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Abstract—Video-based remote physiological measurement uti-
lizes facial videos to measure the blood volume change signal, which
is also called remote photoplethysmography (rPPG). Supervised
methods for rPPG measurements have been shown to achieve good
performance. However, the drawback of these methods is that they
require facial videos with ground truth (GT) physiological signals,
which are often costly and difficult to obtain. In this paper, we
propose Contrast-Phys+, a method that can be trained in both
unsupervised and weakly-supervised settings. We employ a 3DCNN
model to generate multiple spatiotemporal rPPG signals and incor-
porate prior knowledge of rPPG into a contrastive loss function.
We further incorporate the GT signals into contrastive learning to
adapt to partial or misaligned labels. The contrastive loss encour-
ages rPPG/GT signals from the same video to be grouped together,
while pushing those from different videos apart. We evaluate our
methods on five publicly available datasets that include both RGB
and Near-infrared videos. Contrast-Phys+ outperforms the state-
of-the-art supervised methods, even when using partially available
or misaligned GT signals, or no labels at all. Additionally, we
highlight the advantages of our methods in terms of computational
efficiency, noise robustness, and generalization.

Index Terms—Remote photoplethysmography, face video,
unsupervised learning, weakly-supervised learning, semi-
supervised learning, contrastive learning.

I. INTRODUCTION

IN THE realm of traditional physiological measurement,
skin-contact sensors are commonly employed to capture
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physiological signals. Examples of such sensors include contact
photoplethysmography (PPG) and electrocardiography (ECG).
These sensors enable the derivation of crucial physiological
parameters such as heart rate (HR), respiration frequency (RF),
and heart rate variability (HRV). However, the reliance on skin-
contact sensors necessitates specialized biomedical equipment
like pulse oximeters, which can lead to discomfort and skin
irritation. An alternative approach is remote physiological mea-
surement, which employs cameras to record facial videos for
the measurement of remote photoplethysmography (rPPG). This
technique harnesses the ability of cameras to capture subtle color
changes in the human face, from which multiple physiological
parameters including HR, RF, and HRV can be extracted [1].
Unlike traditional methods, video-based physiological measure-
ment relies on readily available cameras rather than specialized
biomedical sensors. This approach offers the advantage of not
being constrained by physical proximity, rendering it particu-
larly promising for applications in remote healthcare [2], [3],
[4], emotion analysis [5], [6], [7], [8], and face security [9],
[10], [11].

In earlier studies related to rPPG [1], [12], [13], [14], re-
searchers devised handcrafted features to extract rPPG signals.
Subsequently, several deep learning (DL)-based methods [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24] were introduced.
These DL-based approaches utilize supervised techniques and
diverse network architectures to measure rPPG signals. Under
certain conditions, such as when head movements are present
or the videos exhibit heterogeneity, DL-based methods tend to
exhibit greater robustness compared to traditional handcrafted
approaches. However, it’s important to note that DL-based rPPG
methods heavily rely on extensive datasets comprising face
videos and ground truth (GT) physiological signals. Acquiring
GT physiological signals, typically measured by contact sensors
and synchronized with facial videos, can be a costly endeavor. Is-
sues like missing GT signals or misalignment with facial videos
during data collection are common challenges encountered in
this context.

Considering the cost and challenges associated with obtaining
GT physiological signals, we propose an unsupervised and
weakly-supervised method for rPPG measurement, particularly
when dealing with data that lacks complete or high-quality
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labels. The unsupervised method can effectively process fa-
cial videos that lack GT signals, while the weakly-supervised
method can be employed when dealing with data containing
incomplete or low-quality labels, where GT signals may be
missing or misaligned.

In our approach, we leverage four key rPPG observations
as foundational knowledge. 1) rPPG spatial similarity: rPPG
signals obtained from different facial regions tend to exhibit
similar power spectrum densities (PSDs). 2) rPPG temporal
similarity: Segments of rPPG data taken within short time in-
tervals (e.g., two consecutive 5-second clips) typically display
similar PSDs, as HR tends to transition smoothly in most cases.
3) Cross-video rPPG dissimilarity: PSDs of rPPG signals from
different videos often exhibit variations. 4) HR range constraint:
The HR typically falls within the range of 40 to 250 beats per
minute (bpm).

In our prior ECCV 2022 publication [25], we intro-
duced Contrast-Phys, an unsupervised learning framework. The
present work, referred to as Contrast-Phys+, represents an exten-
sion of our earlier research. This work contributes significantly
in the following ways:
� We propose Contrast-Phys+, a versatile model capable of

adapting to diverse data conditions, including scenarios
with no labels, partial labels, or misaligned labels. Impor-
tantly, Contrast-Phys+ operates effectively in both unsu-
pervised and weakly-supervised settings. To the best of
our knowledge, Contrast-Phys+ is the first work to train an
rPPG model in both weakly-supervised and unsupervised
settings.

� We showcase the efficacy of Contrast-Phys+ in weakly-
supervised scenarios, where some ground truth signals may
be missing or lack synchronization. Remarkably, Contrast-
Phys+ with missing labels exhibits performance that can
surpass that of fully supervised methods employing com-
plete label sets. Moreover, Contrast-Phys+ demonstrates
significantly enhanced robustness when faced with ground
truth signal desynchronization, outperforming other fully
supervised methods.

� We conduct extensive experiments and analyses pertaining
to Contrast-Phys+. A comprehensive performance compar-
ison is also offered, contrasting the capabilities of Contrast-
Phys+ against recent state-of-the-art baselines. Additional
experiments also demonstrate that Contrast-Phys+ can use
unlabeled data to expand and diversify the training dataset
for improved generalization. We also offer a thorough anal-
ysis of the reasons why Contrast-Phys+ can be effective in
unsupervised and weakly-supervised scenarios. Besides,
we present statistical analysis to validate the proposed
rPPG observations and include detailed ablation studies
to substantiate the effectiveness of Contrast-Phys+.

II. RELATED WORK

A. Video-Based Remote Physiological Measurement

The concept of measuring remote photoplethysmography
(rPPG) from facial videos via the green channel was initially
introduced by Verkruysse et al. [12]. Subsequently, various

handcrafted methods [1], [13], [14], [26], [27], [28], [29],
[30] were proposed to enhance the quality of rPPG signals.
These methods, predominantly developed in the earlier years,
relied on manual procedures and did not necessitate training
datasets, earning them the label of ”traditional methods.” In
recent years, deep learning (DL) techniques have surged in
rPPG measurement. Some studies [15], [16], [20], [24], [31]
employed a 2D convolutional neural network (2DCNN) with two
consecutive video frames as input for rPPG estimation. Another
category of DL-based methods [21], [22], [23], [32], [33] uti-
lized spatial-temporal signal maps extracted from various facial
regions as input for 2DCNN models. Additionally, 3DCNN-
based methods [17], [18], [34] were introduced to achieve high
performance, particularly on compressed videos [18]. These
DL-based approaches, categorized as supervised methods, de-
mand both facial videos and ground truth (GT) physiological
signals for training. More recently, Wang et al. [35] proposed a
self-supervised rPPG method to acquire rPPG representations,
although it still necessitates heart rate (HR) labels for fine-tuning
the rPPG model. Gideon et al. [34] introduced the first unsuper-
vised rPPG method, which does not rely on GT physiological
signals for training. However, this method, while pioneering,
exhibits lower accuracy compared to state-of-the-art supervised
methods and can be sensitive to external noise. Subsequent
to these developments, multiple unsupervised rPPG techniques
have emerged [25], [36], [37], [38]. These unsupervised rPPG
methods have gained attention because they solely require facial
videos for training, eliminating the need for GT signals, yet
they achieve performance levels similar to those of supervised
methods. This is particularly advantageous given the expense
associated with collecting GT signals alongside facial videos.
However, none of the methods above considered utilizing partial
or low-quality labels to further refine rPPG signal quality.

B. Contrastive Learning

Contrastive learning, a widely adopted self-supervised learn-
ing technique in computer vision tasks, empowers deep learn-
ing models to map high-dimensional images or videos into
lower-dimensional feature embeddings without the need for
labeled data [39], [40], [41], [42], [43], [44], [45], [46], [47]. Its
primary objective is to ensure that features derived from different
perspectives of the same sample (referred to as positive pairs) are
brought closer together, while features from different samples
(referred to as negative pairs) are pushed apart. This approach
finds extensive utility in pre-training models, thereby facilitating
subsequent task-specific training in domains such as image clas-
sification [42], video analysis [47], [48], face recognition [40],
and face detection [49]. This is particularly advantageous in
situations characterized by limited access to labeled data. In
our research, we leverage prior knowledge related to remote
photoplethysmography (rPPG) to generate suitable positive and
negative pairs of rPPG signal instances for contrastive learn-
ing. Diverging from prior methodologies that focus on feature
embedding, our proposed method, Contrast-Phys+, possesses
the capability to directly generate rPPG signals without the
need for labeled data, thereby enabling unsupervised learning.
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Fig. 1. Illustration of rPPG spatial similarity. The rPPG signals from four facial areas (A, B, C, D) have similar waveforms and power spectrum densities (PSDs).

Additionally, we harness ground truth (GT) signals to construct
positive/negative pairs for contrastive learning, thus facilitating
end-to-end weakly-supervised training even in scenarios where
labels are missing or of suboptimal quality.

III. OBSERVATIONS ABOUT RPPG

This section describes four observations about rPPG, which
are the preconditions to designing Contrast-Phys+ and enabling
unsupervised and weakly-supervised learning.

A. rPPG Spatial Similarity

rPPG signals originating from various facial regions exhibit
analogous waveforms, accompanied by the similarity in their
Power Spectrum Densities (PSDs). This spatial coherence in
rPPG signals has been leveraged in the design of multiple
methodologies, as demonstrated in prior works [27], [28], [29],
[50], [51], [52], [53]. While subtle phase and amplitude dispar-
ities may exist in the temporal domain when comparing rPPG
signals from distinct skin areas [54], [55], these distinctions be-
come inconsequential when rPPG waveforms are analyzed in the
frequency domain, where PSDs are normalized. As illustrated
in Fig. 1, the rPPG waveforms derived from four distinct spatial
regions share a striking resemblance, characterized by identical
peaks in their respective PSDs.

B. rPPG Temporal Similarity

The heart rate (HR) undergoes gradual changes within short
time frames, as noted by Gideon et al. [34]. A similar finding
was reported by Stricker et al. [56], who observed slight HR
variations in their dataset over short time intervals. Given that
HR is prominently represented by a dominant peak in the PSD, it
follows that the PSD experiences minimal fluctuations as well.
Therefore, when randomly selecting small temporal windows
from a brief rPPG segment (e.g., 10 seconds), one can anticipate
that the PSDs of these windows will exhibit similarity. As
depicted in Fig. 2, we illustrate this by sampling two 5-second
windows from a 10-second rPPG signal and comparing the PSDs
of these windows. Indeed, the two PSDs demonstrate similarity,
with dominant peaks occurring at identical frequencies. It is
important to note that this observation holds true when dealing
with short-term rPPG signals. We will delve into the impact of

Fig. 2. Illustration of rPPG temporal similarity. The rPPG signals from two
temporal windows (A, B) have similar PSDs.

signal duration on our model’s performance in the forthcoming
ablation study.

We can summarize spatiotemporal rPPG similarity using the
following relation.

PSD {G (v(t1 → t1 +Δt,H1,W1))} ≈ PSD{G(v(t2 → t2

+Δt,H2,W2))} (1)

In this relation, v ∈ RT×H×W×3 represents a facial video,
and G signifies an rPPG measurement algorithm. We can select
a facial region defined by height H1 and width W1 and a time
interval t1 → t1 +Δt from video v to derive one rPPG signal.
A similar rPPG signal can be obtained from the same video,
utilizing parameters H2, W2, and t2 → t2 +Δt. To meet the
criteria for short-term rPPG signals, the temporal separation
|t1 − t2| should remain small.

C. Cross-Video rPPG Dissimilarity

rPPG signals obtained from different facial videos exhibit
distinct PSDs. This divergence arises from the fact that each
video features distinct individuals with varying physiological
conditions, such as physical activity and emotional states, which
are known to influence HRs [57]. Even in cases where HRs
between two videos may appear similar, disparities in the PSDs
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Fig. 3. Most similar (left) and most different (right) cross-video PSD pairs in
the OBF dataset.

can persist. This is due to the presence of additional physio-
logical factors within the PSDs, such as respiration rate [58]
and HRV [59], which are unlikely to align entirely across dif-
ferent videos. To substantiate this observation, we conducted
an analysis involving the calculation of mean squared errors
for cross-video PSD pairs within the OBF dataset [60]. The
results, illustrated in Fig. 3, underscore the primary dissimilarity
in cross-video PSDs as being centered around the heart rate peak.

This cross-video rPPG dissimilarity is described by the fol-
lowing relation:

PSD {G (v(t1 → t1 +Δt,H1,W1))}
�= PSD {G (v′(t2 → t2 +Δt,H2,W2))} (2)

where v and v′ represent two distinct videos. By selecting
specific facial areas and time intervals from these videos, one
can expect the PSDs of the two resulting rPPG signals to exhibit
noticeable differences.

D. HR Range Constraint

The typical HR range for the majority of individuals falls
within the interval of 40 to 250 beats per minute (bpm) [61]. In
line with established practices [1], [62], this HR range serves
as the basis for rPPG signal filtering, with the highest peak
identified within this range to estimate HR. Consequently, our
method will primarily concentrate on PSD within the frequency
band of 0.66 Hz to 4.16 Hz.

IV. METHOD

In this section, we propose Contrast-Phys+ for weakly-
supervised and unsupervised rPPG learning as shown in Fig. 4.
We describe the face preprocessing in Section IV-A, the ST-rPPG
block representation in Section IV-B, the rPPG spatiotemporal
sampling in Section IV-C, and the contrastive loss function in
Section IV-E.

A. Preprocessing

The initial step involves preprocessing the original video, and
the primary task is facial cropping. Utilizing OpenFace [63],
we generate facial landmarks. To determine the central facial
point for each frame, we compute the minimum and maximum
horizontal and vertical coordinates of these landmarks. Subse-
quently, a bounding box is established, sized at 1.2 times the
vertical coordinate range of the landmarks observed in the initial

Algorithm 1: rPPG Spatiotemporal Sampling.
Input: ST-rPPG block: P with shape T × S × S, Number
of rPPG samples per spatial location: K, The default
rPPG sample length Δt = T/2

1: Initialze an empty list H for storing all rPPG samples
2: for h,w ∈ {1, . . ., S}, {1, . . ., S} do � Loop over all

spatial locations
3: for k ∈ {1, . . .,K} do � K rPPG samples per spatial

location
4: Randomly choose a starting time t between 0 and

T −Δt
5: Append the rPPG sample P (t → t+Δt, h, w) into

the list H
6: end for
7: end for
Output: The list H = [p1, . . ., pN ] containing rPPG
samples

frame, and this size remains constant for all subsequent frames.
With the central facial point and bounding box size determined
for each frame, we proceed to crop the face in every frame.
These cropped facial regions are then resized to dimensions of
128× 128, rendering them ready for input into our model.

B. Spatiotemporal rPPG (ST-RPPG) Block Representation

We have adapted the 3DCNN-based PhysNet [17] to compute
the ST-rPPG block representation. Our modified model takes
as input an RGB video with dimensions T × 128× 128× 3,
where T represents the number of frames. In the final stage
of our model, we employ adaptive average pooling to perform
downsampling along spatial dimensions, enabling control over
the output spatial size. This alteration facilitates the generation
of a spatiotemporal rPPG block with dimensions T × S × S,
where S denotes the length of the spatial dimension, as depicted
in Fig. 5. Further elaboration on the 3DCNN model is available
in the supplementary material, available online.

The ST-rPPG block is essentially a collection of rPPG signals
embedded within spatiotemporal dimensions. To denote this
ST-rPPG block, we useP ∈ RT×S×S . When selecting a specific
spatial location (h,w) within the ST-rPPG block, the corre-
sponding rPPG signal P (·, h, w) is extracted from the receptive
field associated with that spatial position in the input video. It is
worth noting that when the spatial dimension length S is small,
each spatial position within the ST-rPPG block encompasses a
larger receptive field, albeit with fewer rPPG signals contained
within the block. Importantly, the receptive field of each spatial
position in the ST-rPPG block encompasses a portion of the
facial region, ensuring that all spatial positions in the ST-rPPG
block encompass valuable rPPG information.

C. rPPG Spatiotemporal Sampling

In the process of generating rPPG samples from the ST-rPPG
block, as depicted in Fig. 5, which is the spatial and tempo-
ral sampler illustrated in Fig. 4, we employ both spatial and
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Fig. 4. Diagram of Contrast-Phys+ for weakly-supervised or unsupervised learning.

Fig. 5. Spatial and temporal sampler for an ST-rPPG block.

temporal sampling techniques. For spatial sampling, we extract
the rPPG signal denoted as P (·, h, w) from a specific spatial
position. In the case of temporal sampling, we select a short
time interval from P (·, h, w), resulting in the final spatiotem-
poral sample, denoted as P (t → t+Δt, h, w), where h and w
represent the spatial position, t signifies the starting time, and
Δt signifies the duration of the time interval.

Given an ST-rPPG block, we iterate through all spatial posi-
tions and extract K rPPG clips, each with a randomly selected
starting time t, for each spatial position as shown in Algorithm
1. Consequently, we obtain a total of N = S · S ·K rPPG clips
from the ST-rPPG block. It is important to note that these
sampling procedures are employed to generate multiple rPPG
samples for use in contrastive learning during the model training

Fig. 6. Temporal sampler for a GT signal.

phase. During inference, the ST-rPPG block is spatially averaged
to yield the final rPPG signal.

D. GT Signal Temporal Sampling

Unlike ST-rPPG blocks, which encompass spatiotemporal
signals, GT signals, which are one-dimensional temporal sig-
nals, necessitate different sampling approaches. Given the di-
mensional disparity between GT signals and ST-rPPG blocks,
we employ temporal sampling for GT signals and spatiotemporal
sampling for ST-rPPG blocks. The GT signal temporal sampling
process, as depicted in Fig. 6, entails selecting a short time
interval from the GT signal y, resulting in a temporal sample
denoted as y(t → t+Δt), where t represents the starting time,
andΔt signifies the duration of the time interval. For a single GT
signal, we sampleN GT clips, each with a randomly determined
starting time t.
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As illustrated in both the top and bottom branches of Fig. 4,
the GT signals y and y′ corresponding to the facial videos
v and v′ undergo temporal sampling, generating two sets of
GT samples, namely [q1, . . ., qN ] and [q′1, . . ., q

′
N ], respectively.

Subsequently, these two sets of GT samples are transformed
into two sets of PSDs, denoted as [g1, . . ., gN ] and [g′1, . . .g

′
N ],

respectively.

E. Contrastive Loss for Contrast-Phys+

As illustrated in Fig. 4, our process begins with the selection
of two distinct videos randomly chosen from a dataset as input.
For each video, we derive an ST-rPPG block denoted as P , a set
of rPPG samples [p1, . . . , pN ], and their corresponding rPPG
PSDs [f1, . . . , fN ]. If the GT signal is available for this video,
we additionally obtain a set of GT signal samples [q1, . . . , qN ]
and their corresponding GT PSDs [g1, . . . , gN ]. This procedure
is repeated for the second video. Note that we normalize each
PSD by dividing it by its summation, ensuring all PSDs are on
the same scale.

As shown in Fig. 4 (right), the underlying principle of our
contrastive loss lies in the alignment of GT-rPPG or rPPG-rPPG
PSD pairs stemming from the same video, while simultaneously
pushing apart GT-rPPG or rPPG-rPPG PSD pairs originating
from different videos. The HR range constraint is imposed after
the rPPG signals are converted to PSDs. We only keep PSD
values within the HR range of 0.66 Hz to 4.16 Hz (corresponding
to 40 to 250 beats per minute) while removing the PSD values
outside the HR range, so only the PSD values within the HR
range are used in our method. The HR range constraint has no
impact on the input videos.

rPPG-rPPG Positive Loss: In accordance with the rPPG
spatiotemporal similarity, it is expected that the rPPG PSDs
resulting from spatiotemporal sampling of the same ST-rPPG
block should exhibit similarity. The following relations outline
this property for the two input videos:

For one video:

PSD {P (t1 → t1 +Δt, h1, w1)}
≈ PSD {P (t2 → t2 +Δt, h2, w2)}
=⇒ fi ≈ fj , i �= j (3)

For the other video:

PSD {P ′(t1 → t1 +Δt, h1, w1)}
≈ PSD {P ′(t2 → t2 +Δt, h2, w2)}
=⇒ f ′

i ≈ f ′
j , i �= j (4)

To bring together the rPPG PSDs from the same video, we
employ the mean squared error as the loss function for rPPG-
rPPG positive pairs, denoted as (fi, fj). The rPPG-rPPG positive
loss term, LRR

p , is presented below, and it is normalized with
respect to the total number of rPPG-rPPG positive pairs.

LRR
p =

N∑
i=1

N∑
j=1
j �=i

‖ fi − fj ‖2 + ‖ f ′
i − f ′

j ‖2
2N(N − 1)

(5)

rPPG-rPPG Negative Loss: In accordance with the cross-
video rPPG dissimilarity, it is expected that the rPPG PSDs re-
sulting from spatiotemporal sampling of two different ST-rPPG
blocks should differ. We can employ the following relation to
describe this property for the two input videos:

PSD {P (t1 → t1 +Δt, h1, w1)}
�= PSD {P ′(t2 → t2 +Δt, h2, w2)}
=⇒ fi �= f ′

j (6)

To separate the rPPG PSDs originating from two different
videos, we utilize the negative mean squared error as the loss
function for rPPG-rPPG negative pairs, represented as (fi, f ′

j).
The rPPG-rPPG negative loss term, denoted asLRR

n , is presented
below, and it is normalized with respect to the total number of
rPPG-rPPG negative pairs.

LRR
n = −

N∑
i=1

N∑
j=1

‖ fi − f ′
j ‖2 /N2 (7)

GT-rPPG Positive Loss: Inspired by the rPPG temporal simi-
larity, it is expected that the rPPG PSDs from temporal sampling
of the ST-rPPG block and the GT PSDs from temporal sampling
of the corresponding GT signal should be similar since GT
signals are the reference of rPPG signals. The following relations
outline this property.

For one input video and the corresponding GT signal:

PSD {P (t1 → t1 +Δt, h1, w1)} ≈ PSD {y(t2 → t2 +Δt)}
=⇒ fi ≈ gj (8)

For the other video and the corresponding GT signal:

PSD {P ′(t1 → t1 +Δt, h1, w1)} ≈ PSD {y′(t2 → t2 +Δt)}
=⇒ f ′

i ≈ g′j (9)

The GT-rPPG positive lossLGR
p is to pull together rPPG PSDs

from one ST-rPPG block and GT PSDs from the corresponding
GT signal (GT-rPPG positive pairs, e.g., (fi, gj) where fi is
from ST-rPPG block P and gj is from the corresponding GT
signal y) so that the model is encouraged to output rPPG signals
similar to the corresponding GT signals. Note that this GT-rPPG
positive loss does not require exactly synchronized GT signals
since rPPG PSDs and GT PSDs are from rPPG samples and
GT samples which are randomly temporally sampled from the
ST-rPPG block and the GT signal. This indicates that GT-rPPG
positive loss does not need the alignment information between
the GT signal and the video. Since it is assumed that some videos
may not have GT signals in weakly-supervised learning, the
function φ is defined below to return whether a video has a GT
signal.

φ(v) =

{
1, video v has a GT signal
0, otherwise

(10)
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The GT-rPPG positive loss term LGR
p is defined below, which is

normalized by the number of GT-rPPG positive pairs.

LGR
p =

N∑
i=1

N∑
j=1

φ(v) ‖ fi − gj ‖2 +φ(v′) ‖ f ′
i − g′j ‖2

(φ(v) + φ(v′))N2
(11)

GT-rPPG Negative Loss: Like the cross-video rPPG dissim-
ilarity, it is expected that the rPPG PSDs sampled from the
ST-rPPG block and the GT PSDs from temporal sampling of the
non-corresponding GT signal should be different. The following
relations illustrate this property.

For one input video and the non-corresponding GT signal:

PSD {P (t1 → t1 +Δt, h1, w1)} �= PSD {y′(t2 → t2 +Δt)}
=⇒ fi �= g′j (12)

For the other input video and the non-corresponding GT
signal:

PSD {P ′(t1 → t1 +Δt, h1, w1)} �= PSD {y(t2 → t2 +Δt)}
=⇒ f ′

i �= gj (13)

The GT-rPPG negative loss term LGR
n pushes away PSDs

from one ST-rPPG block and a non-corresponding GT signal
(GT-rPPG negative pairs, e.g., (fi, g′j)where fi is from ST-rPPG
block P and g′j is from the non-corresponding GT signal y′) so
that more negative pairs can be involved during the contrastive
learning. [42] has demonstrated that more negative samples
in contrastive learning can improve performance and facilitate
convergence. The GT-rPPG negative loss LGR

n is defined below,
which is normalized by the number of GT-rPPG negative pairs.

LGR
n = −

N∑
i=1

N∑
j=1

φ(v) ‖ f ′
i − gj ‖2 +φ(v′) ‖ fi − g′j ‖2
(φ(v) + φ(v′))N2

(14)
Overalle Loss: The overall loss function for Contrast-Phys+

is the combination of the four losses, which can adapt to both
unsupervised and weakly-supervised settings.

LCP+ = LRR
p + LRR

n + LGR
p + LGR

n (15)

F. Why Contrast-Phys+ Works With Missing or
Unsynchronized Labels

The four rPPG observations are used as constraints to make
the model learn the target rPPG signal and exclude noises since
noises do not satisfy all observations. Noises that appear in a
small local region, such as periodical eye blinking, are excluded
since the noises violate rPPG spatial similarity. Noises such as
head motions/facial expressions that do not have a temporal con-
stant frequency are excluded since they violate rPPG temporal
similarity. The rPPG spatiotemporal similarity is satisfied by
minimizing rPPG-rPPG positive loss LRR

p . Cross-video rPPG
dissimilarity can make two videos’ PSDs discriminative and
show distinguishable heart rate peaks between two videos’ PSDs
since heart rate peaks are the main features to distinguish two
videos’ PSDs as shown in Fig. 3. Cross-video rPPG dissimilarity
is fulfilled by minimizing rPPG-rPPG negative loss LRR

n . In
addition, PSD values during the heart rate range are used so that

Fig. 7. Illustration showing that temporally sampled GT/rPPG are similar and
independent of the exact synchronization.

noises such as light flickering exceeding the heart rate range are
excluded due to the heart rate range constraint.

The loss function LCP+ can always be used even though
some GT signals are missing. rPPG-rPPG positive lossLRR

p and
rPPG-rPPG negative loss LRR

n using rPPG observations do not
require GT signals. GT-rPPG positive loss LGR

p and GT-rPPG
negative loss LGR

n using GT signals can be adapted to different
situations (e.g., Both videos have GT signals, only one video
has a GT signal, or neither video has a GT signal).

Contrast-Phys+ is also robust to unsynchronized GT signals.
GT-rPPG negative lossLGR

n is only intended to increase negative
pairs using GT samples and rPPG samples for improved con-
trastive learning [42], so the loss does not require synchroniza-
tion between facial videos and GT signals. GT-rPPG positive
loss LGR

p encourages the rPPG PSD to be similar to the GT
PSD. When the GT signal is not precisely synchronized with the
facial video, temporally sampled GT/rPPG for the same video
can still share similar PSDs since PSDs do not change rapidly in
a short time interval as shown in Fig. 7. The temporal sampling
of GT/rPPG also removes alignment between the GT signal and
the video to some extent, making GT-rPPG positive loss LGR

p

independent of the exact synchronization. Therefore, temporally
sampled GT/rPPG for the same video can be pulled together in
the unsynchronized case. We can also use the following relations
to demonstrate that GT-rPPG positive loss LGR

p is robust to
GT signal misalignment. Suppose that the GT signal y(t) has
a small misalignment u, resulting y(t+ u). The PSDs of tem-
poral samples of y(t) and y(t+ u) are PSD{y(t2 → t2 +Δt)}
and PSD{y(t2 + u → t2 + u+Δt)}, respectively. According
to the temporal similarity in Section III-B,

PSD{y(t2 → t2 +Δt)} ≈ PSD{y(t2 + u → t2 + u+Δt)}
(16)

holds if |t2 + u− t2| = |u| is small where u is the small mis-
alignment. Combine the above relation with relation (8), we get
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PSD {P (t1 → t1 +Δt, h1, w1)} ≈ PSD {y(t2 → t2 +Δt)}
≈ PSD{y(t2 + u → t2 + u+Δt)} (17)

which indicates that rPPG samples from the ST-rPPG block P
are similar to the GT samples from the misaligned GT signal
y(t+ u). Therefore, our method is robust to GT signal mis-
alignment.

V. EXPERIMENTS

A. Experimental Setup and Metrics

1) Datasets: We conducted experiments using five common
rPPG datasets, encompassing RGB and NIR videos recorded
under diverse scenarios. Specifically, we employed the PURE
dataset [56], UBFC-rPPG dataset [64], OBF dataset [60], and
MR-NIRP dataset [30], [65] for intra-dataset evaluations. Ad-
ditionally, we employed the MMSE-HR dataset [66] for both
intra-dataset and cross-dataset evaluations. We also use the
EquiPleth dataset [67] to evaluate the fairness performance on
different skin tones. In addition, we also compare our method
with other baselines when training on synthetic rPPG datasets
including UCLA-Synth [68] and SCAMPS [69].

PURE [56] comprises facial videos from ten subjects recorded
in six distinct setups, encompassing both static and dynamic
tasks. To ensure consistency, we followed the same experimental
protocol used in previous studies [16], [23] for partitioning the
training and test sets.

UBFC-rPPG [64] comprises facial videos from 42 subjects
who participated in a mathematical game designed to elevate
their heart rates. For evaluation, we adhered to the protocol
outlined in [23] for train-test split.

OBF [60] encompasses 200 videos from 100 healthy subjects
recorded both before and after exercise sessions. To facilitate
a fair comparison with prior work, we conducted subject-
independent ten-fold cross-validation, as previously described
in [17], [18], [22].

MR-NIRP [30], [65] contains NIR videos of eight subjects,
capturing instances of subjects remaining stationary as well
as engaging in motion tasks. Due to its limited scale and the
inherent challenge of weak rPPG signals in NIR [70], [71], we
employed a leave-one-subject-out cross-validation protocol for
our experiments. Both stationary and motion videos are used.

MMSE-HR [66] includes 102 videos from 40 subjects
recorded during emotion elicitation experiments. Given the pres-
ence of spontaneous facial expressions and head movements,
we conducted subject-independent 5-fold cross-validation for
intra-dataset testing on the MMSE-HR dataset. Further details
regarding these datasets are available in the supplementary ma-
terial, available online.

EquiPleth [67] includes 91 participants (28 light. 49 medium,
and 14 dark skin tone participants). Each subject has 6 record-
ings, and each recording has a 30 s RGB video and radar
data. The GT PPG signals are recorded and synchronized with
the RGB videos and radar data. We use the predefined train,
validation, and test splits and report the results on the test set.

We use the RGB data and GT PPG signals to train and test our
method on different skin tones.

There are two synthetic rPPG datasets including UCLA-
Synth [68] and SCAMPS [69]. The avatar facial videos are
rendered by graphic pipelines. The GT PPG signals are tem-
porally modulated with skin albedo maps to produce the skin
color variations induced by rPPG. In addition, head motions
and facial expressions are added during rendering. UCLA-Synth
has 476 avatar subjects including 120 African, 118 Asian, 120
Caucasian, and 118 Indian avatar subjects. Each avatar subject
has a 70-second facial video and GT signal. SCAMPS has 2800
avatar subjects with diverse skin tones and facial appearances.
Each avatar subject has a 20-second facial video and GT signal.

2) Experimental Setup: During each training iteration, the
model receives two 10-second clips from two different videos
as inputs. If available, ground truth (GT) signals are incorpo-
rated; for instance, 20% of the videos contain GT signals, or
in some cases, all videos possess unsynchronized GT signals.
To train Contrast-Phys+ effectively, we employ the AdamW
optimizer [72] with a learning rate of10−5, training the model for
30 epochs on a single NVIDIA Tesla V100 GPU. Following the
approach in [34], we select the model with the lowest irrelevant
power ratio (IPR) on the training set to achieve model selec-
tion (for further insights into IPR, refer to the supplementary
materials, available online).

During the testing phase, we segment each test video into
non-overlapping 30-second clips and extract the rPPG signal
from each clip. To compute the heart rate (HR), we identify the
HR peak in the PSD of the rPPG signal. Additionally, we employ
Neurokit2 [73] to locate systolic peaks within the rPPG signals,
allowing us to derive heart rate variability (HRV) metrics.

According to our ablation study for the ST-rPPG blocks in
Section V-G1, we set the spatial resolution of the ST-rPPG block
to be 2× 2, with the time duration of 10 seconds. For the rPPG
spatiotemporal sampling process, we useK = 4, indicating that,
for each spatial position within the ST-rPPG block, four rPPG
samples are randomly selected. The time interval Δt between
each rPPG sample is set to 5 seconds, which is half of the time
duration of the ST-rPPG block. Consequently, we obtain 16
rPPG samples (N = 16) from each ST-rPPG block. Regarding
the temporal sampling of GT signals, we maintain the sameΔtof
5 seconds, resulting in the selection of 16 GT samples (N = 16)
from a GT signal.

3) Evaluation Metrics: In line with prior research [18], [22],
[62], we use three metrics to assess the accuracy of heart rate
(HR) measurement: the mean absolute error (MAE), root mean
squared error (RMSE), and Pearson correlation coefficient (R).
Additionally, we utilize the signal-to-noise ratio (SNR) [13]
to evaluate the quality of the rPPG signal. For the evalua-
tion of HRV features, which encompass respiration frequency
(RF), low-frequency power (LF) in normalized units (n.u.),
high-frequency power (HF) in normalized units (n.u.), and the
LF/HF power ratio, we follow the approach outlined in [23]
and employ the standard deviation (STD), RMSE, and R as
evaluation metrics. In the context of MAE, RMSE, and STD,
smaller values indicate lower errors, whereas for R, higher values
approaching one denote reduced errors. For SNR, larger values
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TABLE I
INTRA-DATASET HR RESULTS

indicate higher-quality rPPG signals. For a more comprehensive
understanding of these evaluation metrics, please refer to the
supplementary material, available online.

B. Intra-Dataset Testing

1) HR Estimation: We conducted intra-dataset testing for
HR estimation on four datasets: PURE, UBFC-rPPG, OBF, and
MR-NIRP. Contrast-Phys+ was trained under various condi-
tions, including scenarios where 0%, 20%, or 60% of the videos
contain GT signals. These settings represent the unsupervised
and semi-supervised paradigms, with the semi-supervised setup
encompassing partially available labels. Additionally, Contrast-
Phys+ was trained with 100% of the labels, representing the
supervised setting.

The results of HR estimation for Contrast-Phys+ are pre-
sented in Table I and compared against multiple baseline meth-
ods. These baselines include traditional methods, supervised
methods, semi-supervised methods, and recent unsupervised
methods. Notably, Contrast-Phys+ (0%) outperforms several
unsupervised baselines [34], [36], [38] and comes remarkably
close to the performance of supervised methods [22], [23], [24].
In the semi-supervised setting, when partial GT signals are
available (Contrast-Phys+ 20% and 60%), the performance im-
proves further, often surpassing recent supervised methods [22],
[23], [24]. In the supervised setting (Contrast-Phys+ (100%)),
Contrast-Phys+ achieves the best performance among super-
vised methods across most evaluation metrics. This underscores
the advantage of Contrast+Phys+ as it learns from both labels
and rPPG observations, whereas previous supervised methods
only rely on labels. The consistently superior performance of
Contrast-Phys+ holds across all four datasets, including the
MR-NIRP dataset containing NIR videos.

2) HRV Estimation: Intra-dataset testing for heart rate vari-
ability (HRV) evaluation was conducted on the UBFC-rPPG
dataset, and the results are presented in Table II. HRV anal-
ysis demands precisely measured, high-quality rPPG signals
for accurate systolic peak detection. Notably, Contrast-Phys+
significantly outperforms traditional methods and the previous
unsupervised baseline [34] in terms of HRV results. When partial
GT signals are incorporated, the performance of Contrast-Phys+
closely approaches that of supervised methods. In the case of
Contrast-Phys+ utilizing all labels (100%), it achieves the best
results across most HRV metrics. These findings underscore
the capability of Contrast-Phys+ to yield high-quality rPPG
signals with accurate systolic peaks, enabling the derivation of
HRV features. This feature makes it a promising candidate for
applications in emotion understanding [5], [6], [7] and health-
care [2], [3]. Additionally, Contrast-Phys+ has the potential to
further refine its understanding of rPPG signals by leveraging
GT information, as illustrated in Section V-J2.

C. Cross-Dataset Testing

We perform cross-dataset testing on MMSE-HR to test the
generalization of the proposed methods. We train recent su-
pervised methods [17], [20], [77], [78], the unsupervised base-
line [34], and Contrast-Phys+ on UBFC and test the models on
MMSE-HR. In addition, we also provide intra-dataset results by
training and testing the models on MMSE-HR as a reference to
be compared with the cross-dataset results. Table III shows the
cross-dataset and intra-dataset results on MMSE-HR, which can
be summarized in four aspects as below. 1) First, Contrast-Phys+
achieves good cross-dataset results compared with other super-
vised and unsupervised baselines, which means the proposed
method can generalize well to a new dataset. The results are
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TABLE II
HRV RESULTS ON UBFC-RPPG

TABLE III
CROSS-DATASET AND INTRA-DATASET HR RESULTS FOR MMSE-HR

very promising, as in practical applications, we might poten-
tially use enormous facial videos from different sources with
no/partial GT signals to train Contrast-Phys/Contrast-Phys+ and
then apply them to the target data. 2) Second, more labels from
Contrast-Phys+ (0%, unsupervised) to Contrast-Phys+ (100%,
fully supervised) can provide better performance for both cross-
and intra-dataset results, which means additional GT signals
can help fit rPPG signals and improve generalization. 3) Third,
for both cross- and intra-dataset results, Contrast-Phys+ (100%)
using both label information and rPPG observations achieves
better performance than other supervised methods that only
utilize label information. Therefore, rPPG observations as the
prior knowledge play an important role in improving rPPG
measurement performance in the fully supervised setting. 4)
Last, comparing cross- and intra-dataset results, performance
for intra-dataset is generally better than for cross-dataset for
each deep learning-based method, so training and testing on the
same dataset are preferred to keep good performance. Compared
with previous supervised methods, Contrast-Phys+ lowers the
requirement of intra-dataset training since it only needs facial
videos with no or partial labels.

Contrast-Phys+ exhibits the capability to adapt to both labeled
and unlabeled videos during training, allowing for the expansion
and diversification of the training dataset by incorporating un-
labeled videos from other sources. This augmentation strategy

TABLE IV
CROSS-DATASET RESULTS OF CONTRAST-PHYS+ WHEN ADDITIONAL

UNLABELED VIDEOS (PURE AND OBF) ARE USED FOR TRAINING

aims to enhance the model’s generalization. To this end, we
employed all labeled UBFC videos alongside additional unla-
beled videos from PURE or OBF to train Contrast-Phys+ and
evaluated the model’s performance on MMSE-HR.

The results in Table IV demonstrate that the inclusion of
additional unlabeled videos for training results in improved per-
formance compared to training solely with labeled UBFC data.
When additional unlabeled training data is introduced, the cross-
dataset testing performance even approaches the levels achieved
by the best intra-dataset testing performance, as demonstrated
in Table III. This suggests that Contrast-Phys+ can seamlessly
expand its training dataset by incorporating unlabeled videos
from different domains, thereby enhancing generalization and
achieving performance levels close to intra-dataset results. Such
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Fig. 8. rPPG measurement performance ((a) RMSE and (b) SNR) with respect
to maximum desynchronization of GT signals.

a capability was not feasible with previous supervised methods,
highlighting the strengths of Contrast-Phys+.

D. Training With Unsynchronized GT Signals

In our experiments, we explored scenarios where ground
truth (GT) signals are desynchronized from the facial videos,
which is a noisy label case in weakly-supervised learning. We
introduced a parameter, the maximum desynchronization Dmax,
and temporally shifted each GT signal by a random offset within
the range of−Dmax toDmax, ensuring that the GT signals were no
longer synchronized with the corresponding facial videos. This
desynchronization was applied to GT signals in the training set,
after which we trained the model and evaluated its performance
on the test set. This experiment was tested on a single fold of
the MMSE-HR dataset and trained on the other 4 folds.

As depicted in Fig. 8, we analyzed the RMSE and SNR across
various levels of maximum desynchronization. Notably, as the
maximum desynchronization increased, the performance of pre-
vious supervised methods exhibited significant deterioration.
Even a small maximum desynchronization of 0.25 seconds,
which is realistic and likely to occur during data collection,
considerably impacted their performance.

In contrast, Contrast-Phys+ (100%) demonstrated robust and
stable performance in terms of both RMSE and SNR across
different maximum desynchronization values. These results un-
derscore the robustness of Contrast-Phys+ to GT signal desyn-
chronization, while previous supervised methods proved to be
highly susceptible to even minor misalignments. This robustness
can be attributed to Contrast-Phys+’s use of PSD instead of
pulse curves in the temporal domain, which is comparatively
stable over short time intervals. Consequently, learning an rPPG
signal with misaligned GT signals in the frequency domain,
aided by the rPPG observation constraint, is a viable approach
as demonstrated in Section IV-F. These results indicate that
Contrast-Phys+ offers greater tolerance when facial videos and
GT signals are not perfectly aligned, streamlining the rPPG data
collection process.

E. Evaluation of Skin Tone Fairness

Previous studies [67], [79], [80] have pointed out that rPPG
algorithms based on RGB videos have performance bias in dif-
ferent skin tones. RGB video-based measurement is less accurate
on subjects with darker skin, since darker skin absorbs more

TABLE V
HR PERFORMANCE AND FAIRNESS ON EQUIPLETH DATASET. RMSE

MEASURES THE HR PERFORMANCE ON THE ENTIRE DATASET

light resulting in weaker skin color changes. We test our method
on the EquiPleth dataset [67] to study the performance gap
between dark and light skin tones. We also add baselines from
Vilesov et al. [67] that utilized radar and RGB+radar to improve
skin tone fairness and overall performance. Table V shows the
overall performance and fairness on the EquiPleth dataset. For
the overall RMSE performance, RGB+Radar fusion achieves
the best performance, and Contrast-phys+ (100%) achieves the
second best. The results indicate that RGB+Radar multimodal
fusion can improve the overall performance. For fairness (the
RMSE difference between dark and light skin groups), radar and
radar+RGB achieve the best and second-best fairness since radar
detects chest movement for heart rate measurement and does
not depend on skin color. The results agree with the previous
finding [67] that, in general, RGB video-based methods show
larger skin tone bias than the radar approach. On the other hand,
among RGB methods, Contrast-Phys+ achieves better fairness
than PhysNet, which means we can develop new video-based
rPPG algorithms to improve skin tone fairness.

F. Training With Synthetic rPPG Data

To solve the GT lacking issue, one solution is to develop
unsupervised or semi-supervised methods like Contrast-Phys+,
and another is to train supervised models on synthetic rPPG
data [68], [69]. We take the real UBFC-rPPG dataset as the test
set, and compare the two solutions in three settings: 1) previ-
ous supervised methods and supervised Contrast-Phys+ trained
on labeled synthetic data, 2) semi-supervised Contrast-Phys+
trained on labeled synthetic data and unlabeled real data (unla-
beled MMSE-HR), 3) unsupervised Contrast-Phys+ trained on
unlabeled real data (unlabeled MMSE-HR).

Table VI shows the HR results on UBFC-rPPG when models
are trained with synthetic datasets. We can conclude the follow-
ing three points corresponding to the three settings. 1) When
trained on a labeled synthetic dataset, supervised Contrast-
Phys+ outperforms previous supervised methods. 2) Semi-
supervised Contrast-Phys+ trained on a labeled synthetic dataset
and an unlabeled real dataset (unlabeled MMSE-HR) achieves
the best performance while previous supervised methods can
only use labeled synthetic data and cannot utilize unlabeled real
data for training. 3) Unsupervised Contrast-Phys+ trained on an
unlabeled real dataset (unlabeled MMSE-HR) achieves better
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TABLE VI
PERFORMANCE ON UBFC-RPPG WHEN TRAINING WITH SYNTHETIC RPPG

DATASETS (SCAMPS [69] AND UCLA-SYNTH [68])

or comparable performance than previous supervised methods
trained on synthetic data. Overall, the results demonstrate that
Contrast-Phys+ allows integrating the two solutions via merging
both labeled synthetic data and unlabeled real data which can
achieve better performance than using either one solution alone.

G. Ablation Study

1) ST-RPPG Block Parameters: In our ablation study, we
investigated the impact of two key parameters of the ST-rPPG
block: spatial resolution (S) and temporal length (T ).

Table VII(a) presents the heart rate (HR) results for Contrast-
Phys+ (0%) on UBFC-rPPG when varying the spatial resolution
(S) of the ST-rPPG block across four levels: 1 × 1, 2 × 2,
4 × 4, and 8 × 8. It’s important to note that 1x1 implies that
rPPG spatial similarity is not considered. As evident from the
results, the performance with a spatial resolution of 1 × 1 is
inferior to the other resolutions, indicating that rPPG spatial
similarity enhances performance. Furthermore, a spatial resolu-
tion of 2x2 yields satisfactory results, and larger resolutions do
not substantially improve HR estimation. This is because larger
resolutions, such as 8 × 8 or 4 × 4, provide more rPPG samples,
but each block has a smaller receptive field, leading to noisier
rPPG samples.

Table VII(b) demonstrates the HR results for Contrast-Phys+
(0%) on UBFC-rPPG while varying the temporal length (T) of
the ST-rPPG block across three levels: 5 seconds, 10 seconds,
and 30 seconds. The rPPG sample length (Δt) is the default value
(T/2). The results highlight that a temporal length of 10 seconds
yields the best performance. A shorter time length (5 seconds)
results in coarse PSD estimation, while a longer time length
(30 seconds) might violate the conditions for rPPG temporal
similarity. As a result, we opted for S = 2 and T = 10 seconds

TABLE VII
ABLATION STUDY FOR ST-RPPG BLOCK PARAMETERS: (A) HR RESULTS OF

CONTRAST-PHYS+ ON UBFC-RPPG WITH DIFFERENT ST-RPPG BLOCK

SPATIAL RESOLUTIONS (S). (B) HR RESULTS OF CONTRAST-PHYS+ ON

UBFC-RPPG WITH DIFFERENT ST-RPPG BLOCK TIME LENGTHS (T) WHEN

Δt = T/2. (C) HR RESULTS OF CONTRAST-PHYS+ ON UBFC-RPPG WITH

DIFFERENT RPPG SAMPLE LENGTHS (Δt) WHEN T = 10 S (THE BEST

RESULTS ARE IN BOLD.)

in our experiments, as these settings strike a balance and offer
optimal performance.

Table VII(c) shows the HR results for Contrast-Phys+ (0%)
on UBFC-rPPG while varying the rPPG sample lengths (Δt)
when T = 10 s. Three levels of Δt are selected: T/4 (2.5 s), T/2
(5 s), and 3 T/4 (7.5 s). The findings emphasize that both T/2 and
3 T/4 exhibit comparable performance, whereas the shorter T/4
demonstrates lower performance. A shorter Δt like T/4 leads to
inaccurate PSDs and heart rate peaks, while a longer Δt such
as T/2 and 3 T/4 can offer more precise PSDs, aiding in sample
comparisons within contrastive learning. However, long Δt like
3 T/4 also increases computational costs. Therefore, we adopt
T/2 as the default value.

2) rPPG Observations: In our ablation study, we examined
the individual impact of each of the four rPPG observations on
the performance of Contrast-Phys+. These observations include
rPPG spatial and temporal similarity (represented by rPPG
spatial and temporal sampling), rPPG cross-video dissimilarity
(represented by the rPPG-rPPG negative loss LRR

n ), and the HR
range constraint (utilizing PSDs in the HR frequency range).

Table VIII showcases the results for Contrast-Phys+ (0%)
when one of the rPPG observations is removed, as well as the
results when all observations are utilized. The findings indicate
that Contrast-Phys+ achieves its best performance when all rPPG
observations are enabled. When rPPG spatial or temporal simi-
larity is disabled, the performance experiences a slight decrease.
However, when rPPG cross-video dissimilarity or the HR range
constraint is disabled, the performance deteriorates significantly.
The HR range constraint plays a crucial role in preventing the
model from learning irrelevant periodic noises, such as light
flickering, which can interfere with accurate HR estimation.
Additionally, rPPG cross-video dissimilarity, represented by
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TABLE VIII
ABLATION STUDY FOR RPPG OBSERVATIONS ON UBFC-RPPG DATASET

TABLE IX
ABLATION STUDY FOR GT-RELATED POSITIVE LOSS TERM LGR

p AND

NEGATIVE LOSS TERM LGR
n ON MMSE-HR DATASET

the rPPG-rPPG negative loss LRR
n , is essential in contrastive

learning as it prevents the model from collapsing into trivial
solutions, as discussed in [39].

These results underscore the importance of all four rPPG
observations in enhancing the performance of Contrast-Phys+
and emphasize their individual contributions to accurate and
robust rPPG signal extraction.

3) The Influence of GT Signals. GT-related Losses: We con-
ducted an ablation study to assess the influence of GT-related
losses on our model’s performance. Table IX presents the results
of the ablation study performed on the MMSE-HR dataset using
Contrast-Phys+ (100%). When we exclude all GT-related terms,
the model effectively undergoes unsupervised training, resulting
in the lowest performance. However, when we include only
the GT-rPPG negative term, the model’s performance improves,
as it generates more negative pairs from both GT signals and
ST-rPPG blocks. Subsequently, utilizing solely the GT-rPPG
positive term further enhances performance, as it enforces
consistency between ST-rPPG blocks and their corresponding
GT signals, effectively incorporating GT information into the
model’s training. The combined use of both terms yields the
highest performance, which is the top-performing configuration.

GT Signal Ratios: Since Contrast-Phys+ is capable of adapt-
ing to different availability of data labels, we conducted an ab-
lation study to examine the impact of different GT signal ratios.
Specifically, we trained Contrast-Phys+ using 0%, 20%, 40%,
60%, 80%, and 100% labels from the MMSE-HR dataset. The
performance variation of Contrast-Phys+ under different label
ratios is illustrated in Fig. 9. Regarding RMSE, the performance
reaches a plateau at 40% label ratio, and the HR error does not
significantly decrease when using more than 40% labels. On
the other hand, SNR, which serves as a metric for rPPG signal
quality, exhibits continuous improvement with an increasing
number of labels. These findings suggest that while employing

Fig. 9. rPPG measurement performance ((a) RMSE and (b) SNR) with respect
to label ratios.

more labels (beyond 40%) may not lead to a substantial reduction
in HR measurement error, they do contribute to refining the
quality of the output rPPG signals. We will further demonstrate
this through waveform visualization in Section V-J2.

H. Statistical Validation for rPPG Observations

We conducted a statistical analysis to validate both the spa-
tiotemporal similarity of rPPG signals within the same video
(referred to as “intra-video”) and the dissimilarity of rPPG sig-
nals between different videos (referred to as “cross-video”). The
spatiotemporal similarity of rPPG signals refers to the similarity
in the PSDs of rPPG signals measured at different spatiotemporal
locations within the same video. Conversely, the cross-video
rPPG dissimilarity refers to the differences in the PSDs of rPPG
signals measured at different spatiotemporal locations between
two different videos.

To quantify these observations, we calculated the mean
squared errors (MSE) of PSD pairs for both the intra-video and
cross-video cases. Fig. 10 illustrates that the PSD pair MSE for
the intra-video case is significantly smaller compared to the PSD
pair MSE for the cross-video case. To assess the significance of
these differences, we employed the two-sample Kolmogorov-
Smirnov test [6], [82]. The results indicate that the PSD pair
MSE for the cross-video case is significantly higher than for
the intra-video case (p < 0.001) across all five rPPG datasets.
These statistical test results provide solid evidence supporting
the validity of both the rPPG spatiotemporal similarity and the
cross-video rPPG dissimilarity observations.

I. Running Speed

We conducted experiments to compare the running speed
of Contrast-Phys+ and Gideon2021 [34]. During training, the
running speed of Contrast-Phys+ (0%) was measured at 802.45
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Fig. 10. Boxplots of PSD pair MSE for intra-video and cross-video for rPPG datasets: (a) PURE, (b) UBFC, (c) OBF, (d) MR-NIRP, and (e) MMSE-HR.

Fig. 11. rPPG waveforms from Contrast-Phys+ trained with different label ratios: (a) 0%, (b) 20%, (c) 60%, and (d) 100%. The ambiguous/wrong peaks from
rPPG are highlighted in gray areas.

frames per second (fps), while Gideon2021 achieved a speed of
387.87 fps, which is approximately half of Contrast-Phys+’s
speed. This significant difference in speed can be attributed
to the different method designs employed by the two models.
In Gideon2021, the input video is fed into the model twice,
first as the original video and then as a temporally resampled
video, resulting in double computation. On the other hand,
Contrast-Phys+ only requires the input video to be fed into the
model once, leading to a substantial decrease in computational
cost. Additionally, the running speed of Contrast-Phys+ for
label ratios of 60% and 100% was measured at 792.70 fps
and 776.19 fps, respectively. When compared to Contrast-Phys+

(0%) (802.45 fps), incorporating GT signals in Contrast-Phys+
(60%, 100%) only resulted in a slight decrease in speed.

Furthermore, we compared the convergence speed using the
metric of Irrelevant power ratio (IPR). IPR is used in [34]
to evaluate signal quality during training with lower values
indicating higher signal quality. More details about IPR can be
found in the supplementary materials, available online. Fig. 12
illustrates the IPR values over time during training on the OBF
dataset. The results demonstrate that Contrast-Phys+ achieves
faster convergence to a lower IPR compared to Gideon2021.
While Contrast-Phys+ (60%, 100%) takes slightly longer to
reach the lowest IPR compared to Contrast-Phys+ (0%), it
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Fig. 12. Irrelevant power ratio (IPR) with respect to training time.

Fig. 13. Saliency maps for Contrast-Phys+ (0%) and Gideon2021 [34] (a)
In this scenario, we introduce a random flashing block with a heart rate (HR)
range between 40-250 bpm in the top-left corner of all UBFC-rPPG videos.
Both Contrast-Phys+ (0%) and Gideon2021 are trained on these videos with
the added noise. The saliency maps of Contrast-Phys+ (0%) exhibit a strong
response in facial regions, indicating its focus on these areas. On the other hand,
Gideon2021 primarily focuses on the injected periodic noise. The quantitative
results in Table X further support the robustness of Contrast-Phys+ (0%) to
the noise. (b) For this scenario, we select moments of head motion from the
PURE dataset (Video frames shown here are blurred due to privacy concerns.)
and generate the corresponding saliency maps for Contrast-Phys+ (0%) and
Gideon2021.

ultimately achieves a lower IPR due to its ability to utilize GT
signals to further enhance the rPPG signal quality.

J. Result Visualization

1) Saliency Maps: To demonstrate the interpretability of
Contrast-Phys+, we present saliency maps. These saliency maps
are generated using a gradient-based method proposed in [83].
We keep the weights of the trained model fixed and calcu-
late the gradient of the Pearson correlation with respect to
the input video. More detailed information can be found in
the supplementary materials, available online. Saliency maps
are useful for highlighting the spatial regions that contribute to
the estimation of rPPG signals by the model. A saliency map
of a good rPPG model should exhibit a strong response in skin
regions, as demonstrated in previous works such as [15], [17],
[18], [24], [34].

Fig. 13 presents saliency maps in two scenarios to showcase
the robustness of our method against interferences: 1) when
periodic noise is manually injected, and 2) when head motion

TABLE X
HR RESULTS TRAINED ON UBFC-RPPG WITH/WITHOUT INJECTED PERIODIC

NOISE SHOWN IN FIG. 13(A)

is involved. In the presence of a periodic noise patch injected
into the upper-left corner of the videos, Contrast-Phys+ remains
unaffected by the noise and continues to focus on skin areas.
In contrast, Gideon2021 is completely distracted by the noise
block. We also evaluate the performance of both methods on
UBFC-rPPG videos with the injected noise, and the results are
summarized in Table X. These results align with the saliency
map analysis, confirming that Contrast-Phys+ is not impacted
by the periodic noise, while Gideon2021 fails to handle it
effectively. The robustness of Contrast-Phys+ to noise can be
attributed to the rPPG spatial similarity constraint, which helps
to filter out noise. Fig. 13(b) displays the saliency maps when
head motion is involved. The saliency maps of Contrast-Phys+
primarily focus on and activate skin areas, indicating its ability to
handle head motions effectively. In contrast, the saliency maps
of Gideon2021 exhibit noise and are scattered, covering only
partial facial areas during head motions.

2) rPPG Waveforms: Fig. 11 displays the rPPG waveforms
obtained from Contrast-Phys+ trained with different label ratios
on the MMSE-HR dataset. As more labels are available during
training, ranging from 0% to 100%, the rPPG waveforms be-
come more similar to the ground truth (GT) signal and exhibit
fewer ambiguous or incorrect peaks. The waveform correspond-
ing to the 0% label ratio contains noisy components highlighted
by gray areas indicating ambiguous or incorrect peaks. In con-
trast, the waveform at the 100% label ratio is well aligned with
the GT signal, with almost all peaks clearly distinguishable. The
presence of distinguishable peaks in the rPPG waveform also
facilitates the accurate calculation of HRV. The visualization of
rPPG waveforms demonstrates that incorporating more labels
during the training of Contrast-Phys+ improves the quality of the
rPPG signal. This finding is consistent with the signal-to-noise
ratio (SNR) results discussed in Section V-G3.

VI. CONCLUSION

We propose Contrast-Phys+, which can be trained in unsuper-
vised and weakly-supervised settings and achieve accurate rPPG
measurement. Contrast-Phys+ is based on four rPPG observa-
tions and utilizes spatiotemporal contrast to enable unsupervised
and weakly-supervised learning including missing and unsyn-
chronized GT signals, or even no labels. By combining rPPG
prior knowledge and additional GT information, Contrast-Phys+
outperforms both unsupervised and supervised state-of-the-art
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methods and achieves good generalization to unseen data. Be-
sides, the proposed method is robust against noise interference
and computationally efficient. For future studies, the proposed
method can be extended to learn other periodic signals such as
respiration signals.
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