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Abstract—One-to-one matching is a crucial design in DETR-like
object detection frameworks. It enables the DETR to perform
end-to-end detection. However, it also faces challenges of lacking
positive sample supervision and slow convergence speed. Several
recent works proposed the one-to-many matching mechanism to
accelerate training and boost detection performance. We revisit
these methods and model them in a unified format of augmenting
the object queries. In this paper, we propose two methods that
realize one-to-many matching from a different perspective of aug-
menting images or image features. The first method is One-to-many
Matching via Data Augmentation (denoted as DataAug-DETR). It
spatially transforms the images and includes multiple augmented
versions of each image in the same training batch. Such a simple
augmentation strategy already achieves one-to-many matching and
surprisingly improves DETR’s performance. The second method
is One-to-many matching via Feature Augmentation (denoted as
FeatAug-DETR). Unlike DataAug-DETR, it augments the image
features instead of the original images and includes multiple aug-
mented features in the same batch to realize one-to-many match-
ing. FeatAug-DETR significantly accelerates DETR training and
boosts detection performance while keeping the inference speed
unchanged. We conduct extensive experiments to evaluate the ef-
fectiveness of the proposed approach on DETR variants, includ-
ing DAB-DETR, Deformable-DETR, and 7 -Deformable-DETR.
Without extra training data, FeatAug-DETR shortens the training
convergence periods of Deformable-DETR (Zhu et al. 2020) to 24
epochs and achieves 58.3 AP on COCO val2017 set with Swin-L
as the backbone.

Index Terms—Detection transformer, one-to-one matching, one-
to-many matching, data augmentation, accelerating training.

I. INTRODUCTION

BJECT detection is a fundamental task in computer vi-
sion, which predicts bounding boxes and categories of
objects in animage. In the past several years, deep learning made
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Fig. 1. Previous works achieve one-to-many matching via augmenting object
queries [8], [9]. We propose DataAug-DETR and FeatAug-DETR to achieve
one-to-many matching from the perspective of augmenting image features and
ground truth objects.

significant success in the object detection task and tens of classic
object detectors have been proposed. These classic detectors are
mainly based on convolutional neural networks, which include
the one-stage detectors [2], [3], [4] and two-stage detectors [5],
[6], [7]. One-to-many label assignment is the core design of the
classic detectors, where each ground-truth box is assigned to
multiple predictions of the detector. With such a one-to-many
matching scheme, these frameworks require human-designed
non-maximum suppression (NMS) for post-processing and can-
not be trained end-to-end.
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The DEtection TRansformer (DETR) [10] reveals the poten-
tial of using transformer architectures [11] to achieve high per-
formance in object detection. It implements one-to-one match-
ing between the ground truth boxes and the predictions. Various
DETR-like frameworks have shown great success. Quite a few
follow-up works were proposed to improve DETR by modifying
the architectures, such as the architecture of the transformer
encoder [1], [12], the decoder [1], [13], [14], [15], and the query
designs [16], [17], [18].

Besides improving the DETR architectures, several recent
works aim to improve the one-to-one matching mechanism in
DETR [10]. The one-to-one matching helps DETR to discard
the human-designed NMS for post-processing. In addition, [8]
showed that extra one-to-many matching supervisions can lead
to faster and better convergence. In the recent Group-DETR [8]
and Hybrid Matching [9], extra object queries are used to formu-
late one-to-many matchings to provide additional supervisions
for better training DETRs.

The one-to-many matching mechanism associates each
ground truth object with multiple object queries. The object
queries interact with the image feature maps containing the
objects via cross-attention in the DETR decoder. The one-to-
one and one-to-many matchings therefore implicitly conduct
assignments between queries and the object features from the
spatial feature maps. State-of-the-art Group-DETR and Hybrid
Matching enhance one-to-one matching by augmenting extra
object queries and inputting them into the matching module.
They achieve impressive results in accelerating convergence
speed and boosting detection performance.

Our initial observation highlights that a straightforward yet
appropriately designed data augmentation scheme (DataAug-
DETR) can implicitly accomplish one-to-many matching
and surprisingly improve DETR performance. By integrat-
ing numerous spatially augmented versions of a single
image in a single batch, the same objects can be as-
signed to distinct queries across various augmented images.
These one-to-many assignments can greatly enhance detection
performance.

Given that DETR queries accumulate information from im-
age feature maps, we propose approximating the impact of
spatial image augmentation by applying spatial augmentation
to the feature maps, thereby avoiding repeated forwarding of
different versions of the same image into the vision backbone.
We further propose feature augmentation (FeatAug-DETR) for
DETR, which spatially shifts and flips feature maps and arranges
different versions of a feature map in the same batch, thereby
assigning the same object queries to different objects after
feature augmentation. This method is a simple yet effective way
to enhance DETR performance. The comparison of our feature
augmentation and previous object query augmentation is shown
in Fig. 1.

We conduct extensive experiments to evaluate the effi-
ciency and effectiveness of DataAug-DETR and FeatAug-
DETR. As a plug-and-play approach, our proposed mod-
ules can be easily integrated into different DETR variants.
FeatAug-DETR significantly accelerates convergence and also
improves the performance of various DETR detectors, including
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DAB-DETR [18], Deformable-DETR [1], and H-Deformable-
DETR [9]. FeatAug-DETR helps Deformable-DETR [1] with
Swin-Large backbone [19] reach 55.8 AP with 1x training
schedule (12 epochs), which is 1.3 AP higher than that without
our method (54.5 AP), while keeping the inference FLOPs
unchanged. Moreover, FeatAug-DETR is compatible with -
Deformable-DETR [9] as the feature augmentation realizes
one-to-many matchings from a different perspective.

In summary, our contributions are summarized as follows:

e We propose DataAug-DETR, which augments each image
multiple times and includes the different augmented ver-
sions of an image in the same training batch. It boosts
DETR’s detection accuracy.

® We further propose feature augmentation (FeatAug-DETR)
for DETR. It augments the feature maps from the vision
backbone and significantly accelerates training compared
with DataAug-DETR.

e When integrating FeatAug-DETR into Hybrid Match-
ing [9], our method achieves 58.3 AP on COCO val2017
with Swin-L backbone and 24 training epochs, surpassing
the state-of-the-art performance by 0.5 AP.

II. RELATED WORK

A. Classic Object Detectors

Modern object detection models are divided into 2 categories,
one-stage detectors, and two-stage detectors. The one-stage
detectors [3], [4] predict the positions of the objects relying
on the anchors. The two-stage detectors [6] first generate region
proposals and then predict the object position w.r.t. the proposals.
These methods are both anchor-based methods in which the
predefined anchors play an important role in the models. These
classic object detectors also need hand-designed operations such
as NMS as post-processing, which makes they cannot optimize
end-to-end.

B. Label Assignment in Classic Object Detectors

Assignment between the ground truth objects and training
samples is a widely-investigated topic in classic object detec-
tors [2], [3], [6], [7], [20]. Anchor-based detectors [20], [21]
utilize Intersection-over-Union (IoU) to apply label assignment.
The anchor will be assigned to the maximum IoU ground
truth box when the maximum IoU between an anchor and all
gt boxes exceeds the predefined IoU threshold. Anchor-free
detectors [22], [23] utilize spatial and scale constraints when
selecting positive points. The follow-up works [24], [25] propose
improvements in a similar direction. The above label assignment
methods in classic object detectors are one-to-many matching,
which always assigns several object predictions with one ground
truth box. Such methods require NMS for post-processing,
which makes the detectors hard to train in an end-to-end manner.

C. Detection Transformer

Carion et al. [10] proposed Detection Transformer (DETR),
which introduces the Transformer architecture into the object
detection field. They also use bipartite matching to implement
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set-based loss and make the framework an end-to-end archi-
tecture. These designs remove the handcraft components such
as anchors and NMS in the previous classic object detectors.
However, DETR still faces the problem of slow convergence
speed and relatively low performance. Also, DETR only uses
one scale image feature, which lost the benefit of the multi-scale
feature which has been proven effective in previous works.
The follow-up works proposed improvements to relieve these
problems effectively. [26] designed an encoder-only DETR
without using a decoder. Anchor-DETR [16] utilizes designed
anchor architecture in the decoder to help accelerate training.
Conditional-DETR [17] learns conditional spatial query to help
cross-attention head to attend to a band containing a distinct
region. It significantly shortens the training epochs of DETR
from 500 epochs to 50 or 108 epochs. Efficient DETR [27]
selects top K positions from the encoder’s prediction to en-
hance decoder queries. Dynamic Head [28] proposed a dynamic
decoder to focus on important regions from multiple feature
levels. Deformable-DETR [1], [29], [30] proposed deformable
attention and replace the original attention mechanism in DETR.
It makes utilizing multi-scale image feature feasible in DETR
architecture. The follow-up DAB-DETR [18] uses 4-D box
coordinates as queries and updates boxes layer-by-layer in the
Transformer decoder part. In the later work, DN-DETR [13]
and DINO [31], they use bounding box denoising operation and
continue to shorten the training period to 3 x standard training
schedule (36 epochs).

D. DETR for Pose Estimation

Human pose estimation is a long-standing task in computer
vision which requires predicting 2D or 3D locations of anatom-
ical keypoints representing human bodies. Recent top-down ap-
proaches led by transformers have shown promising results [32],
[33], [34], [35].

Specifically, DETR [10] provides an appealing framework
for formulating pose estimation as a set prediction problem. By
treating keypoint predictions as objects to be detected, DETR’s
bipartite matching loss can be directly applied for end-to-end
pose learning without the need for additional supervision like
association graphs.

Several works have adopted this DETR formulation for multi-
person pose estimation. For example, POET [36] introduces a
novel loss function and a pose representation to implement pose
estimation.

PETR [37] treats pose estimation as hierarchical set prediction
using learned pose queries to jointly reason about full-body
poses and refine predictions by modeling joint relationships. We
select PETR as a representative fully end-to-end framework for
multi-person pose and evaluate the effectiveness of our proposed
methods on pose estimation DETR.

E. DETR for 3D Object Detection

3D object detection aims to identify and localize objects
within complex 3D environments represented as point clouds,
meshes, or multi-view projections. Transformer-based detectors
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like DETR are well-suited for this task due to their strong context
modeling capabilities [38], [39], [40], [41], [42].

For multi-view 3D detection, DETR3D [43] modified DETR
to operate on multiple perspective images jointly by reason-
ing about camera projection matrices. Follow-up works like
BEVFormer [44] further exploit spatial-temporal context by
interacting with bird’s eye view representations.

We select a DETR-based detector, 3DETR [41], which set
strong performance on popular benchmark ScanNetV2 [45].
Evaluating our method on the framework serves to demonstrate
its broad applicability to diverse 3D detection formulations.

FE. One-to-One Matching

Carion et al. [10] uses bipartite matching to implement one-
to-one matching between the object queries and ground truth
bounding box. The pipeline computes a pair-wise matching cost
depending on the class prediction and the similarity of predicted
and ground truth boxes. Then the Hungarian algorithm [46] is
applied to find the optimal assignment. The design helps DETR
achieve end-to-end training in the object detection field without
implementing the hand-designed NMS operations.

However, because of the relatively small number of ground
truth boxes in each image (always smaller than 50) compared
with the number of predictions which are generally larger than
300. The positive sample supervision provided by one-to-one
matching is relatively sparse [8]. It results in a slow convergence
speed for the DETR framework. This problem can be effectively
revealed by designing one-to-many matching methods.

G. One-to-Many Matching

Recently, several works [8], [9] discuss the sparsity positive
supervision problem of one-to-one matching and proposed one-
to-many matching methods on DETR-liked frameworks. Group-
DETR [8] decouples the positives into multiple independent
groups and keeps only one positive per gt object in each group.
Hybrid Matching [9] combines the original one-to-one matching
branch with auxiliary queries that use one-to-many matching
loss during training. The principles of these two methods are sim-
ilar. They provide extra object queries in the decoder to produce
more positive supervision in the model. The two methods both
effectively accelerate convergence speed and boost performance
for DETR.

Our method shares the same principle of generating more pos-
itive supervision. But unlike Group-DETR or Hybrid Matching,
which implement extra object queries, we augment the images
in a batch or the features from the backbone to realize the
goal. Our method achieves obvious performance improvement in
DETR training. Through experiments, we show that our method
continues to obtain further performance boosting when applying
previous methods (such as Hybrid Matching) together.

III. METHOD

A. A Brief Revisit of DETR and One-to-Many Matching

In DETR, an input image I is processed by the backbone B to
obtain the feature map F' € R*H*W A stack of self-attentions
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and feed-forward networks in the DETR encoder transform
to obtain the feature maps. The transformer decoder utilizes
cross-attention to guide a series of object queries @ € RV*¢
to aggregate information from the feature maps and generate
object predictions P, where [N denotes the number of object
queries and C' is the query vector dimension. The predictions
include the normalized location predictions P, € RY>*4 and
class predictions P, € RY*(Nets+1) 'in which N, denotes the
class number. The one-to-one matching strategy is adopted to
associate the predictions P with ground truth objects G.

An object query set Q = {q1, o, ..., qn} € RV*C is input
into the Transformer decoder. The queries aggregate information
from image features F' through the cross-attention operations
in the Transformer decoder D(-) which has L Transformer
layers and outputs object predictions. The predictions of each
decoder layer are denoted as P!, P% ... P’ respectively. A
bipartite one-to-one matching between the object predictions
and the ground truth G is conducted at each layer. The process
is formulated as:

L
Pl = 'Dl(Q,F), ﬁoneZone - ZﬁHungarian(Pl; G)7 (1)
=1

where D! (+) denotes the [th layer of the decoder, Loneone denotes
the one-to-one matching loss, and Liyngarian denotes the Hungar-
ian matching (bipartite matching) loss at each layer. Since each
prediction pt € P! is generated from the object query g;, the
matchings between ground truths and predictions can be viewed
as the matchings between ground truths G and object queries
Q.

In order to better supervise DETR and accelerate its train-
ing, one-to-many matching schemes were proposed in [8], [9].
Group DETR [8] and Hybrid Matching [9] to augment extra
object queries Q and introduce one-to-many matching loss,
which achieves significant performance gain. Similar to the
formulation of one-to-one matching, the general formulation of
one-to-many matching can be defined as:

K L
Pli = Dl (Qk, F), ﬁoneZmany = Z Z Hungarian Pka Gk)
k=1 1l=1
(2)

where K denotes the number of Hungarian matching groups.
In each matching group, the predictions correspondlng to k-
th group of augmented queries Qk are denoted as Pk, and the
augmented ground truths are denoted as Gy

In one-to-many matching, the predictions and ground truths
are augmented to generate different groups of positive super-
vision. Here we discuss the designs of Group-DETR [8] and
Hybrid Matching [9] following the above unified formulation
(2).

1) Group-DETR: Group-DETR utilizes K separate groups
of object queries @1, ..., Q@ and generates K groups of pre-
dictions for each training image. The same set of ground truth
G applies one-to-one matching to each group of the predictions
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respectively. The process can be formulated as:
K L
P]i = Dl(ka F), »CGrouprETR = Z Z »CHungarian(P]iv G)7
k=11=1
3)

In Group-DETR, multiple groups of object queries are
matched to the same set of ground truths. The augmentation
on the object queries helps to boost the model performance.

2) Hybrid Matching: In Hybrid Matching, it uses a sec-
ond group of object queries, which contains 7" object queries
Q= {¢1,G2,-..,4r}. The second group of queries applies
one-to-many matching with repeated sets of ground truths G=

{Gl,Gg,.. GK} where G; =Gy == Gx = G. The
process of Hybrid Matching can be formulated as:
P'=D'(Q.F), P'=D'Q.F),
L

‘CH - Z EHungarlan Pl

=1

+ § £Hungarlan

Group-DETR and Hybrid Matching both augment the object
queries Q to facilitate the training. Considering the unified
formulation of one-to-many matching (2), Group-DETR and
Hybrid Matching both conduct one-to-many matching via aug-
menting the “many” query set ) to match “one” ground truth
set but ignore the possibility of jointly augmenting the image
features F' and the ground truths G.

Different from these two methods which augment the object
queries @, our approach innovatively achieves one-to-many
matching focus on augmenting the input images or features
while keeping the queries fixed. In our one-to-many matching
setting, “one” refers to each object query, and “many” pertains
to the different ground truth objects that are matched to the same
query across various augmented images or features. This strat-
egy underscores our method’s unique approach in diversifying
the query-to-ground truth relationship in object detection frame-
works. The pipeline of DataAug-DETR and FeatAug-DETR are
shown in Fig. 2.

PLG). @)

B. One-to-Many Matching via Data Augmentation

Our important observation is that one-to-many matching can
also be implemented via augmenting the image feature F and the
ground truths G in (2). We explore conducting spatial augmenta-
tion on each image multiple times and include them in the same
batch. And we experimentally validate that spatially augmented
versions of the same image lead to different query-ground truth
assignments.

We conduct a pilot study on COCO train2017 dataset,
where we augment every image two times with random flipping
and cropping. The random flipping and cropping operations
follow the same operations as that in DETR [10] for data
augmentation. Such augmented image pairs are then input to
a trained Deformable-DETR whose parameters are fixed. The
Deformable-DETR has 300 object queries and operates in a
one-stage manner. We observe that 95.9% of the corresponding
objects in the two augmented images are assigned to different
object queries. The remaining 4.1% objects that are assigned
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Fig. 2. DataAug-DETR augments images several times and include the multiple augmented versions in the same batch. FeatAug-DETR augments feature maps

from the vision backbone multiple times and include them in the same batch. Our FeatAug-DETR can augment both single-scale and multi-scale feature maps.

Only single-scale feature maps are shown here for simplicity.

to the same object queries are mostly located at the same rela-
tive positions in the two augmented images. More specifically,
ground truth bounding boxes with unchanged queries of the two
augmented images have a high average IoU of 78.2%. This pilot
study shows that, by spatially augmenting each training image
in a proper way, the objects can be assigned to different object
queries via spatial image augmentation. It is therefore reasonable
to take advantage of image spatial transformation to modify F’
and G to achieve one-to-many matching for DETRs.

The above pilot study shows that one-to-many matching
can be achieved via spatial data augmentation. We propose
DataAug-DETR, which conducts spatial image augmentation
on each training image and includes them in the same train-
ing batch. We adopt the default data augmentation scheme of
DETR and Deformable-DETR, which includes a 50% random
horizontal flipping and a 50% random cropping, followed by a
random resizing to several pre-defined sizes with the short edge
ranging from [480, 800]. Assume that each image is spatially
augmented for /N times in each training iteration. We denote
the data augmentation operation as 7y, (+), where n denotes the
n-th random data augmentation to an image. The N versions
of the image pass through the image feature backbone F in
DETR and generate N image features {F,, = F(7,(I))})_,.
Note that data augmentation is also applied to the ground truth

labels G and generates N versions of labels {G,, = 7,,(G)}N_,.
The augmentation process can be formulated as:

F, = F(T.(I)), G = To(G), forn=1,...,N. (5

Then by applying the bipartite matching on each augmented
image individually, the matching process in (2) becomes:

N L
pylL = DZ(Q7 Fn)a »CDataAug = Z Z ‘CHungarian(ij Gn)v (6)

n=1[=1

where D'(-) denotes the [-th Transformer decoder layer in
DETR. Note that in the default setting of our DataAug-DETR,
we use a set of object queries () shared with all images. During
the Hungarian matching of different augmented versions of an
image, the ground truth objects tend to be matched to different
object queries.

C. One-to-Many Matching via Feature Augmentation

In our DataAug — DET R, data augmentations are applied
to each image multiple times. The augmented N versions of
the same image are encoded by the feature backbone, whose
computation cost is considerable as the N augmented versions
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of each image need to be processed by the generally heavy
backbone.

Since we choose to perform simple spatial transformations
on each training image, the resulting features of the spatially
transformed images can also be approximated by conducting the
spatial transformations directly on the feature maps F' of each
image I. In this way, each image only goes through the heavy
feature backbone once and can still obtain multiple spatially aug-
mented feature maps Fy,...,Fx. This strategy is much more
efficient than DataAug-DETR and we name it FeatAug-DETR.
The process can be formulated as:

F=F(I), F,=&Tu(F)),
Gn =Tn(G), forn=1,2,... N, (7)

where £(-) denotes the Transformer encoder of DETR. 7, ()
denotes conducting spatial augmentation on the feature map
F. We perform feature augmentation to the output feature of
the backbone and before the Transformer encoder £(-), which
we experimentally found to achieve better performance. The
detailed experiment on the selection of the feature augmentation
position can be found in Section IV-L2.

After the augmented feature F}, is obtained, a matching pro-
cess similar to that of DataAug-DETR is applied:

N L
Pyll = DZ(Q; Fn)y ['FeatAug = Z Z EHungarian(Ple Gn)a (8)

n=1[=1

For the specific operation of feature augmentation 7,,(-), we
investigate feature map flipping or/and cropping.

1) Feature Map Flipping: Horizontal flipping is performed
on the feature map F' (denoted as FeatAug-Flip), which is
formulated as:

F=F(I), Iy = £&(F), F, = £(Flip(F)),

After applying FeatAug-Flip, the two augmented feature maps
13'1 and Fg are forwarded to the follow-up modules of DETR and
two separate Hungarian matchings are conducted for the two
feature maps in the same training batch following (2).

2) Feature Map Cropping: Besides the flip operation, ran-
dom cropping on the feature map is tested (denoted as FeatAug-
Crop). The process of FeatAug-Crop is similar to that of
FeatAug-Flip but replaces flipping with feature cropping.

The cropping and resizing hyperparameters are the same as the
DETR’s original image data augmentation cropping and resizing
scheme. Since some state-of-the-art DETR-like frameworks are
based on Deformable-DETR, which utilizes multi-scale features
from a backbone, our FeatAug-Crop augments both single-scale
and multi-scale feature maps. Deformable-DETR utilizes multi-
scale feature maps of 1/8, 1/16, and 1/32 original resolutions,
respectively. In order to crop the features of the three scales, we
use the RolAlign [7] to crop and resize the same region across the
three scales. The feature augmentation for single-scale features
is the same but only conducts the augmentation on one scale.

When cropping the features with RolAlign, we find that the
features after cropping F' become blurry due to the bilinear
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interpolation in RolAlign. It causes a domain gap between the
original feature F' and the cropped feature F. When DETR is
trained with both types of region features, its detection perfor-
mance deteriorates. We propose to use extra feature projectors
on the cropped features to narrow down the domain gap. Given
the three-scale features from the backbone, three individual
projectors are adopted to transform the cropped features F,
each of which includes a 1 x 1 convolution layer and a group
normalization layer [47]. The projectors are only applied on F
during training, while the original features [’ are still processed
by the original detection head. The cropped feature projectors
are able to mitigate the domain gap produced by RolAlign and
avoid performance reduction.

3) Combining Flipping and Cropping: In FeatAug-Flip and
FeatAug-Crop, the two versions of feature maps of each image,
which include the original and the augmented features, are for-
warded through the DETR detection head. Itis straightforward to
combine the above flipping and cropping operations for feature
augmentation. We name this combined version FeatAug-FC.
When applying FeatAug-FC, three versions of each image’s
feature maps, i.e., the original, flipped, and cropped feature
maps, are input into the DETR head.

DataAug-DETR and FeatAug-DETR are introduced to aug-
ment feature maps in the same training batch to realize one-to-
many matching for DETRs from a new perspective. Both our
methods improve detection performance and FeatAug-DETR
also significantly accelerates DETR training.

IV. EXPERIMENT
A. Dataset and Implementation Details

The experiments are conducted on COCO 2017 object de-
tection dataset [48]. The dataset is split into train2017 and
val2017,in which the train2017 and val2017 sets con-
tain 118 k and 5 k images, respectively. There are 7 instances
per image on average, up to 63 instances in a single image
in the training set. We report the standard average precision
(AP) results on COCO val2017. The DETR frameworks are
tested with ResNet-50 [49], Swin-Tiny, and Swin-Large [19]
backbones. The ResNet-50 and Swin-Tiny backbones are pre-
trained on ImageNet-1K [50] and Swin-Large is pretrained on
ImageNet-22K [50].

We test our proposed methods on top of DAB-DETR [18],
Deformable-DETR [1] with tricks (denoted as “Deform-DETR
w/ tck.”) from [9], and Hybrid Matching Deformable-DETR
(H-Deformable-DETR) [9]. The latter two DETR frameworks
use additional tricks, including bounding box refinement [1],
two-stage [1], mixed query selection [31] and look forward
twice [31]. These tricks accelerate the convergence speed and
improve the final performance.

We use the L1 loss and GIOU [51] loss for box regression,
and focal loss [20] with &« = 0.25,y = 2 for classification. As
the setting in DETR [10], we apply auxiliary losses after each
decoder layer. Similar to Deformable-DETR [1], we add extra
intermediate losses after the query selection module, with the
same components as for each decoder layer. We adopt the loss
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TABLE I
MAIN RESULTS OF PROPOSED DATA AUGMENTATION AND FEATURE AUGMENTATION ON VARIOUS DETR FRAMEWORKS

Method Backbone Tricks #queries #epochs AP APs0 APr75 APg APy APy,
DETR-DCS5 [10] R50 X 300 500 43.3 63.1 45.9 22.5 47.3 61.1
Conditional-DETR-DCS5 [17] R50 X 300 108 45.1 65.4 48.5 253 49.0 62.2
DAB-DETR-DCS5 [18] R50 X 300 50 45.7 66.2 49.0 26.1 494 63.1
+FeatAug-FC R50 X 300 36 46.1 (10.4) 66.6 49.5 27.7 50.0 62.8
+FeatAug-FC R50 X 300 50 47.1 (11.4) 67.4 50.8 27.9 50.9 64.3
Deformable-DETR-One-Stage [1] R50 X 300 50 44.5 63.6 48.7 27.1 47.6 59.6
Deformable-DETR [1] R50 X 300 50 46.9 65.6 51.0 29.6 50.1 61.6
DAB-Deformable-DETR [18] R50 X 300 50 46.9 66.0 50.4 29.1 49.8 62.3
DN-Deformable-DETR [13] R50 X 300 12 434 61.9 47.2 24.8 46.8 59.4
DN-Deformable-DETR [13] R50 X 300 50 48.6 67.4 52.7 31.0 52.0 63.7
DINO-Deformable-DETR [31]1 R50 v 900 12 479 65.3 52.1 31.2 50.9 61.9
DINO-Deformable-DETR [31]1 R50 v 900 36 50.5 68.3 55.1 32.7 53.9 64.9
DINO-Deformable-DETR [31]1 Swin-L v 900 12 56.8 75.6 62.1 39.9 60.4 73.3
DINO-Deformable-DETR [31]1 Swin-L 4 900 36 57.8 76.5 63.2 40.6 61.8 73.5
Deformable-DETR w/ tck. [1] R50 4 300 12 47.0 65.3 50.9 30.7 50.0 60.9
+FeatAug-FC R50 v 300 12 48.7 (11.7) 67.1 533 31.2 52.1 63.2
Deformable-DETR w/ tck. [1] R50 v 300 36 49.0 67.6 53.3 32.7 51.5 63.7
+DataAug R50 4 300 48 50.0 (11.0) 68.6 54.6 333 52.9 64.5
+FeatAug-FC R50 v 300 24 49.9 (10.9) 68.3 54.7 325 529 65.1
Deformable-DETR w/ tck. [1] Swin-T v 300 12 49.3 67.8 534 31.6 524 64.4
+FeatAug-FC Swin-T v 300 12 50.9 (11.6) 69.4 55.6 33.1 54.3 66.1
Deformable-DETR w/ tck. [1] Swin-T v 300 36 51.8 70.9 56.5 34.6 55.1 67.9
+DataAug Swin-T 4 300 48 53.3 (11.5) 72.1 58.5 359 56.7 68.4
+FeatAug-FC Swin-T v 300 24 52.7 (10.9) 71.3 57.5 35.1 56.6 67.8
Deformable-DETR w/ tck. [1] Swin-L v 300 12 54.5 74.0 59.2 37.0 58.6 71.0
+FeatAug-FC Swin-L v 300 12 55.8 (11.3) 75.5 61.1 39.2 60.2 72.1
Deformable-DETR w/ tck. [1] Swin-L v 300 36 56.3 75.7 61.5 39.1 60.3 71.9
+DataAug Swin-L 4 300 48 57.0 (10.7) 76.3 62.2 40.4 60.9 73.3
+FeatAug-FC Swin-L v 300 24 57.1 (10.8) 76.4 62.5 41.1 60.9 73.3
+FeatAug-FCt Swin-L 4 900 24 57.6 76.7 63.1 41.1 61.5 73.8
‘H-Deformable-DETR [9] R50 v 300 12 48.7 66.7 53.4 314 51.8 63.6
+FeatAug-Flip R50 v 300 12 49.4 (10.7) 67.5 53.7 31.9 52.7 64.3
‘H-Deformable-DETR [9] R50 v 300 36 50.0 68.1 54.6 325 53.1 65.0
+FeatAug-Flip R50 v 300 24 50.4 (10.4) 68.7 54.9 32.7 53.6 65.2
‘H-Deformable-DETR [9] Swin-L v 300 12 55.9 75.1 61.0 39.3 59.9 72.1
+FeatAug-Flip Swin-L v 300 12 56.4 (10.5) 75.6 61.8 40.0 60.4 72.4
‘H-Deformable-DETR [9] Swin-L v 300 36 57.1 76.3 62.7 40.2 61.6 73.3
+FeatAug-Flip Swin-L v 300 24 57.6 (10.5) 76.6 63.1 40.4 61.9 73.9
H-Deformable-DETR [9]" Swin-L v 900 36 57.9 76.9 63.8 42.5 62.0 73.5
+FeatAug-Flipt Swin-L v 900 24 58.3 (10.4) 77.1 64.0 41.7 62.4 73.9

Tricks: tricks described in Section IV-A. T: keep 300 instead of 100 predictions for evaluation.

coefficients: 2.0 for classification loss, 5.0 for L1 loss, and 2.0
for GIOU loss, which is the same as [9].

Each tested DETR framework is composed of a feature back-
bone, a Transformer encoder, a Transformer decoder, and two
prediction heads for boxes and labels. All Transformer weights
are initialized with Xavier initialization [52]. In the experiments,
we use 6 layers for both the Transformer encoder and decoder.
The hidden dimension of the Transformer layers is 256. The
intermediate size of the feed-forward layers in the Transformer
blocks is 2048, which follows the settings of [9]. The MLP
networks for box and label predictions share the same parameters
across different decoder layers. We use 300 object queries in
the decoder. We use AdamW [53] optimizer with a weight
decay 10~%. We use an initial learning rate of 2 x 10~* for the
Deformable DETR head and a learning rate of 2 x 10~ for the
backbone, which is the same as those in [1]. A 1/10 learning rate

drop is applied at the 11th, 20th, and 30th epochs for the 12, 24,
and 36 epoch settings, respectively. The model is trained without
dropout. The training batch size is 16 and the experiments are
run on 16 NVIDIA V100 GPUs. During validation, we select
100 predicted boxes and labels with the largest classification
logits for evaluation by default.

B. Main Results

Our DataAug-DETR and FeatAug-DETR methods are com-
patible with most DETR-like frameworks. The results on COCO
val2017 set are shown in Table I. The DAB-DETR-DCS5-
FeatAug-FC denotes applying FeatAug-FC on top of DAB-
DETR [18] with R50 dilated C5-stage image features [54],
Deformable-DETR w/ tck. -FeatAug-FC denotes FeatAug-FC
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TABLE II
FEATAUG-FC VERSUS FEATAUG-FLIP ON TOP OF HYBRID MATCHING
DEFORMABLE-DETR

Method Backbone #epochs AP APsg APrs
‘H-Deformable-DETR [9] R50 24 50.0 68.1 54.6
+FeatAug-FC R50 24 50.1 682 54.6
+FeatAug-Flip R50 24 50.4  68.7 54.9

on top of Deformable-DETR with tricks, and H-Deformable-
DETR-FeatAug-Flip denotes FeatAug-Flip on top of Hybrid
matching Deformable-DETR. We experimentally found that,
when integrating with Hybrid Matching, FeatAug-Flip achieves
better performance than FeatAug-FC as shown in Table II. Thus,
we report the results of Hybrid Matching with FeatAug-Flip and
others with FeatAug-FC.

In the table, we also report the performances of some previous
representative DETR variants. The compared methods include
single-scale and multi-scale detectors. The Deformable-DETR
ones, which utilize multi-scale features, generally achieve better
performances than single-scale detectors.

We compare the performance gain of our DataAug-DETR
and FeatAug-DETR on top of the baselines. DataAug-DETR is
evaluated on top of Deform-DETR w/ tck. [1]. FeatAug-DETR
is evaluated on DAB-DETR [18], Deform-DETR w/ tck., and
‘H-Deformable-DETR [9]. DataAug-DETR (48 epochs training)
improves the performance by about 1.0 AP compared with the
Deform-DETR w/ tck. (36 epochs training) baseline, while the
performance of the baseline trained with 48 epochs degrades. In
each epoch of DataAug-DETR, we only train 1/N of the whole
training set, where IV is the augmentation times of DataAug-
DETR. Thus, the training time per epoch of DataAug-DETR is
the same as that of the baseline. The detailed investigation of the
convergence speed of DataAug-DETR is shown in Section IV-H.

On the single-scale DAB-DETR with ResNet-50 backbone,
FeatAug-FC improves the performance for 1.4 AP with 50 train-
ing epochs and reaches 47.1 AP, which makes the single-scale
detector’s performance better than the multi-scale Deformable-
DETR [1] (46.9 AP). It is shown that the AP,; and AP of
DAB-DETR-DC5-FeatAug-FC exceed those of Deformable-
DETR by large margins (0.8 AP and 2.7 AP, respectively). When
shortening the training epochs to 36 epochs, FeatAug-FC still
achieves the performance of 46.1 AP, which is 0.4 AP higher
than the DAB-DETR-DCS baseline trained with 50 epochs.

On top of the multi-scale Deform-DETR w/ tck. baseline,
FeatAug-FC not only achieves around 1.0 AP gain after conver-
gence but also shortens the training epochs (24 epochs versus
36 epochs) on all the three tested backbones. Our FeatAug-FC
integrated into Deform-DETR w/ tck. on Swin-Large backbone
achieves 57.6 AP, which is comparable with the state-of-the-art
DINO-Deformable-DETR framework.

The work Hybrid Matching (denoted as H) [9] also tackles
the one-to-many matching problem and achieves state-of-the-art
performance. We also test our FeatAug-DETR on top of Hybrid
Matching with Swin-Large backbone and achieve the perfor-
mance of 58.3 AP, which is 0.5 AP higher than the previous
state-of-the-art DINO. In experiments, we adopt the default
hyperparameter settings of Hybrid Matching as [9].
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TABLE III
EVALUATION ON PETR FOR POSE ESTIMATION
Method Backbone ftepochs AP AP5o  APrs
PETR [37] ResNet50 [49] 100 68.8 875 763
+FeatAug-Flip  ResNet50 [49] 100 70.5 88.6 775
+FeatAug-FC ResNet50 [49] 100 70.8  88.7 78.0
PETR [37] Swin-Large [19] 100 73.1 90.7 80.9
+FeatAug-Flip  Swin-Large [19] 100 745  91.1 81.7
+FeatAug-FC  Swin-Large [19] 100 74.8 913 82.5

TABLE IV
EVALUATION ON 3DETR FOR 3D DETECTION

Method #epochs APo5 APs5q
3DETR-m [41] 180 58.70 33.60
+FeatAug-Flip 180 59.61 33.83
3DETR-m [41] 720 63.70 44.58
+FeatAug-Flip 720 64.69 46.52

C. Multi-Person Pose Estimation Results

To evaluate the generalization of our methods to multi-
person pose estimation, we apply FeatAug-Flip and FeatAug-FC
to PETR (Pose Estimation with TRansformers) [37] on the
COCO pose estimation dataset. As shown in Table III, using
ResNet50 [49] and Swin-Large [19] backbones, FeatAug-Flip
improves over the PETR baseline by 1.7 AP and 1.4 AP re-
spectively after 100 training epochs. With FeatAug-FC, gains of
2.0 AP and 1.7 AP are achieved for ResNet50 and Swin-Large
respectively. These consistent improvements verify that our
proposed techniques can effectively extend to pose estimation
DETR models.

D. 3D Object Detection Results

We evaluate FeatAug-Flip on 3DETR [41] for 3D detection on
ScanNetV2 [45]. We flip the scenes towards the x-axis or y-axis
as the feature augmentation. As shown in Table IV, the baseline
achieves 58.70 APy5 at 180 epochs and 63.70 APsy5 at 720
epochs. With FeatAug-Flip, gains of 0.9 AP35 and 1.0 APy5 are
achieved at 180 and 720 epochs respectively. This demonstrates
that our approach can generalize to enhance DETR-based 3D
object detection as well.

E. Quantitative Analysis of One-to-Many Matching

To provide direct evidence that our proposed augmentations
achieve one-to-many matching, we compute the ratio of object
queries that are assigned to different ground truth boxes after
applying DataAug-DETR and FeatAug-DETR and denote it as
match difference ratio. Different from prior works that assign
multiple queries to each ground truth, our approach keeps the
queries fixed and matches them to different ground truths across
augmented inputs.

As shown in Table V, with DAB-DETR-DCS [18], DataAug-
DETR and FeatAug-Flip achieved match difference ratios of
93.6% and 91.0%, respectively. Similarly, in the one-stage
Deformable-DETR [1] framework, these ratios were 95.9%
for DataAug-DETR and 92.1% for FeatAug-Flip. The match
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TABLE V
OBJECT QUERY MATCHING DIFFERENCE RATIO IN TWO AUGMENTATION

Framework Method Backbone Match Diff. Ratio (%)
DAB-DETR-DCS5 [18] DataAug-DETR R50 93.6
DAB-DETR-DCS [18]  FeatAug-Flip R50 91.0
Deform-one-stage [1]  DataAug-DETR R50 95.9
Deform-one-stage [1] FeatAug-Flip R50 92.1

TABLE VI
PERFORMANCE OF DATAAUG-DETR WITH NON-SPATIAL TRANSFORMATION

Method Backbone #epochs
12 24 36
Deform-DETR w/ tck. R50 47.0 48.7 49.0
+DataAug R50 46.7 49.1 49.8
+DataAug-Resizing R50 45.2 48.1 48.9

difference ratio reflects the proportion of object queries paired
with different ground truth boxes post-augmentation. These high
ratios are instrumental in demonstrating that a substantial portion
of queries are consistently assigned to unique ground truths in
augmented data, thus providing a quantitative measure of our
one-to-many matching efficacy.

Besides discussing the match difference ratios achieved by our
methods, it is instructive to consider the metric in the context
of baseline and prior one-to-many methods. Baseline models,
which do not incorporate augmentations, inherently exhibit a
0% match difference ratio. On the other hand, methods like
Group-DETR and Hybrid Matching, which apply new arbitrary
queries for one-to-many matching, can be regarded as achieving
100% match difference ratios. However, since our approach is
complementary to these methods, the difference ratios are not
directly comparable. Our methods offer a novel perspective on
achieving effective one-to-many matching.

FE. Non-Spatial versus Spatial Transformation for
DataAug-DETR

As discussed in Section I1I-B, the object queries’ assignments
with the ground truths are sensitive to position changes. In other
words, when an augmentation changes the relative position of
objects, these objects almost always match different queries
compared to the original image/feature. Our proposed flipping
and cropping augmentations are both spatial transformations that
change relative object positions. There are also other widely
used data augmentation methods that do not change the ob-
jects’ relative positions, such as image random resizing. In this
section, we also test applying only image random resizing in
our DataAug-DETR method, which applies random resizing
of each image several times in the same batch. We compare
the non-spatial transformation with the Deform-DETR w/ tck.
baseline and our DataAug-DETR with default settings. In the
experiments, the augmentation times for each image N = 2.

As shown in Table VI, the performance of only applying
image resizing in DataAug-DETR is even worse than the baseline
and our proposed default DataAug-DETR setting. The model
converges slower and leads to worse performance than the
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TABLE VII
CONVERGENCE ANALYSIS OF DATAAUG-DETR

Method Backbone #epochs
12 24 36 48
Deform-DETR w/ tck. R50 47.0 48.7 49.0 48.3
+DataAug-N = 2 R50 46.7 49.1 49.8 50.0
+DataAug-N = 3 R50 45.6 48.4 49.4 49.9

baseline. This experiment shows that spatial transformations
such as flipping and cropping are crucial in the effectiveness
of DataAug-DETR. It also shows the rationality of the flipping
and cropping feature augmentation in FeatAug-DETR.

G. Comparison With Normal Data Augmentation and Extra
Epochs

To clarify that the performance gains of DataAug-DETR and
FeatAug-DETR are not simply due to extra data augmentation,
we compare to a baseline that also uses the flipping and cropping
augmentation schedule but with additional training epochs. As
shown in Fig. 3 (left) and Table VII, the performance of the
baseline actually decreases when trained for more epochs (48
epochs). In contrast, with our DataAug-DETR and FeatAug-
DETR methods, performance continues improving with more
training. This demonstrates that the additional gains are not
merely from more augmentation, but rather from the one-to-
many matching brought by the proposed augmentation strate-
gies.

H. Convergence Analysis of DataAug-DETR

In the following analysis experiments, unless otherwise spec-
ified, we test our proposed method and evaluate its different
designs on top of the Deform-DETR w/ tck. and ResNet-50
backbone and treat it as our experiment baseline.

When keeping the same 16 batch size as the baseline,
DataAug-DETR can be viewed as changing the order of training
data compared with the ordinary training pipeline. Here we
investigate the convergence speed of DataAug-DETR AP-epoch
curves.

As shown in Fig. 3 (left) and Table VII, applying DataAug-
DETR improves the final converged performance. The baseline
converges with 36 epochs and achieves 49.0 AP. Further training
hurts the model as the performance drops when trained for
48 epochs. After applying DataAug-DETR with augmentation
times N = 2, its performance at 36 epochs is 0.8 AP higher than
the baseline. The performance continues to improve with a 48-
epoch training scheme. It is also observed that DataAug-DETR
slightly slows down convergence in early epochs.

This slower early convergence can be attributed to the fact that
DataAug-DETR sees fewer unique images per epoch compared
to the baseline. In DataAug-DETR, each image is augmented
multiple times before being input to the model, meaning fewer
unique original images are processed per epoch. Therefore,
DataAug-DETR takes longer to accumulate gradients over the
full diversity of the dataset initially. This analysis explains the
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Left: Training AP curves of Deform-DETR w/ tck. baseline and DataAug-DETR with N = 2. Right: Training AP curves of DataAug-DETR with N = 2

and N = 3. It shows that augmenting each image for more than two times results in slower convergence and is non-beneficial to the final performance.

TABLE VIII TABLE IX
RESULTS OF DIFFERENT FEATAUG-DETR METHODS ON DEFORM-DETR w/ COMPUTATIONAL CONSUMPTION OF FEATAUG-DETR ON DEFORM-DETR
TCK W/TCK. WITH 16 NVIDIA V100 GPUs

Method #ep. AP APso AP75 APgs APy APp Method Backbone  Time (per epoch) Time (total)
Deform-DETR w/ tck. 12 47.0 653 509 307 50.0 609 Deform-DETR w/ tck. R50 40min 24h (36epochs)
Deform-DETR w/ tck. 36  49.0 67.6 533 327 515 637 +FeatAug-Flip R50 60min 24h (24epochs)
+FeatAug-Flip 12 484 66.7 528 31.7 514 640 Deform-DETR w/ tck. Swin-T 50min 30h (36epochs)
+FeatAug-Flip 24 49.6 681 541 316 531 648 +FeatAug-Flip Swin-T 70min 28h (24epochs)

+FeatAug-Crop 12 481 663 523 307 513 632 - - -
+FeatAug-Crop 24 496 68.1 54.1 332 526 64.7 Deform—DETR w/ tck. SW}n—L 140m}n 84h (36epochs)
+FeatAug-FC 12 487 67.1 533 312 521 632 +FeatAug-Flip Swin-L 160min 64h (24epochs)
+FeatAug-FC 24 499 683 547 325 529  65.1 +FeatAug-FC Swin-L 180min 72h (24epochs)

slower early convergence observed for DataAug-DETR com-
pared to the baseline.

We also investigate the augmentation number N with
DataAug-DETR, Fig. 3 (right) shows that the convergence is
slower with a larger augmentation number, while the final per-
formance becomes saturated after N > 2. Thus we adopt N = 2
as the default setting unless otherwise specified.

1. Comparison of Different Feature Augmentation Operators

We compare the performance of the proposed FeatAug-Flip,
FeatAug-Crop, and FeatAug-FC on the Deform-DETR w/ tck.
baseline. The results are listed in Table VIIIL.

As shown in the table, all of our FeatAug-DETR’s results
are better than that of the baseline. FeatAug-Flip is 0.3 AP
higher than FeatAug-Crop with 12 training epochs. The stronger
FeatAug-FC is 0.3 AP better than FeatAug-Flip and FeatAug-
Crop with 24 epochs and reaches 49.9 AP.

The results show that FeatAug-Flip converges faster than
FeatAug-Crop, while their convergence performance is sim-
ilar. FeatAug-FC provides further performance improvement
compared with FeatAug-Flip and FeatAug-Crop, while it also
requires extra training time for epoch. Thus, FeatAug-Flip is
suitable for models with relatively small backbones (e.g., R50
and Swin-Tiny). FeatAug-FC is preferred when training with
large backbones (e.g., Swin-Large).

J. Convergence Analysis of FeatAug-DETR

In FeatAug-DETR, the Transformer encoder and decoder pro-
cess several augmented features during training, which produce
extra computational consumption. However, such an increase in
computation is invariant to the scale of the backbone. When
training with large-scale backbones, the extra computational
consumption is relatively small compared with the backbone.
The training time per epoch comparisons with different back-
bones is shown in Table IX.

The table reports the training time of the Deform-DETR w/
tck. baseline and that integrated with FeatAug-Flip. The training
time of FeatAug-Crop is similar to FeatAug-Flip. Our training
process uses 16 NVIDIA V100 GPUs with a batch size of 16.
As shown in Table IX, the increase in the computation time is
invariant with the size of the backbone. The proportion of the
increased computation time is only about 15% when using the
Swin-L backbone.

The training AP curves of FeatAug-DETR are shown in Fig. 4.
The left figure shows the curves w.r.t. training epochs. Our
FeatAug-DETR consistently surpasses the Deform-DETR w/
tck. baseline by a large margin and shortens the training epochs
from 36 epochs to 24 epochs. Considering our FeatAug-DETR
requires extra computation consumption in each epoch, we also
show the training AP curves w.r.t. GPU x Hours in the right
figure. It shows FeatAug-DETR still achieves better performance
than the baseline in terms of detection accuracy and convergence
speed. Especially when the backbone scale is larger, the perfor-
mance gain is more obvious.
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TABLE X
RESULTS WITH SHORT TRAINING EPOCHS
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Left: Training AP curves w.r.t training epochs of Deform-DETR w/ tck. and that integrated with our FeatAug-DETR. Right: Traing AP curves w.r.t GPU

TABLE XI
EVALUATION ON ONE-STAGE DEFORMABLE-DETR

Method Backbone #epochs AP AP5g APrs Method #ep. AP APso AP7y5 APgs  APp  APp
Deformable-DETR w/ tck. [1] R50 12 47.0 653 509 One-stage 50 44.5 63.6 48.7 27.1 47.6 59.6
+DataAug R50 12 46.7 649 50.8 +FeatAug-FC 36 459 64.8 50.3 27.7 493 60.6
+FeatAug-Flip R50 12 484 66.8 525 +FeatAug-FC 50 46.3 65.3 50.6 28.0 49.7 61.1
+FeatAug-FC R50 12 48.7 67.1 533
H-Deformable-DETR [9] R50 12 487 66.7 534 TABLE XII
+DataAug R50 12 48.6 669 53.1 ABLATION ON INPUT FEATURE SELECTION IN FEATAUG-DETR
+FeatAug-Flip R50 12 494 675 537
Method #ep. AP APs50 APr75
. .. Deform-DETR w/ tck. 12 47.0 65.3 50.9
K. Performances With Short Training Epochs +FeatAug.Flip-Encoder 12 465 648 506
+FeatAug-Flip-Default 12 48.4 66.7 52.8

In Table X, we provide experiments on the Deformable-DETR
w/ tck. In [1] and H-Deformable-DETR [9] variants trained
for 12 epochs to validate the effectiveness of our methods in
short-epoch training scenarios.

It can be observed that both our proposed FeatAug-Flip and
FeatAug-FC methods significantly improve performance over
the base models with only 12 epochs of training. For example,
FeatAug-FC boosts Deformable-DETR w/ tck. by 1.7 AP. This
demonstrates the capability of our methods to deliver gains in
the limited data regime.

While DataAug-DETR does lag slightly behind the base
model in the 12 epoch setting, we emphasize that it is designed
for longer epoch training where it can accumulate gradients over
augmented data more effectively. As discussed in Section IV-H,
DataAug-DETR sees fewer unique images per epoch, so short
epochs do not play to its strengths. However, in Section IV-B,
we show DataAug-DETR can boost performance given adequate
training epochs.

In summary, our proposed techniques, especially FeatAug-
Flip/FC, are broadly effective at improving detection perfor-
mance with limited training data. The experiments on 12 epoch
training further verify the efficiency of our methods.

L. Ablation Studies

1) Evaluation on One-Stage Deformable-DETR: Since we
mainly evaluate our method based on Deform-DETR w/ tck.,
which consists of tricks that boost performance. In order to show

that our methods are independent of these tricks and can still
improve various DETR variants’ performance, we also test our
method on top of the one-stage Deformable-DETR, which is its
original version. The results are shown in Table XI.

Our method accelerates its convergence speed. FeatAug-FC
trained for 36 epochs is 1.4 AP better than the one-stage
Deformable-DETR trained for 50 epochs. With the same 50
training epochs, FeatAug-FC reaches 46.3 AP, which is 1.8 AP
better than the baseline.

2) Input Feature of FeatAug-DETR: In our FeatAug-DETR,
we augment the image feature from the backbone and input
the augmented features into the Transformer encoder. However,
in the Deform-DETR w/ tck. baseline, the features after the
Transformer encoder can also be chosen as the alternative for
augmentation. To analyze which feature is better as the input
of FeatAug-DETR, we test them and the results are shown in
Table XII. FeatAug-DETR on the feature after the Transformer
encoder is denoted as FeatAug-Encoder and the augmentation
on the feature directly from the backbone is denoted as FeatAug-
Default.

As shown in the table, the feature augmentation on the encoder
feature actually hurts the performance and is even worse than
that of the baseline. Since the Transformer encoder enhances
the image features with positional information. If the feature
augmentation is applied after the Transformer encoder, it would
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Fig. 5. Visualization of randomly selected one channel feature of the output
of vision backbone. It visualizes the feature domain gap caused by RolAlign,
we adopt projectors after the cropped features to mitigate the domain gap. Left:
Original input image. Middle: Original feature from vision backbone. Right:
Feature after RoIAlign operation. It shows that the augmented feature becomes
blurry compared with the original one, and such a domain gap causes detection
performance degradation. Here we adopt the 1/8 input-resolution feature map
from the R50 backbone trained with Deform-DETR w/ tck.

TABLE XIII
ABLATION ON CROPPED FEATURE PROJECTOR IN FEATAUG-CROP ON
DEFORM-DETR W/ TCK

Method #ep. AP APs9 AP75s APs APy APp
Deform-DETR w/ tck. 36 49.0 67.6 533 327 515 637
Same Proj. 24 492 678 53.6 318 529 634
Cropped Proj. 24 49.6 68.1 541 332 526 647

mislead the later Transformer decoder about the positional in-
formation of this image and thus harm the Transformer decoder
training.

3) Cropped Feature Projectors in FeatAug-DETR: In our
FeatAug-Crop and FeatAug-FC, in order to mitigate the domain
gap caused by RolAlign, we adopt projectors after the cropped
features. The visualization of the caused domain gap is shown
in Fig. 5. Here we ablate on removing the individual projectors
and using the same projector on both the original and cropped
features. The results are shown in Table XIII. Using the pro-
jectors for cropped features in FeatAug-Crop performs 0.4 AP
better than using the same projector for both cropped and original
features. The performance gain is more obvious on small objects
and large objects, where A Pg increases by 1.4 and APy, by 1.3.

M. Visualization of Position-Aware Object Queries

In the pilot study in Section III-A, it shows that spatial
augmentation changes the query-object assignments. We further
visualize some bounding boxes that each object query predicts.
Here we test a trained Deformable-DETR without our DataAug-
DETR or FeatAug-DETR. We record all the output bounding box
predictions that are matched with the ground truth objects for
each query and visualize {center_x, center_y, width, height}
of all the predicted bounding boxes for each query. Here we
visualize four queries (#11, #27, #145, and #238) in Fig. 6.

As shown in Fig. 6, the predicted center of each object query
is almost always located around a fixed position, which means
that a spatial transformation that changes the bounding boxes’
relative positions on the feature map (such as flipping) can
change the matched object queries. Furthermore, by observing
the predicted heights and widths distribution of Query #11
and Query #27, it shows that though the two queries predict
similar center positions, their predicted height and width are
differently distributed. Query #11 always predicts large objects

6413

Object Query #11 Object Query #145 Object Query #238

Object Query #27

08 08 . 08 0.8 3
> ] “ .
> 06 ' 0.6 0.6 A 0.6
5 - ’ .

g oa - 04 04 04

0.2 0.2 0.2 0.2

0.0
0.00 025 050 075 100
Center X

0.0
000 025 050 075 1.00
Center X

0.
000 025 050 075 1.00
Center X

)
000 025 050 075 1.00
Center X

1.0 :".t:; 1. 1.0 ' 1.0
08 . 08 08 ‘%: 0.8
£06 0.6 0.6 ' 4 0.6
'if 0.4 . 0.4 0.4 ~"’“‘ . 0.4 :
. . 44 41 vl | i
0.2 . 0.2 0.2 2 0.2 y
e~ A . b Ol
0. 0.0 * 0.0 0.0
000 025 050 075 100 000 025 050 075 100 000 035 050 075 100 000 025 050 075 100
Width Width Width Width
Fig. 6. We visualize the predicted bounding boxes position distribution of 4

randomly selected object queries on 10000 random selected images from COCO
train2017 set. The top 4 figures show the predicted center x and center y of
the corresponding bounding boxes, while the bottom 4 figures show the predicted
heights and widths of the queries.

while Query #27 is always in charge of small objects. It shows
that the cropping operation that changes the sizes of the predicted
bounding boxes’ also varies the object-query matchings.

The above two observations show that the object queries
assigned to predicted bounding boxes are highly position-aware.
Applying flipping and cropping operations makes different ob-
ject queries match different ground truth objects.

V. CONCLUSION

In this paper, we enrich the formulation of one-to-many
matching for DETRs. We summarize the one-to-many matching
mechanism of augmenting object queries for Group-DETR [8]
and Hybrid Matching [9] and propose augmenting image fea-
tures to implement one-to-many matching. To be detailed, we
proposed DataAug-DETR method to help DETR-like methods to
achieve higher performance after convergence. Further, we also
propose the FeatAug-DETR method, including FeatAug-Flip.
FeatAug-Crop, and FeatAug-FC. The FeatAug-DETR method
significantly accelerates DETR training and accomplishes bet-
ter performance. FeatAug-DETR improve the performance of
Deformable-DETR [1] with different backbones for around 1.0
AP and shorten the training epochs to only 1x or 2x standard
training schedule. When applying FeatAug-DETR together with
Hybrid Matching [9] and using a Swin-Large backbone, we
achieve the current state-of-the-art performance of 58.3 AP.
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