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Does Negative Sampling Matter? a Review With
Insights Into its Theory and Applications
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Abstract—Negative sampling has swiftly risen to prominence as
a focal point of research, with wide-ranging applications spanning
machine learning, computer vision, natural language processing,
data mining, and recommender systems. This surge in interest
prompts us to question the fundamental impact of negative sam-
pling: Does negative sampling really matter? Is there a general
framework that can incorporate all negative sampling methods?
In what fields is it applied? Addressing these questions, we propose
a general framework that using negative sampling. Delving into
the history of negative sampling, we chart its evolution across
five distinct trajectories. We dissect and categorize the strategies
used to select negative sample candidates, detailing global, local,
mini-batch, hop, and memory-based approaches. Our comprehen-
sive review extends to an analysis of current negative sampling
methodologies, systematically grouping them into five classifica-
tions: static, hard, GAN-based, Auxiliary-based, and In-batch. Be-
yond detailed categorization, we explore the practical application of
negative sampling across various fields. Finally, we briefly discuss
open problems and future directions for negative sampling.

Index Terms—Negative sampling algorithms, negative sampling
applications, negative sampling framework.

I. INTRODUCTION

OES negative sampling matter ? Negative sampling (NS) is
D atechnique used in machine learning, which aims to select
a small subset of negative samples to replace the entire pool of
possible negative samples. Take word2vec [1] as an example,
the training objective of the Skip-Gram model in word2vec is
designed to maximize the likelihood of predicting context words
within a certain range before and after the target word. Mathe-
matically, for a sequence of training words w1, wo, . .., wr, the
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objective is to maximize the average log probability, which can
be presented as:

T
. 1
min T Z Z log p(wi5wy)

t=1 —c<j<c,j#0

where 7' is the length of the word sequence, c is the size of the
training context (that is a window of words around the target
word), wy is the target word, w4 ; are the context words within
the window around wy.

The p(w;4j|w,) is the probability of observing a context word
wy; given a target word wy, defined by the softmax function:

/ T
exp(th+_.j th )
p(wt+j|w1§> = =W T
Zw:l €$p('l}lw th)
where v,,, and v/, are the “input” and “output” vector embeddings
of word w, and W is the number of words in the vocabulary.

The goal of training is to learn the word vectors v,,, and v), such
that this probability is maximized for the actual context words
and minimized for other words. In practice, the Skip-Gram
model with the standard softmax function is computationally
expensive, especially for large vocabularies. Each training step
requires calculating and normalizing the probabilities of all
words in the vocabulary given a target word, which is com-
putationally intensive.

Negative sampling is leveraged to simplify this. Instead of
using all words in the vocabulary, the model only considers
a small subset of negative words (not present in the current
context) along with the actual positive context words. This sub-
stantially reduces the computational burden. Besides, negative
sampling changes the training objective. Instead of predicting
the probability distribution of the entire vocabulary for a given
input word, it reformalizes the problem as a binary classification
task. For each pair of words, the model predicts whether they
are likely to appear in the same context (positive samples) or not
(negative samples). The objective of the Skip-Gram model with
negative sampling can be represented as:

k

. T T
min —log o (vy,, .~ Vw,) — Z E w;~py, (w) [10g 0 (=03, " v, )]
i=1

where k is the number of negative samples, w; are negative words
sampled for the target word wy, o(+) is the sigmoid function and
pr(w) is the negative sampling distribution that is designed as
the 3/4 power of word frequency.
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Fig. 1. Performance and Convergence speed comparison in the RS domain
with the Non-NS and other methods using negative sampling on the Yelp2018
datasets with LightGCN as an encoder. PNS(«) denotes popularity-based neg-
ative sampling with various power parameters . DNS(3) represents dynamic
negative sampling with a different number of negative sample candidates 3. The
details of the negative sampling methods can be found in Section II.

This example demonstrates the importance of negative sam-
pling. Without it, the model would need to compute the co-
occurrence probability with every other word for each training
instance, which is computationally expensive, particularly for
large vocabularies. By employing negative sampling, word2vec
significantly reduces the computational burden and achieves
great performance.

In a broader perspective, negative sampling is a widely-
used and valuable technique technique across various domains,
such as recommendation systems (RS) [2], graph representation
learning (GRL) [3], [4], [5], [6], [7], knowledge graph learning
(KGE) [8], [9], natural language processing (NLP) [1], [10],
[11], [12], and computer vision (CV) [13], [14], [15], [16], [17],
[18]. In each of these domains, the core principle of negative
sampling remains the same — selecting a representative subset
of negative samples to improve the efficiency and effectiveness
of the learning process.

To clearly verify the improvements, we compare a basic
method with other negative sampling methods on performance
and convergence speed in recommendation system. As shown
in Fig. 1, compared with the basic RNS, the method without
negative sampling (Non-NS) achieves a close performance but
needs a longer training time since it uses all negatives for
model training. Compared to RNS, other advanced negative
sampling methods can reduce the computational burden, acceler-
ate training convergence(up to ~ 48 x with Cache-NS), degrade
performance bias, and boost performance (/4% improvement
with Mix-NS). Compared with RNS, PNS (0.75) achieves a
faster convergence of 1.6x but reduces performance by 24%.
Compared with Mix-NS, DNS (64) shows faster convergence
but slightly degrades performance.

However, the specific implementation of negative sampling
can vary significantly. Is there a general framework that can
incorporate all the negative sampling methods and be applicable
to different domains? In this survey, we formalize negative
sampling and propose a general framework that uses negative
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sampling for model training (See Fig. 2). Under this framework,
we categorize different negative sampling methods to make them
more accessible and comparable. Besides, we summarize three
critical aspects to be taken into account when designing a better
negative sampling method: (1) where to sample from? (2) how
to sample? and (3) in which field should it be applied?

Contributions: The main contributions of this survey are
presented as follows:

e We highlight the importance of negative sampling and
propose a general framework that can incorporate existing
negative sampling methods from various domains.

® We identify three aspects that should be considered for
designing negative sampling: negative sample candidates,
negative sampling distributions, and negative sampling
applications. We sum up five selection methods for neg-
ative sample candidates and categorize existing negative
sampling methods into five groups.

e We report the characteristics of negative sampling methods
in various domains and demonstrate the pros and cons of
each type of negative sampling method. We summarize
several open problems and discuss the future directions for
negative sampling.

Survey Organization: The rest of this survey is organized
as follows. In Section II, we provide the overview of negative
sampling, first briefly tracing back the development history of
negative sampling and then giving a general framework for
negative sampling. Section III reviews existing negative sam-
pling algorithms, as well as the pros and cons of each category.
Section IV further explores applications of negative sampling in
various domains. Finally, we discuss the open problems, future
directions, and our conclusions in Sections V and V1.

Variables Definitions: Here, we elucidate the meanings of
the variables employed in our survey. x, 7, and x~ denote
an anchor sample, a positive sample, and the selected negative
sample respectively. p,, represents a designed negative sampling
distribution. 2’ denotes a negative candidate within the pool of
negative sample candidates C. These candidates are the potential
selections for the negative sample x~, as determined by the
negative sampling strategy. S(-) is a function used to measure
the similarity between samples, such as dot product [6], [19], L1
and L2 norms [20], [21], depending on the specific requirements
of the learning task. f(-) represents the model that maps these
input samples into their respective embeddings.

II. NEGATIVE SAMPLING

In this section, we provide a comprehensive overview of neg-
ative sampling, detailing its formalization and framework that
uses negative sampling for model training, tracing its historical
development from five development lines, and elaborating its
important role in machine learning.

A. Formalization and Framework

Negative sampling aims to select a subset of negative samples
from a larger pool, which is a technique used to improve the
efficiency and effectiveness of training in machine learning
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lustration of a general framework that uses negative sampling. Positive and negative pairs are sampled implicitly or explicitly by positive and negative

samplers respectively, both of them composing the training data. An encoder is applied for latent representation learning in various domains. In contrastive learning,

positive pairs (i.e., Pos-view Pairs) are derived from data augmentations of the s
such as metric learning, positive pairs (Pos-coexist Pairs) are the other instances

models. The formalization of negative sampling can be encapsu-
lated in a general loss function. The loss function incorporating
negative sampling typically maximizes the similarity of positive
pairs while minimizing the similarity of negative pairs. For
a specific positive sample =+ or anchor sample z, negative
sampling selects negative sample =~ from the pool of negative
sample candidates C based on a negative sampling distribution
pn(27) for model training.

L=1(zzt,27), 2" ~p,(z7)

where [(-) is a specific loss function in various domains.

In different application domains, the specific loss function
may vary based on various tasks and datasets.

® Bayesian Personalized Ranking (BPR) Loss for Pair-based
Sampling: For a pair of positive and negative samples (pos,
neg), BPR loss focuses on ensuring that the log-likelihood
of a positive sample is higher than that for a negative
sample.

Hinge Loss for Triplet-based Sampling: For a triplet of an
anchor, a positive sample, and a negative sample (anchor,
pos, neg), hinge loss ensures that the similarity between the
anchor and the negative sample is lower than that between
the anchor and the positive sample by at least a pre-set
margin.

Cross-Entropy Loss for Single Positive with Multiple Neg-
atives: In cases with one positive and multiple negatives,
cross-entropy loss is used to discriminate the positive sam-
ple from a set of negatives.

InfoNCE Loss in Contrastive Learning: InfoNCE loss,
common in contrastive learning frameworks, is designed
to contrast positive pairs against negative pairs.

These loss functions share a unifying principle of drawing
positive pairs closer and distancing negative pairs in the model’s
representation space. Detailed formulations of these functions
can be found in Table 1. Based on the formalization of negative
sampling, we propose a general framework that uses negative
sampling for model training, which contains a positive sampler,
a negative sampler, and a trainable encoder. The overall frame-
work is illustrated in Fig. 2. The positive sampler is applied

ame instance or different perspectives of the same entity, while in other domains,
in the dataset.

TABLE I
OVERVIEW OF LOSS FUNCTIONS USED IN A GENERAL FRAMEWORK THAT
USES NEGATIVE SAMPLING FOR MODEL TRAINING

Loss Formulation
Lepr = Ino(f(zT) — f(z7))

[:Hinge = max(O, S(f(l'), f($+)) - S(f(l'), f(xi)) + ’Y)
Leg = —[loga(S(f(x), f(x7))) +log(a(=S(f(z), f(z7)))]
“log exp(S(f(2),f (z+))/7) _

exp(S(f(x), f(aH))/m)+3 P exp(S(f(x). f(x))/7)

T represents a temperature parameter that scales the similarity scores. B denotes the batch
size.

~—

['InfoNCE =

to generate positive training pairs. For example, positive pairs
in recommendation are sampled explicitly from the observed
user-item interactions, while these in contrastive learning are
generated implicitly by data augmentations. Negative training
pairs are sampled by different negative sampling strategies via
a negative sampler. The abovementioned sampled pairs serve as
training data and are fed into a trainable encoder. The trainable
encoder varies by application domains, such as graph neural
networks (GNNs) [22], [23], [24] in graph representation learn-
ing, ResNet [25] in unsupervised visual representation learning,
BERT [26] and RoBERTa [27] in unsupervised sentence embed-
ding learning, Skip-Gram [1] in word embedding, TransE [20]
and TransH [28] in knowledge graph embedding.

B. Negative Sampling History

The history of negative sampling is a fascinating development
line through the evolution of machine learning techniques. Here,
we delve into the historical development of negative sampling,
highlighting the motivations behind various negative sampling
methods. As shown in Fig. 3, the earliest implementation of
negative sampling is random negative sampling (RNS). The
basic idea of RNS is to randomly select a subset of negative
samples from the large pool, thereby reducing the computational
requirements of the training process. Notably in 2008, Pan
et al. [29] utilized RNS to prevent the model from developing
a bias towards the majority of negative samples in one-class
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Fig. 3.
needs of individual domains, such as RS, NLP, GRL, KGE, and CV.

collaborative filtering (OCCF) for recommender systems, which
effectively balanced the data used in OCCF. Rendle et al. [2]
proposed a pair-wise learning method, which leveraged pair-
wise loss and random negative sampling to solve the lack of
negative data in implicit feedback. Such a random negative
sampling method is also applied to graph embedding [20], [30]
and GNN-based recommendation [31], [32].

Over time, as datasets grew and models became more com-
plex, the limitations of RNS became apparent. These randomly
selected negative samples might not always be relevant for the
model training. Some works [1], [3], [4], [S], [24] believe that
sampling negative samples based on attributes of the training
dataset is a more refined method. Thus, popularity-based neg-
ative sampling (PNS) is proposed to select negative samples
based on their frequency or popularity or degree, operating
under the assumption that frequently occurring negative samples
are more likely to be true negatives. This approach aims to
make the negative sampling more meaningful and tailored to the
specific dataset. A commonly-used approach in PNS is to sample
negatives in a way that is proportional to the 3/4 power of their
frequency. This particular distribution is found to be effective
in various domains, such as natural language processing [1] and
graph embedding learning [3], [5], [24].

However, the selected negative samples in RNS and PNS
are static and not adaptive to the model training, which can

S
TransE(2013)
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Five development lines of negative sampling. Each development line addresses different challenges and has been adopted and adapted to suit the specific

lead to suboptimal performance. To address this, hard negative
sampling strategies (Hard NS) [19], [33], [34], [35] are proposed
to select negatives that are difficult for the model to distinguish
correctly, thereby providing a more effective learning signal.
This approach aligns the negative sampling more closely with the
model’s current learning process, leading to more efficient train-
ing. These hard negatives provide more information for gradients
in model optimization, which can accelerate convergence and
boost performance. Hard NS is applied to word embedding [36],
answer selection [37], knowledge graph embedding [38], graph
embedding learning [6], GNN-based recommendation [7], [39],
[40], and object detecion [41].

Inspired by GAN [42], a number of works [9], [43], [44],
[45], [46], [47] propose an adversarial framework that takes
advantage of adversarial training and adversarial examples to
generate negative samples. By using a GAN, GAN-based
negative sampling (GAN-based NS) can generate negative sam-
ples that are more realistic and representative of true negative
samples, which might not be readily available in the dataset.
Here, the generator serves as a negative sampler while the
training model acts as the discriminator. Such methods rely on a
generator that adaptively approximates the underlying negative
sampling distribution. GAN-based NS is a general strategy that
can be applied to recommendation, graph learning, knowledge
graph learning, and unsupervised visual representation learning.
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Recently, contrastive learning has achieved tremendous suc-
cess in unsupervised visual representation learning. In-batch
negative sampling (In-batch NS) is a specific strategy used in
contrastive learning that effectively leverages other samples
within the same batch as negative samples. This method is
computationally efficient as it does not require additional steps to
generate or select negative samples. For example, SimCLR [48]
utilizes other samples in the current mini-batch as negatives.
MoCo [49] maintains a memory bank to store the past several
batches as negative samples for model training. One limitation of
In-batch NS is that the quality of negatives is constrained by the
batch size. Smaller batches may not provide a sufficiently varied
set of negatives, potentially impacting the model’s ability to
learn finer representations. To overcome this limitation, several
works [16], [17], [18], [50], [51], [52] have focused on intro-
ducing hard negatives into the contrastive learning paradigm.

C. The Importance of Negative Sampling

Here, we explicitly elaborate on the importance of negative

sampling from three aspects.

1) Computational Efficiency: By selecting a representative
subset of negative samples, negative sampling eliminates
the need for the model to consider all possible nega-
tive samples during training. In original learning without
negative sampling, the model often involves predicting
the probability distribution of a given sample. This re-
quires computing probabilities between a given sample
and all samples in the dataset, which is computationally
intensive, especially for large datasets [1], [29]. Negative
sampling simplifies this by transforming the task into a
binary classification problem. Instead of predicting the
probability distribution across the entire dataset, the model
learns to differentiate between positive samples and a
small number of selected negative samples. Thus, negative
sampling significantly reduces the computational burden
and accelerates the training process.

2) Handing Class Imbalance: In real-world datasets, there
is often a significant imbalance between the positive and
negative samples, which can lead to performance bias.
Negative sampling addresses this issue by ensuring that
the training process is exposed to a more balanced dataset.
By selecting a subset of negative samples, it prevents the
model from developing a bias towards the majority class,
thereby improving the model’s ability to accurately predict
less frequent classes. In cases like one-class application
scenarios that only target positive samples with an inherent
limitation of the absence of explicit negative feedback,
the challenge is even more pronounced. Compared to the
approach of treating all non-positive samples as negatives,
negative sampling selectively chooses a representative
subset of these non-positive samples as negatives. Such a
refined method provides more balanced data for the model
training. Thus, negative sampling is a key technique in
addressing performance bias in machine learning models
dealing with real-world data.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 8, AUGUST 2024

3) Improved Model Performance: Negative sampling helps
in improving model performance by learning more mean-
ingful representations. By focusing on a subset of more
informative negative samples, the model can better capture
the subtle distinctions between different samples. As high-
lighted in studies [6], [13], [14], [53], [54], negative sam-
ples, particularly more informative or “hard” negatives,
contribute significantly to the gradients during the training
process. Hard negatives are those samples that are similar
to positive samples in feature space, making the difficult
for the model to distinguish from the positives. Training
with these hard negative samples forces the model to learn
finer distinctions because these negatives contribute more
significantly to the gradients, leading to a more effective
optimization process and improvement in the model’s abil-
ity to distinguish between positive and negative samples.
Thus, negative sampling, especially when it involves the
strategic use of hard negatives, is an essential technique for
improving the performance of machine learning models.

III. ALGORITHMS

In this section, we first summarize five categories of selection
methods to form negative sample candidates (i.e., where to sam-
ple from?). Next, we summarize a variety of negative sampling
algorithms into five categories (i.e., how to sample?).

A. Negative Sample Candidates Construction

The initial step of negative sample candidate construction is
foundational, where the pool of potential negative samples C is
established. Here, we answer the first question where should we
sample negative examples from? In terms of the composition of
the negative sample candidates, we summarize their selection
methods into the following five categories.

® Global Selection is one of the most common methods

for negative sample candidate selection, where the pool
of negative samples is composed of all possible nega-
tives from the entire dataset. It ensures diversity in the
negative samples but may include less relevant negatives,
which could impact the learning efficiency. For example,
word2vec [1] utilizes the whole vocabulary as the pool of
possible negative samples; LightGCN [32] leverages all
unobserved items as the pool.

® Local Selection focuses on sampling a specific subset of

the total available negatives as the pool of negative sam-
ples. This method is more selective compared to Global
Selection, aiming to construct a pool that is more relevant
or challenging for a specific query or anchor. For example,
ANCE [104] selects top-k negative samples based on the
query as the pool of negative samples. Besides, the specific
subset can reduce the computational complexity that would
be involved in handling the entire set of available negatives.
For example, DNS [19] randomly samples a subset as the
pool of negatives for probability calculations.

® Mini-batch Selection uses other samples in the current

mini-batch as the pool without the additional process of
choosing. It leverages the data already loaded into memory
for the batch, making it computationally efficient. For



YANG et al.: DOES NEGATIVE SAMPLING MATTER? A REVIEW WITH INSIGHTS INTO ITS THEORY AND APPLICATIONS

5697

TABLE II
OVERVIEW OF NEGATIVE SAMPLING METHODS COLLECTED FROM VARIOUS DOMAINS
Cate | Subcategory Model Recipe Candidates
PNS Word2Vec [1]VED), Deepwalk [3](GRE)
LINE [4](¢®E) Node2vec [5](¢FE)
S ST T 75 Global
RNS BPR [2]*), LightGCN [32]
TransE [20]¢"), DISTMULT [55] %) RUBER [56]VZ), USR [57](N P
FaceNet [13](“Y), Max Sampling [37]VED), PinSage [39]%%), [41], [58], [59], [60] Global
DNS SGA [36]VEP) DNS [19],AOBPR [61] %%, BootEA [38],Dual-AMN [62]<¢F) Local
H NSCaching [63]FE ) ESImCSE [12] WV EP) MoCoSE [64] NV EP ),MocoRing [18]¢¢") Memory-based
. MoChi [16]©V) Cache
Mix-NS
x MixGCF [7]%9), MixKG [65] €2 Global
IRGAN [43]U %) SeqGAN [66] VL), ACE [67] ¥ EP)
Mining KBGAN [9]FEF) IGAN [68]%¢F) NMRN [45](F)
c GraphGAN [44](¢EL) ProGAN [69](¢1E) Gichal
Generation CFGAN [46] 7% AdvIR [47]7™ HeGAN [70]F1) SAN [71]VEP)
NDA-GAN [72],AdCo [50], CLAE [73],NEGCUT [74],DAML [75]¢¢")
Graph MCNS [6](GF) SANS [76]KEE) Hop
P GNEG [11]WEP) SamWalker [77], KGPolicy [40], DSKReG [78], MixGCF [7](F%) Global
SBPR [79] 7%, PREMC [80]®%) MF-BPR [81]"*%), View-aware NS [82]("*5)
Extra ) Local
A ReinforcedNS [83],RecNS [84]
Unsupervised Feature Learning [85](CV),NSCaChing [63]FF) SRNS [86]+)
Cache . V) (GRL) 1 (NLP) Cache
MoCo [49], MoCo-V2 [87], MoCoRing [18] ,GCC [88] ,ESImCSE [12],MoCoSE [64]
Basic N.S. [89],5°-Rec [90],SGL [91], MHCN [92],DHCN [93] (**), SimCLR [48](“")
MVGRL [94],GRACE [95],GraphCL [96] %) SimCSE [97],InfoWord [98] (V£P) .
B . o) ORT) Mini-batch
Debiased DCL [15]“Y) ,GDCL [99]
Hard MoCoRing [18]“"? ,CuCo [100],ProGCL [101]“") ,VaSCL [102],SNCSE [103] VEP)

For acronyms used, “S” represents static NS; “H” refers to Hard NS; “G” means GAN-based NS; “A” means auxiliary-based NS; “B” represents in-batch NS.

example, SImCLR [48] and SimCSE [97] leverage other
samples in the same batch as the pool of negatives.

® Hop Selection is a novel selection method for graph-
structured data, which selects k-hop neighbors as negative
sample candidates. This method effectively takes advan-
tage of the graph structure where the information propa-
gation mechanism provides theoretical support. However,
matrix operation for obtaining k-hop neighbors is imprac-
tical for web-scale datasets. Therefore, a path obtained
from a random walk or DFS is often considered a negative
sample candidate. For example, RecNS [84] selects the
intermediate region (i.e., k-hop neighbors) as the pool of
negatives for graph-based recommendation; SANS [76]
utilizes k-hop neighbors as the pool for knowledge graph
embedding.

® Memory-based Selection maintains a memory bank or a
cache as a pool to store the pool of negative sample can-
didates. This bank can retain a large number of negatives
from past iterations or batches, which are then used for
subsequent training steps. The memory bank is typically
updated continuously, with new negatives being added and
the oldest ones being removed, ensuring a fresh and diverse
set of negative samples. Memory-based Selection is partic-
ularly useful in situations where it is beneficial to have a
large pool of negative samples to compare against positive
samples, such as in contrastive learning applications. For
example, MoCo [49] uses a queue bank to store the pool
of negative samples.

B. Negative Sampling Algorithms
Once the negative candidates are constructed, the next step
involves negative sampling algorithms, which aim to design a
negative distribution (i.e., a specific probability distribution) or
a sophisticated negative sampling strategy to sample negative
samples from the pool of negative candidates for model training.
The design of negative sampling algorithms can be simple,
such as random sampling, or it can be more sophisticated, taking
into account factors like the current state of the model, the
difficulty level of the negatives, or their frequency of occurrence
in the dataset. Here, we briefly present an overview of negative
sampling algorithms. Table II summarizes existing negative
sampling algorithms. The general categorization of negative
sampling algorithms and the abbreviated description of each
category can be illustrated as follows:
e Static NS is a static negative sampling method that keeps
a fixed negative sampling distribution during the training
process. As a basic negative sampling method, static NS
is usually utilized to estimate the performance of a newly
proposed model optimized with negative sampling. In gen-
eral, static NS is a simple, fast, and easy-implemented but
model-independent method.
® Hard NS is a model-dependent negative sampling method
in which the designed probability of selecting a specific
negative sample is related to its relevance or difficulty.
Here, hard negatives are close to the decision boundary in
the feature space, which makes it difficult for the model to
distinguish from positive samples. In summary, Hard NS
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is a dynamic and mutually promoting method where the
applied negative sampling distribution varies with model
training.
® GAN-based NS is an adversarial negative sampling method
that utilizes a generative adversarial network (GAN) [42] to
sample negatives. Here, the generator serves as a negative
sampler to select or generate negatives (fake positives)
to confuse the discriminator while a trainable encoder
usually acts as the discriminator to distinguish positive and
negative samples. The training process of GAN-based NS
is similar to GAN to conduct a minimax game.
® Auxiliary-based NS utilizes some auxiliary information to
sample negatives, such as extra data, graphs, and cache.
Extra-data-based NS incorporates other types of data into
negative sampling, such as view data and exposure data
collected from E-commerce platforms. Graph-based NS
takes advantage of graph information to sample negatives.
Cache-based NS maintains a cache to store important can-
didate negatives with a fixed frequency update mechanism.
® [n-batch NS is a common negative sampling method that
can boost training efficiency when a large number of nega-
tives are required, which allows for the sharing of negative
samples in a batch. The number of negatives N for each
positive pair is related to the batch size B. In dense retrieval
domain, the number of negatives N can be formulated as
N = B — 1 while can be formulated as N = 2(B — 1) in
contrastive learning. Besides, it cannot be ignored that the
false negative issue has a huge impact on performance for
In-batch NS.
Next, we successively review each category of negative sam-
pling algorithms in detail and demonstrate their pros and cons.
1) Static Negative Sampling: Static negative sampling pro-
vides a simple and fast negative sampling method and is usu-
ally used as a basic baseline, comprising of random nega-
tive sampling (RNS) and popularity-based negative sampling
(PNS). The general distribution can be represented as: p,, (z7) =

(%)5 where /3 is a hyperparameter that controls the

sampling distribution, #2x' is the frequency of sample 2.

® Random Negative Sampling (RNS): As the most prevalent
negative sampling method, RNS is widely used as the
default sampling method to evaluate the effectiveness of the
proposed model in optimization with negative sampling.
RNS designs uniform sampling weights for each negative
sample when deciding which ones to use during training.
Uniform weights mean that every negative sample has an
equal chance of being selected, implying no preference
among the negatives. Since RNS uses the same weights for
negative samples, it cannot select useful and informative
negative samples, leading to a sub-optimal result.

® Popularity-based Negative Sampling (PNS): As proposed
in previous work [29], user-oriented and item-oriented
sampling methods substitute uniform sampling by count-
ing the number of interactions of users and items, respec-
tively. It exploits data properties to sample negatives in
early recommendation efforts. Word2vec [1] empirically
sets the negative sampling distribution as the 3/4 power
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Fig. 4. Performance comparison with different choices of 5 on GRL and RS
domains, respectively.

of word frequency for faster training and better word
embedding learning. Most later studies on network em-
bedding [3], [4], [5] or graph representation learning [24]
also keep this setting for negative sampling. However, the
most appropriate choice of 3 varies with different datasets
and fields (See Fig. 4). Results in [11], [54] demonstrate
that performance shows a strong dependency on the choice
of 5.

Pros and Cons: Static NS is a simple and easy-implemented
negative sampling method. Compared with other heuristic sam-
pling methods, Static NS has the characteristics of being fast,
stable, and model-independent. The drawback of such methods
is that the negative sampling distribution is fixed in the whole
training process and the sampled negatives are not adaptive
for each positive pair, resulting in sampling low-quality neg-
atives. In general, performance increases as the number of
negatives increases. However, too many negatives lead to an
increase in GPU memory and training time. Therefore, the
number of negative samples should be further investigated
to accomplish the trade-off between performance and time
consumption.

2) Hard Negative Sampling: Hard Negative Sampling (Hard
NS) addresses the limitations of static NS by specifically target-
ing hard negatives. A concept of hard negative examples was
first proposed in the bootstrapping method [105], [106], which
treated incorrectly classified examples as hard examples. Over
time, this idea evolved to not just include misclassified examples,
but also samples that are close to the decision boundary in the
feature space, irrespective of whether they have been previously
misclassified or not. Thus, hard negatives are close to the deci-
sion boundary in the embedding space, which is difficult for a
model to distinguish from positives.

Hard negative sampling dynamically selects hard negatives
based on proximity in the feature space or based on the
confidence level of the model’s predictions. Based on the source
of negatives, hard negative sampling can be divided into dy-
namic negative sampling (DNS) and mixture-based DNS. DNS
dynamically mines hard negatives from the raw data while
mixture-based DNS directly synthesizes negative embedding
from the embedding space.

® Dynamic Negative Sampling (DNS): In DNS, negative

samples are not predetermined but are selected based on
the current state of the model or specific criteria that evolve
as the training progresses. In light of the criteria, DNS
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can be divided into three groups, including anchor-based
sampling, positive-based sampling, and anchor-positive
sampling.
Anchor-based DNS: This group focuses on selecting neg-
atives based on their relationship or similarity to a given
anchor. The anchor acts as a reference, and negatives
are chosen based on how they differ from this specific
anchor in the feature space. The general distribution can
be represented as p,, () = % Rendle et
al. [61] developed an adaptive and efficient item sampler
to select informative negative items with a small predicted
rank, where the rank is designed as context-dependent
and obtained by the score model among all items. Chen
et al. [36] proposed an alternative sampler to replace
word-popularity-based sampling in the skip-gram model,
which prefers to select negative samples with higher inner
product scores. Wuet.al [ 14] designed a distance-weighted
sampling method to sample informative negatives where
the distance weights between the anchor and negatives
are clipped to correct the bias. In addition to inner product
and distance, PageRank score can also be used to measure
similarity in PinSage [39].
Positive-based DNS: Although anchor-based DNS offers
better convergence and performance, it cannot take the
impact of positive samples into consideration. It may seem
intuitive that sampled negatives that are closer to positive
samples will provide a sufficient risk of discrimination
in order to distinguish positive from negative samples.
The general distribution can be represented as p,, (z~) =
Zi(cf égg;()xﬁ(; })(l,)) . Max Sampling [37] selected the most
difficult negative answer by maximizing the similarities
between the positive one and all negatives. Tranetal. [107]
proposed a 2-stage sampling method, which first sampled
a small subset of negative candidates and then selected
informative negatives based on the similarity between a
positive item and the candidates. Sun et al. [38] developed
a e-Truncated uniform negative sampling method to mine
hard negative in KGE by using s-nearest neighbors of
positive entities as candidates.
Anchor-Positive DNS: This method involves choosing
negatives based on their joint relationship with both
the anchor and the positive samples, which is valuable
in complex learning scenarios like hinge loss frame-

works. The general distribution can be represented as

T fL‘+ T o« .
pn(z) = ngé&;(f;)}f()ﬁ()’f)&,)). In computer vision,

several works [41], [108], [109], [110] selected hard
negative examples based on the triple loss, where nega-
tives are close to the anchor and incur a high value of
the loss. For WARP loss (Weighted Approximate-Rank
Pairwise loss), a myriad of efforts [111], [112] adopted
uniform negative sampling with rejection to mine hard
negatives, which uniformly sampled a negative example
until satisfied the constraint of 1 — S(f(z), f(z*)) +
S(f(x), f(x7)) > 0. Guo et al. [113] also designed a
dynamic sampler in word embedding to select informative
negative words with higher ranking scores than posi-
tive ones. Faghri et al. [114] combined anchor-based
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Fig. 5. (a) Performance comparison between Static NS and Hard NS.
(b) Impact of the number of negative candidates in DNS.

DNS and positive-based DNS to sample hard negative
examples within each mini-batch in the image-caption
retrieval domain. Guo et al. [115] selected high-ranked
negative labels by a rank-invariant transformation for fast
sampling. To improve the robustness, Several works [13],
[116] proposed a semi-hard negative sampling method to
select “semi-hard” negatives that were farther from the
anchor-positive pair with a distance margin.

® Mixture-based DNS: Inspired by Mixup [117], the idea of

synthesizing hard negative in embedding space has become
one of the popular negative sampling methods. Unlike
methods that select samples existing in the dataset as
negatives, Mixture-based DNS works at the level of embed-
dings, creating synthetic negative samples by strategically
combining embeddings among several selected negatives.
The synthetic negative samples can be represented as
x~ = Combine({x;}), where x; is a vector embedding
of a selected sample x; and x; ~ p,(x~). The function
Combine(-) is utilized to combine the selected negatives
for synthetic negative samples. In contrastive learning,
MoChi [16] designed a hard negative mixing method to
synthesize harder negatives by mixing the query and the
hardest negatives in embedding space where the hardest
ones are generated by anchor-based DNS. MixGCF [7]
utilized the information propagation mechanismto design a
hop-mixing strategy to synthesize negatives from multiple
hops in a graph and adopted positive mixing to enhance
negatives. MixKG [65] mixed candidate negative samples
via the convex combination operation where candidate
ones were filtered by two criteria: score-function based
sampling and entity similarity correcting.

Pros and Cons: Hard NS is a model-dependent negative
sampling technique that dynamically samples hard negative
examples, which accelerates convergence and gives a clear
gradient update direction for model training. Hard NS achieves
significant performance improvements compared with static NS
(e.g. PNS and RNS) (See Fig. 5(a)). However, such methods have
an obvious disadvantage, namely that require more time to obtain
distribution by the current model. To improve the efficiency, hard
negative sampling usually samples a subset or takes mini-batch
examples as negative candidates. Thus, the effectiveness of Hard
NS relies on the number of candidates, which varies largely
on different datasets (See Fig. 5(b)). More importantly, false
negatives have gradually attracted more attention since they are
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closer to positive samples in embedding space and are difficult
to distinguish from true negative samples. Many works [15],
[86], [118], [119] focus on alleviating the false negative issue
and boosting the robustness of the sampling process. Overall,
Hard NS is an effective negative sampling method to speed up
convergence and boost performance.

3) GAN-Based Negative Sampling: GAN-based negative
sampling methods utilize generative adversarial networks
(GANs) to mine or generate adversarial negatives, which are
widely adopted in multiple domains. For GAN-based NS, the
generator serves as a negative sampler to mine or generate infor-
mative negatives (false positives) to confuse the discriminator.
The trainable models serve as a discriminator to distinguish the
true positives and false positives (negative). Here, GAN-based
NS methods can be roughly divided into two subcategories:
GAN-based negative mining and GAN-based negative gener-
ation.

® GAN-based Negative Mining: GAN-based negative mining

utilizes GAN to adaptively mine informative negatives
where negatives are sampled from the discrete indexes of
raw data. The general distribution can be represented as
pS(z7) = ES:(CGé(IC);g ()f”c;)(l,)) where G denotes a generator
that generateslriegatives. SeqGAN [66] is the first work to
utilize the generator to select discrete negatives and directly
apply policy gradient to achieve gradient passing from
the discriminator to the generator. IRGAN [43] utilized
the generative information retrieval model to select the
discrete index of samples as negatives, which uses RE-
INFORCE [120] for model optimization. The abovemen-
tioned methods provide a new idea for negative sampling
that designs an adversarial negative sampler and applies a
policy gradient-based reinforcement learning (RL) method
for model optimization. Such negative sampling meth-
ods are widely developed in other fields. For example,
GraphGAN [44] employed a GAN-based framework for
graph representation learning, and NMRN [45] proposed
an adaptive negative sampler based on GAN in a streaming
recommendation, and ACE [67] adopted GAN to find
harder negatives in word embedding. In knowledge graph
embedding, KBGAN [9] utilized one of the existing knowl-
edge graph embedding models as the generator to sample
high-quality negatives while Wang et al. [68] employed a
two-layer fully-connected neural network as the generator
for negative sampling.

® GAN-based Negative Generation: Instead of mining nega-

tives from raw data, GAN-based negative generation aims
to generate negative embedding for model optimization
from embedding space. Such a method can generate syn-
thetic samples which act as hard negatives. The general

distribution can be represented as p,, (x~) = %,
where x, x~, and x’ are generated vectors by the gen-
erator G. CFGAN [46] utilized the generator to generate
continuous negative embeddings composed of real-valued
elements in collaborative filtering without using the RL
method for model optimization. DAML [75] employed
adversarial learning to synthesize hard negatives from in-

puts (anchor, positive, and negative) by the generator for
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computer vision (right).

metric learning. Different from IRGAN comprising of two
models, AdvIR [47] only used a single model to combine
adversarial sampling and adversarial training to generate
hard negative examples by adding adversarial perturbation
vectors on negative example vectors. Similar to AdvIR,
CLAE [73] designed an adversarial training algorithm for
self-supervised learning that leveraged adversarial exam-
ples to generate harder negatives. HeGAN [70] extended
GAN-based NS into Heterogeneous Information Networks
(HIN), which generates “latent” negative nodes from a
continuous distribution rather than true existing nodes. In
dialogue systems, Gupta et al. [71] synthesized adversarial
negative responses. AdCo [50] applied GAN-based NS
to contrastive learning to generate challenging negative
examples. Sinha et al. [72] proposed negative data aug-
mentation (NDA) and integrated it into GAN where NDA
acted as the generator to synthesize hard negatives for
the discriminator. Chen et al. [121] utilized negative data
augmentation (NDA) for novelty detection.

Pros and Cons: GAN-based NS leverages adversarial learning
to adaptively mine or generate negative samples, which provides
more informative negatives and achieves faster convergence and
better performance. This method brings about an adaptive neg-
ative sampler that acts as a generator for sufficiently exploiting
training samples or embedding space to seek more informative
negatives. As shown in Fig. 6 , compared to RNS, GAN-based
NS achieves better performance on different domains since it
mines more informative negatives for model training. However,
GAN-based NS has an obvious shortcoming of unstable training.
A common method to alleviate this issue is to pretrain the
discriminator and the generator, which violates the original
purpose of using negative sampling to speed up training. Thus,
a stable optimization for GAN-based NS is a core and challeng-
ing problem, which leaves much room to investigate. Besides,
GAN-based NS usually requires an additional network as the
generator, which increases the training time and computational
load. In general, GAN-based NS has a promising prospect for
discovering hard negative samples but it is time-consuming,
limiting its application to large-scale datasets.

4) Auxiliary-Based Negative Sampling: Auxiliary-based
negative sampling methods rely on auxiliary information to sam-
ple negatives, comprising extra-data-based NS, graph-based NS,
and cache-based NS. Each subcategory of Auxiliary-based NS
possesses its unique characteristics, which will be demonstrated
in detail.

e Extra-data-based NS: This method utilizes external

datasets or additional information that is not part of the
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primary training set. The external data can provide a
broader context or more examples, allowing for the selec-
tion of negatives that are more informative or challenging.
For example, within the realm of recommendation systems,
leveraging additional sources of information, such as so-
cial links, view data, and exposure data, can significantly
enrich the negative sampling process. These auxiliary data
types are particularly valuable as they offer insights into
user preferences and behaviors that are not captured by
traditional interaction data alone. SBPR [79] incorporated
social links into negative sampling where social feedback
served as negatives for positive items but was regarded as
positives for unobserved negative items. Instead of utiliz-
ing a single additional information for negative sampling,
PRFMC [80] leveraged both social links and geography to
enhance negative sampling. MF-BPR [81] utilized multi-
feedback data to compose negative items, which proposed
a non-uniform negative sampler that quantified the impact
of different types of feedback. Mix-Exp-NS [82] integrated
view data into negative sampling, which designed a sam-
pling weight to sample negatives from view and unob-
served items. RNS-AS [83] combined exposure data and
adversarial training into negative sampling to select high-
quality real negatives. RecNS [84] mixed negatives sam-
pled from positive-assisted and exposure-enhanced nega-
tive sampling methods to select hard and real negatives.

® Graph-based NS: This method capitalizes on the rich
structural information inherent in graph data to enhance
negative sampling. This approach is particularly pertinent
in scenarios where data can be naturally represented as
graphs, such as social networks, citation networks, or any
domain where relationships between entities can be con-
structed as a graph. GNEG [11] leveraged random walk
on the constructed word co-occurrence network to obtain
negative sampling distribution. SamWalker [77] conducted
the personalized random walk with a walking probability
on a social network to obtain the distribution for sam-
pling informative negative examples. SamWalker++ [122]
designed a pseudo-social network to substitute the addi-
tional social network for random walk-based negative sam-
pling. MCNS [6] approximated positive distribution with
self-contrast approximation and utilized Metropolis-
Hastings to accelerate negative sampling based on graph
structure, which adopted DFS to traverse the graph for
generating Markov chain. KGPolicy [40] integrated item
knowledge graph into recommendation for negative sam-
pling, which adopted reinforcement learning framework to
select informative negative samples. MixGCF [7] utilized
graph structure to sample hard negative items from multiple
layers and mixed these with the positive item to obtain the
synthetic negatives.

® Cache-based NS: This method employs a cache or memory
bank as a dynamic repository for negative samples. In
this way, the model can quickly and efficiently access
these samples during training. This approach significantly
reduces the computational overhead associated with sam-
pling new negatives for each training iteration. Wu et
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al. [85] maintained a memory bank for storing negative
samples. NSCaching [63] used a cache to maintain rare
hard negative triplets and uniformly selected negatives
from the cache for knowledge graph embedding learning.
SRNS [86] designed a memory-based negative sampler to
store high-variance negative candidates, which can effec-
tively alleviate the false negative issue in recommendation.
In unsupervised visual representation learning, MoCo [49]
utilized a queue to store mini-batches data as negatives
for the next iteration. MoCHi [16] and MoCoRing [18]
utilize hard negative sampling methods to enhance Cache-
based NS. GCC [88] maintained a queue to store negative
instances for unsupervised graph representation learning.
Cert [123] utilized a queue to store negative examples for
language understanding. ESimCSE [12] and MoCoSE [64]
leveraged a negative sample queue to further improve
sentence embedding learning. Cache-based NS exploits
more negatives during the training but requires more time
to update the cache. Thus, a fast cache update mechanism
should be explored to further improve the efficiency of
cache-based NS.

Pros and Cons: Auxiliary-based NS leverages more aux-
iliary information to enhance the quality of negative sam-
ples. However, it’s important to consider the trade-offs in
terms of efficiency and domain-specific applicability. For ex-
ample, the need to collect extra data can be a limitation,
as it may not be feasible or practical in all domains. Addi-
tionally, the increased data volume can lead to higher data
loading overheads, impacting computational efficiency. Graph-
based NS depends on graph algorithms for traversing and
mining negatives, which may increase the time consumption.
Cache-based NS eliminates the constraint of GPU memory
size for In-batch NS, but the update mechanism of the cache
is very time-consuming. Thus, a trade-off between effective-
ness and efficiency should be considered in negative sampling
methods.

5) In-Batch Negative Sampling: In-batch negative sampling
method is a distinct approach within the realm of negative
sampling techniques, primarily relying on the composition of
mini-batch data during training. Unlike other negative sampling
methods that explicitly sample negatives for each positive pair,
In-batch NS leverages the inherent structure of mini-batches to
implicitly sample negatives. This method is particularly notable
for its efficiency and simplicity. In-batch NS can be divided into
three subcategories, including basic, debiased, and hard.

® Basic In-batch NS: This method is first proposed for neural

network-based collaborative filtering [89] to utilize the
non-linked examples within the same mini-batch as neg-
atives, which boosts the training efficiency significantly.
Ye et al. [124] leveraged In-batch NS to optimize the
negative log-likelihood objective for unsupervised image
embedding learning. In a dual-encoder model, In-batch NS
has been used as a significant and effective trick for model
training where (B — 1) examples in the same mini-batch
are regarded as negatives [125], [126], [127], which effi-
ciently boosts the number of negative training examples.
In contrastive learning, SImCLR [48] leveraged In-batch
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NS for visual representation learning where 2(B — 1)
examples generated by data augmentation are treated as
negatives. Later, such a simple framework is widely used in
various domains for unsupervised representation learning.
SimCSE [97] follows SimCLR framework for sentence
embedding learning. Several prior works [94], [95], [96],
[128] on graph contrastive learning also adapt SimCLR
framework to design augmentation transformations based
on graph structure. SGL [91] incorporated self-supervised
graph learning into recommendation and designed two
types of In-batch NS for the auxiliary task.

® Debiased In-batch NS: While In-batch Negative Sampling

stands as an efficient and broadly applicable method in
various domains, it is not without its challenges. A pri-
mary concern is the issue of false negatives, which can
significantly affect the performance of the model. In basic
In-batch NS, samples within a mini-batch that are not
explicitly labeled as positive are automatically treated as
negatives. This assumption can lead to the inclusion of false
negatives — actual positive samples mistakenly treated as
negatives due to the absence of explicit positive labeling
in the batch. DCL [15] proposed a debiased contrastive
objective to alleviate sampling bias, which corrected the
weights of negatives with positive examples in InfoNCE.
DCLR [129] designed a debiased objective function that
adjusted the weights of negatives using the complementary
model. Huynh et al. [130] mitigated the effect of false neg-
atives by two approaches: false negative elimination and
attraction, which identified false negatives and removed
them from the original negative candidates and added them
into positive pairs set.

® Hard In-batch NS: Basic In-batch NS typically treats

all samples within a mini-batch as negatives, assuming
these samples are randomly sampled from the training
data. However, this approach can overlook the impor-
tance of the difficulty level of negative samples. Hard
In-batch NS method seeks to identify and utilize hard
negatives within the batch. HCL [17] developed a hard
negative sampling method for contrastive learning, which
reweights the weights of negatives in the objective. Xiong
et al. [104] globally selected hard negative samples by an
asynchronously updated ANN index, in which negatives
were generated by the dense retrieval (DR) model. Zhan
et al. [131] adopted dynamic hard negatives to boost the
training process and the ranking performance of the DR
model. Yang et al. [52] proposed BatchSampler to globally
sample hard negatives for contrastive learning.

Pros and Cons: In-batch NS stands out as an effective and
efficient approach, particularly due to its ability to reuse samples
from the current mini-batch without necessitating additional
sampling operations. This method scales well with larger batch
sizes, which facilitates the inclusion of more negative samples in
the contrastive loss calculation, crucial for the training process.
However, this means that the effectiveness of In-batch NS de-
pends on the batch size. As indicated in Fig. 7 , the downstream
performance exhibits a noticeable variation in relation to the
batch size used during training. There is a clear trend indicating
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that larger batch sizes can improve downstream performance.
In fact, In-batch NS is equivalent to random sampling since the
data in the mini-batch are generated randomly. Compared to the
basic In-batch NS leveraged by SimCLR, Debiased In-batch NS
and Hard In-batch NS achieve better performance (See Fig. 7).
Thus, integrating a hard negative mining strategy into In-batch
NS is a huge challenge, which leaves us a lot of room for
exploration. Furthermore, since In-batch NS is usually applied
in contrastive learning for unsupervised representation learning,
the false negative issue is an inevitable problem that plays a
significant effect on the downstream performance.

IV. APPLICATIONS

Negative sampling is an essential technique, which has been
widely used in various domains(e.g. recommendation, graph
representation learning, knowledge graph embedding, natural
language processing, and computer vision).

A. Negative Sampling in RS

Recommender Systems (RS) have emerged as an indispens-
able tool for information filtering across a variety of online
platforms, including e-commerce sites, advertising platforms,
and entertainment services. The effectiveness of a recommender
system hinges on its ability to model user preferences accurately,
primarily based on historical interaction data. A significant
challenge in RS is the inherent nature of interaction data, which
typically consists of positive feedback (such as purchases, likes,
or views) while lacking explicit negative feedback. To tackle this,
negative sampling has been widely applied in previous works [2],
[71, [29], [32].

As shown in Fig. 8, negative sampling aims to sample a
small portion of items from the non-interaction items. The most
popular negative sampling method is random negative sampling
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(RNS) [2], [29], which serves as a basic negative sampling
method to evaluate the performance of the proposed model.
However, RNS assigns equal weights to unobserved items,
which usually draws uninformative negative items for model
training. To improve the quality of negative samples, many
previous works mainly focus on popularity-based negative sam-
pling (PNS) [132], [133], [134], hard negative sampling (hard
NS) [19], [61], and GAN-based negative sampling (GAN-based
NS) [45], [135]. The high-quality negative items contribute more
to the gradient of the loss function, increasing its magnitude
and accelerating convergence. PNS selects negative items based
on item popularity, which depends on the data distribution.
Intuitively, popular items that are non-interacted with a user
are more likely to be negative. However, results in [54] re-
veal that the smoothing parameter for negative sampling has
a significant effect on recommendation performances. Hard NS
methods draw negative items based on prediction scores between
the users and candidate negative items. Such methods aim to
sample hard negative items with higher prediction scores. Ad-
ditionally, GAN-based NS methods use the generator to obtain
the sampling distribution for adaptively sampling informative
negative items. However, the abovementioned methods suffer
from the false negative issue where more hard (informative)
negative items are more likely to be positive items. Synthesizing
hard negative items has become an effective way to address
this problem, which synthesizes or generates negatives in em-
bedding space rather than sampling an existing item from raw
data.

In recommender systems, the user-item interactions can be
constructed as a bipartite graph where users/items are rep-
resented as nodes and observed interactions are regarded as
edges [31], [32], [39], [136]. Even the user’s historical behavior
sequences can also be modeled as session graphs [137]. In light
of this, graph learning methods provide a novel perspective
for recommender systems, which incurs a myriad of GNN-
based recommendation models in recent years. Similar to the
traditional recommendation, negative sampling is also applied
for model training in GNN-based recommendation models. Such
sampling methods can incorporate graph information to sample
negative items. For example, Pinsage [39] sampled hard negative
items based on personalized PageRank scores for the Pinterest
recommendation. MCNS [6] performed DFS on the graph to
generate a Markov chain for negative sampling. KGPolicy [40]
integrated a knowledge graph into negative sampling for seeking
high-quality negative items. MixGCF [7] proposed hop mixing
which mixed negative items sampled from different hops on
the graph. To sum up, negative sampling in GNN-based rec-
ommendation can leverage graph information to design better
negative sampling strategies but the efficiency issue should also
be considered.

In summary, negative sampling has been proven to be an ef-
fective way to improve recommendation performance. As it ap-
plies to online services, recommendation systems must seriously
consider the efficiency of negative sampling. In-batch NS is an
efficient way that can be applied to large-scale recommendation.
Thus, a challenging direction is how to reduce the sampling bias
for In-batch NS.
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B. Negative Sampling in GRL

Graph representation learning (GRL) has received a myriad of
attention in recent years since graphs are a unique data structure
that is employed extensively in many real-world applications,
such as social networks, biological networks, academic net-
works, and many other domain-specific networks. The goal
of graph representation learning is to learn low-dimensional
embeddings for nodes that accurately reflect the structure and
features of the original graph. After that, the learned embeddings
can be used as feature inputs for downstream tasks, including
node classification, link prediction, graph classification, and
clustering.

Graph representation learning optimization involves comput-
ing the sum of all nodes in the graph, which is very time-
consuming for large-scale graphs. To reduce the runtime of
computation, negative sampling is designed to sample multiple
negative nodes based on the noise distribution learned from the
graph (See Fig. 9). DeepWalk [3] and Node2vec [5] followed the
negative sampling setting in word2vec, which selected negative
nodes according to the empirical unigram distribution propor-
tional to the 3/4 power. However, this predefined sampling dis-
tribution can not dynamically sample negative nodes according
to the training process. Gao et al. [138] proposed a self-paced
negative sampling strategy to gradually sample the informative
negative nodes for model optimization. Inspired by IRGAN, Gao
etal. [138] incorporated generative adversarial network (GAN)
into self-paced negative sampling to form an extension version
of adversarial self-paced negative sampling. Robust-NS [139]
argued that popularity-based negative sampling failed to accu-
rately estimate the objective of skip-gram due to the popular
neighbor problem, which proposed a distance-based negative
sampler to draw negative nodes from candidate nodes without
neighbors. As a most popular GNNs-based method, Graph-
Sage [24] utilized negative sampling to optimize a graph-based
loss function, which also kept the setting of word2vec. Graph-
GAN [44] integrated GAN into graph representation learning
where negative samples were sampled by the generator. Later,
MCNS [6] systematically analyzed the role of negative sampling
in graph representation learning and proposed Markov chain
Monte Carlo negative sampling.

Recently, contrastive learning has attracted a surge of interest
for unsupervised visual representation learning [48], [49], [85].
In terms of the great success of contrastive learning in computer
vision, numerous works extended it into graph learning [88],
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[99]. After that, negative sampling in graph contrastive learning
has also achieved tremendous success. Zhao et al. [99] proposed
a graph-debiased contrastive learning framework to alleviate the
false negative issue, which utilized clustering to obtain pseudo
labels and conducted random sampling to sample negatives from
the different clusters. Such a method suffers from expensive
computational consumption. CuCo [100] proposed a curriculum
contrastive learning framework that gradually samples negatives
from easy to hard, in which hard negatives are determined by
the score function. Zhu et al. [140] utilized heterogeneous
graph structure to sample hard negatives with the largest simi-
larities and synthesized more negatives by a mixing operation.
ProGCL [101] utilized a beta mixture model (BMM) to mine
true and hard negative examples for graph contrastive learning.
Xiong et al. [104] proposed approximate nearest neighbor
negative contrastive learning (ANCE) for the dense retrieval
(DR) model, which globally sampled hard negatives with top
retrieved scores from the current DR model.

In summary, negative sampling in graph representation learn-
ing has achieved some remarkable progress but still leaves a lot
of room for improvement. For example, how to effectively use
graph structure for negative sampling; how to incorporate GNNs
propagation mechanism into negative sampling? How to design
an effective negative sampling method for graph contrastive
learning?

C. Negative Sampling in KGE

Knowledge graph embedding (KGE) provides a new way
to represent knowledge by graphs, which constructs human
knowledge as a knowledge graph consisting of entities, rela-
tionships, and semantic descriptions. A knowledge graph is a
multi-relational graph and each relation can be represented as a
triple of < head entity, relation, tail entity >. The key idea
of knowledge graph embedding is to embed entities and rela-
tions in a KG into a continuous embedding space. The learned
embeddings pave the way for many downstream applications,
including knowledge graph completion, relation extraction, en-
tity discovery, question answering, and recommender systems.

Negative sampling is a fundamental technique in knowledge
graph embedding, which is applied to sample entities from the
knowledge graph to replace the head entity or tail entity for
forming a negative triple. A common negative sampling strategy
in KGE is randomly sampling entities from a uniform distribu-
tion. However, such a strategy owns the obvious limitation that
the sampled entities usually do not match the relations with the
remaining entities, which does not provide meaningful informa-
tion for gradient and prevents the model from learning better
embeddings. To constrain the correlation of negative triples,
[8] drew negative triples within the range constraints of entity
types. PNS [141] proposed a probabilistic negative sampling
to address the skewness issue in the dataset, which leveraged
a tuning parameter to sample negatives from a pre-designed
list that contained semantic possible negative instances. [142]
developed two embedding-based negative sampling strategies:
nearest neighbor sampling and near miss sampling, which aimed
to search for negative triples that are close to positive triples
in embedding space. KBGAN [9] developed an adversarial
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Fig. 10.  Integrating the structure of knowledge graph into negative sampling.
Taken from [76].

framework for knowledge graph embeddings, which utilized
existing embedding models as the generator to generate high-
quality negative triples. Later, several works [9], [68], [143]
continued to integrate GAN into knowledge graph embedding
for sampling negative triples. For example, IGAN [68] leveraged
two-layer fully-connected neural networks as the generator to
search informative negative triples. These methods sample high-
quality negative triples with large gradients, which avoid the van-
ishing gradient issue and achieve performance improvements.
However, GAN-based negative sampling methods need an extra
generator and a complex gradient update approach. To efficiently
sample negative triples, RotatE [143] proposed a self-adversarial
negative sampling strategy that selected negatives based on the
current model. Similar to DNS, Shan et al. [144] proposed
a confidence-aware negative sampling method to enhance the
confidence-aware knowledge representation learning (CKRL),
which sampled negatives according to the softmax function
that calculated by the current model on the candidate negatives
set. SNS [145] utilized a distance-based score to search for
high-quality negatives from a small randomly sampled candidate
negative set in embedding space. NSCaching [63] used extra
caches to store large-gradient negative heads and tails for each
positive triplet respectively, and directly sampled negatives from
the caches. To sample valid negative triples for assist model
training, ANS [146] leveraged the K-Means clustering algorithm
to measure the similarity in embedding space and uniformly
sampled negatives from the same cluster for a particular positive
triplet. SANS [76] utilized knowledge graph structure to sample
negative triples where 1-hop neighbors are regarded as positives
and the k-hop neighbors (k > 1) serve as negatives (See Fig. 10).
Instead of selecting an existing entity for negative sampling,
MixKG [65] leveraged a mixing operation to synthesize hard
negative samples. Different from the abovementioned methods
of replacing head or tail entities, TransG [30] constructed neg-
ative triples by substituting the relation of triples. To sum up,
negative sampling in a knowledge graph should focus on the
validity of negatives satisfied the semantic relation, which can
provide more information for the model to distinguish between
positives and negatives.

In summary, negative sampling in knowledge graph embed-
ding relies heavily on the triple loss function. Thus, how to de-
sign a powerful loss function that incorporates the characteristics
of a knowledge graph? How to develop a hierarchical negative
sampling method by leveraging the hierarchical structure of the
knowledge graph?
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D. Negative Sampling in NLP

Negative sampling is a widely-used technique in natural lan-
guage processing (NLP), which is widely used in word em-
bedding, sentence embedding, dialogue systems, dense retrieval
(DR), and named entity recognition (NER). Word2vec sampled
negative words according to the distribution of word frequency.
Goldberg et al. [147] attempted to explain negative sampling
in word2vec. To alleviate the gradient vanishing issue in the
skip-gram model with word-frequency negative sampling, Chen
et al. [36] dynamically selected informative negative samples
based on self-embedded features. Rao et al. [37] proposed
three negative sampling strategies for negative answer selection,
comprising random sampling, max sampling, and mix sampling.
These sampling methods also be applied to open-domain dia-
logue systems for negative response selection [116]. Besides,
Li et al. [116] also proposed a semi-hard sampling method
where negatives satisfied a margin constraint. Negative sampling
is an effective technique for named entity recognition (NER)
models, which suffer greatly from unlabeled entity problems. Li
et al. [148] leveraged negative sampling to randomly sample
a small subset of unlabeled instances rather than the whole set.
After that, Li et al. [149] designed a weighted sampling distri-
bution to replace random sampling for boosting performance.

In sentence embedding learning [97], [150], [151], random
sampling is also a common strategy for selecting negative
samples. Guo et al. [150] proposed a hard negative mining
method for bilingual sentence embedding learning, in which se-
lected examples are close to the positive translation in semantic
embedding space. Recently, contrastive learning for sentence
embedding learning has achieved tremendous progress. For
example, CLEAR [151] proposed sentence-level data augmen-
tation for contrastive sentence representation learning, including
word deletion, reordering, and substitution. SimCSE [97] pro-
posed a model-level data augmentation that passed the same sen-
tence twice with different dropout probabilities. The abovemen-
tioned methods focus on the sampling method for positive pairs
where negatives come from the current mini-batch. CLINE [152]
selected semantic negative examples in embedding space. Mo-
CoSE [64] leveraged negative sample queue to obtain better
performance. VaSCL [102] proposed neighborhood constrained
contrastive learning, which utilized KNN to obtain top-K similar
negatives from the current batch as hard negatives. SNCSE [103]
utilized soft negative samples to enhance unsupervised sentence
embedding learning where soft negatives were defined as the
negation of original sentences with similar textual but different
semantics. MixCSE [153] adopted a mixing operation to syn-
thesize hard negatives for unsupervised sentence representation
learning.

In recent years, dense retrieval (DR) models have become a
dominant technique to solve the semantic match problem [126],
[127], [154]. Negative sampling is an indispensable component
for training DR models. EBR [155] adopted a random sampling
strategy to select negatives for embedding-based retrieval mod-
els, which leveraged the triplet loss for recall optimization task.
To improve the efficiency with the demand of a large number of
negatives, several works [126], [127], [154] employed In-batch
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NS where other examples in the same mini-batch are treated as
negatives. In fact, In-batch NS is approximately equivalent to
random negative sampling. Moreover, the experimental results
in RocketQA [127] demonstrated that it is beneficial to increase
the number of negatives by introducing cross-batch negatives.
Another popular direction is to apply hard negatives to train
DR models. Gillick et al. [154] selected the most similar 10
entities based on the current model as hard negatives. Karpukhin
et al. [126] utilized top passages generated by BM25 as hard
negatives. Xiong et al. [104] proposed Approximate nearest
neighbor Negative Contrastive Learning (ANCE) to select hard
negatives by an ANN index. Different from static hard negative
sampling methods, Zhan et al. [131] designed a dynamic hard
negative sampling method, which utilized a trainable query
encoder to retrieve top documents as hard negatives.

In summary, negative sampling in natural language processing
still leaves a lot of room for exploration. For example, how
to develop a better In-batch NS to mine hard negatives and
simultaneously mitigate the false negative issue?

E. Negative Sampling in CV

After several decades of sustained effort, a large number of
supervised methods have achieved significant improvements in
computer vision (CV), which leveraged large datasets with la-
beled examples to learn visual representations. However, large-
scale datasets with labels require human annotation, which is
very expensive and hurts applications on the Internet scale. Con-
trastive learning for unsupervised visual representation learn-
ing becomes a natural way to address this issue, which aims
to learn visual embeddings on unlabeled data. Recent devel-
opments [48], [49], [85], [156], [157] in unsupervised visual
representation learning present a promising potential by using
contrastive loss, which aims to contrastive positive pairs and
negative pairs. Besides, metric learning is one of the basic
learning ways for computer vision.

Generally, negative examples can be obtained either within
a mini-batch or from a memory bank. In-batch negative sam-
pling [48], [156] samples negatives from the current mini-batch.
Memory-based negative sampling [85], [157], [158] samples
negatives from a memory bank that stores mini-batch samples
from previous batches. MoCo [49] argued that larger batch sizes
play a significant role in model learning and maintained a queue
to accumulate a large number of features that serve as negative
samples for model training. SimCLR [48] proposed a simple
framework for contrastive learning, which used all other images
in the current batch as negative samples. Without the assistance
of labels, the false negative issue is an inevitable problem in
contrastive learning, which sampled true label examples from the
data distribution. To address this, Chuang et al. [15] proposed
a debiased contrastive loss (DCL) that corrected the weights
of negatives in the objective. After that, Huynh et al. [130]
proposed false negative cancellation strategies consisting of
elimination and attraction to improve contrastive learning. Be-
sides, Cai et al. [53] conducted an empirical study to analyze
the importance of negative samples and concluded that only 5%
hardest negatives are necessary for high-accuracy contrastive
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learning. Wang et al. [159] investigated the behavior of con-
trastive loss and concluded that loss optimization automatically
focuses on hard negative samples which can be controlled by
the temperature. To improve the performance and efficiency
of contrastive learning, most strategies focus on hard negative
sampling. MoCHi [16] proposed hard negative mixing strategies
for contrastive learning to boost model learning, which syn-
thesized hard negatives by mixing the hardest negatives and a
positive query in the embedding space. Wu et al. [18] proposed
conditional negative sampling to sample negatives within a ring
where negatives in the ring are close but not too close to the
positive example. Such a method is similar to the semi-hard
negative sampling method. Similarly, Xie et al. [51] proposed
four negative sampling strategies based on the cosine distance
criterion between the anchor and negative candidates, comprised
of hard, semi-hard, random, and semi-easy. HCL [17] proposed
an efficient hard negative sampling method that rewrote the
important weights of each negative example, which assigned
higher weights to negatives that are close to the anchor. Different
from hard negative sampling that only selects hard negatives,
HCL adopted DCL to alleviate the false negative issue. Ge
et al. [160] designed texture-based and patch-based negative
sampling strategies to generate hard negative from the input
images, which motivated the model to learn more semantics
rather than superficial features. In addition, several works [50],
[73] leveraged adversarial learning to improve contrastive
learning. For example, CLAE [73] utilized adversarial examples
and adversarial training for contrastive learning to generate hard
negative examples. AdCo [50] adopted GAN for contrastive
learning for sampling more informative negative samples. In
addition, time-contrastive learning [161], [162], [163] is particu-
larly applied to video data where positive and negative examples
for learning are drawn from different timestamps within video
sequences. In this framework, the same time step across different
camera views is similar (positive samples), while frames from
different time steps are dissimilar (negative samples).
Furthermore, numerous methods [13], [41], [110] in computer
vision are designed on the triple loss based on metric learning by
leveraging a max-margin approach to distinguish positive pairs
from negative pairs, which are widely used in object detection,
image classification, and face recognition. The easiest negative
sampling method is random sampling. However, most randomly
sampled negative examples are easy examples that easily satisfy
the margin constraint, which contributes less to the gradients.
To address this problem, [108] focused on mining hard negative
examples that are close in embedding space to enhance the
learning process. Wang et al. [110] mined hard negative triples
after 10 epochs of training with randomly sampled negatives.
However, mining hard negatives requires searching the whole
training set, which is computationally expensive. Besides,
the results in FaceNet [13] showed that the hardest negative
examples significantly decrease the convergence speed and
proposed a semi-hard negative mining strategy. To reduce the
computational complexity, Mao et al. [164] sampled semi-hard
negative examples from a mini-batch rather than the entire train-
ing set. Wu et al. [14] proposed a distance-weighted negative
sampling strategy to optimize the triple loss. Iscen et al. [165]
mined hard negatives for an anchor from its nearest euclidean
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neighbors rather than manifold neighbors defined over the
euclidean nearest neighbor graph. HDC [166] proposed a
hard-aware deeply cascaded embedding to sample negatives
from different hard levels of samples. Harwood et al. [59]
proposed a smart negative sampling strategy for deep metric
learning to sample a smart negative with a tuning variable
and approximate positive examples. Although hard negatives
provide large gradients for model optimization, are easy
negatives really useless for metric learning? DAML [75]
argued that easy negatives should not be neglected since these
play a supplementary role in hard negatives, which utilized
a hard negative generator to synthesize hard negatives from
easy ones. Here, we plot a figure to intuitively illustrate the
selection of negative examples in metric learning (See Fig. 11).
In hard negative mining, the sampled hard negative examples
are too close to the anchor, which leads to a high variance
on the gradient and hinders the model from learning better
representations. In semi-hard negative mining, the sampled
negative examples fall in the margin region, which promises the
similarity of the positive pair is higher than the negative one.

In summary, negative sampling in computer vision has leftus a
lot of room to explore. For example, how many negative samples
are the best choices? Due to the emergence of negative-free
methods, are negative samples really needed?

V. DISCUSSION AND FUTURE DIRECTIONS

In this section, we discuss several open problems in negative
sampling and provide future directions for negative sampling
to facilitate the development of this field. Here, we need to
answer a series of questions. Is negative sampling necessary?
If not, what kind of training paradigm is needed, and if so, how
many negative samples are needed, and what quality of negative
samples are needed?

Non-Sampling: Despite a myriad of negative sampling meth-
ods that have emerged recently, another hot direction is a non-
sampling strategy that takes all negative samples into consid-
eration in model optimization. Non-sampling strategy generally
assigns lower weights for negative samples compared to positive
ones. Such a setting is consistent with our intuition that positive
samples should be evaluated with higher weights than negative
ones. Due to the efficiency of non-sampling strategy, several
efforts [167], [168], [169], [170] focus on promoting the effi-
ciency of mini-batch Stochastic Gradient Descent (SGD) based
methods. For example, Chen et al. [168] adopted non-sampling
strategies for recommendation. Such a non-sampling strategy is
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also applicable for knowledge graph embedding learning [170]
and word embedding [167]. Although the abovementioned
works demonstrate that a non-sampling strategy can provide
a more stable way for model optimization, its efficiency is a
non-negligible issue. How to design a more efficient method for
model optimization incorporated with a non-sampling strategy?
Furthermore, a non-sampling strategy for other domains is not
fully explored.

Getting Rid of Negative Sampling: Due to the quality and
quantity of negative samples playing a significant impact on
downstream performance, several works [171], [172], [173],
[174] attempt to get rid of negative sampling and adopt other
paradigms for model learning. SWAV [171] adopted online
clustering to compare the consistency between cluster assign-
ments rather than image features, which did not require explicit
negative instances for unsupervised visual learning. BYOL [172]
only utilized positive pairs without negative pairs for self-
supervised learning, which adopted two neural networks to
directly achieve prediction from one view to another view for
the same image. SimSiam [173] presented a simple siamese
network for representation learning, which also discards neg-
ative sample pairs. BGRL [174] also alleviates negative sam-
pling for large-scale graph representation learning. Furthermore,
generative self-supervised learning methods without negative
sampling have been successfully applied in NLP [26], CV [175]
and graph [176]. Thus, a promising research direction is to
explore new learning methods or other alternatives to negative
sampling.

The Quantity of Negative Samples: How many negative sam-
ples are needed? Arora et al. [177] proposed a theoretical
analysis for contrastive learning to demonstrate a performance
degradation by using larger negative samples. Wu et al. [178]
proposed an adaptive negative sampling (ANS) method to dy-
namically adjust the ratio during the training process. Ash
etal. [179] continued to investigate the number of negative ex-
amples in contrastive learning and revealed that the selection of
optimal negative example size relies on the underlying concepts
in the data. To address this gap between the theoretical analysis
and empirical results, Nozawa et al. [180] proposed a lower
bound for self-supervised learning, which aimed to adjust col-
lision probability according to the number of negative samples.
Recently, Awasthi et al. [181] argued that a collision-coverage
trade-off is not an inherent property in contrastive learning,
and claimed that the downstream performance does not degrade
with the increasing of negative examples in a simple theoretical
setting. Furthermore, Sohn [182] proposed an N-pair loss by
adopting multiple negative samples for boosting deep metric
learning. Although some works attempt to explain or explore the
impact of negative sample size, there is still no one answer to
what is the standard of negative sample size for a specific domain
or even task. In practical applications, the quantity of negative
samples is determined by a large number of trials. In the future,
we are eager to obtain a criterion for a negative sample size.

The Quality of Negative Samples: Are the hardest negative
samples the best ones? Does model optimization really not
require easy negative samples? Results in several efforts demon-
strated that easy negative samples play a crucial role in the
early training stage. For example, Wang et al. [110] conducted
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random sampling to mine easy negatives in the first 10 epochs
before mining hard negatives. CuCo [100] utilized curriculum
learning to mine negative samples from easy to hard. DAML [75]
highlighted the importance of easy negative samples for early
stable training. Furthermore, many works have demonstrated
that the hardest negative samples are not beneficial for model
stability and robustness. For example, FaceNet [13] proposed
semi-hard negative samples. Wu et al. [18] proposed to sam-
ple negatives with a ring constraint. Therefore, hard negative
sampling should fully consider easy negatives and control the
hardness of hard negatives. How to naturally and dynamically
add easy negatives into hard negative sampling is a vital and
worth exploring problem. Hardness of negative samples for
model optimization is also a valuable research direction.

False Negative Issue: As a common and inevitable challenge
for negative sampling, the false negative issue mainly comes
from two aspects. The first is derived from unlabeled data
in contrastive learning. Negative sampling in contrastive
learning simultaneously focuses on mining hard negatives
and mitigating the false negative issue. The second is that
false negative instances naturally exist in implicit feedback
in the recommendation domain. Although some strategies are
employed to alleviate the false negative issue, it is impossible
to eliminate this issue fundamentally under the paradigm of
contrastive learning. Generative self-supervised learning can
completely avoid this issue, which gets rid of negative sampling
and becomes a powerful alternative for contrastive learning in
unsupervised representation learning. In summary, alleviating
or even eliminating the false negative issue is a meaningful
research direction.

VI. CONCLUSION

In this survey, we have conducted an extensive review of the
landscape of negative sampling techniques across a multitude
of domains. Negative sampling is a fundamental technique in
machine learning, which can accelerate the training process
and boost downstream performance. We summarize a general
negative sampling framework and develop a tool that contains
many negative sampling methods among various domains. The
selection methods for negative candidates are summarized,
including global, local, mini-batch, hop, and memory-based.
Besides, we categorize all existing negative sampling methods
into five groups (static, hard, GAN-based, Auxiliary-based, and
In-batch) and demonstrate their pros and cons. Furthermore, we
illustrate negative sampling applications in various domains. Fi-
nally, open problems and future directions of negative sampling
are presented.
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