 1 to obtain the solution for V (i). As we are
imposing the orthogonal constraint of manifold, the gradient
of a differentiable function f : V k,m → R can be given as
∇Xf = fX −Xf�XX with fX = ∂f

∂X [38]. Thus, the gradient

of V (i)
1 in (18) is:

∂L

∂V
(i)
1

= γ1

(
− 2

(
L̂

(i)

2 +
γ2
γ1

λ(i)WW�
)
V

(i)
1

+ V
(i)
1 V

(i)�
1

(
L̂

(i)

2 +
γ2
γ1

λ(i)WW�
)�

V
(i)
1

− L̂
(i)�

3 V
(i)
2 + V

(i)
1 V

(i)�
2 L̂

(i)

3 V
(i)
1

)

+ μ
(i)
1

( k∑
j=1

(
V

(i)
1:j
⊗ I + I ⊗ V

(i)
1:j

)�
(
V

(i)
1:j
∗ V (i)

1:j
− V

(i)
2:j

+ Y i:j/μ
(i)
1

)

+ V
(i)
1

( k∑
j=1

(
V

(i)
1:j
∗ V (i)

1:j
− V

(i)
2:j

+ Y i:j/μ
(i)
1

)�
(
V

(i)
1:j
⊗ I + I ⊗ V

(i)
1:j

)
V

(i)
1

)
(24)

where V
(i)
1 can be updated iteratively through (24) and

Algorithm 1.
Step 2): Solving the subproblem with respect to the variable

V
(i)
2

Discarding the items irrelevant to V
(i)
2 , the augmented La-

grange function can be simplified as:

min
V

(i)
2

−γ1
l∑

i=1

Tr
(
V

(i)�
2 L̂

(i)

3 V
(i)
1 + V

(i)�
2 L̂

(i)

4 V
(i)
2

)

+
μ
(i)
1

2

∥∥∥∥∥V (i)
1 ∗ V (i)

1 − V
(i)
2 +

Y i

μ
(i)
1

∥∥∥∥∥
2

F

(25)

The gradient of the objective function is:

∂L

∂V
(i)
2

= − γ1

(
L̂

(i)

3 V
(i)
1 + 2L̂

(i)

4 V
(i)
2

)

+ μ
(i)
1

(
V

(i)
2 − V

(i)
1 ∗ V (i)

1 −
Y i

μ
(i)
1

)
(26)

By setting the gradient to zero, L̂
(i)

4 is symmetric and its
diagonal elements are not yet zero, one can obtain the implicit
solution as:

V
(i)∗
2 =

(
μ
(i)
1 I − 2γ1L̂

(i)

4

)−1
(
μ
(i)
1 V

(i)
1 ∗ V (i)

1 + γ1L̂
(i)

3 V
(i)
1 + Y i

)
(27)

Step 3): Solving the subproblem with respect to the latent
representation W .

When the terms associated with W are kept, the following
subproblem is obtained:

max
W

γ2Tr

(
W�

(
l∑

i=1

λ(i)V
(i)
1 V

(i)�
1

)
W s.t.W�W = I

(28)
where (28) is actually a standard k-means problems with a

specific kernel
∑l

i=1 λ(i)V
(i)
1 V

(i)�
1 . We can obtain W via

eigenvalue decomposition on this specific matrix.
Step 4): Solving the subproblem with respect to λ(i).

max
λ(i)

γ2Tr

(
l∑

i=1

λ(i)V
(i)
1 V (i)�WW�

)
(29)

By defining Tr(V
(i)
1 V (i)�WW�) = d(i), and combining

the Cauchy-Schwarz inequality [39], the optimal solution for
λ(i) can be obtained as:

λ(i) =
d(i)√∑l
i=1 d

(i)2
, (30)



CAI et al.: MULTIVIEW TENSOR SPECTRAL CLUSTERING VIA CO-REGULARIZATION 6801

Algorithm 2: Co-Regularized Multi-View Clustering via
Manifold Alignment on Tensor Spectral Embedding (CR-
MATS).

Input: Multi-view dataset X ∈ R
n×m×l, Cluster number c.

Output: The consensus matrix W .
1: Construct the affinity

L̂
(i)

2 ∈ R
n×n, L̂

(i)

3 ∈ R
n2×n, L̂

(i)

4 ∈ R
n2×n2

. Set
Y i = 0,W = 0,Z = 0, μ

(i)
1 = μ2 = 10−1, μmax =

106, ρ = 1.1 and ε = 10−6.
2: Initialize V

(i)
1 ,V

(i)
2 .

3: while Not Converged do
4: for i = 1, . . . , l do
4: Update V

(i)
1 via (24) as well as Algorithm 1.

4: Computer V (i)
2 by (27).

4: Update Y i and λ(i) by (31) and (30).
4: μ

(i)
1 = min(ρμ

(i)
1 , μmax).

5: end for
6: μ2 = min(ρμ2, μ

max).
7: Update Z and W via (32) as well as (28).
8: Check the convergence conditions.
9: end while
10: returnConsensus representation W .
11: Perform spectral clustering on W to have sample

assignment Y pred.

Step 5): Updating the multipliers Y i and Z, their formula-
tions are follows:

Y
(t+1)
i = Y

(t)
i + μ

(i)
1 (V

(i)(t)
1 ∗ V (i)(t)

1 − V
(i)(t)
2 ) (31)

Z(t+1) = Z(t) + μ2(W
�(t)W (t) − I) (32)

where t is current number of iterations.
The five steps are iteratively updated until convergence

or until a stopping criterion is met: max(‖V (i)(t+1)
1 −

V
(i)(t)
1 ‖∞, ‖V (i)(t+1)

2 − V
(i)(t)
2 ‖∞, ‖V (i)(t+1)

1 ⊗ V
(i)(t+1)
1 −

V
(i)(t+1)
2 ‖∞, ‖Y (i)(t+1)

1 − Y
(i)(t)
1 ‖∞, ‖Z(t+1) −Z(t)‖∞) <

ε. Algorithm 2 presents a comprehensive outline of the
solving process in CRMATS, serving as a valuable
reference for a detailed understanding of the methodology.
The convergence proof of CRMATS is elaborated in Section A
of the supplementary materials, available online.

IV. EXPERIMENTS

In this section, a comprehensive experimental study is con-
ducted on eight HDLSS datasets to showcase the effectiveness
of CRMATS. All of the experiments are implemented in Matlab
2020a on 64-bit Windows OS PC with an Intel 2.30-GHz CPU.

A. Comparative Datasets and Methods

A total of eight datasets are utilized to validate the ef-
fectiveness of our method in the experiment, comprising six
real datasets and two HDLSS synthetic datasets: Syndata1 and
Syndata2. Syndata1 consists of 120 samples divided into two

TABLE I
STATISTICS ON TESTED DATASETS

categories, with each category containing 60 samples. Each
sample is described from three views. To verify the robustness
of our methods on HDLSS data, we extend the dimensions and
the number of views, and reduce the sample size on Syndata1 to
obtain Syndata2. Specifically, Syndata2 comprises 90 samples
divided into 3 categories, with each sample being described from
four views. Each subcategory of synthetic data is generated from
independent and identically distributed normal distributions
with the mean values of 2 and the standard deviations of 0.5. In
addition, we evaluate the effectiveness of CRMATS in six public
benchmark datasets, including Coil-20 [40], MSRC_v1 [41],
Yale [42], BBCSport [43], 3Sources [44] and Reuters [44]. To
demonstrate the effectiveness of our method on HDLSS datasets,
we randomly select samples from these datasets for experiments.
More details about the datasets are provided in Table I, and our
method is compared with other multi-view clustering methods.
The details of the comparative methods are shown as follows:

I. Scalable Multi-view Subspace Clustering (SMSC) [45]
constructs latent graph after anchor learning.

II. Pure graph-guided multi-view subspace clustering
(PGSC) [46] learns consensus graph by leveraging the
sparsity and connectivity of each affinity graph.

III. Robust Multi-View Spectral Clustering (RMSC) [12]
considers low rankness and sparsity of matrix to learn
a common graph after decomposition.

IV. Low-rank Tensor Based Proximity Learning
(LTBPL) [42] performs probability affinity to recover
the low rankness and high-order correlations.

V. Multiview Subspace Clustering via Low-Rank Symmet-
ric Affinity Graph (LSGMC) [44] pursues a consistent
low-rank structure across views.

VI. Measuring Diversity in Graph Learning: A Unified
Framework for Structured Multi-View Clustering (CD-
MGC) [47] leverages the multi-view consistency and
the diversity in a unified framework.

VII. Co-regularized kernel k-means for multi-view cluster-
ing (Co-reg) [39] combines similarities of different
view and latent representation for clustering.

VIII. Multiview Clustering via Co-Training Robust Repre-
sentation (CoMSC) [48] finds a consensus matrix and
complementary information.

IX. Efficient Multi-view Graph Clustering (EMGC) [49]
finds a consistent cluster indicator matrix with a Super
Nodes Similarity Minimization module.
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X. Multi-View Clustering on Topological Manifold
(MVCT) [50] integrates multiple affinity graphs into
a consensus one with the topological relevance.

XI. A Tensor Approach for Uncoupled Multiview Cluster-
ing (T-UMC) [51] couples the representation matrix to
explore high-order relationship.

XII. Multiview Subspace Clustering by an Enhanced Tensor
Nuclear Norm (WTSNM) [52] studies the Schatten p-
norm to solve the minimization problem.

XIII. High-order Complementarity Multi-View Clustering
with Enhanced Tensor Rank (HCETR) [26] adopts Ten-
sor Rank to find high-order consistency.

B. Clustering Performance

The clustering performance is evaluated using several com-
monly employed metrics, including Accuracy (ACC), Normal-
ized Mutual Information (NMI), Purity, and Fscore [32]. A larger
value denotes superior performance. Consequently, the best
results are highlighted in bold. Considering that the clustering
problem does not include the number of groups present in the
data, we further use the Calinski Harabasz index (CHI) to further
assess the quality of the clustering results. CHI measures the
compactness and separation of clustering outcomes by evaluat-
ing the ratio of inter-class variance to intra-class variance [53].
A higher CHI value indicates better clustering results. In our
evaluation, a comprehensive assessment is provided using five
metrics, with each metric representing a specific property of the
clustering outcomes. The clustering performance of our method
and comparison methods on eight benchmark datasets is pre-
sented in Tables II and III. Moreover, we report the CHI values
between the ground truth labels and the features for each dataset.
To ensure the robustness, each algorithm is repeated 20 times to
obtain the mean value. We then use Student’s t-test to test the sta-
tistical significance of the results, with the p-value represented in
parentheses.

1) Experiments on Synthetic Datasets: Experiments are con-
ducted to assess the stability of our method on Syndata1 and
Syndata2. The results are summarized in Tables II and III.
Notably, our method demonstrates substantial improvements
in terms of NMI compared to other methods on Syndata1.
Specifically, we observe improvements of 37.95%, 41.34%,
58.90%, 67.53%, 23.37%, 42.26%, 47.04% and 21.67% when
compared to Co-reg, CoMSC, LTBPL, LSGMC, MVCT, T-
UMC, WTSNM, and HCETR, respectively. In relation to Ta-
ble III, the results of CRMATS align with the ground truth
labels, exhibiting a consistent value of 2.13. Regarding Syn-
data2, our method outperforms Co-reg, CoMSC, LTBPL, LS-
GMC, MVCT, T-UMC, WTSNM, and HCETR by 73.42%,
66.89%, 22.23%, 63.25% , 18.63%, 33.54%, 52.09% and
36.19%. At this point, the evaluation result in Table III
is 1.86, surpassing the results of the other comparative
methods.

To assess the discriminative power of the consensus rep-
resentation, we utilize t-SNE for visualizing the differences
by projecting the latent representation onto a two-dimensional

space. Syndata2, which has the highest dimensionality, is specif-
ically selected to represent the synthetic scenarios. When visu-
alizing the raw data from their respective views using t-SNE
(Fig. 2(a)–(d)), it is evident that most of the samples in Syndata2
appear intermingled and lack clear separation. In contrast, the
consensus representation achieved by our method successfully
separates subcategories without any overlap (Fig. 2(e)). For the
purpose of further validating the effectiveness of CRMATS,
an analysis of the heatmaps of similarities is performed to
evaluate the distinctions between groups. In Fig. 2(f)–(i), the
affinity heatmap of the raw samples lacks clear boundaries
and block structures. However, Fig. 2(j) shows that the affin-
ity obtained from the low-dimensional embedding after ap-
plying CRMATS exhibits distinct boundaries, indicating the
method’s ability to mitigate potential biases. The results in-
dicate that the fusion of different order affinities outperforms
the traditional pairwise affinity, low-rankness, and tensor-based
methods in fully capturing the data structure on synthetic
data.

2) Experiments on Real Datasets: To further validate the
efficacy of CRMATS in real-world scenarios, we evaluate its
performance on several benchmark datasets, including Coil-
20, Yale, MSRC_v1, BBCSport, 3Sources, and Reuters. De-
tailed information and corresponding results can be found in
Tables I, II and III, respectively. On Coil-20, CRMATS demon-
strates superior performance compared to LTBPL, LSGMC,
MVCT, CoMSC, Co-reg, T-UMC, WTSNM, and HCETR, with
NMI clustering results exceeding them by 29.12%, 21.27%,
82.64%, 63.11%, 8.94%, 25.56%, 58.76%, and 39.59%, re-
spectively. Likewise, on Yale, CRMATS outperforms Co-reg,
CoMSC, LTBPL, LSGMC, MVCT, T-UMC, WTSNM, and
HCETR with performance improvements of 15.99%, 39.47%,
22.20%, 19.96%, 28.60%, 12.23%, 2.30%, and 20.11%. Com-
paring against alternative methods such as SMSC, RMSC,
PGSC, CDMGC, and EMGC2F, CRMATS achieves signifi-
cantly higher performance, surpassing them by 32.39%, 1.58%,
77.91%, 18.66%, and 17.31%. Furthermore, CRMATS exhibits
superior performance on BBCSport, MSRC_v1, 3Sources , and
Reuters. Notably, the NMI result of CRMATS on MSRC_v1
reaches 93.90%, making it the second-best performer. Addi-
tionally, CRMATS achieves a perfect NMI result of 100.00% on
BBCSport, surpassing the second-best performance of 82.81%
achieved by T-UMC. In the case of the 3Sources dataset,
CRMATS achieves an NMI result of 87.46%, which is over
16.18% higher than the second-best method, T-UMC. Simi-
larly, on the Reuters dataset, CRMATS achieves an NMI re-
sult of 77.38%, surpassing the second-best method, EMGC2F,
by 11.39%. Table III presents the CHI results of CRMATS
alongside those of the comparison methods in the dataset.
Notably, in the BBCSport dataset, CRMATS achieves results
that perfectly align with the ground truth labels. Across the
Coil-20, Yale, MSRC_v1, 3Sources, and Reuters datasets, the
respective CHI results are 349.00, 58.37, 12.87, 9.52, and
4.40. These findings provide compelling evidence of the out-
standing performance of CRMATS in the remaining com-
parison datasets, further corroborating the trends observed in
Table II.
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TABLE II
COMPARISON RESULTS (%): THE MEAN AND p VALUE MEASURED BY DIFFERENT CLUSTERING METHODS ON ALL THE CORRESPONDING DATASETS

To visually demonstrate the effectiveness of our method on
Coil-20, we present the spatial distributions of the raw data
and consensus representation obtained using t-SNE in Fig. 3.
Additionally, Fig. 4 showcases the corresponding heatmaps and
consensus representations learned by our method. These visual-
izations provide compelling evidence supporting the superiority

of our approach. In the pairwise affinity-based visualization
(Fig. 3(a)–(c)), most samples appear mixed together, making
it challenging to accurately distinguish between different sub-
groups . However, our method generates a consensus represen-
tation that exhibits improved separation and reduced overlap,
leading to enhanced clustering performance. The effectiveness
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TABLE III
CHI RESULTS: THE MEAN AND p VALUE MEASURED BY DIFFERENT CLUSTERING METHODS ON BENCHMARK DATASETS

Fig. 2. Visualizations of the consensus representation, raw data with t-SNE, and the heatmap on Syndata2. Subfigure (a)–(d) depict the spatial distribution of
Syndata2 from different views using t-SNE. Subfigure (e) is the visualization of the obtained consensus representations W using t-SNE. Subfigure (f)–(i) show
the heatmap of Syndata2 from different views. The affinity heatmap on raw samples has blurred boundaries and no apparent block structures. In contrast, Subfigure
(j) shows the affinity from consensus representations has clear-cut boundaries.
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Fig. 3. Visualization of the consensus representations and raw data. Subfig-
ure (a)–(c) depict the visualization of Coil-20 using t-SNE. Subfigure (d) is
visualization of the consensus representations W .

Fig. 4. Visualization of heatmap on Coil-20. Subfigure (a)–(c) are the heatmap
from different views. The affinity heatmap on raw samples has blurred bound-
aries. In contrast, Subfigure (d) shows the affinity from consensus representation
has clear-cut boundaries.

of our method is demonstrated through the comparison of affinity
heatmaps. In Coil-20, the affinity heatmaps of each view on the
raw samples (Fig. 4(a)–(c)) exhibit blurred boundaries and lack
a clear block structure. However, after applying our method and
generating the affinity matrix from the consensus representation,
the boundaries become well-defined. This is supported by the

Fig. 5. The convergence curve of the proposed CRMATS method, on (a)
Syndata1; (b) Coil-20; (c) Yale; and (d) BBC. The objective value decreases
consistently with respect to the iteration number.

t-SNE visualization of the consensus representation, where most
samples are clustered with their corresponding partners, and
distinct blocks are observed on the diagonal of the heatmap
(Figs. 3(d) and 4(d)). Overall, CRMATS yields superior cluster-
ing performance on all real-world datasets, as shown in Tables II
and III. Furthermore, we conducted an analysis on the random-
ness of views and resource consumption in CRMATS, which
can be found in Section B and Section C of the supplementary
materials, available online.

Based on the experimental results, CRMATS demonstrates
several advantages in handling HDLSS data. First, our method
effectively utilizes high and low-order affinities to comprehen-
sively capture the spatial structure of HDLSS data. Second, our
co-regularization approach aligns the different low-dimensional
representations to seek a consensus graph and incorporate cross-
view correlations, thereby avoiding suboptimal clustering re-
sults. Lastly, by learning a consensus representation on the
manifold space, we consider the complex connections among
samples of the original data, leading to improved clustering
performance.

C. Convergence Analysis

An alternate minimizing algorithm is developed to solve the
optimization problem. As for the convergence of CRMATS, we
have provided the corresponding theoretical proof in Section
A of the supplementary materials, available online. In this
subsection, we compare objective value of the benchmark
datasets with diverse backgrounds to eliminate randomness and
then illustrate clearly in Fig. 5. We show the objective value
with 50 epochs. The corresponding objective value of each
benchmark dataset decreases sharply in the first 5 iterations and
then stays steady with more iterations, implying that CRMATS
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Fig. 6. Hyperparameter tuning (γ1 and γ2) in terms of NMI, on (a) Syndata1;
(b) Coil-20; (c) Yale; and (d) BBC.

converges steadily after just a few iterations. The fast conver-
gence of CRMATS is due to the alternate minimizing algorithm,
which updates each variable separately. Moreover, by integrating
co-regularization techniques and leveraging high-order affinities
on the manifold space, our proposed method adeptly captures the
intrinsic structure of the data. Consequently, our method exhibits
rapid convergence, highlighting its effectiveness as a solution for
optimizing the problem in multi-view HDLSS clustering.

D. Hyperparameter Sensitivity Analysis

The influence of hyperparameter sets on the clustering per-
formance in terms of NMI is investigated, and the results are
represented in Fig. 6. Notice that (16) consists of two parts, the
affinities term and co-regularization term. We set hyperparam-
eters for each part, denoted as γ1 and γ2, respectively. We use
a combination of hyperparameters [1e-6, 1e-5, 1e-4, 1e-3, 0.01,
0.1, 1, 10, 100] for both γ1 and γ2, and evaluate the performance
on four benchmark datasets.

According to Fig. 6, the clustering performance is influenced
by γ1 in certain instances. For example, the NMI of Syndata1
and Yale (Fig. 6(a) and (c)) decreases with lower γ1. In addition,
the NMI changes little while γ2 increases. Although the perfor-
mance of CRMATS changes with different combinations of γ1
and γ2, as shown in Fig. 6(b) and (d), CRMATS still outperforms
its comparative methods on benchmark datasets, demonstrating
the stability of our model. Furthermore, the results depicted in
Fig. 6 provide empirical evidence of the robustness of CRMATS
to the selection of hyperparameters. Our method consistently
outperforms the comparative methods on multiple datasets under
different settings, indicating its insensitivity to specific hyperpa-
rameter choices and its ability to achieve favorable performance
across a wide range of hyperparameter values. The observed

Fig. 7. Ablation analysis experiments of the CRMATS: 1) CRMATS-L2 which
only uses the pairwise affinity matrix L̂2; 2) CRMATS-L3, which only uses the
third-order affinity matrix L̂3; 3) CRMATS-L4, which only uses the fourth-
order affinity matrix L̂4; 4) CRMATS-L23, which combines L̂2 and L̂3; 5)
CRMATS-L24 combines L̂2 and L̂4; 6) CRMATS-L34 combines L̂3 and L̂4;
7) CRMATS is our model.

effectiveness and robustness of CRMATS in multi-view cluster-
ing tasks, as demonstrated in the results of Fig. 6, underscore
the practicality and versatility of our method.

E. Ablation Analysis

In this subsection, an ablation study of our proposed CRMATS
method is conducted to investigate the roles played by different
order of affinities and their combinations. In order to assess
the significance of multi-order affinities, an ablation study is
conducted as follows. First, the removal of L̂3 and L̂4 results
in the method degrading into the traditional Co-reg approach.
This variant is referred to as CRMATS-L2. Subsequently, each
high-order affinity is individually applied in isolation, yielding
the methods CRMATS-L3 and CRMATS-L4, respectively. In
the multiple affinities situation, we combine L̂2, L̂3, and L̂4

in pairs. For instance, CRMATS-L23 is the combination of L̂2

and L̂3. The clustering performance of each ablation method
is evaluated using the same benchmark datasets and metrics as
employed in the previous experiments.

The experimental results presented in Fig. 7 demonstrate
the importance and effectiveness of incorporating multi-order
affinities in multi-view clustering tasks. First, our method
achieves the best performance on the following datasets, in-
dicating its effectiveness in capturing the underlying struc-
ture of the data in multi-view clustering tasks. Second, sin-
gular affinity experiments demonstrate that high-order affini-
ties (CRMATS-L3, CRMATS-L4) supplement the inherent in-
formation of traditional pairwise affinity. For example, the
performance of CRMATS-L3 is better than CRMATS-L2 on
Syndata1 and BBC. Finally, the fusion of the second, third,
and fourth order affinities exhibits superior performance in
comparison to any two-order fusion (e.g., CRMATS-L23,
CRMATS-L24, CRMATS-L34). This observation suggests that
the inclusion of each order of fusion contributes to the en-
hancement of internal information, resulting in incremental
improvements.
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V. CONCLUSION

In this paper, we have presented a unified multi-view clus-
tering framework, which aligns the latent representations of
views on the manifold space based on the accurate description
of intra-view sample relationships through the introduction of
multi-order affinities. The efficiency of CRMATS is improved
by employing an alternating minimization strategy and singular
value decomposition. Furthermore, a novel set of evaluation
metrics is devised to comprehensively assess the performance
of CRMATS in capturing the underlying structure of the data,
followed by taking into account the similarity within clusters
and the dissimilarity between clusters in clustering tasks. Ex-
perimental results on eight HDLSS datasets have demonstrated
the effectiveness of the proposed method in comparison with the
other popular approaches.

Although our method effectively addresses the concentration
effects in high-dimensional data clustering and outperforms
several baseline methods on the benchmark dataset, there are
still potential directions for improvement. First, our strategy
of improving the HDLSS clustering results through high-order
affinity requires more time and memory costs for computation.
Additionally, existing high-order affinity methods have limita-
tions when dealing with the complex graph data. To address
these limitations, we consider incorporating deep graph neural
network for high-dimensional learning. The deep neural network
can leverage GPU computing units to reduce memory costs
within each mini-batch. Furthermore, the graph neural network
enables us to extract more potential high-order correlations from
high-dimensional data.
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[10] M. Brbić and I. Kopriva, “Multi-view low-rank sparse subspace cluster-
ing,” Pattern Recognit., vol. 73, pp. 247–258, 2018.

[11] Y. Yang and H. Wang, “Multi-view clustering: A survey,” Big Data Mining
Analytics, vol. 1, no. 2, pp. 83–107, 2018.

[12] R. Xia, Y. Pan, L. Du, and J. Yin, “Robust multi-view spectral clustering
via low-rank and sparse decomposition,” in Proc. 28th AAAI Conf. Artif.
Intell., 2014, pp. 2149–2155.

[13] F. Nie, S. Shi, and X. Li, “Auto-weighted multi-view co-clustering via fast
matrix factorization,” Pattern Recognit., vol. 102, 2020, Art. no. 107207.

[14] A. Kumar and H. Daume III, “A co-training approach for multi-view spec-
tral clustering,” in Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 393–400.

[15] W. Yang, C. Hui, D. Sun, X. Sun, and Q. Liao, “Clustering through
probability distribution analysis along eigenpaths,” IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 51, no. 2, pp. 875–884, Feb. 2021.

[16] Y. Chen et al., “KNN-BLOCK DBSCAN: Fast clustering for large-scale
data,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 51, no. 6, pp. 3939–3953,
Jun. 2021.

[17] D. François, V. Wertz, and M. Verleysen, “The concentration of fractional
distances,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 7, pp. 873–886,
Jul. 2007.

[18] S. Sarkar and A. K. Ghosh, “On perfect clustering of high dimension, low
sample size data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 9,
pp. 2257–2272, Sep. 2020.

[19] Y. Mei, Z. Ren, B. Wu, T. Yang, and Y. Shao, “Multi-order similarity
learning for multi-view spectral clustering,” Pattern Recognit., vol. 137,
2023, Art. no. 109264.

[20] D. Ghoshdastidar and A. Dukkipati, “Spectral clustering using multilinear
SVD: Analysis, approximations and applications,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 2610–2616.

[21] H. Peng, Y. Hu, J. Chen, H. Wang, Y. Li, and H. Cai, “Integrating tensor
similarity to enhance clustering performance,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 44, no. 5, pp. 2582–2593, May 2022.

[22] H. Cai et al., “Uniform tensor clustering by jointly exploring sample
affinities of various orders,” 2023, arXiv:2302.01569.

[23] J. Wu, Z. Lin, and H. Zha, “Essential tensor learning for multi-view spectral
clustering,” IEEE Trans. Image Process., vol. 28, no. 12, pp. 5910–5922,
Dec. 2019.

[24] J. Yu, G. Zhou, C. Li, Q. Zhao, and S. Xie, “Low tensor-ring rank
completion by parallel matrix factorization,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 7, pp. 3020–3033, Jul. 2021.

[25] J. Guo, Y. Sun, J. Gao, Y. Hu, and B. Yin, “Logarithmic Schatten-p
norm minimization for tensorial multi-view subspace clustering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3396–3410,
Mar. 2023.

[26] J. Ji and S. Feng, “High-order complementarity induced fast multi-view
clustering with enhanced tensor rank minimization,” in Proc. 31st ACM
Int. Conf. Multimedia, 2023, pp. 328–336.

[27] Z. Li, C. Tang, X. Zheng, X. Liu, W. Zhang, and E. Zhu, “High-order
correlation preserved incomplete multi-view subspace clustering,” IEEE
Trans. Image Process., vol. 31, pp. 2067–2080, 2022.

[28] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in Proc. 14th Int. Conf. Neural Inf. Process. Syst., 2001,
pp. 849–856.

[29] A. Kumar, P. Rai, and H. Daumé, “Co-regularized multi-view spectral
clustering,” in Proc. 24th Int. Conf. Neural Inf. Process. Syst., 2011,
pp. 1413–1421.

[30] J. Yu, Q. Duan, H. Huang, S. He, and T. Zou, “Effective incomplete
multi-view clustering via low-rank graph tensor completion,” Mathemat-
ics, vol. 11, no. 3, pp. 1–18, 2023.

[31] Y. Chikuse, Statistics on Special Manifolds. Berlin, Germany: Springer,
2003.

[32] H. Wang, G. Han, B. Zhang, G. Tao, and H. Cai, “Multi-view learning a
decomposable affinity matrix via tensorself-representation on Grassmann
manifold,” IEEE Trans. Image Process., vol. 30, pp. 8396–8409, 2021.

[33] Y. Hu, E. Guo, Z. Xie, X. Liu, and H. Cai, “Robust multi-view clustering
through partition integration on Stiefel manifold,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 10, pp. 10397–10410, Oct. 2023.

[34] B. Wang, Y. Hu, J. Gao, Y. Sun, F. Ju, and B. Yin, “Adaptive fusion of
heterogeneous manifolds for subspace clustering,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 8, pp. 3484–3497, Aug. 2021.

[35] Y. Hu and H. Cai, “Multi-view clustering through hypergraphs integration
on Stiefel manifold,” in Proc. IEEE Int. Conf. Multimedia Expo, 2022,
pp. 01–06.

[36] A. Khan and P. Maji, “Multi-manifold optimization for multi-view sub-
space clustering,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 3895–3907, Aug. 2022.

[37] F. Nie, J. Yuan, and H. Huang, “Optimal mean robust principal component
analysis,” in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 1062–1070.

[38] A. Chaudhry, N. Khan, P. K. Dokania, and P. H. S. Torr, “Continual
learning in low-rank orthogonal subspaces,” in Proc. 34th Int. Conf. Neural
Inf. Process. Syst., 2020, pp. 2654–2666.



6808 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 10, OCTOBER 2024

[39] Y. Ye, X. Liu, J. Yin, and E. Zhu, “Co-regularized kernel k-means for
multi-view clustering,” in Proc. 23rd Int. Conf. Pattern Recognit., 2016,
pp. 1583–1588.

[40] H. Wang, J. Chen, B. Zhang, and H. Cai, “Accurate multi-view cluster-
ing by exploiting within-view high-order affinities through tensorself-
representation,” in Proc. IEEE Int. Conf. Bioinf. Biomed., 2022,
pp. 595–600.

[41] B. Cai, G. Lu, L. Yao, and H. Li, “High-order manifold regularized multi-
view subspace clustering with robust affinity matrices and weighted TNN,”
Pattern Recognit., vol. 134, 2023, Art. no. 109067.

[42] M. Chen, C. Wang, and J. Lai, “Low-rank tensor based proximity learning
for multi-view clustering,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5,
pp. 5076–5090, May 2023.

[43] Y. Li, D. Tao, W. Liu, and Y. Wang, “Co-regularization for classification,”
in Proc. IEEE Int. Conf. Secur. Pattern Anal. Cybern., 2014, pp. 218–222.

[44] W. Lan et al., “Multiview subspace clustering via low-rank symmetric
affinity graph,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, 2023.

[45] M. Sun et al., “Scalable multi-view subspace clustering with unified
anchors,” in Proc. 29th ACM Int. Conf. Multimedia, 2021, pp. 3528–3536.

[46] H. Wu, S. Huang, C. Tang, Y. Zhang, and J. Lv, “Pure graph-guided
multi-view subspace clustering,” Pattern Recognit., vol. 136, 2023,
Art. no. 109187.

[47] S. Huang, I. W. Tsang, Z. Xu, and J. Lv, “Measuring diversity in graph
learning: A unified framework for structured multi-view clustering,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 12, pp. 5869–5883, Dec. 2022.

[48] J. Liu, X. Liu, Y. Yang, X. Guo, M. Kloft, and L. He, “Multiview subspace
clustering via co-training robust data representation,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 33, no. 10, pp. 5177–5189, Oct. 2022.

[49] D. Wu, J. Lu, F. Nie, R. Wang, and Y. Yuan, “EMGC2;F: Efficient multi-
view graph clustering with comprehensive fusion,” in Proc. 31st Int. Joint
Conf. Artif. Intell., 2022, pp. 3566–3572.

[50] S. Huang, I. Tsang, Z. Xu, J. Lv, and Q.-H. Liu, “Multi-view clustering
on topological manifold,” in Proc. 36th AAAI Conf. Artif. Intell., 2022,
pp. 6944–6951.

[51] J.-Q. Lin, M.-S. Chen, C.-D. Wang, and H. Zhang, “A tensor approach
for uncoupled multiview clustering,” IEEE Trans. Cybern., vol. 54, no. 2,
pp. 1236–1249, Feb. 2024.

[52] W. Xia, X. Zhang, Q. Gao, X. Shu, J. Han, and X. Gao, “Multiview
subspace clustering by an enhanced tensor nuclear norm,” IEEE Trans.
Cybern., vol. 52, no. 9, pp. 8962–8975, Sep. 2022.

[53] U. Maulik and S. Bandyopadhyay, “Performance evaluation of some
clustering algorithms and validity indices,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 12, pp. 1650–1654, Dec. 2002.

Hongmin Cai (Senior Member, IEEE) received the
BS and MS degrees in mathematics from the Harbin
Institute of Technology, Harbin, China, in 2001 and
2003, respectively, and the PhD degree in applied
mathematics from Hong Kong University, in 2007. He
is a professor with the School of Computer Science
and Engineering, South China University of Technol-
ogy, Guangzhou, China. From 2005 to 2006, he was a
research assistant with the Center of Bioinformatics,
Harvard University, and the Section for Biomedical
Image Analysis, University of Pennsylvania. His cur-

rent research interests include bioinformatics, machine learning, and medical
image analysis.

Yu Wang received the BS and MS degrees from
the Hunan University of Technology and Business,
Changsha, Hunan, China, in 2019 and 2022, respec-
tively. He is currently working toward the PhD degree
with the School of Future Technology, South China
University of Technology, Guangzhou, Guangdong,
China. His research interests include machine learn-
ing and image processing.

Fei Qi received the BS and MS degrees from Xiamen
University, Xiamen, Fujian, China, in 2013 and 2016,
respectively. He is currently working toward the PhD
degree in computer science and engineering with the
South China University of Technology, Guangzhou,
Guangdong, China. His research interests include
machine learning and image processing.

Zhuoyao Wang received the PhD degree in electrical
and computer engineering with a minor in mathemat-
ics from the University of New Mexico, Albuquerque,
NM, USA, in 2016. He is currently a research scientist
with Peng Cheng Laboratory, Shenzhen, China. He
also spent several years working in industry at large
Blue Chip organizations (Tencent, ZTE) and hi-tech
startups. His research interests include risk analysis of
cyber-physical systems, cloud computing, and indus-
trial internet. He is currently a co-chair of the CCSA
TC13 WG4.

Yiu-ming Cheung (Fellow, IEEE) received the PhD
degree from the Department of Computer Science
and Engineering, Chinese University of Hong Kong,
Hong Kong. He is currently a chair professor with
the Department of Computer Science, Hong Kong
Baptist University, Hong Kong. His current research
interests include machine learning and visual com-
puting, as well as their applications in data science,
pattern recognition, multi-objective optimization, and
information security. He is the editor-in-chief of IEEE
Transactions on Emerging Topics in Computational

Intelligence. Also, he serves as an associate editor of IEEE Transactions on Cy-
bernetics, IEEE Transactions on Cognitive and Developmental Systems, Pattern
Recognition, Knowledge and Information Systems, and Neurocomputing, just to
name a few. He is a fellow of the AAAS, IET, BCS, and AAIA.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


