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Abstract—Many complex social, biological, or physical systems
are characterized as networks, and recovering the missing links of
a network could shed important lights on its structure and dynam-
ics. A good topological representation is crucial to accurate link
modeling and prediction, yet how to account for the kaleidoscopic
changes in link formation patterns remains a challenge, especially
for analysis in cross-domain studies. We propose a new link repre-
sentation scheme by projecting the local environment of a link into a
“dipole plane”, where neighboring nodes of the link are positioned
via their relative proximity to the two anchors of the link, like a
dipole. By doing this, complex and discrete topology arising from
link formation is turned to differentiable point-cloud distribution,
opening up new possibilities for topological feature-engineering
with desired expressiveness, interpretability and generalization.
Our approach has comparable or even superior results against
state-of-the-art GNNs, meanwhile with a model up to hundreds of
times smaller and running much faster. Furthermore, it provides
a universal platform to systematically profile, study, and compare
link-patterns from miscellaneous real-world networks. This allows
building a global link-pattern atlas, based on which we have un-
covered interesting common patterns of link formation, i.e., the
bridge-style, the radiation-style, and the community-style across a
wide collection of networks with highly different nature.

Index Terms—Complex networks, graph neural networks, link
prediction, topological representation.
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I. INTRODUCTION

MANY complex social, biological, or physical systems
are characterized as networks, where vertices represent

individual agents and links signify their interactions [1], [2], [3],
[4], [5], [6], [7], [8], [9]. Due to the cost and uncertainties of data
acquisition, networked data are often incomplete with missing
links. As a result, estimating the likelihood that an unobserved
link actually exists based on the observed portion of the network,
commonly known as link prediction, thus becomes a funda-
mental problem in network and information sciences [10], [11],
[12], [13], [14], [15], [16]. Accurate link prediction is not only
a practical goal in physics, social networks and recommender
systems, but also provides valuable insights into scientific dis-
coveries related to network structure, dynamics, and organizing
principles.

Link prediction is a statistically hard problem and no single
model has shown to be superior for all networks unless by
stacking different models together as an ensemble model [16].
The predictability is related to the intrinsic structural regularity
of the network [15]. Early work study rules of link forma-
tion and design various heuristics to evaluate the proximity
between two nodes for link prediction [17], [18], [19], [20], [21].
Probabilistic models [22], [23], [24] and maximum likelihood
approaches [11], [12], on the other hand, estimate the probability
of a link conditioned on the network structure or node attributes.
Link prediction can also be solved by using latent node repre-
sentations through graph embedding techniques [25], [26], [27],
[28], [29].

In recent years, learning-based algorithms that predict the
missing links through a classifier [30] began to draw more atten-
tion. The key advantage of learning based algorithms nowadays
lies in their ability to automatically craft features for the predic-
tive task through end-to-end optimization [31] by leveraging a
specific inductive bias. In fact, the grand success of deep neural
networks is largely attributed to their power of learning good
representations. This philosophy has inspired a surge of interest
in applying graph neural networks (GNNs) [27], [29], [32], [33],
[34], [35] to extract useful topological features for link predic-
tion. The pioneering idea of GNN-based link prediction is due to
Zhang et al. [36], which extracts the “local enclosing subgraph”
for a target link to capture the key topological information for
a link to be formed. By doing this, link prediction is converted
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to subgraph classification, on top of which powerful GNNs can
be readily introduced to generate significantly improved results
over previous methodologies.

Despite recent progresses, substantial challenges persist in
link representation learning. This is because the links of a net-
work are often enclosed in local subgraphs involving an arbitrary
number of nodes and kaleidoscopic topological variation, which
is notoriously hard to align or profile. Therefore GNN models
may have to use heuristics such as truncation or padding to obtain
constant-sized features [37], which inevitably alters graph topol-
ogy; the convenient choice of graph pooling, which collapses all
the nodes into one, may incur information loss and become the
bottleneck as noted by [38], [39]. Moreover, graph convolutions
can be difficult to interpret when using topological features for
message passing. As to graph embedding techniques [27], [29],
[34], the low-dimensional node embedding vectors are defined
only for each individual network separately, which limits their
utility in cross-domain studies involving multiple networks.
Overall, the lack of a good link representation hampers not only
link prediction accuracy, but also knowledge discovery from
links of miscellaneous real-world networks.

In this paper, we propose a transformative link representation
that characterizes complex link patterns in the network with
desired interpretability, generalization, and cross-domain mod-
eling capacity. The key idea is to project the local environment
(or enclosing-subgraph) of a link into a two-dimensional “dipole
plane”. In this plane, the neighboring nodes of the link are
positioned via their relative proximity to the two anchors of the
link through random-walks, like a dipole. By doing this, complex
and discrete topology arising from link formation is turned
to continuous and differentiable distribution of a point-cloud,
opening up new possibilities for topological feature-engineering
in link modeling and prediction.

The presented link representation offers significant advan-
tages for link modeling and prediction. Theoretically, it pos-
sesses the ability to discern between link patterns with different
topological characteristics, which is critical for training discrim-
inative models. The density-based profile is also robust against
link perturbations due to inherent kernel smoothing, thus greatly
contributing to the generalization performance. Empirically, the
proposed representation yields comparable or even superior
results in link prediction compared to the best-performing Graph
Neural Networks (GNNs), yet with a compact model up to
hundreds of times smaller and running much faster. Finally,
the proposed link representation is physically interpretable and
with naturally aligned dimensions, therefore it provides a uni-
versal platform to study, compare and explore link-patterns
from networks across different domains simultaneously. This
allows building a global link-pattern-atlas, based on which we
have uncovered interesting general themes of link formation, as
well as network similarities that may otherwise be hidden from
a collection of scientific, social, biological and technological
networks of highly different nature.

The subsequent sections of this paper are structured as
follows. Section II provides a review of related work.
Section III introduces the proposed link representation scheme,
while Section IV contains the theoretical analysis. Experimental

evaluations and cross-domain case studies are presented in
Section V. The concluding remarks and identification of future
directions are outlined in the last section.

II. RELATED WORK

A large body of link prediction methods has been devised
and can be broadly grouped into similarity-based approaches,
probabilistic models, embedding techniques, and learning-based
models, as outlined in relevant surveys [40], [41].

The early efforts of link prediction focus on the design of
various heuristics to quantify the structural relations between
two nodes. Well-known examples include the common neigh-
bors [17], Jaccard similarity [18] and Adamic–Adar index [19]
based on first-order neighbors. Later, high-order heuristics are
proposed to characterize the relation between the nodes in a
more global context. For example, Rooted PageRank [20] mea-
sures the probability of reaching a node from a predefined root
node through random-walks, implicitly taking into account all
possible paths in the network. Katz score [21] considers paths
of varying lengths and assigns higher weights to shorter paths.
SimRank [42] evaluates node similarity by recursively looking
into their neighbors. These heuristics are easy to compute, and
can well recover the missing links if the underlying assumption
of homophily is satisfied.

Another big family of algorithms relies on latent node em-
beddings as fundamental features for link prediction. Such
low-dimensional representations can be obtained through tradi-
tional matrix factorization technique [25] and stochastic block
models [26]. In recent years, the development of distributed
representation learning frameworks such as the skip-gram model
in word2vec [43] lays a solid foundation for network embed-
ding (or node embedding), with prominent examples including
DeepWalk [27], LINE [28] and node2vec [29], and a unified
matrix factorization view can be found in [34]. The high-quality
network embedding allows faithfully capturing the proximity
relation between the nodes of a network, and hence sophisticated
classifiers can be built upon pairs of such node embeddings to
perform link prediction. See a comprehensive review for such
methods in [40].

The concept of using GNN models for link prediction is
pioneered by Zhang et al. in their seminal work of “SEAL” [36],
which introduces the notion of “local enclosing subgraphs”.
Given a graph G and any pair of nodes x and y representing
a target link, the local enclosing subgraph Gxy is defined as a
subgraph that is composed of the union of x and y’s neighbors
up to l hops. The enclosing subgraph delineates the “l-hop
surrounding environment” centered around the target link (x, y),
encapsulating the crucial topological information necessary for
link formation by theoretically approximating a wide range of
high-order heuristics. It allows link prediction to be converted
faithfully to subgraph classification. Automatic graph feature
engineering can then be performed on top of the enclosing
subgraphs with GNNs, leading to promising results that sig-
nificantly outperform previous algorithms.

Inspired by SEAL [36], various innovations have been made
toward extracting features from the enclosing subgraph (or the
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Fig. 1. Proposed Dipole Space Density Network (DSDN) that transforms a link to a continuous point-cloud distribution through an end-to-end learning architecture.
(a) For a focal link between two anchor nodes x and y, find the l-hop (here l = 1) enclosing-subgraph Gxy . Then use two random-walks starting from x and y to
measure the proximity between each node in Gxy and the two anchors. (b) Project the nodes in Gxy to the “dipole plane”, where the 2-D coordinates are exactly
the scores generated by the two random-walks starting from x and y. Then estimate the density of the 2-D point-cloud using k Gaussian kernels whose centers and
bandwidth are both optimizable. (c) Use the estimated density as input features to a classifier for link prediction.

entire training graph). For example, Walk-Pooling [39] inte-
grates node representations and graph topology into random-
walk based transition probabilities, and uses the difference of
such probabilities before and after removing the focal link of
the enclosing subgraph as the high-order structural information
for link prediction. Line-Graph Network [38] proposes to con-
vert the enclosing subgraph to a line graph where each node
corresponds to a unique link in the original graph. The features
of the link can then be learned directly through the line graph
representation, turning link prediction problems to node clas-
sification with significantly improved performance. Distance-
enhanced GNN [44] combines the pairwise node distances with
the GNN model, and obtains promising results in the problems
of drug-drug-interaction and protein-protein-association. The
distance calculations are based on a set of random anchors to
improve the computational efficiency.

III. A NEW REPRESENTATION FOR LINK PREDICTION

Let G0 = (V0,E0) be a “complete” network with edge set
E0 and node set V0. In practice, only a partial version G =
(V ,E) is observed such that E ∈ E0, V ∈ V0. The goal of link
prediction is then to predict whether a link indeed exists between
a pair of unconnected nodes, (x, y) ∈ {V × V − E}, based on
the observed graph G.

A focal link between any two nodes, x and y, is characterized
by its enclosing subgraph Gxy as in Fig. 1(a), i.e., a subgraph
composed of the l-hop neighbors aroundx and y. In constructing
the enclosing subgraph, l is typically chosen as a small integer
like one or two, and the truly observed focal link between x
and y will be removed from the subgraph. Next, we show how
to obtain a desired representation of the link between x and y
based on its enclosing subgraph.

The proposed approach is called “Dipole Space Density
Network (DSDN)” and illustrated in Fig. 1. First, we use two
random-walks that start from the two anchors of the link, x
and y, to evaluate the proximity between the neighboring nodes
and the two anchors. Then the “local environment” of the target
link Gxy can be projected as a point-cloud onto a 2-D “dipole
plane”, wherein the distribution closely mirrors the local topo-
logical organization of the target link. Finally, an adaptive kernel

estimator is used to profile the density distribution as a compact
and informative representation for link prediction. In the follow-
ing, we introduce method details.

A. From Enclosing-Subgraph to Point-Cloud

We first use two random-walks starting from the two anchors
of the target link, x and y, to evaluate the proximity between
the nodes in Gxy and the two anchors. More specifically, we
resort to Random-walk With Restart (RWR) to quantify such
relation [45]. It starts from one anchor node x and iteratively
visits neighbors encountered, each step having a probability 1−
c to jump back to the start node x, as

p(t+1)
x = c · Ãxyp

(t)
x + (1− c) · ex. (1)

Here t is step, px ∈ Rnxy×1 is node-wise random-walk scores,
nxy is the number of nodes in Gxy , Ãxy is the transition
probability matrix of Gxy , 1− c is the restart probability, and
ex is a one-hot vector indicating the start node x. The converged
distribution for t→∞ has closed form [45],

px = (I− c · Ãxy)
−1ex. (2)

The random-walk score px reflects the proximity of each node
to anchor x. If c = 0, the re-start probability 1− c is 1, namely
the random-walk will be frozen at x with px being a one-hot
vector; if c→ 1, px becomes the stationary distribution of a
Markov random-walk that freely explores Gxy but never jumps
back to x; in other words, the start node is forgotten. In practice,
we use c ∈ [0.5, 0.8] to explore the subgraph Gxy thoroughly
while still remembering where the starting node is. We also
prefer the closed-form random-walk distribution (2) because it
is more robust than the discrete version (1) and saves the effort
of determining the number of iterations.

We use two separate random-walks from x and y as in
Fig. 1(a), to map Gxy’s nodes to a new space with nxy pairs
of coordinates Pxy = [px py] ∈ Rnxy×2, and normalize them
by the maximum score, as

Pxy =

[
px

max(px)

py

max(py)

]
. (3)
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Fig. 2. Three link examples, each with their enclosing-subgraphs Gxy on the left, and resultant point-clouds on the right. The focal link between x and y will be
removed if it is truly observed. The 2-D coordinates of the point-cloud are proximities of each node to x and y. Here, blue and red mark the nodes closer to anchor
x and y, respectively, while gray nodes along the diagonal are about equally distant away from x and y. (a) nodes in Gxy are roughly equal-distant away from x
and y, so the point-cloud is distributed along y = x; (b) nodes in Gxy breaks into two components, so the point-cloud forms two arms along the two axes of the
dipole plane; (c) nodes in Gxy fall into three zones: closer to anchor x (blue), closer to anchor y (red), or in the middle (gray).

By normalizing the random-walk score vectors px and py with
their maximum entries, the resultant point-clouds will always
reside in a unit square [0, 1]× [0, 1]. We call it a “dipole plane”
as in Fig. 1(b), because it is induced by the two anchors of
the target link, like a dipole. It serves a universal “coordinate
system” quantifying how the neighboring nodes of a link gather
around its two anchors.1

B. From Point-Cloud to Density-Profile

The “dipole plane” allows any link of interest to be projected
and turned to a 2-D point-cloud. How is subgraph topology
translated to point-cloud distribution? Since the 2-D point co-
ordinates quantify the proximity of a node to the two anchors
of the link, x and y, some simple observations can be made: (i)
nodes far away from x and y will have lower proximity scores
and hence be mapped around the origin, otherwise they will
be pushed away from it; (ii) nodes equally distant away from
x and y will be mapped around y = x. In fact, the symmetry,
grouping, and shape of the point-cloud are closely related to the
topological characteristics of the link.

Fig. 2 illustrates various scenarios: (a) is an observed link,
where the majority of nodes in Gxy are approximately equidis-
tant from x and y, resulting in the formation of a diagonal band
pattern in the point-cloud; (b) is a NULL link, for which Gxy

breaks into two components, and so the point-cloud has two arms
along the two axes; (c) is another observed link, where blue and
red nodes are close to x and y, respectively, and gray nodes
occupy the middle, resulting in a mixed distribution pattern in
the point-cloud. In all cases, anchor x and y are around the
corners. Sometimes the points aggregate into clusters in the
dipole plane, meaning that nodes within a cluster share similar
proximity patterns to x and y.

Next we show how to model these highly diversified point-
cloud distributions such that a compact, informative representa-
tion can be obtained for link prediction. A crucial observation
is that not all locations in the dipole plane hold significant
density values; some locations could be rarely populated by
the point-cloud, while some locations may always have similar

1For each link, the two anchors can be either labeled as (x, y) or (y, x), so
we can generate two point-clouds that are symmetric with regard to the diagonal
of the dipole plane, with the same label.

density values for true links and NULL ones. Hence, our focus
is to identify the locations in the dipole plane whose densities
are valuable for distinguishing true links from NULL ones.

To achieve this, we borrow the idea from Parzen window
density estimator [46], and extend it to a discriminative ver-
sion. We place a number of k Gaussian kernels in the dipole
plane that are marked as yellow circles in Fig. 1(b), each with
center µj ∈ R1×2’s for j = 1, 2, . . ., k, and a common band-
width h ∈ R+. These kernel parameters are then optimized in
an end-to-end fashion by minimizing the link-prediction error
(defined in Section III.C), so that a faithful density landscape
can be recovered for link prediction tasks.

Specifically, we compute the affinity between the nxy points
in (3) and the k kernel centers µj’s as a Rnxy×k matrix

Wij = exp

(
−
∥∥P[i,:] − µj

∥∥2
2h2

)
, (4)

where P[i,:] is the i-th row (point) in Pxy (the sub-index xy is
omitted for convenience). Namely, if the i-th point P[i,:] falls
in the receptive domain of the j-th Gaussian kernel, it activates
the kernel with strength Wij (like triggering a “sensor”). After
normalizing each row of W to probabilities that sum up to 1,
so that its ij-th entry then signifies the probability that the i-th
point triggers the j-th kernel, we then sum up all the rows of W
to get the accumulated density at each kernel center µj

f(µj) =

nxy∑
i=1

Wij∑k
j′=1 Wij′

. (5)

The point-cloud distribution can then be nicely encoded as the
following, k-dimensional density-profile

Fxy =
[
f(µ1), 1

1f(µ2), 1
1 . . ., f(µk)

]
. (6)

The representation Fxy has several advantages: (i) it is easy
to compute and can be very compact in size; (ii) it is invariant to
the order of the nodes in subgraph Gxy; (iii) it has k dimensions
that are consistently defined across different subgraphs of a
network, even when they have varying number of nodes. In fact,
by sharing the same set of Gaussian centers {µ′js} in the dipole
plane, Fxy can be used as an intrinsic, well-aligned link feature
even across different networks for cross-domain studies; (iv) it
is interpretable. The k dimensions of Fxy sum up to nxy , the
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number of nodes in Gxy due to normalization in (5).2 So the
j-th dimension f(µj) can be deemed as the “amount” of nodes
in Gxy whose relative proximity to the two anchors are close to
µj = [µj1 µj2], with µj the proximity pattern specified by the
j-th Gaussian center. Given this inherent physical interpretation,
our network model is no longer a black-box, but instead allows
human interpretation of prediction results by looking into domi-
nantly weighted Gaussian kernels in the classifier, each of which
represents a specific proximity or topological pattern towards
link formation in the enclosing subgraph.

C. Link Prediction

The k-dimensional density profile Fxy in (6) is used as
features for a multilayer perceptron (MLP) for link prediction,
with the cross entropy loss function. This then leads to a com-
plete end-to-end architecture, in which the Gaussian kernels are
placed adaptively to generate compact, discriminative represen-
tation. Empirically, k ∈ [100, 200] suffices for most datasets.
This gives a parsimonious model that is not only computationally
efficient, but also less prone to overfitting.

In case there are extra node attributes available (such as bags
of words feature for a paper in citation networks), the dipole
plane provides a platform for heterogeneous message passing,
i.e., the cross-talk between the points (nodes) and the “Gaussian
sensors” (kernels). We can use the pairwise relation between the
nxy points and the k sensors W as an “adjacency” matrix to
aggregate node attributes to the nearby sensors, as

Zxy ← σ
(
D−1W�Zxy ·T

)
.

Here, D is column-wise degree matrix of W, Zxy ∈ Rnxy×d

is attributes matrix for nodes in subgraph Gxy , T ∈ Rd×d′ is a
linear transform, and σ(·) is nonlinear activation. The resultant
sensor-wise feature matrix Zxy ∈ Rk×d′ is of a fixed dimension
regardless of the size of the enclosing subgraph Gxy , and car-
ries both featural and topological information of the enclosing
subgraph. We will feed it into the FC-layers for the final link
prediction task.

IV. PROPERTIES OF THE PROPOSED LINK REPRESENTATION

In this section we study theoretic properties of the pro-
posed link representation. It transforms a target link by two
steps, i.e., its enclosing subgraph is first transformed to a 2-D
point-cloud, and then to a fixed-dimensional density profile.
Interestingly, these two steps exhibit complementary proper-
ties. On the one hand, transforming an enclosing subgraph
to a point-cloud is a mapping that effectively captures topo-
logical differences of enclosing subgraphs. On top of such
sensitivity, the kernel density estimator further improves the
stability of the learned feature, which is beneficial to link
prediction.

2In this sense, Fxy is not strictly a density because it sums up to nxy , the
subgraph size. We believe nxy carries useful information in link prediction so
we do not normalize Fxy to sum to 1.

A. Discriminative Properties of the Point-Cloud

A natural question on the representation power of the point-
cloud is under what condition it can distinguish between two
different enclosing subgraphs, so that accurate link prediction
can be made based on the topological structure of subgraphs.

For simplicity, we consider one anchor x in each subgraph
with point-cloud coordinate px as in (2). This is because the
choice of the two anchors is independent and so the exten-
sion from one anchor to two anchors is trivial. Second, the
anchor is always the first node in a subgraph, followed by its
1st-order neighbors, and then the 2nd-order neighbors, and so
on; this is a natural partial ordering due to the “central status”
of the anchor, under which we shall compare the point-clouds
from different subgraphs. Under this partial order, we provide
sufficient condition for the point clouds of two subgraphs to
be different. We restrict ourselves to the case of equal-sized
subgraphs, because two subgraphs with different numbers of
nodes must have different point-clouds and density profiles.

Theorem 1: Consider unweighted, undirected subgraphs with
no self-loops. Let W1 and W2 be the adjacency matrix of two
equal-sized subgraphs, and w.l.o.g. assume the anchor node is
the first node, and the random-walk scores starting from the
anchor node are p1 and p2, respectively, for the two subgraphs.
Let Ã1 and Ã2 be the transition matrix of the two subgraphs,
and B∗1 and B∗2 be the adjugate matrix of I− cÃ1 and I− cÃ2,
respectively. Then we have:

1) if |B
∗
1[1,1]|

B∗1[1,j]
	= |B∗2[1,1]|

B∗2[1,j]
for some j 	= 1, then p1 	= p2;

2) if |B
∗
1[1,1]|

B∗1[1,j]
=
|B∗2[1,1]|
B∗2[1,j]

for all j, then p1 = p2;

here j is an integer in [1, n].
Proof is in the Supplementary Materials. Theorem 1 shows

that as long as the ratio between the first and the j-th entry in the
first column of the adjugate matrix of I− cÃ−11 and I− cÃ−12

are different for at least one j (2 ≤ j ≤ n), then the point-clouds
of the two enclosing subgraphs must be different. In order for the
two point-clouds to be the same, the ratios have to be the same for
all 2 ≤ j ≤ n across the two matrices. In fact, we speculate that
as long as the two enclosing subgraphs are non-isomorphic, then
their point-clouds will be different. We have empirically verified
this conjecture on a large number of subgraph pairs. However, a
strict proof involves the general problem of graph isomorphism,
which can be quite challenging and is being pursued as a future
research topic.

B. Smoothing Effect of the Kernel Density Estimator

In this subsection, we investigate how the bandwidth h in (4)
influences the distance between two point-cloud density profiles,
as measured by (6), with the potential to enhance the stability of
the representation.

It’s worth noting that the distance between two point-cloud
distributions is influenced by various factors, including the loca-
tions of the points, the choice of Gaussian kernel centers, and the
bandwidth. To specifically focus on the smoothing effect of the
bandwidth so that explicit bounds can be derived, we confine
our analysis to a simplified scenario. In this scenario, there is
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only one non-overlapping pair of points across two point-clouds.
Then the discrepancy between the two point-cloud distributions
will be captured by the k Gaussian kernels located in the dipole
plane, as quantified below.

Theorem 2: Let there be only one pair of non-overlapping
points, u and v, from two equal-sized point-clouds. The dis-
tance between u (or v) and the k Gaussian centers µj’s are
du
j = ‖u− µj‖2 (or dv

j = ‖v − µj‖2) for j = 1, 2, . . ., k. Let
dmin
j = min(du

j ,d
v
j ), d

max
j = max(du

j ,d
v
j ), d

uv
j = |du

j − dv
j |.

The distance between the density profile F1 and F2 as defined
in (6) from the two point-clouds is bounded by

‖F1−F2‖2 ≥ 1
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)
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(
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)
,
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jexp
(
−du

j
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)) .
Proof is in the Supplementary Materials. Theorem 2 shows

that the distance between two point-cloud densities, i.e., ‖F1 −
F2‖, is strongly modulated by the bandwidth h: a small h
highlights their difference, while a large one trivializes it (due
to the 1

2h2 term). An empirical verification can be found in the
Supplementary Materials, in which we show that the curves of
the derived bounds and the actual distance both drop with h for
a data example satisfying the conditions in Theorem 2. In fact,
even for more complex cases in which the two point-clouds have
more than one pair of non-overlapping points, the difference
between their density profile still decays with the bandwidth, as
illustrated in the Supplementary Materials.

The relation between the distance ‖F1 − F2‖ and the band-
width is due to the smoothing effect of Gaussian kernels [47],
since large bandwidth flattens distributions. More specifically,
note that the j-th density feature f(µj) is a statistical average
on the “amount” of nodes in Gxy whose proximity to the two
anchors is close toµj = [µj1,µj2], and sum up to |Gxy| = nxy .
Therefore, if the links in a subgraph are perturbed (insertion or
removal) but with nodes unchanged, the density Fxy is then
a re-assignment of nxy “density quota” among the k kernels,
and will be relatively stable if smoothed by a Gaussian whose
bandwidth exceeds the level of perturbation. This is desirable
because real world graphs are always incomplete, so a reasonable
amount of smoothing of the distances between different link-
patterns can prevent the model from remembering (overfitting)
the training graph too rigidly to generalize to unseen links.
This is empirically verified in our ablation study reported in
Section V-A3. The degree of smoothing can be determined
adaptively through end-to-end optimization of the bandwidth
parameter h, provided that a reasonable initial value is given.

V. EXPERIMENTAL RESULTS

A. Link Prediction

We assess the performance of link-prediction algorithms
based on three key criteria: (i) the Area Under the Curve (AUC)
of link prediction, a widely used and highly interpretable metric
in the field; (ii) the scalability of prediction algorithms; and (iii)

the size, measured by the number of parameters, of the predictive
models. Our evaluations encompass both artificial networks and
real-world networks.

For artificial data, we generate networks of 1000 nodes using
the Watts–Strogatz model and the Barabási–Albert (BA) model.
The Watts–Strogatz model produces graphs with small-world
properties [48]. It starts from a ring-shaped graph with m =
1000 nodes, where each node is connected with k = 4 neighbors
on both sides. For every node, pick the k = 4 links connecting
to its rightmost neighbors and rewire them (replace them with a
random node) with probability p, while avoiding self-loops and
duplication. We chose three sets of model parameters, namely
p = 0, 0.5, 0.8, corresponding to regular ring, totally random
network, and small-world network.

The Barabási–Albert (BA) model generates random scale-free
networks with preferential attachment [49]. It begins with an
initial network of m0 nodes. New nodes are added one at a
time. Each new node is connected to m ≤ m0 existing nodes
with a probability pi proportional to the number of links that the
existing nodes already have, namely pi = ki/

∑
j kj , where ki

is the degree of node i and the sum is made over all pre-existing
nodes j. We chose m = m0 = 1, 3, 5 as small integers so that
the resultant degree distributions are scale free.

For real-world data, we have curated a collection of 13
benchmark networks widely employed in the link prediction
community [15], [36], [38], [39]. This collection spans scientific,
social, biological, and technological networks, showing diverse
topological and statistical properties. The basic statistics for
these networks are presented in Table III, and a brief introduction
for each of the 13 networks is given below: Facebook [50]:
social network from facebook with 4039 users and 88234 edges;
USAir [51]: US air transportation network with 332 airports
and direct flights; NetSci [52]: collaboration network among
1589 researchers from a variety of fields in network science;
GRQ [53]: collaboration network from researchers of general
relativity and quantum cosmology in arXiv from 1993 to 2003;
Yeast [54]: a protein-protein interaction network in yeast with
2,375 nodes and 11,693 edges; Router [55]: a router-level In-
ternet with 5,022 nodes and 6,258 edges; PPI [56]: protein-
protein interaction in human tissues with 3890 nodes and 38292
edges; Power [57]: the power grid of the Western States of
the U.S, with 4941 nodes (a generator, a transformator or a
substation), and 6594 links (high-voltage power supply line);
Citeseer [58]: citation network with 3312 scientific publica-
tions with 4732 links. Cora [58]: citation network with 2708
publications and 5429 links; Pubmed [58]: citation network
with 19717 publications of diabete research with 44338 links;
HPD [59]: protein-protein interaction about human protein in
health and disease with 8756 nodes and 32331 edges; Email [6]:
the email communication network at the University Rovira i
Virgili in Tarragona in the south of Catalonia in Spain. Nodes
are users and each edge represents that at least one email was
sent.

Experimental results from nine competing methods are re-
ported, including common neighbors [60], Jaccard [18], pref-
erential attachment [61], Katz score [21], random-walk with
restart [45], Adamic-Adar [19], and state-of-the-art GNNs like
SEAL [36], Walk-Pooling [39], and Line-Graph [38].
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TABLE I
AVERAGE LINK-PREDICTION AUC ON SYNTHETIC NETWORKS

TABLE II
AVERAGE LINK PREDICTION AUC FOR 10 LINK PREDICTION ALGORITHMS ON 13 POPULAR BENCHMARK NETWORKS; BEST AUCS ARE IN BOLD FONTS

TABLE III
SUMMARY OF REAL-WORLD NETWORKS AND THEIR STATISTICS

1) Experimental Setting: The training and testing data are
generated with the protocol widely used in link-prediction com-
munity [15], [36], [38], [39]. For an input network, we first
randomly remove 10% observed links as the positive testing

data, and randomly sample the same number of unconnected
node pairs as negative testing data. The remaining 90% observed
links and the same number of additionally sampled negative links
are used as the positive and negative training data. We randomly
generate 10 such splits for each network. All competing methods
are evaluated on the same 10 data splits for each network, and
the mean and the standard deviation of the AUCs are reported.

For our approach, we use 2-hop enclosing subgraphs, and the
Gaussian centers {µ′js} are initialized as follows: we first collect
the enclosing subgraphs from the training links and project
them as point clouds onto the 2-D dipole plane [0, 1]× [0, 1]
with 0.05× 0.05 grids, and then initialize µj’s as the centers
of those grids with high point counts. One can also use the
k-means clustering centers of the point-clouds to initialize µj’s
with a pre-defined k (around 100 to 200). The bandwidth h
is initialized at h = 0.025. The re-start probability c is cho-
sen from {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8} using 5% of the
training data as validation.3 In other words, we encourage the

3Note that the validation set can also be used to choose other hyper-parameters,
such as the number of hops, the initial bandwidth, and uniform-sampling interval
used to initialize the Gaussian centers.
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TABLE IV
AVERAGE MODEL SIZE OF OUR METHOD AND GNN-BASED ONES

Fig. 3. Time consumption of GNN based link-prediction algorithms and our
method versus the number of training links. Our approach scales linearly with
sample size and is computationally more efficient.

random-walk to explore larger neighbors around the two anchor
nodes of the target link. Three hidden FC-layers are used with
dimension (k, 64), (64,16), and (16,2). The model is optimized
with Adam using an initial learning rate of 0.01 and a decay
factor of 0.001.

For all the methods under evaluation, the focal link is removed
from the enclosing subgraph of those positive link instances in
the training set. The averaged model size for different models
are listed in Table IV. The detailed calculations can be found in
the Supplementary Materials.

2) Comparative Results: Tables I and II present the aver-
age Area Under the Curve (AUC) values with standard devia-
tions over 10 random training/test splits for synthetic and real
networks, respectively. On synthetic networks, our approach
consistently achieves the highest AUC across various settings
of model parameters, including regular, small-world, random,
and scale-free networks. For real-world networks, our approach
attains the highest AUC on 12 out of 13 networks, with improve-
ments over GNN-based models ranging from 2% to 5% for chal-
lenging networks (e.g., Cora and Power). Notably, our model is
approximately 300 times smaller than Walk-Pooling [39], the
best GNN-based algorithm compared in this study (on average,
as per Table IV). So the performance gains of our approach are
considered encouraging, and clearly verify the effectiveness of
the proposed link representation.

Along with the compact model size comes with superior
computational efficiency: as shown in Fig. 3, our method is
5–20 times faster than GNNs. Experiments were also conducted
on networks with node attributes, and the results can be found
in the Supplementary Materials.

3) Impact of the Hyper-Parameters: In this subsection, we
examine the impact of the hyper-parameters. Fig. 4(a) shows

the impact of the jump-back probability (1− c) in the random-
walk. As can be seen, when c grows larger and larger from
0.5 the performance of link prediction steadily improves and
reaches a plateau. In fact, the optimal choice is around c = 0.7
for the networks investigated here, corresponding to a jump-back
probability 1− c = 0.3. This means that on the one hand, the
random-walk somehow remembers where it gets started (i.e.,
the anchor node x or y); on the other hand, it has the freedom to
explore the whole subgraph, i.e., how the neighboring nodes of
the link gather around the two anchors.

In Fig. 4(b), we present the AUC versus the number of Gaus-
sian kernels k. It is evident that the AUC is relatively insensitive
to the choice ofkwhen it is sufficiently large. In our experiments,
we find that the performance appears satisfactory when k is in
the range from 100 to 200.

Fig. 4(c) shows the AUC of link prediction over the bandwidth
h in (4). The bandwidth controls the degree of smoothing, which
is beneficial in avoiding overfitting. Here the AUC is averaged
over 5 random initialization of parameters. As can be seen, when
the bandwidth increases from a small value to 0.05, predictive
performance consistently improves, affirming the effectiveness
of kernel smoothing in the proposed link representation scheme.
However, when the bandwidth becomes too large, distinct point-
cloud distributions may no longer be effectively discriminated,
leading to expected drop in performance. In practice, the band-
width parameter is optimized end-to-end given a reasonable
initial value.

B. Cross-Domain Network Analysis

Cross-domain studies can be valuable in uncovering diver-
sified link formation patterns from miscellaneous real-world
networks and finding the underlying commonalities. However,
establishing a universal representation for links across different
networks remains challenging. On the one hand, GNN-based
approaches such as SEAL [36] uses node2vec to extract topolog-
ical features for each node, which results in network-specific link
representations that cannot be directly compared across multiple
networks. On the other hand, learning-based approaches are
better suited for distinguishing between positive and NULL
links, while our primary focus is on profiling the distribution
of positive links across different networks.

The proposed link representation provides a universal frame-
work for studying and comparing links across diverse fields
simultaneously. First, the density profile (6) serves as a fixed-
dimensional, well-aligned representation with consistent phys-
ical meaning even across networks (Section III-B). This is
achieved by selecting the same set of Gaussian kernel centers
µ′js in the dipole plane across different networks. Second, the
link representation can be obtained in an unsupervised manner
due to the strong inductive-bias introduced in our representation.
Specifically, the kernel centers µj’s in the dipole plane can be
chosen as the clustering centers of the aggregated point-clouds
without using class labels. By doing this, the resulting link
representation faithfully preserves the distribution of diverse
patterns of positive links. This facilitates the construction of
a global link-pattern atlas, through which we have uncovered
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Fig. 4. Impact of the jump-back probability (1− c), the number of kernels k and the bandwidth parameter h on the performance of link prediction.

Fig. 5. Cross-domain study of network links collected from different science and engineering fields. Panel-I: link-pattern atlas including 30,000 links drawn
randomly from 10 networks, embedded as 30,000 points by tSNE with one color for each network. Three main clusters are identified: cluster-A: bridge style,
cluster-B: radiation style, and cluster-C: community style, each with a few representative link examples that are marked as A1-A7, B1-B6, C1-C3 for case study.
Panel-II: the tSNE embedding in Panel-I is plotted separately for each network to better visualize the distribution of the link patterns in each network, allowing for
a quick examination of the similarity between the networks. Panel-III: enclosing-subgraphs and point-clouds for 16 representative link examples; each subgraph is
with gray nodes and two orange anchors; each point-cloud is with blue points and plotted in [0, 0.3]× [0, 0.3] of the dipole plane to better visualize details. Note
that we have used 2-hop neighbors from each anchor node, so the resultant enclosing subgraph would allow a maximum pairwise distance up to 5-hops between
the nodes. Section V provides detailed discussions.

Fig. 6. Pairwise similarities of the 10 networks selected from Table I across 5
domains. The similarities are based on the distribution of the link-patterns from
each network as measured through the proposed link representation.

intriguing common patterns of link formation and identified
hidden network similarities extending beyond their original
domains.

Here we report a preliminary study. We select 10 networks
covering 5 different domains from Table II, and randomly
sample 3000 true links from each network. By using 2-hop
enclosing subgraphs, each link is represented as k-dimensional
density profile as in (6) with k = 64, and further normal-
ized by the average subgraph size from each network. Based
on this representation, we then visualize the 30,000 links
through their tSNE embedding, thus presenting a global link-
pattern landscape in Fig. 5 (panel-I). Based on this embed-
ding, we can see that the link patterns from the 10 networks
form three visual clusters (though with overlaps), discussed
below.

Cluster-A (top): NetSci (co-author, dark red), Power (red),
Citeseer (citation, brown), Cora (citation, orange) and GrQ
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Fig. 7. Hierarchical clustering of 30 networks collected from a wide spectrum of disciplines. Three big clusters are identified and correspond to the three clusters
A, B and C, as obtained in the Fig. 4 of the main text. The 10 networks with underlines are those used in the comparative studies in Section V-B. Networks marked
with (*) are scientific networks that encode collaborative relations among the researchers.

(co-author, orange); the link distributions form a few zones (with
overlaps) that are stacked layerwise in this cluster.

Cluster-B (middle): Email (dark green), protein networks
Yeast (green) and HPD (green), and USAir (light green); the
link distributions form curved manifold in this cluster.

Cluster-C (bottom): Facebook (blue); link distribution has
many micro-clusters around the bottom of the landscape.

For visual clarity, links in each network are also plotted
separately in Fig. 5 (panel-II). An intriguing observation is that
networks from very different domains could exhibit strong sim-
ilarity in the formation and characteristics of their link patterns,
and group closely. Next, we elaborate on these clusters and look
into some representative examples.

Bridge-style (Cluster-A): Many links in this cluster serve as
a bridge to connect two nodes that are otherwise many hops
away, indicating decentralized connections across distant sub-
networks. For example, in Power network, typically a limited
number of transmission lines are built to cover as many stations
as needed under efficiency and cost considerations. Citation net-
works like Cora and Citeseer include many different research ar-
eas and so the links also spread out. Similarly, links in co-author

networks like NetSci and GrQ are distributed, too. Intriguingly,
we find that not all coauthor networks are necessarily dominated
by decentralized link connections; instead, some coauthor net-
works may have more centralized collaboration similar to link
patterns in Cluster-B, see the larger-scale case studies reported
at the end of this section. We speculate the latter is due to the
existence of a fraction of highly influential researchers in the
area. The point-clouds in cluster A may either look L-shaped or
break into a few small groups, see link examples A1-A6 in Fig. 5
(panel-III).

Radiation-Style (Cluster-B): Links in this cluster primarily
connect a hub and a non-hub node or the central position of a star-
shaped subnetwork to its periphery, exemplified by links B2, B3,
B5, and B6. This pattern aligns with the organizational principles
of networks falling within this cluster. For instance, in protein
networks (Yeast and HPD), it is widely acknowledged that a
small number of hub nodes play a central role in global network
organization. In the USAir network, air flights are predominantly
between one of the transfer stations and a terminal station. In
the Email network (representing email communications from
the users of Univ. Rovira i Virgili, Spain), many messages
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are exchanged between a central unit (office, department head,
group lead) and individuals (faculty, staff, student), following a
hierarchical, self-similar pattern [6].

Community-Style (Cluster-C): Notably, links in this cluster
are found inside communities, like C1, C2 and C3. For link
C2 and C3, the two anchors are structurally more symmetric
inside the enclosing subgraph, and so the point-cloud spreads
along y = x in the dipole plane. In comparison, the two anchors
of the links in cluster-B are structurally asymmetric. Another
observation is that the enclosing subgraphs in Cluster C typically
involve multiple communities for one target link, indicating a
large number of communities extensively inter-connected with
each other within a small number of hops in big social networks.
In comparison, cluster B typically presents a single community
in each enclosing subgraph.

Besides these representative cases, some transitional link pat-
terns around cluster boundaries can also be found. For example,
link B1 is between cluster-B and cluster-C. Here, the two anchors
of B1 are structurally symmetric like cluster C, while the local
enclosing subgraph only involves one community like cluster-B.
For Link C1, its two anchors are found inside a community
where one is the bub node and the other is the boundary node,
which is the key characteristic of cluster-B. On the other hand,
the enclosing subgraph involves two communities, which is like
cluster-C.

In Fig. 6 we report the network-level spectral clustering based
on the link patterns from each network. Detailed procedures can
be found in the Supplementary Materials. As can be seen, the
similarity matrix clearly reveals three diagonal blocks, corre-
sponding to the three clusters discussed above.

The cross-domain analysis based on the proposed link repre-
sentation fosters a global understanding of how the link patterns
from diversified application fields are distributed. It reveals
intriguing network similarities that may otherwise be hidden.
This universal platform could help promote new findings in
network knowledge discovery, especially from the perspective
of link-pattern characteristics or distributions. In Fig. 7 we use
30 networks from a wider variety of areas and examine their
network-level grouping based on link-pattern distributions. The
details of these networks can be found in the Supplementary
Materials. A hierarchical clustering based on pairwise network
similarities shows three dominant clusters, which are in accor-
dance with the three clusters from the smaller-scale studies in
Fig. 6.

Here we take a closer look at the 6 scientific collaboration
networks: GRQ, NetSci, KHN, ogbl-collab, ca-ConcMat, and
ca-HepTh. An interesting observation is that these 6 collabora-
tion networks are not in the same cluster. For example, GRQ and
NetSci are in Cluster A (bridge style), KHN and ogbl-collab are
in cluster B (radiation-style), and ca-HepTh and ca-CondMat
are in cluster C (community-style). This reflects the diversity of
the link-pattern distributions of networks even for those from
the same domain, due to the difference in the organization
principles. We speculate that the diversity of the collaboration
networks originates from the different ways of collaborations in
different scientific communities.

VI. CONCLUSION

We have introduced a novel topological representation for
link prediction. It transforms the enclosing subgraph of a target
link into a fixed dimensional density distribution, which pos-
sesses desired expressiveness, interpretability, and cross-domain
modelling power. Our experimental findings demonstrate that
our method achieves a performance comparable or superior to
that of GNN-based models, while simultaneously offering ac-
celerated training speed and reduced model size. Moreover, our
representation method establishes a versatile research platform
for investigating cross-network topological information, which
unravels interesting commonalities of link formation patterns
across networks of different nature.

A number of interesting directions will be pursued in our
future studies. For example, we will extend the proposed link
representation to more general scenarios like (sub)graph repre-
sentation learning. We will also apply it to large-scale case stud-
ies to facilitate domain-specific knowledge discovery like brain
functional networks and protein interaction networks. Finally,
we plan to study how the proposed link representation is related
to network control, especially in building accurate predictive
models that can map the distribution of the link patterns of a
network to its global behaviour or functionality.
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