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Abstract—Demographic biases in source datasets have been
shown as one of the causes of unfairness and discrimination in
the predictions of Machine Learning models. One of the most
prominent types of demographic bias are statistical imbalances
in the representation of demographic groups in the datasets. In
this article, we study the measurement of these biases by reviewing
the existing metrics, including those that can be borrowed from
other disciplines. We develop a taxonomy for the classification
of these metrics, providing a practical guide for the selection of
appropriate metrics. To illustrate the utility of our framework, and
to further understand the practical characteristics of the metrics,
we conduct a case study of 20 datasets used in Facial Emotion
Recognition (FER), analyzing the biases present in them. Our
experimental results show that many metrics are redundant and
that a reduced subset of metrics may be sufficient to measure the
amount of demographic bias. The article provides valuable insights
for researchers in AI and related fields to mitigate dataset bias and
improve the fairness and accuracy of AI models.

Index Terms—AI fairness, artificial intelligence, deep learning,
demographic bias, facial expression recognition.

I. INTRODUCTION

G ENERAL advancements in technology, compounded with
the widespread adoption of personal computers of all

sorts, have led to an ever increasing exposure of society and
non-expert users to autonomous systems. This interaction has
also led to an accelerated deployment speed of state-of-the-art
systems. Complex systems, such as general-purpose language
and image models, conversational chatbots, or automatic face
recognition systems, to name a few, are now deployed within
months of their creation directly into the hands of nonexpert
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users. These systems, by their very nature, are difficult to eval-
uate and test, raising safety concerns. As systems interact with
users in new and unpredictable ways, how can we ensure that
no harm of any type is done to the user?

This general question is answered through the field of AI
ethics [1]. This field, in turn, takes shape in several other as-
pects, focusing on issues such as the integration of robotics in
society [2], issues of digital privacy [3], and many others. One
particularly interesting concept is algorithmic fairness [4], which
focuses on how systems can replicate human biases, discrimi-
nating people based on protected characteristics such as sex,
gender, race, or age. Even if the concept of algorithmic fairness
is broad and multifaceted, this notion of unwanted bias as the
unwanted patterns learned by the machine makes them easier to
characterize. In turn, the characterization and measurement of
fairness favors the methodological mitigation of unfair behavior
in trained models.

Although the development of bias is a complex phenomenon,
deep learning techniques are especially susceptible to bias in
datasets [5]. These techniques learn patterns autonomously and
can often get confused between correlated patterns. When cer-
tain demographic characteristics are correlated with the target
class of a problem, it is possible for the models to incorporate
and amplify that correlation. This ends up resulting in a biased
and differentiated prediction for certain individuals and demo-
graphic groups.

To recognize and solve these issues, it is crucial to measure
bias, both in the final models and in the datasets. Although dif-
ferent metrics have been proposed [6], most of them focus only
on the bias exhibited by the trained models. The measurement
of bias in the source datasets has not received the same atten-
tion, although it enables the validation of new bias mitigation
methods [7], the explanation of bias transference throughout
the training process [8], and the demographic description of the
application environment where a dataset or model can be safely
used [9].

In this article, we explore metrics that can be used to measure
demographic bias in datasets. Most previous works that have
focused on this issue [10], [11] study biases only from an
intuitive notion, without using bias metrics. A few works [7],
[12] have employed metrics specific to bias, although only
considering a single metric and without taking the different
types of demographic bias into account. This work aims to
serve as a unifying framework for the few metrics that have
been already used for this purpose and those that can be adapted
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from other fields with equivalent problems, such as population
diversity metrics used in ecology. This wider variety of metrics
allows us to cover specific types of biases that were previously
unmeasured. Accordingly, we propose a taxonomy for dataset
bias metrics based on the type of bias measured, facilitating the
selection of appropriate metrics. Based on this taxonomy, we aim
to find a concrete, expressive, and interpretable set of metrics
to facilitate the work of analyzing the demographic and bias
properties of ML datasets. To our knowledge, no such taxonomy
or metric selection has been previously proposed.

An interesting case study to evaluate our taxonomy and set
of metrics is Facial Expression Recognition (FER). FER is a
problem in which photographs of people are classified according
to the emotion they appear to express. The applications of
this problem are varied, including healthcare [13] and assistive
robotics [14] among others, and in most cases involve direct
interaction with non-expert users. Unlike other problems in
which bias is usually studied, mainly based on tabular data
and with explicit demographic information [15], in FER the
demographics of the person are rarely known. However, these
demographic factors directly influence the person’s appearance,
generating demographic proxies that are completely embedded
in the input images, making FER an interesting problem from
the AI bias perspective. Even if this information is masked,
it has been shown that both emotion expression and emotion
identification are conditioned by a person’s demographics [16],
[17], so differential treatment based on demographics may be
unavoidable.

More specifically, we gather twenty FER datasets according
to a clear set of criteria, obtain a demographic profile of each
of them, and apply the reviewed dataset bias metrics. We then
employ these results to explore both the characteristics and
limitations of each metric. We use this information to select
a set of non-redundant interpretable metrics that can summarize
the demographic biases in a dataset. Additionally, we employ
the metrics to assess the types of biases found in FER datasets,
where we observe differences between datasets created from
different data sources. Identifying the different bias profiles of
specific datasets can improve both the choice of training datasets
and the choice of mitigation techniques.

Although this article focuses on dataset bias, in the Supple-
mentary Material, we also provide the results of a series of
experiments on the downstream propagation of such biases to
the trained model, showing the importance of the appropriate
characterization of the different types of dataset demographic
bias.

The following sections are as follows. First, Section II recalls
some related work in the field. Subsequently, in Section III we
review and present a taxonomy of dataset demographic bias
metrics. Section IV then presents the experimental framework
for the FER case study, while Section V gathers the results
found in these experiments. Finally, Section VI summarizes our
findings and potential future work.

II. RELATED WORK

This section introduces some relevant background for our
work. In Section II-A, we provide a brief overview of fairness,

its relationship to bias, and the methods used to measure it.
Subsequently, in Section II-B, we explore the application of
these concepts in the context of FER.

A. Fairness

The advances in ML and Artificial Intelligence (AI) in the
last decades have led to an explosion of real-world applica-
tions involving intelligent agents and systems. This has in-
evitably led researchers to consider the social implications of
these technologies and study what fairness means in this con-
text [6], [18], [19], [20], [21]. The efforts to develop tech-
nical standards and best practices have also generated an in-
creasing number of guidelines for ethical AI and algorithmic
fairness [1].

Most definitions of fairness revolve around the concept of
unwanted bias [20], also known as prejudice or favoritism, where
particular individuals or groups defined by certain protected
attributes, such as age, race, sex, and gender, receive an undesired
differentiated treatment. In this sense, an algorithm or system is
defined as fair if it is free of unwanted bias. It is important to
note that although the concept of demographic bias is related
to bias in machine learning and many results can be adapted
to both [22], the particularities and potential harm resulting
from demographic bias require an independent study. To this
end, different metrics and mathematical definitions have been
designed to characterize both fairness and demographic bias [6],
[20], [23]. It is important to note that together with these metrics
and definitions, criticism has also arisen [21], [24], since an
excessive optimization of any given quantitative metric can
lead to a loss of meaning, resulting in a false impression of
fairness. As the fairness definitions and metrics proposed in the
literature [20], [23] are mostly concerned with the social impact
of the deployed systems, they deal only with the presence of
bias in the final trained model, regardless of the source of that
bias. These definitions, such as equalized odds [25], equal op-
portunity [25] or demographic parity [26], are usually designed
to detect a disparate treatment between a single priviledged
demographic group and a single protected demographic group,
in classification problems where one of the classes is considered
preferable (usually the positive class). Despite this classical
perspective, recent works [20], [21], [27] have focused on the
multiple complementary sources that can lead to unwanted bias
in the final model. These sources of bias originate in different
phases of the AI pipeline [27], such as data collection, model
training, and model evaluation. Regarding practical applications,
these definitions and taxonomies of bias have been applied to
multiple domains, where demographic biases have been found
in facial [28], [29] and gender [11], [30] recognition, to name a
few.

The bias detected in the source data has been a topic of
particular interest over the years [5], [31]. Large public datasets
have become the basic entry point for many AI projects, where
developers often use them with limited knowledge of the origin
of the data and its biases [31]. Some of the most popular ML
datasets, such as ImageNet [32], [33] and COCO [34], have been
revealed to include severe demographic biases [10] and even
direct examples of racism, such as racial slurs [31]. To identify
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such biases, some auxiliary datasets have been proposed, ei-
ther by annotating previous datasets for apparent demographic
characteristics [34], [35], or developing new demographically
annotated datasets [36], [37], which can then be used to eval-
uate models and datasets. However, few works [7], [10], [11],
[12], [38] have focused on the measurement and mathematical
characterization of the bias present in the source data. Some
works [10], [11] focus on non-systematic approaches, calcu-
lating the proportion of different demographic subgroups and
manually looking for imbalances. Other works [7], [12] employ
metrics based on information theory and statistics, such as the
Mutual Information, to quantify bias in the source datasets,
usually as part of a bias mitigation methodology, or focus on
specific types of dataset, such as object detection [38], where
specific metrics relating to the nature of the problem can be
developed.

To the best of our knowledge, no previous work has unified
these approaches, systematically comparing the properties of the
different metrics. In this work, we explore and classify the full
array of metrics already in use to measure dataset demographic
bias and propose the application of existing metrics from equiv-
alent problems in other fields, especially in ecology.

B. Facial Expression Recognition

FER is the problem of automatic emotion recognition based
on facial images. Although several variants exist, the most
common implementation employs static images to identify a
specific set of possible emotions. These range from smile [39]
or pain [13] recognition, to the most widely used emotion
classification proposed by Ekman [40] (angry, disgust, fear,
sad, surprise, and happy), with most publicly available datasets
labeled with this codification. Although research has raised
some concerns about the universality of both the underlying
emotions [41] and their associated facial expressions [17], [42],
the simplicity of the discrete codification and its labeling make
it the most popular.

Recent developments in Deep Learning (DL) and deep convo-
lutional networks [43], technical advances such as the training of
DL models on GPUs, together with the surge of larger datasets,
have allowed the end-to-end treatment of FER as a simple
classification problem, trained with supervised techniques based
on labeled datasets. For this reason, numerous facial expression
datasets have been published to aid in the development of FER.
Several reviews have focused on collecting and analyzing avail-
able datasets over the years [44], [45], but to our knowledge,
none of them has reviewed their demographic properties and
potential biases. The FER datasets available differ in many
aspects, including the source of data (internet, media, artificial,
or gathered in laboratory conditions), the image or video format
and technologies (visible spectrum, infrared, ultraviolet and
3D), the type of expressions registered (micro- and macro-
expression), the emotion codification (continuous, discrete, and
their variants) and the elicitation method (acted, induced, or
natural). Demographically speaking, some datasets openly focus
on facial expressions of specific demographic groups, such as
JAFFE [46], [47] (Japanese women) and iSAFE [48] (Indian

people), but for the most part the datasets have not been collected
taking diversity into account.

Some recent works have already found specific biases around
gender, race, and age in both commercial FER systems [49],
[50] and research models [51], [52], [53], [54], [55], [56].
From these works, Kim et al. [49] focus on the age bias
of commercial models in an age-labeled dataset. Ahmad et
al. [50] also study commercial models, but extend the research
to age, gender, and race (considering two racial categories) by
employing a custom database of politician videos. Regarding
research models, Xu et al. [52] study age, gender, and race
bias in models trained on an Internet search-gathered dataset
and evaluated on a different dataset with known demographic
characteristics. Two works [53], [54] focus on gender bias in
trained models. Deuschel et al. [55] analyzes biases in the
prediction of action units with respect to gender and skin color
in two popular datasets. Poyiadzy et al. [56] work on age bias
in a dataset collected from Internet searches, performing addi-
tional work to generate apparent age labels for it. Additionally,
some works [52], [54], [56] have explored mitigation strategies
applicable to this problem. According to the flaws and biases
found in previous studies, Hernandez et al. [57] propose a
set of guidelines to assess and minimize potential risks in the
application of FER-based technologies.

Notwithstanding these previous works on specific biases and
the resulting general guidelines, no other work has compara-
tively analyzed the demographic bias of a large selection of FER
datasets or used multiple metrics to account for representational
and stereotypical bias. We hope that the work presented here
motivates new approaches to bias detection and mitigation in
FER datasets.

III. DATASET BIAS METRICS

Many specific metrics have been proposed to quantify bias
and fairness [58]. Unfortunately, most of these metrics only
consider the disparity in the treatment of demographic groups in
the trained model predictions. This type of bias, directly related
to discrimination in the legal sense, disregards the source of
the disparity. Additionally, the few metrics that have focused
on dataset bias [23] are only defined for binary classification
problems, making the measurement of demographic biases in
the source dataset an unexplored problem for more general
multiclass classification problems.

In this section, our aim is to fill this gap by collecting metrics
that are applicable to demographic bias in datasets, especially in
multiclass problems. For this, we include both a few metrics that
have previously been used in this context and, for the most part,
metrics from other disciplines and contexts that can be adapted
for this purpose, such as metrics from information theory (such
as metrics based on Shannon entropy) and ecology (such as
Effective number of species).

A. Taxonomy of Demographic Bias Metrics

We propose a taxonomy of demographic bias metrics based
on the two main types of statistical demographical bias, that is,
representational and stereotypical bias. This coarse classification
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Fig. 1. Taxonomy of dataset demographic bias metrics.

is then further refined into the families of metrics that can
measure each bias. The proposed taxonomy is outlined with the
associated metrics in Fig. 1. The following families of metrics
can be identified.

Representational Bias: Representational bias refers to a lack
of general demographic diversity in the dataset, that is, an
unequal representation of demographic groups, such as hav-
ing more samples from male presenting people than female
presenting ones. This type of bias is not related to the target
variable and, therefore, can be applied to any dataset, not only
to classification tasks. A similar concept can be found in the field
of ecology, where diversity, and more specifically the local-scale
diversity of species in an ecosystem (α-diversity [69]), is used
as the opposite of representational bias. As the two concepts are
directly related, one being the opposite of the other, any metric
designed for diversity can be borrowed as a representational
bias metric. Furthermore, in ecology diversity (and consequently
representational bias) can be refined into three related compo-
nents, namely Richness, Evenness and Dominance. Several met-
rics target specific components, while others measure multiple
components at the same time. We classify the latter as Combined
metrics.
� Richness: This category has a single metric, since it refers

to the raw number of groups represented and constitutes
the most direct and simple metric of representational bias.
A dataset that has a representation of only a small number
of groups (low richness) will be biased in favor of those
groups, and susceptible to differentiated treatment in the
form of inaccurate predictions in the trained model towards
any group not represented. An example of a bias from lack
of richness in a FER dataset would be having a dataset with
only one racial group represented.

� Evenness: Unfortunately, even if a dataset represents many
groups, this representation may not be homogeneous, hav-
ing a global overrepresentation of certain groups and an un-
derrepresentation of others. The homogeneity of the group
representation is also known as evenness. For example, a
FER dataset representationally biased by a lack of evenness
would be one that, having representation of white, black
and indian people, has an uneven composition of 45% each
of white and black people and only 10% of Indian people.

� Dominance: Dominance refers to the population quota of
the largest or dominant group in the dataset. Dominance
is not independent from Richness and Evenness, but it is
a robust and easy to interpret notion, making its metrics
common choices for representational bias measurement.
Unfortunately, in exchange, it loses a lot of information

related to the rest of the groups present, making them
insufficient metrics when employed alone. For example,
a FER dataset could be dominated by an age group if 95%
of the population is in the range 20–25, with the remaining
5% shared among the rest of the age groups.

� Combined: Several metrics are not directly related to any
of the other components and instead measure combinations
of them. These metrics can usually summarize the amount
of representational bias in a dataset, at the cost of not being
able to distinguish the specific components of that bias.

Stereotypical Bias: This type of bias can be identified when
working on any labeled dataset, as an association between
sample variables. These variables are usually a demographic
property and the target variable in classification and regression
tasks, although it can also be applied to spurious associations
between several demographic properties. In stereotypical bias,
the under- or overrepresentation is not directly found in a global
view of the dataset, but in the specific demographic composition
of each of the target classes. In FER, for example, a common
stereotypical bias is an overrepresentation of female presenting
people in the happy class [8]. Stereotypical bias can be measured
at two levels:
� Global: Global stereotypical bias refers to the global grade

of association between a demographic component and the
target classes, as a single measure of the whole dataset. For
example, in FER, how related is the gender of the subjects
and the target facial expressions.

� Local: Local stereotypical bias refers to how specific com-
binations of the demographic group and the target class are
over- or underrepresented in the dataset. For example, in
FER, if the proportion of female presenting subjects in the
happy class in particular is above or below the expected
proportion.

B. Considerations for the Metrics

In this work, we consider classification problems where both
the demographic groups of interest and the target classes are
given as nominal variables. In regression problems, where the
target variable is ordinal or numerical, or when one of the
demographic groups can be codified as an ordinal or numerical
variable, other metrics can provide more accurate information.
Despite this, ordinal and numerical variables can be reinterpreted
as nominal, making it a useful first approach. A good example
is found in our case study, where the age variable is codified
into age groups that can be treated as a nominal variable,
although at the cost of some information loss. Regarding the
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TABLE I
SUMMARY OF DATASET DEMOGRAPHIC BIAS METRICS AND THEIR CHARACTERISTICS

target variable, although we focus on classification problems
with a nominal target variable, the presented bias metrics can
also be applied in other problems. Representational bias metrics
do not consider the target variable, and as such can be directly
applied in unlabeled datasets. Stereotypical bias metrics can also
be applied in the same datasets, although in these cases they
can only be used to measure the correlation between several
demographic variables, rather than a demographic variable and
the target variable, as is presented here.

An important consideration is the application of sampling
corrections to the metrics. Many of the metrics, such as those
from the field of ecology, are intended to be applied to a discrete
sample of a larger population and subsequently corrected for
sample size. In the case of AI datasets, we can either under-
stand them as a sample from a global population and keep
these corrections, or as complete populations and employ the
uncorrected formulas. In practice, as models are mostly trained
on a single dataset or a small set of them, we care more about
the properties of the specific dataset than about their relationship
to the real world population from which they were obtained.
Thus, we do not employ the sample size correction variations,
as they can hide and lower the bias of the smaller datasets.
In certain techniques based on variable size datasets, such as
the use of generative adversarial networks to generate datasets
on demand [70], sampling corrections must be applied when
evaluating biases. We consider this case outside of the scope of
this work and focus on fixed-size datasets.

Taking these considerations into account, the reviewed met-
rics and their properties are summarized in Table I. In the table,
each row includes the information corresponding to a metric,
namely, the full name and references, the symbol to be used
in the rest of this work, the type and subtype of the metric
according to the taxonomy presented in Section III-A, the upper
and lower bounds of the metric, and whether it directly (or
inversely) measures bias. The metrics are further discussed in the
following sections. As the metrics come from various sources,
we present a unified mathematical formulation. The following
unifying notation is employed:

� We define G as the set of demographic groups defined by
the value of the protected attribute. For example, ifG stands
for gender presentation, a possible set of groups would be
{masculine, feminine, androgynous}.

� We define Y as the set of classes of the problem.
� We define X as a population of n samples.
� We definena as the number of samples from the population
X that have the property a. For example, ng with g ∈ G,
represents the number of samples in X that corresponds
to subjects belonging to the demographic group g. a will
usually be a demographic group g ∈ G, a target class y ∈
Y , or the combination of both properties g ∧ y, g ∈ G, y ∈
Y .

� Similarly, we define pa as the proportion of samples from
the population X that have the property a:

pa =
na

n
.

C. Metrics for Representational Bias

First, let us consider the richness metrics.
Richness (R) [69]: Richness is the simplest and most direct

metric of diversity, which can be understood as the opposite of
representational bias. Mathematically, richness is defined as:

R(X) = |{g ∈ G|ng > 0}| . (1)

Although Richness is a highly informative and interpretable
metric, it disregards evenness information on potential imbal-
ances between group populations. In this sense, it can only assert
that there are diverse examples through the dataset, but nothing
about the proportions at which these examples are found. This
metric is still vital for the interpretation of many other metrics,
as they are either mathematically bounded by Richness or best
interpreted when accompanied by it.

The following metrics focus on the evenness component of
representational bias.

Shannon Evenness Index: (SEI) [59]. The most common
example of evenness metrics is the Shannon Evenness Index,
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a normalized version of the Shannon entropy designed to be
robust to Richness variations. Due to this, only evenness, the
homogeneity of the groups present in the population, is taken
into account. It is defined as:

SEI(X) =
H(X)

ln(R(X))
, (2)

where H(X) is the Shannon entropy, defined later in (7).
As the entropy is divided by its theoretical maximum, corre-

sponding to an even population of R(X) groups, the metric is
bounded between 0 for uneven populations and 1 for perfectly
balanced ones. This value is independent for different number of
represented groups, so that datasets with different R can achieve
the same SEI.

Normalized Standard Deviation (NSD) [8]: Another metric
for evenness is the Normalized Standard Deviation of the popu-
lation distribution. It is defined as:

NSD(X) =
|G|√|G| − 1

√∑
g∈G(pg − p̄)2

|G| , (3)

where p stands for the arithmetic mean of the population profile,
which for a normalized profile is p = 1/|G|.

The normalization used in this metric produces the same upper
and lower bounds as those of SEI. In this case, the metric is
designed to target representational bias, so the meaning of the
bounds is inverted, 0 for the more balanced and even datasets,
and 1 for the extremely biased ones.

The third component of representational bias, dominance, is
measured by the following metrics.

Imbalance Ratio (IR): The most common metric for class
imbalance in AI is the Imbalance Ratio. Although its most
common application is measuring target class imbalance, the
same metric can be used for any partitioning of a dataset, such
as the one defined by a demographic component. It is defined as
the population ratio between the most represented class and the
least represented class:

IR(X) =

max
g∈G

ng

min
g∈G

ng
. (4)

This definition leads to a metric that ranges from 1 for more
balanced populations to infinity for more biased ones. The
inverse of this definition can be used to limit the metric between
0 (exclusive) and 1 (inclusive), with values close to 0 indicating
strongly biased populations and 1 indicating unbiased ones. In
this work, we employ this alternative IR−1(X) formulation.

This metric is commonly used for binary classification prob-
lems. When applied to more than two classes or groups, the
metric simply ignores the rest of the classes, losing information
in these cases.

Berger-Parker Index (BP) [60]: A metric closely related to
the Imbalance Ratio is the Berger-Parker Index. This metric
measures the relative representation of the more abundant group
relative to the whole population. As IR, it does not use all in-
formation of the population distribution, as imbalances between

minority classes are not taken into account. It is defined as:

BP(X) =

max
g∈G

ng

n
. (5)

This metric is bounded between 1/R(X) and 1, with values
close to1/R(X) indicating representationally unbiased datasets,
and 1 indicating biased ones.

Finally, some metrics measure representational bias as a com-
bination of several components simultaneously.

Effective Number of Species (ENS) [61]: The Effective Num-
ber of Species is a robust measure that extends the Richness,
keeping the same bounds but integrating additional information
about evenness. This metric is upper bounded by R(X), being
equal to it for a totally balanced population, and smaller for
increasingly biased populations, down to a lower bound of 1 for
populations with total dominance of a single group. It is defined
as:

ENS(X) = exp

⎛
⎝−

∑
g∈G

pg ln pg

⎞
⎠ . (6)

The ENS has several alternative formulations. The specific
formula presented here is based on the Shannon entropy. This
means that this formulation is equivalent to the Shannon entropy
in their resulting ordering of populations. The difference lies
only in the interpretability of the results, which are scaled to
fit into the [1,R(X)] range, with higher values indicating less
representationally biased populations or datasets. The result
is intended to follow the notion of an effective or equivalent
number of equally represented groups. For example, a popu-
lation with ENS(X) = 1.5 is more diverse than one with one
represented group (ENS = 1) and less than one with two equally
represented groups (ENS = 2).

Shannon Entropy (H) [63]: The Shannon entropy, also known
as Shannon Diversity Index and Shannon-Wiener Index, can also
be directly used to measure diversity. In this case, diversity
is measured by the amount of uncertainty, as defined by the
entropy, with which we can predict to which group a random
sample belongs. It is defined as:

H(X) = −
∑
g∈G

pg ln(pg) . (7)

This metric lies in the range [0, ln(R(X))], where 0 identifies
a population with a single represented group, and a value of
ln(R(X)) corresponds to a perfectly balanced dataset composed
of R(X) different groups.

Simpson Index (D) [62], Simpson’s Index of Diversity (1−
D), and Simpson’s Reciprocal (1/D). The Simpson Index is
another metric influenced by both Richness and evenness. Math-
ematically, it is defined as:

D(X) =
∑
g∈G

p2g . (8)

This metric ranges from 1 for extremely biased populations
with a single represented group, and approaches 0 for increas-
ingly diverse populations, with a lower bound of 1/R(X).
Two variants are commonly employed, the Simpson’s Index of
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Diversity defined by 1− D(X), and the Simpson’s Reciprocal
defined as 1/D(X). Of these three, Simpson’s Reciprocal index
is of particular interest in this context, as it shares the same
range of ENS, from 1 in populations representing biased in favor
of a single group to an upper limit of R(X) for more diverse
populations. This metric is more influenced by the evenness of
the population compared to ENS, especially when there are more
groups present.

D. Metrics for Stereotypical Bias

The following metrics can be used to measure stereotypical
bias from a global perspective.

Cramer’s V (φC) [64], Tschuprow’s T (T) [65] and Pearson’s
Contingency Coefficient (C) [66]: These three metrics are di-
rectly based on the Pearson’s chi-squared statistic of association
(χ2(X)), employed in the popular Pearson’s chi-squared test.
The χ2(X) statistic is defined as:

χ2(X) =
∑
g∈G

∑
y∈Y

(ng∧y − ngny

n )2

ngny

n

. (9)

As the χ2(X) calculates the difference between the real
number of samples of a subgroup ng∧y and the expected number
of samples of the subgroup ngny

n , it detects the under or overrep-
resentation of specific subgroups independently of the potential
representational bias in the distribution of target classes y ∈ Y
or demographic groups g ∈ G. Unfortunately, the result is both
dependent on the total number of samples n and does not have
clear units or intuitive bounds, making it difficult to interpret
as a bias metric. Due to this, several corrections with defined
bounds are available. In particular, φC(X), T (X), and C(X)
are defined as:

φC(X) =

√
χ2(X)/n

min(|G| − 1, |Y | − 1)
, (10)

T(X) =

√
χ2(X)/n√

(|G| − 1) · (|Y | − 1)
, and (11)

C(X) =

√
χ2(X)/n

1− χ2(X)/n
. (12)

The three metrics share the same bounds, from 0, which
represents no bias or association between the demographic
component and the target class, up to 1, a maximum bias or
association. This difference makes them generally more mean-
ingful and interpretable than the original statistic. Both T(X)
and C(X) can only achieve their theoretical maximum of 1 when
both nominal variables have the same number of possible values,
|G| = |Y |. This restriction does not apply to φC(X), whose
notion of correlation can be maximized even when |G| �= |Y |.
This difference makes φC(X) more widely used in practice.

Additionally, thresholds of significance have been provided
for φC(X) [71], and can be also used when measuring bias.
These thresholds depend on the degrees of freedom of the metric,
calculated as DoF(X) = min(|G| − 1, |Y | − 1) for our applica-
tion. In particular, for DoF(X) = 1, φC < 0.1 is considered a

small or weak association or bias, φC < 0.3 a medium bias,
and φC < 0.5 a large or strong bias. For DoF(X) > 1, the
thresholds are corrected to 0.1/

√
DoF(X), 0.3/

√
DoF(X), and

0.5/
√

DoF(X), respectively.
Theil’s U (U) [67] or Uncertainty Coefficient is a measure

of association based on Shannon entropy, that can therefore be
employed to measure stereotypical bias. It is defined as:

U(X,P1 → P2) =
H(X,P1)− H(X,P1|P2)

H(X,P2)
, (13)

where P1 and P2 stand for G and Y in any order. In this article,
we will treat P1 = G,P2 = Y as the default order (denoted by
U(X)) and P1 = Y, P2 = G as the reverse order (denoted by
UR(X)). Additionally, H(X,P ) with P ∈ {P1, P2} is defined
as:

H(X,P ) = −
∑
i∈P

pi ln(pi) , (14)

and H(X,P1|P2) is defined as:

H(X,P1|P2) = −
∑
i∈P1

∑
j∈P2

pi∧j ln
(
pi∧j
pj

)
. (15)

This metric has a lower bound of 0, no bias or association
between the demographic component and the target class, and
an upper bound of 1, a maximum bias or association.

The definitions of stereotypical bias presented up to this
point are all direction-agnostic, meaning that they produce the
same result for any pair of variables, regardless of which one
is provided first. A key characteristic of the Theil’s U metric
is that it is instead asymmetric, measuring the proportion of
uncertainty reduced in one of the variables (target) when the
other one (source) is known. Thus, the application of this metric
could potentially establish a differentiation between forward and
backward stereotypical bias.

Normalized Mutual Information (NMI) [8], [72]: A different
approach to measuring the association between two variables is
the use of Mutual Information based variables. In particular,
a previous work [8] used a normalized variant to measure
stereotypical bias in a dataset.

NMI(X) = −

∑
g∈G

∑
y∈Y

pg∧y ln
pg∧y
pgpy∑

g∈G

∑
y∈Y

pg∧y ln pg∧y
. (16)

The value of NMI(X) is in the range [0, 1], with 0 being no
bias and 1 being total bias.

Finally, the stereotypical bias can also be measured using the
following local metrics.

Normalized Pointwise Mutual Information (NPMI) [8], [72]:
The NMI(X) metric has a local variant, NPMI. This metric
has a different application than the previous metrics, as it is
not intended for the analysis of the stereotypical bias in the
dataset as a whole. Instead, NPMI is a local stereotypical bias
metric capable of highlighting the particular combination of
demographic groups and the target class in which bias is found.
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SUMMARY OF THE FER DATASETS AND THEIR CHARACTERISTICS

Mathematically, it is defined as:

NPMI(X, g, y) = −
ln

pg∧y
pgpy

ln pg∧y
, (17)

where g ∈ G is the demographic group of interest and y ∈ Y is
the target class. The values of NPMI are in the range [−1, 1], with
1 being the maximum overrepresentation of the combination
of group and class, 0 being no correlation and −1 being the
maximum underrepresentation of the combination.

Ducher’s Z (Z) [68]: The Z measure of local association,
originally developed in the field of biology, can also be employed
to measure local stereotypical bias. It is defined as:

Z(X, g, y) =

⎧⎪⎨
⎪⎩

pg∧y−pgpy

min[pg,py ]−pgpy
if pg∧y − pgpy > 0

pg∧y−pgpy

pgpy−max[0,pg+py−1] if pg∧y − pgpy < 0

0 otherwise,
(18)

where g ∈ G is the demographic group of interest and y ∈ Y
is the target class. The values of Z(X) are also in the range
[−1, 1], with 1 being the maximum overrepresentation of the
combination of group and class, 0 being no correlation and −1
being the maximum underrepresentation of the combination.

IV. CASE STUDY: FER DATASETS AND DEMOGRAPHIC

INFORMATION

In this section, we present the experimental framework used
to observe the real-world behavior of bias metrics in the FER
case study. First, Section IV-A presents the selection of datasets
used in this work. Then Section IV-B details the steps taken
to preprocess and homogenize the different datasets. Finally,
Section IV-C explains the demographic profiling of the samples
in the datasets, as a necessary step to enable the application of
the bias metrics.

A. Datasets

For this work, we initially considered a total of 55 datasets
used for FER tasks, collected from a combination of dataset
lists provided in previous reviews [44], [45], [45], datasets

cited in various works, and datasets discovered through In-
ternet searches. This list was reduced to a final list of 20
datasets, presented in Table II, according to the following
criteria:

1) 2D image-based datasets, or video-based datasets with
per-frame labeling. This is the most extended approach
to FER.

2) Datasets based on real images. Although some artificial
face datasets are available, the demographic relabeling
process can be unreliable in these contexts.

3) Datasets that include labels for the six basic emotions
(anger, disgust, fear, happy, sadness, and surprise), and
optionally neutral. This codification is the most popular in
FER datasets, and the use of a unified label set makes the
stereotypical biases comparable across datasets.

4) Availability of the datasets at the time of request.
These datasets can be categorized into three groups, depend-

ing on the source of the images:
� Laboratory-gathered (Lab), which usually includes a lim-

ited selection of subjects whose images or sequences of
images are taken under controlled conditions. The images
in these datasets are intended for FER from inception, so
the images are usually high-quality and taken in consistent
environments.

� In The Wild from Internet queries (ITW-I). These datasets
are created from images not intended for FER learning,
with varied quality. These datasets usually have a larger
number of images, as their sourcing is relatively cheap.

� In The Wild from Motion Pictures (ITW-M). These datasets
try to improve the inconsistent quality of ITW-I datasets
by sampling their images from motion pictures (including
video from films, TV shows, and other multimedia), while
retaining the advantages of a relatively high number of
samples.

B. Data Preprocessing

To enable the comparison of the studied datasets, we prepro-
cessed them to make the data as homogeneous as possible and
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to ensure accurate demographic labeling. For every dataset, we
performed the following steps:

1) Frame extraction: For datasets based on video, namely,
ADFES, CK, CK+, GEMEP, iSAFE, LIRIS-CSE, and
Oulu-CASIA, we either extracted the frames or used the
per frame version when available.

2) Face extraction: Although most of the datasets provide
extracted face images, the resolution and amount of mar-
gin around the face often vary considerably. To facili-
tate demographic prediction (see Section IV-C), we used
the same face extraction methodology of FairFace [92],
namely a Max-Margin (MMOD) CNN face extractor [93]
implemented in DLIB1. Face extraction was performed
with a target face size of 224× 224 (resized if necessary)
with a margin around the face of 0.25 (56 pixels). When
needed, a zero padding (black border) was used when
the resized image includes portions outside the original
image. On the EXPW dataset, where images have several
faces, we applied the same process to each individual face
extracted from the face bounding boxes provided.

3) Emotion classification relabeling: For each dataset, we
consider the images corresponding to the six basic emo-
tions [40]: angry, disgust, fear, sad, surprise, and happy,
plus a seventh category for neutrality. For some datasets,
the original emotion names differ (such as angry and fury).
In these cases, we only rename the emotion if it is a clear
synonym of the intended one. Additionally, it must be
noted that not all included datasets provide examples of all
emotions, with some (Oulu-CASIA and GEMEP) missing
examples of neutrality.

C. Inferring Demographic Labels

For the analysis of demographic bias in datasets, it is in-
dispensable to have demographic information of the depicted
subjects. In the context of FER, the large majority of datasets
do not provide or gather this information, or when they do, it is
often partial infomation (such as in ADFES, which only refers
to race and gender) or global statistics for the whole dataset and
not to each sample (such as CK+). In most ITW datasets, in
particular those based on Internet queries, this information is
unavailable even to the original developers, as the subjects are
mostly anonymous (such as in FER2013).

To overcome this limitation, we propose, following previous
work [8], [94], the study of biases with respect to a proxy
demographic prediction instead of the original unrecoverable
information. This can be achieved through a secondary demo-
graphic model, such as the FairFace [92] face model, based on
the homonymous dataset. The FairFace model is trained with the
FairFace dataset, made up of 108,501 images of faces from Flickr
(an image hosting service) hand-labeled by external annotators
according to apparent race, gender, and age. The dataset is de-
signed to be balanced across seven racial groups, namely White,
Black, Indian, East Asian, Southeast Asian, Middle Eastern,
and Latino. The dataset is also labeled with both binary gender

1[Online]. Available: http://dlib.net/

(Male or Female) and age group (9 age groups), although not
fully balanced across these characteristics. The trained model is
publicly available2 and was studied against other demographic
datasets, namely UTKFace, LFWA+ and CelebA, improving
previous results and showing accurate classification in gender
and race categories, and more modest results in the age category.

It is important to note that even for FairFace, the demographic
data comes from external annotators and not self-reported de-
mographic characteristics. Furthermore, even self-reported race
and gender identities are extremely subjective and for many indi-
viduals complicated to specify [95]. This labeling is also limited
to a small set of fixed categories, leaving out many possible race
and age descriptors [30]. The lack of descriptors means that
any classification based on these categories is fundamentally
incomplete, leaving out individuals from potentially impacted
minorities and misrepresenting the true identity of others.

Despite these limitations, in problems like FER, the system
can only discriminate based on apparent age, gender, and race,
as no true demographic information is available. Therefore, the
same apparent categories can be used in our bias analysis. In such
cases, FairFace provides a useful prediction of these categories,
enabling a study that would otherwise be impossible.

V. RESULTS

The main objective of this section is to evaluate the behavior
of dataset bias metrics when evaluating real-world datasets, in
our case targeted to the FER task. To this end, we aim to answer
the following research questions:

1) Do the different representational dataset bias metrics ex-
perimentally agree with each other? What metrics consti-
tute the minimal and sufficient set that can characterize
representational bias?

2) Do the different global stereotypical dataset bias metrics
experimentally agree with each other? What metrics con-
stitute the minimal and sufficient set that can characterize
global stereotypical bias?

3) Do the local stereotypical dataset bias metrics experimen-
tally agree? What is the most interpretable local stereo-
typical bias metric?

4) How much representational and stereotypical bias can be
found using the aforementioned metrics in FER datasets?
Which FER datasets are the most and less biased?

In this section, we present the main results of the case study,
over the selected datasets and the three demographic compo-
nents, namely age, race, and gender. First, Sections V-A, V-B
and V-C focus on the agreement results of the metrics in the
categories of representational, global stereotypical, and local
stereotypical bias, respectively. Next, Section V-D presents the
bias analysis of the datasets with respect to representational and
stereotypical bias.

A. Agreement Between Representational Bias Metrics

Overview: Fig. 2 shows the values obtained for the different
representational bias metrics presented in Section III-C when

2[Online]. Available: https://github.com/joojs/fairface

http://dlib.net/
https://github.com/joojs/fairface
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Fig. 2. Representational bias metrics for the the three demographic components and the target label. The metrics are calculated as diversity metrics, with higher
values corresponding to lower representational bias. The graphical representations of the values are normalized to the maximum value of the row. The datasets are
sorted by the average of the normalized metrics.

applied to each of the datasets considered, in each of the three
potential demographic axes. Additionally, we apply the metrics
to the distribution of the target label, as an example of their
use on non-demographic components. As most metrics in this
category are diversity metrics, bias metrics, such as D, NSD, and
BP, are computed in their complementary form based on their
upper limit 1, that is, 1− D, 1− NSD and 1− BP, respectively,
to allow for a more direct comparison. IR is computed in its
inverse form, IR−1, as it has a closer range to the other metrics.
For a better visualization, the plotted values are normalized by
the maximum value of each line (metric in each component). The
datasets are sorted by the average of these normalized values in
decreasing order, from higher average values, which indicate
less representational bias, to lower values which indicate more
representational bias.

Globally, we can observe that the ranking of the datasets ac-
cording to the different metrics is mostly consistent, suggesting
a high agreement between the metrics even if the scales vary.

A marked exception occurs in the combinations of dataset and
component where a single group is represented (R(X) = 1),
such as JAFFE in the age and gender components, and GEMEP,
WSEFEP, and KDEF, in the race component, where IR−1 reports
high values, corresponding to a situation of high diversity and
low bias, contrary to the intuitive notion that these datasets are
strongly biased in these components. These results are caused
by a strict implementation of the IR metric, since in these
datasets and components the most and least represented groups
are the same. Additionally, it can be observed that IR−1 has a
different behavior in the gender component, where the values
are similar to those of the other metrics, compared to the other
components. This can be explained by the number of groups in
each component, with only two groups in the gender component
while the rest of the components have more, as well as by the
balance in the components, with the gender component showing
less representational bias overall. In these cases, the limitations
of the IR−1 metric have less impact in this context, when applied
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to components with few groups represented in roughly equal
proportions.

Similar to the behavior of IR−1, some of the metrics, such as
SEI and NSD, are directly ill-defined in the the trivial cases
where a single demographic group is present in the dataset.
Metrics related to R, such as ENS, 1/D or R itself, are instead
robust to this cases, simply confirming the intuition that only one
group is represented, and giving a result always lower than for
datasets with more groups represented, no matter their evenness.

Interpretability: To analyze the interpretability of these met-
rics one of the key factors is the range of the metric, as the bounds
contextualize the values of a metric. Some of the metrics, such
as R, ENS, and 1/D, are bounded in a [1, R] range, immediately
interpretable as a number of represented groups. From these,
ENS and 1/D complement the pure richness information with
the evenness of the population, lowering the value when some
of the groups are underrepresented. In the case of metrics fo-
cused on a single characteristic of representational bias, such
as evenness (SEI, NSD) and dominance (BP, IR−1), the most
common range is (0,1) (including or excluding the bounds).
This unitary range is easy to interpret for these characteristics,
and allows for a quick conversion between diversity and bias
when one of the meanings is preferred, as we have done with D,
NSD and BP . Among the metrics associated with this unitary
range, we can observe that IR−1 tends to exaggerate the biases
compared to the other metrics in components with more than
two groups (all but gender). This results in IR−1 values close to
0 in these components for most datasets. Finally, the H value lies
in the range [0, ln(R(X))], with no natural interpretation. As the
information conveyed by H is the same as the one in the ENS,
while being less interpretable, ENS is generally preferable.

Statistical Agreement Assessment: To evaluate the agreement
between the metrics, we employ the Spearman’s ρ, a measure of
the strength and direction of the monotonic relationship of two
variables interpreted as ordinal, that is, where only the ranking
produced is considered. To compute the pairwise agreement
between metrics, we employ Spearman’s ρ to compare each
pair of metrics on each component (using the results in Fig. 2)
and then average across the four components. This procedure
highlights the similarity across the metrics. Pairs of metrics that
order the bias in the same way (indicating redundancy among
the metrics) produce values of ρ close to 1 or −1, depending on
the direction of the relationship, and less related metrics produce
values close to 0. Fig. 3 shows these agreement results between
the different metrics of representational bias.

Except for R and IR−1, the agreement value is greater than
0.71 for most metrics, with an average of 0.88. In the case of R,
we can observe very low correlations with the rest of the metrics.
The low robustness of this metric, where adding a single example
of a missing demographic group to a whole dataset will produce
a change in its value, accounts for these low correlations. In the
same way, IR−1 is especially unreliable on demographic axes
with many potential groups, such as race and gender, becoming
overly sensitive to the representation of the least represented
group.

Outside of these two exceptions, the rest of the metrics mostly
conform to the taxonomy presented in Section III-A. SEI and

Fig. 3. Spearman’s ρ agreement between the representational bias metrics,
measured independently for each component and then averaged for each pair of
metrics. Higherρ values indicate high coherence between the rankings generated
by the metrics.

NSD are strongly correlated (ρ = 0.96), as both measure even-
ness, and both of them are, as expected, independent of R, with
|ρ| < 0.1 in the two cases. The other cluster of metrics with high
correlation is mainly made up of combined metrics, namely,
ENS, H, 1/D and 1− D. Unexpectedly, the other dominance
metric, BP, is also included in this cluster, with high corre-
lation with the others (between 0.85 and 0.96). This metric,
different from IR−1 in that it does not directly consider the
least represented group, is more reliable and appears to experi-
mentally capture information similar to the rest of the metrics.
Considering the simplicity and high interpretability of BP, this
makes it an interesting metric for general representational bias
characterization.

It is also noteworthy the high correlation between the com-
bined and evenness metrics clusters, showing how in this partic-
ular case of study both components of representational bias are
highly related.

Recommended Metrics: In general, characterizing the bias of
a dataset for a given component appears to be appropriately
summarized by one of the combined metrics bounded by R,
namely, ENS and 1/D, as these combined metrics are highly in-
terpretable variants of the pure richness, and one of the evenness
metrics to highlight this independent component, such as SEI or
NSD. For more succinct analysis where evenness and richness
are not expected to substantially disagree, Berger-Parker appears
to maintain a high correlation with other metrics while having
an intuitive meaning and simple implementation.

B. Agreement Between Stereotypical Bias Metrics

Overview: Fig. 4 shows the stereotypical bias metric results
for the three main demographic components against the target
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Fig. 4. Stereotypical bias metrics for the the three demographic components against the target label. Higher values correspond to higher amounts of stereotypical
bias. The graphical representation at each row, corresponding to a single metric and demographic component, is normalized to the maximum value of the row.
In the φC row a ◦ mark indicates a statistically weak association and a � mark a statistically medium association. The datasets are sorted by the average of the
normalized metrics, from lower values (less stereotypical bias) in the left to higher values (more stereotypical bias) in the right.

label. These metrics target bias directly, thus, higher values,
shown in the right, relate to more stereotypically biased datasets.
The graphical representation of the values is normalized by
the maximum value of each line (metric in each component).
Following the thresholds for φC presented in Section III-D, we
indicate the bias strength in the row φC . ◦ marks a weak bias,
and � marks a medium bias. No strong bias are found according
to these thresholds.

The ranking produced by these stereotypical bias metrics is
highly coherent, especially in the gender component, where a
binary classification is used. According to the magnitude of the
values reported, two different groups are observed. The three
metrics based on the χ2 metric, namely, φC , T, and C, all report
values in a similar range for all datasets. The NMI and the U
metric, applied both in the forward and reverse direction, noted
here as UR, tend to report coherent but lower values than the other
three metrics. U and UR result in similar values and rankings,
with a few exceptions, namely, the CK+, CK, iSAFE, and LIRIS-
CSE datasets in the age component, and the iSAFE dataset in
the race component.

Interpretability: All of the stereotypical bias metrics lie in the
range [0,1] and share the same interpretation of these bounds,
namely, 0 for no bias and 1 for maximal bias, which allow
for a simple interpretation. The distribution of the values, as
mentioned earlier, is different, with U, UR and NMI resulting in
very low values for all of the datasets, which is indicative of a
low sensitivity. The three other metrics, φC , T and C, all show
higher values, related to a higher sensitivity. Additionally, for
φC both the availability of predefined thresholds and the fact
that it can be maximized even when the number of demographic

Fig. 5. Spearman’s ρ agreement between the stereotypical bias metrics, mea-
sured independently for each component and then averaged for each pair of
metrics. Higherρ values indicate high coherence between the rankings generated
by the metrics.

groups and target labels is not equal (see Section III-D) improve
its interpretability.

Statistical Agreement Assessment: Fig. 5 uses Spearman’s ρ
to compare the agreement between the different stereotypical
bias metrics, measured between the three main demographic
components and the output label. As intuitively observed in
Fig. 4, the agreement values are high in all cases, with a minimum
of 0.91, between U and UR. It can be concluded that for this case
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Fig. 6. Local stereotypical bias metrics for the FER+ITW dataset across the three demographic components. The first column corresponds to the raw number of
samples in each combination of demographic group and target label, the second column corresponds to the NPMI metric and the third column to the Z metric. For
the two metrics, higher absolute values indicate higher local stereotypical bias. Negative values indicate underrepresentation and positive values overrepresentation.

study all metrics provide similar information about the amount of
information shared between the three demographic components
and the output classes.

Recommended Metrics: We observe no notable differences
or clusters in the stereotypical bias metrics. As the ranking of
biases is experimentally similar, any of the metrics is sufficient
for comparing the bias between datasets. In spite of this, we
suggest using φC for stereotypical bias characterization, with a
more natural range of values and predefined thresholds for deter-
mining the intensity of the bias, providing a more interpretable
result.

C. Agreement Between Local Stereotypical Bias Metrics

Overview: In the case of local stereotypical bias the metrics
report not a single value for a dataset and component combina-
tion, but a matrix, making impractical to include the full results
here. Due to this, Fig. 6 shows an example of the application
of local stereotypical bias metrics, in this case for the FER+
dataset, while the results for the rest of the datasets are included
in the Supplementary Material. To illustrate this case, we show

the support of each subgroup (first column), in addition to the
two stereotypical bias metrics, namely, NPMI (second column)
and Z (third column). The support of the subgroups contains
the full information needed to identify the local biases, but are
hard to interpret manually, especially in cases where the target
label, the demographic groups, or both of them are unbalanced
or representationally biased, such as in this example.

Statistical Agreement Assessment: Overall, we can intuitively
observe a high correlation in the rank sorting of the biases
detected by the two metrics, in this case when comparing the
results within a single dataset and demographic component.
We can again confirm this correlation by using the Spearman’s
ρ. In particular, for each dataset and demographic compo-
nent we compute a NPMI and a Z matrix and compute the
ρ agreement score between them. The final averaged value is
ρ = 0.96± 0.02, indicating a strong correlation between the two
metrics.

Interpretability: Despite the similarity in the produced rank-
ings, the range of values of both metrics is remarkably different.
In particular, the chosen example dataset highlights the main
shortcoming of the NPMI metric, an oversensitivity to missing
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Fig. 7. Summary of demographic bias in FER datasets, using the selected metrics. Higher values in any metric indicate a higher amount of bias. The representational
bias metrics are shown in their bias formulation, in the case of ENS by subtracting it from the number of groups in each demographic component, and in the case
of SEI from 1, its theoretical maximum. The datasets in each group are sorted by the average of the normalized metrics.

subgroups, such as the 70+ age group in the disgust label. These
underrepresentation biases obtain a NPMI of −1, but arguably
similar biases, such as the small representation of the 70+ age
group in the fear label, obtain only a NPMI of −0.22, scaling
in an unintuitive way. In the Z metric, we can observe values
of −1 and −0.9 for these same groups, closer to the natural
intuition. Generally speaking, the observed values for Z are
better distributed in the range, making them more interpretable
than those of the NPMI.

Recommended Metrics: From these results, we recommend
the usage of Z to evaluate local stereotypical bias, as the biases
detected are similar to those of the NPMI, but having a better
interpretability.

D. Demographic Bias in FER Datasets

In this section, we focus on analyzing the FER case study,
employing the information provided by the metrics applied in the
previous sections to identify which biases are the most prevalent
across the datasets, and which datasets are the least affected
by them. For the analysis in this section we group the datasets
according to the source of the data in each dataset (according
to the classification presented in Section IV-A), as this is one of
the key factors determining the type of biases exhibited.

Fig. 7 summarizes the findings in Figs. 2 and 4, according
to the suggested metric selection of the previous sections. In
particular, for representational bias we show the ENS and SEI
to characterize representational bias, and φC to characterize
stereotypical bias. In the case of ENS and SEI, we convert them
to their bias variant, to facilitate their interpretation. In the case
of ENS we use |G| − ENS, where |G| is the number of groups
in the demographic component, with the meaning of equivalent
number of unrepresented groups. In the case of SEI, we use
1− SEI, with the meaning of unevenness between represented
groups. The results are split in three sections, according to the
data source of each dataset (LAB, ITW-I and ITW-M).

Representational Bias: Overall, we observe the lowest rep-
resentational bias values in the ITW-I datasets, followed by
the ITW-M and finally the LAB datasets. Gender is the least
biased component across the three groups, followed by age,

and race exhibits the highest bias. We observe almost no rep-
resentational bias in the gender component for all datasets,
with most having a |G| − ENS close to 0. The exception to
this is JAFFE, a laboratory-gathered dataset taken from a small
sample of Japanese women that was never intended to be used
as a general dataset for ML training [47]. In the age and race
components, the biases are more generalized, with the LAB
datasets exhibiting the highest representational bias, while the
ITW-M and ITW-I datasets seem to be less biased. Despite this,
the ITW-M appear to be closer to the representation profiles of
the LAB datasets than to those of the ITW-I datasets. Globally,
EXPW, MMAFEDB and RAF-DB are the least representation-
ally biased datasets, with low |G| − ENS in the age (≤3.258)
and the race (≤3.445) components. For the evenness aspect of
representational bias, we can observe the results of 1− SEI,
which is relatively low and homogeneous across the ITW-I
datasets. The two ITW-M datasets are less even across the
represented groups than either the ITW-I and LAB datasets.
Finally, the LAB datasets have a large and less coherent range
of evenness values, showing a larger variety of demographic
profiles between them.

Global Stereotypical Bias: Overall, stereotypical bias seems
to be present at a lower rate than representational bias for the
three groups, with only weak and medium bias found in some
cases according to the φC metric thresholds. The least biased
group is the LAB group in two of the components (gender and
age), while the ITW-M is the least biased in the remaining one
(race). As expected, this type of bias is almost absent from most
LAB datasets, as they usually take samples for all the target
classes for each subject. Despite this, some LAB datasets, such
as LIRIS-CSE, GEMEP, iSAFE, CK, and CK+, do not follow
this rule. These datasets only include certain classes for each
subject, and in these cases they exhibit as much stereotypical
bias as the ITW-I datasets. This effect is present mostly in the age
and race components, while in the gender category these LAB
datasets still exhibit lower bias scores than the ITW-I ones. ITW-I
datasets have an overall higher stereotypical bias, with most of
them showing weak or medium bias in the three demographic
components, especially for the gender component. From the
ITW-I datasets, the least stereotypically biased are EXPW and
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Fig. 8. Local stereotypical bias according to Z for the EXPWITW dataset in
each of the demographic components.

MMAFEDB. The two ITW-M, namely, SFEW and CAER-S,
show very different stereotypical bias profiles, with SFEW hav-
ing higher stereotypical bias scores in the three demographic
components, while CAER-S is unbiased in the race component
and less biased in the two other components compared to SFEW.

Local Stereotypical Bias: According to these results, we can
highlight EXPW as one of the least biased datasets overall. For
this reason, in Fig. 8 we measure its local stereotypical bias
using Z. The highest biases are found in the age and race com-
ponents, where six subgroups have large underrepresentations
(Z ≤ −0.45), namely the 0–2 age group in the disgust and happy
labels, the 50–59 group in the fear label, the east asian and indian
groups in the angry label, and the indian group in the surprise
label. The angry, fear, and surprise labels exhibit the highest
overall local stereotypical biases, especially in the race and age
components.

FER Dataset Selection: With this information, currently no
completely unbiased dataset is found for FER. Although ITW
datasets such as RAF-DB, MMAFEDB, and EXP have relatively
low representational bias and high evenness, their stereotypical
bias results demand caution when using them as a sole source of
training data. From these, EXPW can be highlighted as the least

stereotypically biased dataset of the ITW category, and having
a relatively large number of samples at 91,793 images, it can be
generally recommended. When using this dataset, precautions
should be taken to evaluate the potential impact of stereotypical
bias, especially in the angry, fear, and surprise labels in the race
component.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a taxonomy of metrics appli-
cable to some of the main types of demographic biases found
in datasets, namely, representational and stereotypical bias. We
have incorporated into our review both metrics previously em-
ployed for this purpose and new proposals adapted from other
fields, such as information theory and ecology. In particular,
we have shown how metrics intended for species diversity in
ecosystems can be also used to measure representational bias in
datasets. After presenting these metrics, we have employed FER
as a case of study, comparing the biases present in 20 datasets
for this task to evaluate the behavior of the metrics. With this
information, we are able to highlight the most interpretable
metrics for each subtype of bias, while avoiding redundant
metrics that do not offer additional information.

Regarding representational bias, defined as an unequal rep-
resentation of different demographic groups, we have found
a relatively high experimental agreement between the differ-
ent metrics available. Despite the diverse theoretical basis and
implementation details, we conclude that the joint usage of a
combined metric, where we suggest the Effective Number of
Species (ENS) for its interpretability, and an evenness metric,
such as the Shannon Evenness Index (SEI), selected for the same
reason, are generally sufficient to characterize representational
bias.

Regarding stereotypical bias, an undesired association be-
tween a demographic component and the target label, we find no
significant difference between the metrics available. For inter-
pretability reasons, we recommend the usage of Cramer’s V (φC )
when measuring stereotypical bias in a dataset. Additionally, for
the metrics used to measure stereotypical bias in a local way,
that is, for a specific subgroup defined by both a demographic
group and a target label, we suggest using Ducher’s Z, as an
interpretable and informative metric.

As a case study, we have applied these metrics to a collection
of twenty FER datasets. We find evidence of representational
bias in most of the datasets, especially those taken in laboratory
conditions, as the low subject number and collection conditions
lead to constrained demographic profiles. The datasets taken in
the wild, especially those from internet searches, exhibit lower
representational bias, but at the cost of higher stereotypical bias.
Overall, we find that the EXPW dataset exhibits the lowest
representational bias, with relatively low stereotypical bias. Fur-
thermore, we apply a local stereotypical bias metric to identify
the specific stereotypical biases that could be of concern, and
find that special considerations should be taken when analyzing
the angry, fear and surprise labels, as they are racially biased.

For future work, we can note that although this work has
focused on representational and stereotypical bias, dataset
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demographic bias can manifest in many other ways [96], such
as image quality, image context and label quality, and further
research is still needed in the way these other manifestations
can be measured. Additionally, we have only considered both
demographic components and target variables as nominal vari-
ables, but our research could be extended to continuous and
ordinal demographic components and regression problems. Fur-
thermore, we have focused on stereotypical bias as an association
between demographic components and target classes, although
the association between several demographic components also
poses potential risks and can be measured with the same metrics.
Currently, there has been no research on the potential impact of
biases in this regard.

Another limitation that could be improved in future work is
the usage of demographic labels derived from a demographic
relabeling model, FairFace. As these labels can be inaccurate,
new datasets that include demographic information, or new mod-
els capable of more accurate demographic predictions, could
support more robust bias analysis.

The dataset bias analysis found here is supported by previous
work [8], [94] that has shown bias transference to the final trained
model in the specific context of FER. Nonetheless, further work
is still required to comprehend the implications and reach of this
bias transference in different problems and contexts.

In this work, we have focused on how to measure demographic
bias, but there is still work to be done on the usage of the reviewed
metrics to study the transference of bias from the dataset to the
model, as a way to improve bias mitigation strategies. To this
end, we suggest the generation of intentionally biased synthetic
datasets derived from real datasets as a general application-
agnostic framework to evaluate both the limits of these de-
mographic bias metrics and potential mitigation strategies. In
this sense, and to inspire future works, in the Supplementary
Material, we provide the results of a series of experiments
showcasing this methodology and showing how different types
of dataset bias, measured with our proposed metrics, propagate
in different ways to the final model predictions.

Finally, it is crucial to understand any bias results not only
as a statistical discovery but as a potential harm to real people.
In this sense, more work is needed on the psychological and
sociological impact of potentially biased systems in the final
applications.
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