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Abstract—In the field of visual scene understanding, deep neural
networks have made impressive advancements in various core
tasks like segmentation, tracking, and detection. However, most
approaches operate on the close-set assumption, meaning that the
model can only identify pre-defined categories that are present
in the training set. Recently, open vocabulary settings were pro-
posed due to the rapid progress of vision language pre-training.
These new approaches seek to locate and recognize categories
beyond the annotated label space. The open vocabulary approach
is more general, practical, and effective than weakly supervised
and zero-shot settings. This paper thoroughly reviews open vo-
cabulary learning, summarizing and analyzing recent develop-
ments in the field. In particular, we begin by juxtaposing open
vocabulary learning with analogous concepts such as zero-shot
learning, open-set recognition, and out-of-distribution detection.
Subsequently, we examine several pertinent tasks within the realms
of segmentation and detection, encompassing long-tail problems,
few-shot, and zero-shot settings. As a foundation for our method
survey, we first elucidate the fundamental principles of detection
and segmentation in close-set scenarios. Next, we examine various
contexts where open vocabulary learning is employed, pinpointing
recurring design elements and central themes. This is followed
by a comparative analysis of recent detection and segmentation
methodologies in commonly used datasets and benchmarks. Our
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review culminates with a synthesis of insights, challenges, and
discourse on prospective research trajectories. To our knowledge,
this constitutes the inaugural exhaustive literature review on open
vocabulary learning.

Index Terms—Open vocabulary, scene understanding, object
detection, segmentation, survey.

I. INTRODUCTION

EEP neural networks have revolutionized scene under-
D standing tasks, including object detection, segmentation,
and tracking [1], [2], [3], [4]. Nonetheless, using conventional
approaches for real-world applications can be challenging due to
limitations such as inadequate class annotations, close-set class
definitions, and costly labeling expenses. These limitations can
increase the difficulty and cost of implementing a deep model
on new scenes, particularly when the number of categories or
concepts in the scene is much larger than what is included in the
training dataset.

For example, object detection is a core computer vision task
involving scene understanding. It requires human annotations
for each category and each object location, which can be costly
and time-consuming. For instance, the COCO dataset [5], widely
used for benchmarking object detection algorithms, only in-
cludes 80 categories. But in reality, natural scene images often
have more than 80 different types of objects. We would need
to incur significant annotation costs to extend object detectors
to cover all these categories. Current research focuses on de-
veloping methods to train more flexible object detectors on the
subset of COCO with base classes and let them identify new or
unfamiliar objects without requiring additional annotations.

Several previous solutions adopt zero-shot learning (ZSL) [6],
[7], [8]. These approaches extend a detector to generalize from
annotated (seen) object classes to other (unseen) categories. The
annotations of seen object classes are used during the training,
while the annotations of unseen classes are strictly unavailable
during training. Most approaches adopt word embedding pro-
jection to constitute the classifier for unseen class classification.

However, these approaches come with several limitations.
ZSL, in particular, is highly restrictive. Typically, these methods
lack examples of unseen objects and treat these objects as back-
ground objects during training. As a result, during inference, the
model identifies novel classes solely based on their pre-defined
word embeddings [9], [10], thereby limiting exploration of the
visual information and relationships of those unseen classes.
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This is why ZSL approaches have been shown to yield unsatis-
fying results in novel classes.

Open vocabulary learning is proposed to handle the above
issue and make the detector extendable. It has been successfully
applied to multiple tasks, e.g., segmentation, detection, video
understanding, scene understanding, etc. In particular, open
vocabulary object detection [11], [12] is first proposed. Also,
open vocabulary segmentation is proposed [13], [14]. Similarly,
the model trains on base classes and inferences on both base and
novel classes. The critical difference between zero-shot learning
and open vocabulary is that one can use visual-related language
vocabulary data like image captions as auxiliary supervision in
open vocabulary settings. The motivations to use language data
as auxiliary weak supervision are: 1) Language data requires less
labeling effort and thus is more cost-friendly. The visual-related
language data, like image captions, is widely available and more
affordable than box or mask annotations. 2) Language data
provides a more extensive vocabulary size and thus is more
extendable and general. For example, words in captions are not
limited to the pre-defined base categories. It may contain novel
class names, attributes, and motions of objects. Incorporating
captions in training has been proven to be extremely useful in
helping improve the models’ scalability.

Moreover, recently, visual language models (VLMs) [15],
[16], which pre-train themselves on large-scale image-text pairs,
show remarkable zero-shot performance on various vision tasks.
The VLMs align images and language vocabularies into the
same feature space, fulfilling the visual and language data gap.
Many open vocabulary methods effectively eliminate the dis-
tinction between close-set and open-set scenarios by utilizing
the alignment learned in VLLMs, making them highly suitable for
practical applications. For example, An open vocabulary object
detector can be easily extended to other domains according to
the demand without the need to gather relevant data or incur
additional labeling expenses.

As open vocabulary models continue to advance rapidly and
demonstrate impressive results, it is worthwhile to track and
compare recent research on open vocabulary learning. Several
surveys work on low-shot learning [17], [18], [19], [20], [21],
including few-shot learning and zero-shot learning. There are
also several surveys on multi-modal learning [22], [23], in-
cluding using transformer for vision language tasks [22], [24]
and vision language pre-training [25]. However, these works
focus on learning with few examples, multi-modal fusion, or
pre-training for better feature representation. As far as we
know, there haven’t been any surveys that thoroughly summarize
the latest developments in open vocabulary learning, including
methods, settings, benchmarks, and the use of vision foundation
models. We aim to fulfill the blank with this work.

Contribution: In this survey, we systematically track and sum-
marize recent literature on open vocabulary learning, including
object detection, segmentation, video understanding, and 3D
scene understanding. The survey covers the most representative
works in each domain by extracting the common technical
details. It also contains the background of open vocabulary
learning and related concepts comparison, including zero-shot
learning (ZSL) [7], open set recognition (OSR) [26], [27], and
out-of-distribution detection (OOD) [28]. It also includes
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large-scale visual language models and representative
detection and segmentation works, which makes the survey
self-contained. In addition, we present a comprehensive analysis
and comparison of benchmarks and settings for each specific
domain. As far as we know, we are the first to concentrate on the
specific area. Finally, since the field of open vocabulary learning
is rapidly evolving, we may not be able to keep up with all the
latest developments. We welcome researchers to contact us and
share their new findings in this area to keep us updated. Those
new works will be included and discussed in the revised version.

Survey pipeline: In Section II, we will cover the background
knowledge, including definition, datasets, metrics, and related
research domains. Then, in Section III, we conduct main reviews
on various methods according to different tasks. In particular, we
will first include the preliminary knowledge of close-set detec-
tion and segmentation methods. Then, we present the method
details of each direction, including detection, segmentation,
video understanding, and 3D scene understanding. Next, we
point out challenges and future directions in Section IV and
conclude Section V. Finally, the appendix compares the results
for different tasks and benchmarks.

II. BACKGROUND

Overview: In this section, we first present the concept defini-
tion of open vocabulary and related concepts comparison. Then,
we present a historical review of open vocabulary learning and
point out several representatives. Next, we present the standard
datasets and metrics. We also present the unified notations
for open vocabulary object detection and segmentation tasks.
Finally, we review the related research domains.

A. Concept Definition

We take the classification task for concept illustration. The
supervised methods assume that the training data and testing
data share the same closed-set label space. However, the model
trained under this assumption cannot be extended to new cate-
gories. To address this issue, researchers have introduced several
new concepts like open-set learning and zero-shot learning,
ultimately leading to open vocabulary learning.

These concepts have similar settings and notations. In par-
ticular, the examples are classified into base and novel classes
(or called out-of-distribution examples). The base classes can be
accessed for training, while the novel classes are not. We denote
the base classes in the label set space C'p and the novel classes
in the label set space C'y.

Due to the low performance on novel classes in earlier works
for open-set, open world, and OOD tasks [11], [28], [30], [31]
and the easier acquisition of image-text pairs, recent works [11],
[12] propose the open vocabulary setting. It allows using addi-
tional low-cost training data [32] or pre-trained vision language
models like CLIP [15], which have much larger language vocab-
ularies C',. It may contain the concepts of both Cz and C'y, but
its main goal is to enable the model to generalize across more
classes in the open domain. In mathematical terms and data view,
open vocabulary learning can be defined as follows:

Training Data (Dyyqipn): The training dataset is a collection
of data-label pairs, where each pair consists of an input x; and
its associated label ;. The input x; can be an image or a video
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according to the task type, and in scene understanding tasks such
as detection and segmentation, the label y; also includes visual
labels, such as bounding boxes or masks, in addition to the class
labels. Alongside the standard input-label pairs, open vocabulary
learning includes vision-aware language vocabulary data, repre-
sented as [;. The language vocabulary data can be image-caption
data or vision-aware class name embeddings in VLMs like
CLIP [15]. The language augmented training set can be denoted
as Dt’rain = {(1‘1, Y1, ll), (1‘2, Y2, 12), Ceey (.Ifn, Yns ln)}, where
n is the training data length, z; is the visual data, y; is the label
from base classes Cp, and [; is the associated language data
from a large vocabulary space C',. Note that C, is not strictly
required to contain C'p or C'y, as the language vocabulary may
not cover all the class names in the vision data. On the contrary,
C'1, may also have words out of the pre-defined novel categories,
which can further extend models’ generalizability.

Evaluation Data (D.,q;): The evaluation dataset is similarly

a collection of data pairs. However, the labels for evaluation
data include both base classes and novel classes. This can
be represented as Dy = {(21,¥1), (25, 95)s - (@, ¥0) )
where m is the evaluation data length, y/; belongs to either C'p
or C. During the evaluation, open vocabulary methods need to
predict y; given 2 in the realm y; € (C'p U Cy).

Here, we emphasize the concept differences between open

vocabulary learning and analogous concepts as follows:

e Open-Set Learning: Open-set learning aims to classify
known classes and reject unknown classes during test-
ing [30], [33], [34]. Concretely, the training data is
Dirain = {(*1,91), (T2,y2); - -+ (Tn, Yn)}, Where y; is
from base classes C'g. These are also called known classes
in open-set learning [30], [35], [36]. The evaluation data
i5 Devat = {(24, 1), (£, 04). - ()} where g €
(CpU{u}). u is a single class that represents the ‘un-
known’ class. Open-set learning tasks do not require further
classifying the unknown classes.

e Open World Learning: Open world learning addresses
real-world environments’ dynamic and ever-evolving na-
ture by recognizing and learning new categories incre-
mentally over time, without the need for complete sys-
tem retraining [37], [38]. This process includes clas-
sifying known objects, identifying unknowns, labeling
the unknowns by humans, and incrementally learn-
ing new categories as they are labeled and added to
the system. Suppose an open world learning process
contains 7' learning steps. In the tth learning step,
where t € {1,2,...,T}, the training data is D!

train —

{(21,90). (2%, 95), ... (21,,,y5,, )}, where y{ is in the la-
bels annotated in the ¢th step C},,.,, and z! is the input

abel? i
data corresponding to the newly added labels. The evalu-

ation data is Dzwz = {(mllv yllt)7 (m/Qv y/2t)v s (xﬁn, y%)},
where y/' € (C% U {u}). uis a single class that represents
the ‘unknown’ class. C; is the known class label set for
timestamp ¢. It is an accumulation of labeled classes in the
current and previous steps. C'; = UZ:O CF,.,- Note that
evaluation input 2, keeps the same across learning steps.
e Qut-of-Distribution ~ Detection: Out-of-distribution
(OOD) detection focuses on the ability to detect data
that is different in some way from the data used
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(a) Open-Set/Open World/OOD (b) Zero-Shot (c) Open Vocabulary

Fig. 1. Concepts comparison between open-set/open world/out-of-
distribution detection (OOD), zero-shot and open vocabulary. Different
shapes represent different novel categories. Colors represent the predictions
of the novel objects. (a), in the open-set/open World/OOD settings, the model
only needs to identify novel classes and mark them as “unknown”. (b), in
the zero-shot setting, a model must classify unknown classes into specific
categories. (c), in the open vocabulary settings, the model can classify novel
classes with the help of large language vocabulary knowledge C'r,.
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Fig.2. Timeline of open vocabulary learning. The gray boxes indicate repre-
sentative works. Green boxes indicate the foundation models and VLMs. In open
vocabulary learning, many works exploit the knowledge learned by pre-trained
vision foundation models like Swin [29] and VLMs like CLIP [15]. Recently,
some works also explore the use of diffusion models in this setting.

during training [28]. The training data is Dipgin =
{(z1,y1), (x2,Y2)s - (Tn,yn)} and is supposed to be
sampled from a probability distribution Py.qin(X,Y).
During testing, the model encounters data z; that are
sampled from a different distribution Poop(X'), which
is not represented in the training dataset. The goal is
to identify or appropriately handle these OOD samples.
Metrics for OOD detection often involve measuring the
model’s certainty or confidence in its predictions, using
scores like softmax probability, and checking whether it
correctly identifies OOD samples [28].

* Zero-Shot Learning: Zero-shot learning aims to recognize
objects or concepts not seen during training. The training
data is Dirgin = {(21,91), (22,92), - - -, (Tn,Yn)}, where
y is from base classes C'g, which is usually called seen
classes in zero-shot learning [7], [39]. The evaluation
datais Deyar = {(27, 41), (b, 45), ..., (@), 4..) }, Where
y, € Cn.Cy is novel classes or unseen classes. Zero-shot
learning tasks require models to make clear classifications
among the new unseen classes.

We briefly compare these concepts in Fig. 1, including open
vocabulary, open-set, open world, OOD, and zero-shot.

B. History and Roadmap

Before introducing the open vocabulary setting, reviewing
the progress of open vocabulary learning is necessary. In
Fig. 2, we summarize the timeline of open vocabulary learning.
Localization and classification of arbitrary objects in the wild
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Summarization on open vocabulary learning works. (a) The number of research works still increases per year. (b) Detection and segmentation have more

papers than 3D and video. (c) indicates each direction per year. The results are obtained on 2024/1/15.

have been challenging problems due to the limitations of existing
datasets. The concept of open vocabulary in scene understanding
comes from the work [40], where the authors build a joint image
pixel and word concept embedding framework. The concept is
hierarchically divided. Then, multi-modal pre-training was well
studied with the rise of BERT [9] in NLP. Motivated by the
process of vision language pre-training, OVR-CNN [11] pro-
posed the concept of open vocabulary object detection, where the
caption data are used for connecting novel classes semantics and
visual region. Later on, CLIP was presented and open-sourced.
After that, VilD [12] is the first work that uses the knowledge
of CLIP to build open vocabulary object detection. Meanwhile,
LSeg [14] first explored the CLIP knowledge of language-driven
segmentation tasks. After these works, recently, there have been
more and more works on improving the performance of open
vocabulary detectors or building new benchmarks for various
settings. SAM [41] is proposed to build the segmentation foun-
dation model, which is trained by billion-level masks. Combined
with CLIP, SAM can also achieve good zero-shot segmentation
without fine-tuning. Recently, with the rapid process of large lan-
guage model (LLM) [42], open vocabulary learning has become
a more promising direction since more language knowledge can
be embedded in multi-modal architecture. As shown in Fig. 3(a),
the number of research works in open vocabulary learning
has increased significantly since 2021. We also summarize the
statistics of different directions in Fig. 3(b) and (c). The details
of these directions can be found in Section III.

C. Tasks, Datasets, and Metrics

e Tasks: Open vocabulary learning has included a wide range
of computer vision tasks, including object detection [11],
[43], [44], segmentation [45], [46], [47], video understand-
ing, and 3D scene understanding. The center goal of these
tasks is similar, recognizing the novel classes with the aid of
large vocabulary knowledge for their corresponding tasks.
In this survey, we mainly focus on the methods of scene
understanding tasks, including object detection, instance
segmentation, semantic segmentation, and object tracking.
Nonetheless, we also consider other closely related tasks,
such as open vocabulary attribution prediction, video clas-
sification, and point cloud classification.

e Datasets: For object detection, the common datasets are
COCO [5] and LVIS [48]. Recently, a more challenging
dataset, v3Det [49] with more than 10,000 categories, is
proposed. For image segmentation, the most commonly
used datasets are COCO [5], ADE20k [50], PASCAL-VOC
2012 [51], PASCAL-Context [52], and Cityscapes [53].
For video segmentation and tracking, the frequently used
datasets are VSPW [54], Youtube-VIS [55], LV-VIS [56],
MOSE [57], and TAO [58].

e Metrics: For detection tasks, the commonly used metrics
are mean average precision (mAP) and mean average
recall (mAP) for both base and novel classes. Among
segmentation tasks, the commonly used metrics are mean
intersection over union (mloU) for semantic segmentation,
mask-based mAP for instance segmentation, and panoptic
quality (PQ) for panoptic segmentation.

D. Related Research Domains

e Open-Set Recognition: The concept of Open-Set Recog-
nition (OSR) addresses the challenge of identifying un-
known classes during classification tasks. In traditional
classification systems, models are trained to recognize a
finite set of known classes, but in real-world scenarios, they
may encounter data that doesn’t belong to these predefined
categories. During testing, OSR aims to classify known
classes seen during the training and reject unknown classes
that are unseen [30]. The main methods used for OSR can
be broadly categorized into two types: discriminative mod-
els [33], [34], [35], [36], [59] and generative models [60],
[61],[62],[63], [64], [65]. The discriminative models focus
on differentiating between known classes and identifying
unknown classes by enhancing the boundary or margin
between these classes. The generative models are either
instance generation-based [60], [61], [62], [63], [64] or
non-instance generation-based [65]. They emphasize gen-
erating new instances or features to improve the ability of
the system to recognize new, unseen classes during testing.
Each category employs specific techniques and approaches
to address the challenges inherent in open-set recognition,
which involves dealing with classes not seen during the
training phase. In [66] extends the OSR task to require
further identifying novel classes.
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* Open World Learning: Open world learning involves iden-
tifying and labeling new, unknown categories (novel un-
knowns) [37]. This process includes incrementally learn-
ing new categories as they are labeled and added to the
system. The goal is to create a system that remains robust
to unknown categories and adapts continually to include
new information, balancing the risks associated with open
spaces in the learning model. In [37] first propose open
word recognition. Recent works also explore the open
world object detection [31], [67] task.

e Qut-of-Distribution Detection: Out-of-distribution (OOD)
detection methods can be structured into several cate-
gories [28]. Classification-Based Methods [68], [69], [70],
[71]: These include output-based methods [68], [69], la-
bel space redesign [70], and OOD data generation tech-
niques [71]. Density-Based Methods [72], [73], [74]: This
category involves methods that detect OOD by modeling
data density. Distance-Based Methods [75], [76]: These
methods use distance metrics, typically in the feature space,
to identify OOD instances. Reconstruction-Based Meth-
ods [77],[78], [79]: This approach achieves OOD detection
that features reconstruction capabilities.

o Zero-Shot Detection and Segmentation: This task aims to
segment classes that have not been encountered during
training. Two streams of work have emerged: discrimi-
native methods [80], [81], [82], [83], [84] and generative
methods [85], [86], [87], [88]. Representative works in
this field include SPNet [80] and ZS3Net [86]. SPNet [80]
maps each pixel to a semantic word embedding space and
projects pixel features onto class probabilities using a fixed
semantic word embedding [89], [90] projection matrix.
On the other hand, ZS3Net [86] first trains a generative
model to produce pixel-wise features for unseen classes
based on word embeddings. With these synthetic features,
the model can be trained in a supervised manner. Both of
these works treat zero-shot detection and segmentation as a
pixel-level zero-shot classification problem. However, this
formulation is not robust for zero-shot learning, as text em-
beddings are typically used to describe objects/segments
rather than individual pixels. Subsequent works [85], [87],
[88], [91], [92], [93] follow this formulation to address
different challenges in zero-shot learning. In a weaker
assumption where unlabeled pixels from unseen classes are
available in the training images, self-training [86] is com-
monly employed. Despite promising results, self-training
often requires model retraining whenever a new class ap-
pears. ZSI [39] also employs region-level classification
for bounding boxes but focuses on instance segmentation
rather than semantic segmentation. More recently, PAD-
ing [85] proposes a unified framework to tackle zero-shot
semantic segmentation, zero-shot instance segmentation,
and zero-shot panoptic segmentation.

Most approaches in open vocabulary learning are based
on zero-shot learning settings, such as replacing the fixed
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performance is limited, and they are not practical for real-
world applications.

Long-tail Object Detection and Instance Segmentation:
This task addresses the challenge of class imbalance in
instance segmentation. Many approaches tackle this issue
through techniques such as data re-sampling [48], [94], loss
re-weighting [95], and decoupled training [96]. Specifi-
cally, some studies [94] employ image-level re-sampling.
However, these methods tend to introduce bias in instance
co-occurrence. To address this issue, other works [97] focus
on more refined re-sampling techniques at the instance
or feature level. Regarding loss re-weighting, most stud-
ies [95] rebalance the ratio of positive and negative samples
during training. Additionally, decoupled training meth-
ods [96], [98] introduce different calibration frameworks
to enhance classification results. Resolving long-tail object
detection can lead to improved accuracy of rare classes.
However, these methods currently cannot be applied to the
detection of novel classes.

Few-Shot Detection and Segmentation: Few-shot object
detection aims to expand the detection capabilities of a
model using only a few labeled samples. Several ap-
proaches [21], [99], [100], [101] have been proposed to
advance this field. Notably, TFA [102] introduces a simple
two-phase fine-tuning method, while DeFRCN [103] sep-
arates the training of RPN features and Rol classification.
Moreover, SRR-FSD [104] combines multi-modal inputs
while LVC [105] proposes a pipeline to generate additional
examples for novel object detection and train a more robust
detector. Few-shot segmentation comprises Few-Shot Se-
mantic Segmentation (FSSS) and Few-Shot Instance Seg-
mentation (FSIS). FSSS involves performing pixel-level
classification on query images. Previous approaches [106],
[107] typically build category prototypes from support
images and segment the query image by computing the
similarity distance between each prototype and query fea-
tures. On the other hand, FSIS aims to detect and segment
objects with only a few examples. FSIS methods can be
categorized into single-branch and dual-branch methods.
The former [108] primarily focuses on designing the classi-
fication head, while the latter [109], [110], [111] introduce
an additional support branch to compute class prototypes
or re-weighting vectors of support images. This support
branch assists the segmenter in identifying target cate-
gory features through feature aggregation. For example,
Meta R-CNN [111] performs channel-wise multiplication
on Rol features, and FGN [110] aggregates channel-wise
features at three stages: RPN, detection head, and mask
head. However, few-shot learning still requires examples
of novel classes during training, and such data may not be
available.

III. METHODS: A SURVEY

classifier with language embeddings. However, these meth- Overview: In this section, we first review preliminary
ods struggle to generalize well to novel classes due to knowledge and vision language modeling by extending close-
the absence of novel class knowledge. Consequently, their  set detectors into open vocabulary detectors via VLMs in
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TABLE I
REPRESENTATIVE WORKS SUMMARIZATION AND COMPARISON IN SECTIONS III-C AND III-D

Method Task Text Training Data Vision Training Annotations Text Model Vision Model Highlight
Open Vocabulary Detection (Sec. 3.3)
OVR-CNN [11] ovoD Captions Bounding Boxes (Base) BERT Faster R-CNN The first method that proposes OVOD and adopts grounded caption pre-
training.
ViLD [12] OvVOoD None Bounding Boxes (Base) CLIP-text CLIP-vision + Faster R-CNN The first method that distills knowledge from the pre-trained CLIP model.
VL-PLM [215] OVOD None Bounding Boxes (Base) CLIP-text CLIP-vision + Faster R-CNN Generate pseudo-labels for novel classes using pre-trained OVOD.
RegionCLIP [216] OvVOoD Captions Bounding Boxes (Base + Pseudo Novel) CLIP-text CLIP-vision + Faster R-CNN Creates region-text pairs as pseudo labels using CLIP and pre-train the
detector in the first stage.
Detic [134] OvVOD ImageNet Bounding Boxes (Base + Pseudo Novel) CLIP-text Centernet2 Propose a weakly supervised approach that is training rare classes with
image-level annotations.
DetPro [217] OVOD TmageNet Bounding Boxes (Base + Pseudo Novel) CLIP-text Centernet2 learn c s prompt for open vocabulary object detection
based on the pre-trained vision-language model.
OV-DETR [218] OVOD None Bounding Boxes (Base) CLIP-text CLIP-vision + DETR Introduces a conditional binary matching mechanism to let DETR model
generalize to queries from unseen classes.
CORA [219] OvOoD None Bounding Boxes (Base) CLIP-text CLIP-vision + DETR Propose Anchor Pre-Matching strategy to reduce both training and inference
time for conditional binary matching.
VLDet [44] OVOD Captions Bounding Boxes (Base) CLIP-text Faster R-CNN Aligns image regions with words in captions by a set matching method.
F-VLM [137] OvVOoD None Bounding Boxes (Base) CLIP-text CLIP-vision + Mask R-CNN Train the detector with frozen VLMs and combine scores of joint detection
and VLMs.
BARON [113] ovOoD None Bounding Boxes (Base) CLIP-text Faster R-CNN Aligning Bag of Regions for Open Vocabulary Object Detection.
OWLv2 [135] OVOD None Bounding Boxes (Base + Pseudo Novel) CLIP-text ViT + detection head Generate pseudo-labels from WebLl dataset and train the detector with the
generated datasets.
MaMMUT [220] OvVOD Captions Bounding Boxes (Base + Pseudo Novel) CLIP-text ViT + detection head Joint pre-train with multi-modal tasks to benefit the novel object detection.
Open Vocabulary Segmentation (Sec. 3.4)
LSeg [14] ovss None Segmentation Masks (Base) CLIP-text ViT Aligns text embeddings from the VLM model with pixel features.
ZegFormer [114] ovss None Segmentation Masks (Base) CLIP-text CLIP-vision + Query-based Trans- Decouple and i by class-agnostic seg-
former Decoder ment masks then classify each mask.
PADing [86] 0vss None Segmentation Masks (Base) CLIP-text Mask2Former Introduce a generative model to synthesize features for unseen categories and
achieve universal open-vocabulary segmentation.
OpenSeg [46] ovss Captions Segmentation Masks (Base) ALIGN EfficientNet-B7 Performs region-word grounding loss between mask features and word
features.
MaskCLIP+ [120] 0vss None Segmentation Masks (Pseudo All) CLIP-text CLIP-vision + DeepLabv2 Modifies CLIP so that it can output per-pixel feature maps.
OVSeg [121] ovss Captions Segmentation Masks (Base + Pscudo All) CLIP-text CLIP-vision + MaskFormer Uses CLIP to match the proposed image regions with nouns in the captions
to generate pseudo labels.
GroupVit [125] OVSS Captions None Transformer Encoder VIiT-S Learns semantic segmentation only with caption data.
Vil-Seg [221] 0vss Captions None ViT-B ViT-B Learns semantic without pixel-level using con-
trastive loss and clustering loss.
CGG [47] oviIs Captions Segmentation Masks (Base) BERT Mask2Former Fully exploits caption data using caption grounding and generation.
MaskCLIP [48] OVPS None Segmentation Masks (Base) CLIP-text CLIP-vision + Mask2Former Proposes Relative Mask Attention (RMA) modules to adapt cropped images
to the pre-trained CLIP model.
ODISE [133] Q% Captions Segmentation Masks (Base) CLIP-text Stable Diffusion Exploits the vision-language alignment learned by denoising diffusion mod-
els.
OVDiff [132] ovss None None CLIP-text Stable Diffusion Proposes a prototype-based method. Use diffusion models to produce proto-
types.
OpenSeed [128] ovIs None Segmentation Masks & Boxes (Base) UniCL MaskDINO Jointly learns from detection and segmentation data.
‘OVSegmentor [222] ovss Captions None BERT DINO introduces masked entity ion and i mask
objectives to improve training.
We list the training data, detectors or segmenters, VLMs, and highlighted features for comparison.
Image Video il 3IDQP
Ih Object Semantic Instance Panoptic Video Scene 3D Scene
\ Detection Segmentation Segmentation Segmentation Understanding Understanding
T T T T
Method | BARON [113] | ZegFormer [114] | ToPSNet [115] | [ULIP [117]
o | VILD [12] | LSeg [14] MaskCLIP [48] | | OpenScene [116]
Distill Knowledge from VIMs - — — @ —— — — — — — -——————————- o-—-———@————
| | | | | |
N . OVR-CNN [11] OpenSeg [46] CGG [47]
Exploit Caption Data |- — — _¢' ——————— -q}- ——————— q) ——————— —(P— ——————— ¢ ——————— —d} ———————
I PB-OVD [119] I OVSeg [121] | | | I
| MaskCLIP+ [120] | XPM [122] | MAXI [123] | PLA [124]

| DST-Det [118]
3

| | SegCLIP [126]
' | GroupViT [125]
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| OpenSD [129] |
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Fig. 4.

Sections III-A and III-B. Then we sequentially survey
the six subsidiary tasks, including object detection (Sec-
tion III-C), segmentation (Section III-D), video understanding
(Section III-E), 3D scene understanding (Section III-F), and
closely related tasks (Section III-G). Note that we only record
and compare the most representative works. We list numer-
ous works in Tables I, III, and IV. Moreover, since there are

[ [ ' |
| Mask-free OVIS [12] | |
<

FreeSeg [131]

Open vocabulary learning methods, organized by their tasks and approach types. We list several representative works here.

several similar tasks (Section III-G), we also survey and compare
other related tasks, including class agnostic detection and seg-
mentation, open world object detection, and open-set panoptic
segmentation.

Method taxonomy and relation of each subsection: We sum-
marize the most commonly used methods among these different
directions in Fig. 4. However, we cannot include all methods due
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to the wide range of tasks. In each subsection, we summarize
different methods according to different problems, segmenta-
tion, detection, video understanding, and closely related topics.
We cluster methods according to common practice, such as
knowledge distillation and region text pre-training. We start
with object detection since it was first proposed. For segmen-
tation tasks, we ignore the specific setting in Section III-D.
We argue that despite these two directions, they may share
similar ideas. However, most meta-architectures and tasks are
different. Thus, we still review each direction individually. For
video, 3D understanding, and other closely related topics, due to
different task definitions and extra input cues, such as temporal
information and multi-view inputs, we also survey two directions
individually.

Motivation of survey organization: We argue that using the
unified symbolic system to summarize all methods is hard. There
are several reasons. (1), The task definitions and settings are
different. In addition to different input and output formats, taking
the open vocabulary segmentation as an example, there are at
least three different settings [45], [46], [124] for open vocab-
ulary segmentation. Thus, the design principles are different.
For example, OpenSeg [45] uses supervised pretraining and
contrastive losses while GroupViT [124] adopt unsupervised
setting without mask annotations. (2), Different methods use
different detectors or baseline models. Several works [11], [133]
use R-CNN framework while several methods [46], [130] adopt
query-based approaches. Several methods [135], [136] adopt
the RPN’s features to develop their methods, while query-based
methods cannot perform these designs. (3), Different methods
may also use different datasets during training. Several meth-
ods [133], [137], [138] mainly explore the dataset effect on
open-vocabulary detection or segmentation. Since the supervi-
sion signals are different, it will hard to put all methods in one
unified symbolic system. In summary, our survey focus on more
comprehensive review to extract the common features of various
domains in open vocabulary learning.

A. Preliminary

Pixel-based Object Detection and Segmentation: In general,
it can be divided into two aspects: semantic-level tasks and
instance-level tasks, where the difference lies in whether to
distinguish each instance. For the former, we take semantic
segmentation as an example. It was typically approached as
a dense pixel classification problem, as initially proposed by
FCN [139]. Then, the following works are all based on the FCN
framework. These methods can be divided into the following
categories, including better encoder-decoder frameworks [140],
[141], larger kernels [142], multiscale pooling [143], [144],
multiscale feature fusion [145], [146], [147], [148], non-local
modeling [149], and better boundary delineation [150], [151],
[152], [153]. After the transformer was proposed, with the
goal of global context modeling, several works propose the
variants of self-attention operators to replace the CNN prediction
heads [154], [155].

For the latter, we take object detection and instance seg-
mentation for illustration. Object detection aims to detect each
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instance box and classify each instance. It mainly has two differ-
ent categories: two-stage approaches and one-stage approaches.
Two-stage approaches [2], [156] rely on an extra region proposal
network (RPN) to recall foreground objects at the first stage.
Then, the proposals (Region of Interests, Rol) with high scores
are sent to the second-stage detection heads for further refine-
ment. One-stage approaches [157], [158] directly output each
box and label in a per-pixel manner. In particular, with the help of
focal loss and feature pyramid networks, one-stage approaches
can surpass the two-stage methods in several datasets. Both
approaches need anchors for the regression of the bounding
box. The anchors are the pixel locations where the objects
are possibly emerging. Since two-stage approaches explicitly
explore the foreground objects, where they have better recall
than single-stage approaches. Two-stage approaches are more
commonly used in open vocabulary object detection tasks.

Instance segmentation segmenting each object goes beyond
object detection. Most instance segmentation approaches fo-
cus on how to represent instance masks beyond object de-
tection, which can be divided into two categories: top-down
approaches [2], [159] and bottom-up approaches [160], [161].
The former extends the object detector with an extra mask head.
The designs of mask heads are various, including FCN heads [2],
[162], diverse mask encodings [163], and dynamic kernels [159],
[164]. The latter performs instance clustering from semantic
segmentation maps to form instance masks. The performance
of top-down approaches is closely related to the choice of
detectors [165], while bottom-up approaches depend on both
semantic segmentation results and clustering methods [166].
Besides, several approaches [167] use gird representation to
learn instance masks directly.

Query-based Object Detection and Segmentation: With the
rise of vision transformers [3], [4], recent works mainly use
transformer-based approaches in segmentation, detection, and
video understanding. Compared with previous pixel-based ap-
proaches, transformer-based approaches have more advantages
in cases of flexibility, simplicity, and uniformity [4], [57], [168],
[169], [170], [171], [172], [173], [174], [175], [176], [177].
One representative work is detection transformer (DETR) [4]. It
contains a CNN backbone, a standard transformer encoder, and
a standard transformer decoder. It also introduces the concepts
of object query to replace the anchor design in pixel-based
approaches. Object query is usually combined with bipartite
matching [178] during training, uniquely assigning predictions
with ground truth. This means each object query builds the
one-to-one matching during training. Such matching is based
on the matching cost between ground truth and predictions.
The matching cost is defined as the distance between predic-
tion and ground truth, including labels, boxes, and masks. By
minimizing the cost with the Hungarian algorithm [178], each
object query is assigned by its corresponding ground truth. For
object detection, each object query is trained with classification
and box regression loss [156]. For instance-wised segmenta-
tion, each object query is trained with classification loss and
segmentation loss. The output masks are obtained via the inner
product between object query and decoder features. Recently,
mask transformers [179], [180], [181] further removed the box



WU et al.: TOWARDS OPEN VOCABULARY LEARNING: A SURVEY

head for segmentation tasks. Max-Deeplab [179] is the first to
remove the box head and design a pure-mask-based segmenter. It
combines a CNN-transformer hybrid encoder [182] and a query-
based decoder as an extra path. Max-Deeplab still needs many
auxiliary loss functions. Later, K-Net [180] uses mask pooling
to group the mask features and designs a dynamic convolution to
update the corresponding query. Meanwhile, MaskFormer [181]
extends the original DETR by removing the box head and trans-
ferring the object query into the mask query via MLPs. It proves
simple mask classification can work well enough for all three
segmentation tasks. Then, Mask2Former [183] proposes masked
cross-attention and replaces the cross-attention in MaskFormer.
Masked cross-attention forces the object query only attends
to the object area, guided by the mask outputs from previous
stages. Mask2Former also adopts a stronger Deformable FPN
backbone [184], stronger data augmentation [185], and multi-
scale mask decoding. In summary, query-based approaches are
stronger and simpler. They cannot directly detect novel classes
but are widely used as base detectors and segmenters in open
vocabulary settings.

B. Vision Language Modeling

Large Scale Visual Language Pre-training: Better visual
language pre-training can lead to a better understanding of
semantics on given visual inputs [169], [170], [186]. Previous
works [187], [188], [189] focus on cross-modality research
via learning the visual and sentence-dense connection between
different modalities. Some works [189], [190] utilize two-stream
neural networks based on the vision transformer model, while
several works [191], [192] adopt the single-stream neural net-
work, where the text embeddings are frozen. The two-stream
neural networks process visual and language information and
fuse them afterward by another transformer module. Recently,
most approaches [15], [16] adopt pure transformer-based visual
language pre-training. Both CLIP [15] and Align [16] are con-
current works that explore extremely large-scale pre-training on
image text pairs. In particular, with such large-scale training,
CLIP demonstrates that the simple pre-training task of predict-
ing which caption goes with which image can already lead to
stronger generalizable models. Several following works [193],
[194], [195] aim to improve the CLIP training via mask image
modeling, scaling up the training data and model size. These
VLMs are the foundation of open vocabulary learning in differ-
ent tasks, which means that the open vocabulary approaches aim
to distill or utilize knowledge of VLMs into their corresponding
tasks.

Moreover, in addition to achieving better zero-shot recog-
nition, several works focus on designing better vision lan-
guage models for language-related tasks, including visual ques-
tion answering (VQA). Several works [196], [197], [198],
[199], [200] explore how to better align caption loss and con-
trastive loss during the image-text pertaining. In particular,
CoCa [197] adopts cross attention to connect caption generation
part and contrastive learning. Recently, BLIP-2 [200] bootstraps
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Fig. 5. An illustration of a common architecture in open vocabulary object
detection and segmentation. The vision model predicts a class embedding for
each box/mask. The embeddings are compared to a set of class embeddings
generated by a VLM text model like CLIP or ALIGN, using dot products. The
class with the highest score is chosen as the predicted label for the object. Note
that while humans define the set of possible object classes, the system only has
access to a limited set of “base” classes during training.

vision-language pre-training from off-the-shelf frozen pre-
trained image encoders and frozen large language models via
a lightweight Querying Transformer.

e Visual Grounding Tasks: Visual grounding tasks aim to
localize the specific objects according to given text descrip-
tions. Referring segmentation tasks [170], [201], [202],
[203] segment the specific object. Referring expression
comprehension [204], [205], [206] localizes the bounding
boxes of given object texts. Recent research is mainly based
on two-stream networks: one for visual encoder [1], [3] and
the other for text encoder [9]. These works focus on how
to better match text features and visual features via dif-
ferent architectures. For referring segmentation, previous
works [186], [207], [208] adopt “decoder-fusion”, where
they design a separate decoder at the end of the two-stream
networks. Recent works [209], [210] explore the “encoder-
fusion” to directly fuse the text features into a visual back-
bone before mask prediction. For referring expression com-
prehension, similar approaches [204], [211] are adopted
such as encoder-fusion. Recently, several works [212],
[213] aim to unify visual grounding and object detection.
In particular, Grounding DINO [213] unifies detection and
grounding in one framework. It uses stronger detectors
with multiple dataset pre-training, which achieves strong
results for many downstream tasks. Compared with open
vocabulary learning, visual grounding tasks require visual
text matching with specific text descriptions. Open vocab-
ulary learning tasks require the model to automatically
detect, segment and recognize new objects without the
given text information, such as class names, which is more
challenging.

Turning Close-set Detector and Segmenter Into Open Vocab-
ulary Setting: A common way towards the open vocabulary
setting is to replace the fixed classifier weights with the text
embeddings from a VLM model. In Fig. 5, we present a meta-
architecture. In particular, the vision model generates a visual
embedding for each box/mask proposal and computes similarity
scores by computing a dot product with the text embeddings
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TABLE II
FEATURE SUMMARIZATION OF CURRENT OPEN VOCABULARY OBJECT DETECTION APPROACHES

Method |

Common Features

Knowledge Distillation
Region Text Pre-training
Training with More Balanced Data
Prompting Modeling
Region Text Alignment

Distil the aligned visual-text knowledge of VLM into object detection. Focus on distilling loss design and targe proposal generation.
Use large-scale and easily available text-image pairs to pre-train a better and universal detector and finetune on the target datasets
Adopt extra data or balanced datasets as an augmentation to train the classification head.

Adopt different prompting modeling to better transfer the VLM knowledge into detector.

Design a better region-text alignment method to better align the region visual features (Rols) into text features of VLM.

from both base and novel classes. The classification scores are
computed as follows:

exp (ef, ef)
1+ Z‘fjlucl\" exp (ef, et)) 7

Dij (D

where e] is the ith vision embedding and e§- is the jth text
embedding, and p;; is the prediction score of the ith vision
proposal predicted to the jth class. The (.,.) represents the dot
product operation. The denominator is added with one because
the background text embedding is set to all 0 or make it learnable.
Cp and Cy are base and novel classes, respectively. Finally,
the class with the highest prediction score is chosen as the
prediction. In practice, the vision embeddings are trained with
base annotations to fit the text embeddings. Therefore, the model
combines the knowledge of VLM and the learned visual features,
and the detector/segmenter can detect/segment novel classes via
semantically related text embeddings.

C. Open Vocabulary Object Detection

In this section, we divide the methods into five categories:
knowledge distillation, region text pre-training, training with
more balanced data, prompting modeling, and region text align-
ment. Finally, we summarize the common features in Table II.

Knowledge Distillation: These techniques aim to distill the
knowledge of Vision-and-Language Models (VLMs) into close-
set detectors [2], [4], [156]. Since the knowledge of VLMs is
much larger than close-set detectors, distilling novel classes
into based classes trained detectors is a straightforward idea.
Knowledge distillation aims to distill visual knowledge directly
into close-set detectors since the visual features are aligned
with text features during the VLM pre-training stage. One ear-
lier method is ViLD [12], a two-stage detection approach that
utilizes instance-level visual-to-visual knowledge distillation.
ViLD consists of two branches: the ViLD-text branch and the
ViLD-image branch. In the former branch, fixed text embeddings
obtained from VLMs’ text encoder output are treated as classi-
fiers. Meanwhile, in the latter branch, pre-computed proposals
are fed into a detector to obtain region embeddings using the
RolAlign [2] function. The cropped image is then sent to the
VLMs’ image encoder to generate image embeddings. Subse-
quently, ViLD proposes distilling this information onto each
Region-of-Interest (Rol) via £1 Loss. LP-OVOD [222] extends
the ViLD framework by making two main modifications. First,
it replaces the softmax cross entropy loss with the sigmoid focal
loss [158]. Second, LP-OVOD introduces a new classification
branch that is supervised by pseudo labels. HierKD [223] uses

a single-stage detector and introduces a global-level language-
to-visual knowledge distillation module. The module aims to
narrow down performance gaps between one-stage and two-
stage methods. This technique employs global-level knowledge
distillation modules (GKD), which align global-level image rep-
resentations with caption embeddings through contrastive loss.
Both ViLD and HierKD use pixel-based detectors. However,
Rasheed et al. [224] leverages query-based detector Deformable
DETR [184] for its detection process. To ensure consistency be-
tween their detection region representations and CLIP’s region
representations, the authors employed inter-embedding relation-
ship matching loss (IRM). Furthermore, the authors adopt mixed
datasets pre-training to enhance the ability of novel class discov-
ery. OADP [225] thinks previous works only distill object-level
information from VLMs to downstream detectors and ignore
the relation between different objects. To tackle this problem,
OADP employs object-level distillation as well as global and
block distillation methods. These supplementary techniques aim
to compensate for the lack of relational information in object
distillation by optimizing the L1 distance between the CLIP
visual encoder and the detector backbone’s global features or
block features. Rather than using simple novel class names for
text distillation, several works also utilize more fine-grained
information, including attributes, captions, and relationships
of objects. PCL [226] adopts an image captioning model to
generate more comprehensive captions that describe object in-
stances. OVRNet [227] simultaneously detects objects and their
visual attributes in open vocabulary scenarios. By exploring the
COCO attributes dataset [228] via a joint co-training strategy, the
authors find that the recognition of fine-grained attributes works
complementary for OVD. In summary, knowledge distillation is
a common design, which effectively transfer VLM’s knowledge
into close set detectors. However, the recognition ability is still
within the scope of teacher VLMs.

Region Text Pre-training: Another assumption of open vo-
cabulary learning is the availability of large-scale image text
pairs, which can be easily obtained in daily life. Since these
pairs contain large enough knowledge to cover the most novel
or unseen datasets for detection and segmentation. Most ap-
proaches adopt web-scale caption data for pre-training, which
contains millions of image text pairs. The learning of region
text alignment maps the novel classes of visual features and
text features into an aligned feature space. Once trained for the
alignment, it is nature to generalize the detector for novel class
classification. OVR-CNN [11] first introduces the concept of
open vocabulary object detection by using caption data for novel
class detection. The model first trains a ResNet [1] and vision to
language (V2L) layer using image-caption pairs via grounding,



WU et al.: TOWARDS OPEN VOCABULARY LEARNING: A SURVEY

masked language modeling, and image-text matching. Since
captions are not constrained in language space, the V2L layer
learns to map features from visual space into semantic space
without limiting to closed-label space. During the next stage of
training, Faster R-CNN [156] is used as a detection method with
pre-trained ResNet as its backbone. OVR-CNN [11] replaces
only learnable classifiers with fixed text embeddings from pre-
trained language models [9]. For classification purposes, region
visual features obtained from Rol-Align [2] are sent into the
V2L layer and mapped into semantic space. Attribute-Sensitive
OVR-CNN [229] proposes a different approach from OVR-
CNN [11]. Instead of grounding vision regions to the input
word embeddings of BERT [9], Attribute-Sensitive OVR-CNN
aligns vision regions with contextualized word embeddings that
are output from BERT [9]. Additionally, Attribute-Sensitive
OVR-CNN proposes using an adjective-noun negative caption
sampling strategy to enhance the model’s sensitivity to adjec-
tives, verb phrases, and prepositional phrases other than object
nouns in the caption. GLIP series [230], [231] unify the object
detection and phrase grounding for pre-training. In particular,
it leverages massive image-text pairs by generating grounding
boxes in a self-training fashion, which sets strong results for
both detection and grounding. RegionCLIP [215] learns visual
region representation by matching image regions to region-level
descriptions. It creates pseudo labels by CLIP for region-text
pairs and then uses contrastive loss to match them before
fine-tuning the visual encoder using human-annotated detection
datasets. OWL-VIT [232] removes the final token pooling layer
of pre-trained VLMs’ image encoder and attaches a lightweight
classification head and box regression head to each transformer
output token before fine-tuning it on standard detection datasets
using bipartite matching loss. Meanwhile, MaMMUT [219]
presents a simple text decoder and visual encoder for multimodal
pre-training. Designing a two-pass text decoder combines both
contrastive and generative learning in one framework. The for-
mer is for grounding text visual entities, while the latter learns
to generate. DITO [233] presents a new image-level pretrain-
ing strategy to bridge the gap between image-level pretraining
and open-vocabulary object detection. At the pertaining phase,
DITO replaces the classification architecture used in CLIP with
the detector architecture, which better serves the region-level
recognition needs of detection by enabling the detector heads to
learn from noisy image-text pairs. In summary, adopting more
text-image pair can improve the performance on rare and novel
classes. However, such process needs more computation cost for
extra dataset training.

Training with More Balanced Data: Rare and unseen data are
common in image classification datasets. Joint training can be
used to address this issue. The core idea of these approaches
is to leverage more balanced data, including image classifica-
tion datasets, pseudo labels from image-text data, extra-related
detection data, or even data generated by generation models. De-
tic [133] improves long-tail detection performance with image-
level supervision. The classification head of Detic is trained us-
ing image-level data from ImageNet21K [234]. During training,
the max area proposal from RPN is chosen as the Rol. Detic’s
basic insight is that most classification data are object-centric.
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Therefore, the maximum area proposal may completely cover an
object represented by an image-level class. The mm-ovod [235]
method improves upon Detic [133] by utilizing multi-modal text
embeddings as the classifier. This approach employs a large lan-
guage model to create a description of each class to generate text-
based embeddings. In addition, mm-ovod also uses vision-based
embeddings from image exemplars. By fusing the text-based
and vision-based embeddings, the multi-modal text embeddings
can significantly enhance Detic’s performance. To use more
data, several methods generate pseudo bounding box annotations
from large-scale image-caption pairs. PB-OVD [118] uses Grad-
CAM [236] and generates the pseudo-bounding boxes combined
with RPN’s proposals. The activation map of Grad-CAM is ob-
tained from the alignment between region embeddings and word
embeddings that come from pre-trained VLMs. Then, the boxes
are generated from the activation map and jointly trained with
existing box annotations. Meanwhile, several works leverage the
rich semantics available in recent vision and language models to
localize and classify objects in unlabeled images. VL-PLM [214]
proposes to train Faster R-CNN as a two-stage class-agnostic
proposal generator using a detection dataset without category
information. LocOV [237] uses class-agnostic proposals in RPN
to train Faster R-CNN by matching the region features and word
embeddings from image and caption, respectively. From the
data generation view, several works [137], [238], [239] adopt
the diffusion model to generate the on-target data for effective
training. In particular, X-Paste [238] generates the rare class data
to improve the classification ability for existing approaches. It
uses an extra segmentation model to provide the foreground
object masks and adopt simple copy and paste [240] to augment
training data. Recently, several works [134], [135], [241] have
explored the self-training approaches to generate large pseudo
labels for more balanced learning. OWLv2 [134] presents a
self-training pipeline. It generates huge pseudo-box annotations
on WebLlI [242] dataset and pre-trains a model on such gen-
erated dataset. Finally, it fine-tunes this model on a specific
OVD dataset. Since the WebLlI contains a large vocabulary size,
OWLvV2 achieves significant gains on LVIS and COCO datasets.
In summary, these approaches are more effective in unbalanced
data setting. Designing a more efficient data augmentation still
have room to explore.

Prompting Modeling: Prompt modeling is an effective tech-
nique for adapting foundation models to various domains, such
as language modeling [243] and image classification [244],
[245]. By incorporating learned prompts into the foundation
model, the model can transfer its knowledge to downstream
tasks more easily. To generate text embeddings of category
names, prompts are fed to the text encoder of pre-trained VLMs.
However, negative proposals do not belong to any specific
category. To address this issue, DetPro [216] forces the negative
proposal to be equally dissimilar to any object class instead of
using a background class. PromptDet [44] introduces category
descriptions into the prompt and explores the position of the
category in the prompt. It also proposes to use cached web
data to enhance the novel classes during training. Based on the
DETR [4] framework, CORA [218] proposes region prompting
and anchor pre-matching. The former reduces the gap between
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the whole image and region distributions by prompting the
region features of the CLIP-based region classifier, while the
latter learns generalizable object localization via a class-aware
matching mechanism. Prompt-OVD [246] follows the pipeline
of OV-DETR [217]. It presents Rol-based masked attention and
Rol pruning techniques by utilizing CLIP visual features to im-
prove the novel object classification. Despite the effectiveness,
without more data training, the performance of prompting is
limited compared with other directions.

Region Text Alignment: Using language as supervision instead
of a ground truth bounding box is an attractive alternative for
open vocabulary object detection. However, obtaining enough
object-language annotations is difficult and costly. Compared
with region text pre-training, region text alignment aims at a
better matching between region visual features and text features
during the base class training without introducing extra data.
OV-DETR [217] introduces a transformer-based detector for
open vocabulary object detection by replacing the bipartite
matching method with a conditional binary matching mecha-
nism. VLDet [43] converts the image into a set of regions and
the caption into a set of words, and solves the object-language
alignment problem using a set matching method. It proposes a
simple matching strategy to align caption and vision features.
DetCLIPv2 [247] uses ATSS [248] as an object detector and
trains it with three datasets: a standard detection dataset, a
grounding dataset, and an image-text pairs dataset for word-text
alignment. Recently, BARON [112] proposes to align the em-
bedding in bags of different regions rather than only individual
regions. It first groups contextually interrelated regions as a
bag and treats each region in the bag as a word in a sentence.
Then, it sends the bag of regions into the text encoder to get
bag-of-regions embeddings. These bag-of-regions embeddings
will align with cropped region embeddings from the image
encoder of VLMs. CoDet [249] reformulates the region-word
alignment as a co-occurring object discovery problem and aligns
the co-occurring objects with the shared concept. F-VLM [136]
finds that the origin CLIP features already have grouping effects.
It is a two-branch method similar to ViLD-text [12]. F-VLM
uses a CLIP vision encoder as the backbone and applies the
VLM feature pooler on the region features from the backbone
to get VLM predictions. The final result of F-VLM combines
the detection scores and the VLM predictions. RO-ViT [250]
builds upon F-VLM [136], which believes that the difference
in position embeddings between image-level and region-level is
responsible for the gap between vision-language pre-training
and open vocabulary object detection. To address this issue,
RO-VIiT proposes a cropped positional embedding module in
VLM that bridges the gap between vision-language pre-training
and downstream open vocabulary object detection tasks. In
summary, region-text alignment is a core research topic, and it
still has room to explore when considering recent large language
models [42].

D. Open Vocabulary Segmentation

Although segmentation problems can be defined in various
ways, such as semantic segmentation or panoptic segmentation,
we categorize the methods based on their technical aspects.
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Utilizing VLM to Leverage Recognition Capabilities: VLMs
have shown remarkable performance in image classification by
learning rich visual and linguistic representations. Therefore, it
is natural to extend VLMs to semantic segmentation, which can
be seen as a dense classification task. For instance, LSeg [14]
aligns the text embeddings of category labels from a VLM
language encoder with the dense embeddings of the input image.
This enables LSeg to leverage the generalization ability of VLMs
and segment objects that are not predefined but depend on the
input texts. Following LSeg, several works propose methods
to utilize the VLMs for open vocabulary segmentation tasks.
Fusioner [251] utilizes self-attention operations to combine
visual and language features in a transformer-based framework
at an early stage. ZegFormer [113] decouples the problem into
a class-agnostic segmentation task and a mask classification
task. It uses the label embeddings from a VLM to classify
the proposal masks and applies the CLIP-vision encoder to
obtain language-aligned visual features for them. After that,
more approaches are proposed to extract the rich knowledge
in VLMs. SAN [252] attaches a lightweight side network to the
pre-trained VLM to predict mask proposals and classification
outputs. CAT-Seg [253] jointly aggregates the image and text
embeddings of CLIP by fine-tuning the image encoder. Han
et al. [254] develop an efficient framework that does not rely
on the extra computational burden of the CLIP model. OP-
SNet [114] proposes several modulation modules to enhance
the information exchange between the segmentation model and
the VLMs. The modulation modules fuse the knowledge of the
learned vision model and VLM, which improves the zero-shot
performance in novel classes. MaskCLIP [47] inserts Relative
Mask Attention (RMA) modules into a pre-trained CLIP model.
It can utilize the CLIP features more efficiently. TagCLIP [255]
proposes a trusty token module to explicitly predict pixels that
contain objects (both base and novel) before classifying each
pixel, which avoids the problem that models tend to misidentify
pixels into novel categories. Recently, several works [256],
[257], [258] directly fuse the frozen CLIP visual encoder. They
fuse the learned CLIP score and prediction score to achieve better
close-set and open-set recognition ability trade-offs. Same as the
open vocabulary detection, there are still several improve space
when adopting more advanced VLMs.

Learning from Caption Data: Image caption data can provide
weak supervision for identifying novel classes, as they expose
potential novel category names. Like such approaches in open
vocabulary object detection [11], image caption data is also ex-
plored in open vocabulary segmentation tasks also explore image
caption data. OpenSeg [45] applies a region-word grounding
loss to directly ground objects and nouns in the caption data.
CGG [46] combines caption grounding and caption generation
losses to fully exploit the knowledge in caption data. It leverages
the role of object nouns in visual grounding and the mutual
benefits of words in caption generation.

Generating Pseudo Labels: Intuitively, providing the model
with more data on novel categories can improve classifica-
tion performance. MaskCLIP+ [119] modifies the CLIP-vision
model by replacing the last pooling layer with a convolu-
tion layer, which produces dense feature maps. These feature
maps are then used to generate pseudo labels for training a



WU et al.: TOWARDS OPEN VOCABULARY LEARNING: A SURVEY

5103

TABLE III
FEATURE SUMMARIZATION OF CURRENT OPEN VOCABULARY SEGMENTATION APPROACHES

Method |

Common Feature

Utilizing VLMs to Leverage Recognition Capabilities.
Learning from Caption Data.
Generating Pseudo Labels.
Training without Pixel-Level Annotations.
Jointly Learning Several Tasks.
Adopting Denoising Diffusion Models.

Design fusion or alignment methods to better fuse VLM knowledge into the existing segmenters.
Use extra caption data to ground the objects’ visual features with caption data.
Fully explore the potential of the VLM model to generate better masks to train the segmentation models
Combine the VLM and different unsupervised approaches to perform unsupervised mask generation or segmentation.
Pre-train on large-scale and easily available text-region pairs datasets or detection using a unified detection and segmentation model.
Explore the feature representation of text-to-image diffusion models or utilize the generation ability to augment masks.

OV-VC refers to open vocabulary video classification. OV-3D refers to open vocabulary 3D recognition.

segmentation model. OVSeg [120] matches the proposed image
regions with nouns in captions using CLIP to generate pseudo
annotations. It also proposes a mask prompt tuning module
to help CLIP adapt to masked images without changing their
weights. XPM [121] follows a similar pseudo data generation
procedure by aligning words in captions with regions in images
to generate pseudo instance mask labels. However, these ap-
proaches are limited by the data annotations, since both mask
and region caption are hard to collection. Maybe more automatic
data generation [41], [131] can be used in the future.

Training without Pixel-Level Annotations: Despite the ab-
sence of annotations on novel objects, most methods still require
base mask annotations during training, which are costly and
labor-intensive to obtain. To reduce the annotation burden, many
recent works explore training segmentation models with merely
weak supervision, such as image caption. GroupViT [124]
proposes a semantic segmentation framework that leverages a
grouping mechanism to automatically merge image patches with
the same semantics. It trains the model with a contrastive loss
on image-caption pairs and does not need pixel-level annota-
tions. PACL [259] enhances the contrastive loss with a patch
alignment objective that aligns the image patches and the CLS
token of the captions. ViL-Seg [220] combines both contrastive
loss and clustering loss. SegCLIP [125] further introduces a
reconstruction loss and a superpixel-based KL loss. To compute
the superpixel-based KL loss, it uses an unsupervised graph-
based segmentation model [260] to generate pseudo labels.
TCL [261] proposes a finer-grained contrastive loss, namely
text-grounded contrastive loss, which explicitly aligns captions
and regions. The model can segment the region that corresponds
to a given text expression during inference. OVSegmentor [221]
introduces masked entity completion and cross-image mask
constituency tasks to improve the training efficiency. Mask-free
OVIS [126] generates pseudo mask annotations with purely
image-text pair data to assist the segmentation models. Since
these methods are trained without mask supervision, the quality
of segmentation results is low which make it hard to use in real
application.

Jointly Learning Several Tasks: Open vocabulary segmenta-
tion encompasses different tasks, including OVSS, OVIS, and
OVPS. How to jointly learn multiple segmentation tasks in one
model becomes a practical problem. X-Decoder [129] proposes a
framework that can handle various tasks, including open vocab-
ulary semantic segmentation, open vocabulary instance segmen-
tation, and open vocabulary panoptic segmentation. It utilized a
query-based segmentation architecture, pre-trains the model on
a mixture of segmentation data and image-text pairs, and then
fine-tuned or applied in zero-shot settings for downstream tasks.

FreeSeg [130] also proposes a generic framework to tackle the
three tasks in a unified manner. It designs an adaptive task prompt
module and performs test time tuning on the learnable prompts
to capture the task-specific features. POMP [262] first trains
class prompts at a large vocabulary dataset (Imagenet-21 K) and
then transfers the prompts into multiple open vocabulary tasks.
Moreover, if the model can learn from multiple tasks, it raises
the question of whether it can benefit from multi-sourced data,
e.g., detection and segmentation data. To handle this question,
OpenSeeD [127] and OpenSD [128] jointly learn from segmen-
tation and detection datasets. To bridge the task gap, they propose
decoupled decoding frameworks, which decode foreground and
background masks separately and generate masks for the bound-
ing box proposals. One shortcoming of these approaches is extra
computation costs that brought other tasks.

Adopting Denoising Diffusion Models: Recently, diffusion-
based generative models [263] have achieved remarkable suc-
cess in text-based image generation suggests. There are mainly
two ways to let diffusion models enhance open vocabulary
tasks. First, The reality and diversity of the images generated
by diffusion models suggest that the intermediate represen-
tations in the diffusion models may be highly aligned with
natural language vocabularies. Inspired by this, ODISE [132]
proposes a framework that leverages the middle representation
of the diffusion model. The middle representations contain rich
semantic information for both base and novel classes. Thus,
ODISE can perform open vocabulary segmentation by training
a decoder head on the representations. In [264] follows ODISE
to use the intermediate representations of diffusion models.
Another way to incorporate diffusion models into the open
vocabulary setting is to take advantage of the image and mask
generation ability [131], [138], [265]. OVDiff [131] proposes
a prototype-based method to tackle open vocabulary semantic
segmentation. It uses the diffusion model to generate images for
various categories and treat them as prototypes. The method does
not need training. During testing, the input images are compared
with these generated prototypes, and the best-matching one is
the predicted class. Meanwhile, several works [138], [265] use
the diffusion model to generate images and masks for the rare
classes to augment data. Thus, the segmenter can be trained in
a more balanced manner or even totally using generated data.
Despite the inference time of these methods is quite limited, it
still has room to explore joint generation and segmentation in
one framework.

E. Open Vocabulary Video Understanding
We also review several video open vocabulary tasks. Most
works focus on designing VLM models’ temporal fusion or
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association in various settings, including action recognition and
tracking.

Video Classification: Traditional video classification methods
usually require large datasets specific to video (e.g., Kinet-
ics [278]). However, annotating video datasets requires very
high costs. Using semantic information of label texts from web
data may alleviate this deficiency. Building on the success of
CLIP in image open vocabulary recognition, ActionCLIP [266]
uses knowledge from image-based vision-language pre-training.
It adds a temporal fusion layer for the zero-shot capability
in video action recognition. A concurrent work I-VL [267]
follows a similar paradigm by training the transformer layer
on top of a frozen CLIP image encoder and also has a strong
zero-shot capability. Another concurrent work, EVL [279], also
employs the frozen CLIP for efficient video action recognition.
X-CLIP [280] uses a video encoder that leverages the tempo-
ral information in the encoder for video recognition. It aligns
the feature from the video encoder with the text encoder that
is pre-trained on the image-based vision-language pairs (e.g.,
CLIP). To take advantage of other modalities, MOV [281] fur-
ther fuses the audio information and the pre-trained CLIP model
to build a multi-modal open vocabulary video classification
model. Recently, Open-VCLIP [282] formulates the CLIP-to-
video knowledge transfer as a continual learning problem and
proposes Interpolated Weight Optimization to address the issue.
AIM [283] tackles the open vocabulary video classification
problem by adding adapt layers on top of the CLIP image en-
coder. ViFi-CLIP [268] reveals that a simple fine-tuning baseline
(image-level feature extraction with CLIP visual encoder fol-
lowing temporal pooling) instead of advanced fusion layers can
have a strong performance and further investigates the influence
of prompt tuning. ASU [284] explores the use of fine-grained
language features extracted by semantic units (e.g., head, arms,
balloon, knee bend posture of exercise in the video) to guide
the training of video classification. Recent advancements in
open vocabulary video classification have turned our attention
to the language part of VLM modeling. VicTR [285] introduces
video-conditioned text representations to optimize the visual
and text information jointly. MAXI [122] leverages LLMs to
build a text bag for video without annotation by text expansion.
The verbs, which are lacking in the realm of image, have the
opportunity to participate in video-language modeling.

Object Tracking and Video Instance Segmentation: The object
tracking and video instance segmentation can also enjoy the
rich knowledge of VLMs to build an open vocabulary tracker
based on a close-set tracker. Going beyond the large vocabulary
object tracking [286], to tackle the real-world multiple object
tracking (MOT), OVTrack [269] first introduces large VLMs to
the object tracking and tackles their proposed open vocabulary
MOT (OV-MOT) task. Specifically, OVTrack extracts Rols via
an RPN and uses CLIP for knowledge distillation. A separate
tracking head is used for tracking and supervised by pseudo-
LVIS videos. As for video instance segmentation (VIS), to make
the VIS model capable of generalizing to novel classes in the
real world, MindVLT [56] adopts a frozen CLIP backbone and
proposes an end-to-end method with an open vocabulary classi-
fier for segmenting and tracking unseen categories. It collects
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a large-vocabulary VIS dataset and tests their MindVLT on
it. A concurrent work, OpenVIS [270], also tackles the open
vocabulary video instance segmentation task but in a different
manner. It generates the class-agnostic mask of instances and
leverages the masks to crop raw images to feed into the CLIP
visual encoder for calculating class scores. Beyond the open
vocabulary video instance segmentation, DVIS++ [287] pro-
poses the first open vocabulary universal video segmentation
scheme supporting video semantic segmentation, video instance
segmentation, and video panoptic segmentation. DVIS++ [287]
leverages the knowledge from the CLIP backbone and adopts
mask pooling on the CLIP backbone for enabling open vocabu-
lary capability.

F. Open Vocabulary 3D Understanding

In this section, we review the open vocabulary approaches
used in 3D scene understanding tasks. We mainly survey the
works for point cloud classification and segmentation, which
explores the knowledge of 2D VLM:s into 3D.

3D Recognition: The VLM has shown great success in the
zero-shot or few-shot learning of 2D images by leveraging a
huge amount of image data. However, such internet-scale data
is not available for the 3D point cloud. To this extent, extend-
ing the open vocabulary mechanism into 3D perception is not
trivial since it is hard to collect enough data for point-language
contrastive training like what CLIP does in 2D perception. To
mitigate the gap, PointCLIP [271] takes the first step to 3D open
vocabulary perception. The principle insight behind PointCLIP
is that the 3D point cloud can be converted to CLIP-recognizable
images. By projecting the 3D point cloud to a 2D plane and
extracting visual features from the projected depth map via the
CLIP visual encoder, the point cloud feature can be naturally
aligned with the language feature extracted by the language
encoder. Then, the whole framework is with 3D point cloud zero-
shot capability, just like 2D images. However, simply projecting
the point cloud to depth maps may yield inferior performance. To
further improve the performance, rather than directly using the
CLIP visual encoder for visual feature extraction of depth map,
CLIP2Point [288] aligns the RGB image feature from the CLIP
visual encoder and depth feature from a depth encoder through
contrastive learning. Specifically, they collect image-depth pairs
to align the from-scratch depth map encoder with the CLIP im-
age encoder at training time and only use the depth map encoder
atinference time. Then, the depth feature can be aligned with the
language embedding, facilitating the 3D point cloud zero-shot
capability with CLIP. Also aiming at improving the performance
of PointCLIP [271], PointCLIPV2 [272] focuses on different
perspectives and proposes a realistic shape projection scheme
along with an LLM-based 3D prompting generation scheme.
Although without extra annotations, PointCLIPV2 achieves a
significant improvement over PointCLIP [271].

Though projecting the point cloud to depth maps can make it
easy to leverage the existing 2D visual encoders pre-trained in
the CLIP, it may not exhaustively use the 3D information in the
point cloud. Accordingly, beyond the depth map-based methods,
ULIP [116] first collects multi-modalities triplets (point cloud,
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TABLE IV
REPRESENTATIVE WORKS SUMMARIZATION AND COMPARISON IN SECTIONS III-E, III-F, AND III-G

Method

Task

Vision Training Annotations

Text Model

Vision Model

Highlight

Open Vocabulary Video Understanding (Sec. 3.5)

ActionCLIP [268] OV-vC None CLIP-text CLIP-vision + Temporal Pooling The first work proposes to use CLIP for video understanding.
I-VL [269] OV-vC Video Class Label (base) CLIP-text CLIP-vision + transformer (temporal fusion) I-VL provides a simple baseline for adapting CLIP to video understanding.
ViFi-CLIP [270] OV-vC Video Class Label (base) CLIP-text CLIP-vision (learnable) + Temporal Pooling ViFi-CLIP indicates that a simple fine-tuning baseline is strong enough.
OVTrack [271] OV-Tracking Image Bounding Boxes CLIP-text CLIP-vision + Faster R-CNN OVTrack is the first open vocabulary multi-object tracking method.
MindVLT [57] OV-VIS Video Segmentation Masks (base) CLIP-text CLIP-vision + Mask2Former + SORT MindVLT is the first open vocabulary video instance segmentation method.
OpenVIS [272] OV-VIS Video Segmentation Masks (base) CLIP-text CLIP-vision + Mask2Former OpenVIS conduct open vocabulary VIS in a two-stage manner.
Open 'y 3D Scene U (Sec. 3.6)
PointCLIP [273] OV-3D None CLIP-text CLIP-vision (projected depth map) PointCLIP uses projected depth for OV 3D recognition.
PointCLIPV2 [274] OV-3D None CLIP-text + GPT-3 CLIP-vision (projected depth map) PointCLIPV2 generates prompts with LLMs to enhance performance.
ULIP [117] OV-3D Point Cloud Label CLIP-text Point Cloud Encoder + CLIP-vision ULIP aligns the 3D encoder and 2D CLIP encoder feature by distillation.
CLIP2 [275] OV-3D None CLIP-text Point Cloud Encoder + CLIP-vision CLIP2 leverages real-world point cloud data and CLIP to train the 3D encoder
for 3D open vocabulary segmentation.
OpenShape [276] OV-3D Point Cloud Label CLIP-text + GPT-4 Point Cloud Encoder + CLIP-vision OpenShape builds a large-scale dataset that provides image, point cloud, and
text triplets.
OV-3DETIC [277] OV-3D-OD Pseduo Labels from 2D Detector CLIP-text 3DDETR [278] OV-3DETIC explois information from two modalities to achieve 3D open
vocabulary object detection.
PLA [124] OV-3D-SS/IS 3D segmentation masks (base) CLIP-text sparse-conv UNet [279] PLA first tackles the 3D open vocabulary scene understanding problem.
OpenScene [116] OV-3D-SS None CLIP-text 3D Encoder + LSeg [14] OpenScene train a 3D Encoder yielding dense features co-embedded with

text and image pixels for open vocabulary semantic segmentation.

OV-VC refers to open vocabulary video classification. OV-3D refers to open vocabulary 3D recognition.

image, and text) for training the 3D backbone. Since CLIP
already aligns the language and image encoders, it only needs
to align the 3D backbone to the image-language feature space.
With only small-scale data, ULIP [116] aligns the 3D feature
extracted by the 3D backbone to the CLIP-aligned visual and text
feature to enable the zero-shot capability and enhance the stan-
dard 3D recognition capability. The advantage of ULIP [116]
also includes unifying the three modalities, which may bring
more downstream applications, such as image-to-3D retrieval.
Though ULIP [116] aligns the 3D and 2D and thus enables the
native 3D open vocabulary capability, it trains on a small-scale
dataset, which limits its performance. CLIP2 [273] resorts to
finding training samples from the real world and proposes Triplet
Proxies Collection scheme for finding instance-level 3D point
cloud, 2D image crop, and text triplets for 3D recognition.
OpenShape [274] scales up both the dataset and backbone. For
the dataset, they build a text-3D shape dataset containing 876 k
training shapes with over 1 k categories. They also explore
adopting larger 3D backbones and their performance. As aresult,
OpenShape [274] drastically enhances the performance on 3D
zero-shot capability. LidarCLIP [289] also aligns the 3D and 2D
features with a similar approach, but LidarCLIP [289] focuses
on the driving scenes. Besides the 3D zero-shot capability, Lidar-
CLIP [289] also shows point cloud captioning and lidar-to-image
generation capability with off-the-shelf foundation models.

3D Object Detection: In 3D object detection, the training data
is often hard to get, and existing 3D detectors are often trained
on very limited classes, which means they are hard to generalize
to novel classes. Inspired by the success of 2D open vocabulary
detection [133], aiming at taking full use of both image and
point cloud modalities for 3D detection, OV-3DETIC [275]
and OV-3DET [290] proposes to decouple the localization and
recognition in point cloud object detection into localization and
recognition. For localization, 2D pre-trained detectors can be
adapted to train the 3D detector by back-projecting the 2D
bounding box and further optimizing it by the point cloud. For
recognition, they propose aligning the regional features of 3D
and 2D encoders with the corresponding text feature. Therefore,
during the inference, 3DETIC [275] and OV-3DET [290] can
generalize to unseen classes with the knowledge in the CLIP.

While OV-3DET [290] achieves significant performance on
the Open-Vocabulary 3D detection, it relies on the localization
capability of pre-trained 2D detectors, which may limit the 3D
object discovery capability. To solve this problem, CODA [291]
proposes to discover objects with both 2D semantic prior and 3D
geometry prior, and further proposes a cross-modal alignment
module to align 3D and 2D features. Also trying to get rid of
the 2D image detector, concurrent work Object2Scene [292]
proposes to augment the existing 3D object detection datasets
with large-scale 3D object datasets. It also introduces a new
framework, L3Det [292], for 3D object-text alignment. As a
result, both CODA [291] and L3Det [292] outperforms OV-
3DET [290]. As driving scenarios may yield new challenges, the
above-mentioned methods may have an inferior performance.
OpenSight [293] focuses on the outdoor scenes and proposes to
leverage the knowledge from 2D grounding DINO [213] to train
the 3D detectors. In particular, it uses the size prior (e.g., cars are
1.96 m wide) generated by the LLM to re-calibrate the output
of the model to make the model more suitable for the driving
scene.

3D Scene Understanding: In the understanding of the 3D
scene, the same obstacle, lacking training data, also limits the
capability of generalization. Sharing a similar motivation that
there is a lack of 3D-text pairs for point-language contrastive
training, PLA [123] proposes to extract features from multi-view
images sampled from a scene to generate descriptions with
pre-trained language models. The descriptions can then be used
to extract language features to train 3D backbone-language
alignment. With the language-aligned 3D backbone, it is natural
to conduct open vocabulary segmentation like with the 2D
image. OpenScene [115] proposes to link the 3D features for
each point with CLIP features for each pixel. By back-projecting
the 2D pixels to 3D space, each point in the point cloud can be
ensembled with features of several pixels in different views.
The 3D-text co-embedding makes it possible for open vocab-
ulary semantic segmentation. Inspired by MaskCLIP [119], a
concurrent work CLIP-FO3D [294] also focuses on 3D seman-
tic segmentation and has a similar approach. It leverages the
feature map extracted by the CLIP visual encoder and directly
transfers CLIP’s knowledge without any extra annotation. A
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recent work, RegionPLC [295] on 3D open vocabulary se-
mantic segmentation, considers the benefits of both PLA [123]
and OpenScene [115]. It proposes to use the dense caption of
any random region to extract more information in CLIP for
3D backbone distillation. Fine-grained dense supervision in
RegionPLC [295] beyond view-level or instance-level further
improves performance compared to PLA [123]. Different from
training 3D backbones like in [115], [123], [294], [295], Part-
SLIP [296] and SATR [297] directly projecting the 3D point
cloud and mesh to 2D plane and uses GLIP [230] to localize
and segment. Meanwhile, OpenMask3D [298] mainly focuses
on the 3D instance segmentation. It first generates class-agnostic
instance mask proposals with the 3D point cloud. Then, Open-
Mask3D [298] selects views and projects 3D masks into 2D
images. The 2D masks are further refined by SAM [41]. Finally,
the 2D masks can be fed into the CLIP visual encoder to
generate label prediction with the help of the CLIP language
encoder. While OpenMask3D [298] has a strong performance,
it requires point cloud-2D image pairs for training. On the
contrary, Openlns3D [299] does not require 2D images but only
needs point clouds with colors. Openlns3D [299] proposes a
”Mask-Snap-Lookup” pipeline that first learns class-agnostic
mask proposals, then generates synthetic scene-level images,
and finally assigns categories for each proposal. Another work
trying to improve OpenMask3D [298] is Open3DIS [300].
Open3DIS [300] improves the 3D mask proposal quality by
employing a 3D instance network and a 2D-guide-3D Instance
Proposal Module. After the mask proposal, it aggregates CLIP
features in a multi-scale, multi-view manner. Open3DIS [300]
achieves a stronger performance over OpenMask3D [298] on
several datasets. In the driving scene, to mitigate the heavy
dependence on the point cloud data annotation and fast gen-
eralization to the new scenes, CLIP2Scene [301] proposes to
train a 3D network via semantic-driven cross-modal contrastive
learning for 3D segmentation. CLIP2Scene [301] also considers
spatial-temporal semantic consistency regularization to facili-
tate training.

G. Closely Related Tasks

* Class Agnostic Detection and Segmentation: The goal of
class agnostic detection and segmentation is to learn a
general region proposal system that can be used in differ-
ent scenes. For detection, OLN [302] replaces the binary
classification head in RPN by predicting the IoU score of
foreground objects, which proves the generalization ability
on cross-dataset testing. For example, the model trained on
COCO shows the localization ability on the LVIS dataset.
Open world instance segmentation [303] aims to correctly
detect and segment instances whether their categories are
in training taxonomy. GGN [304] leverages the bottom-up
grouping idea, combining a local pixel affinity measure
with instance-level mask supervision, producing a training
regimen designed to make the model more generalizable.
Meanwhile, from the data augmentation view, MViT [305]
combines the Deformable DETR and CLIP text encoder for
the open world class-agnostic detection, where the authors
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build a large dataset by mixing existing detection datasets.
For the segmentation domain, Entity segmentation [306],
[307] aims to segment all visual entities without predicting
their semantic labels. The goal of such segmentation is to
obtain high-quality and generalized segmentation results.
Fined-grained entity [307] presents a two-view image crop
ensemble method named CropFormer to enhance the fine-
grained details. Recently, SAM [41] proposes more gener-
alized prompting methods, including masks, points, boxes,
and texts. In particular, the authors build a larger dataset
with 1 billion masks following the spirits of CLIP. The
SAM achieves zero-shot testing in various segmentation
datasets, which are highly generalizable.

e Open World Object Detection: Open world recogni-
tion [26] requires the model to identify novel categories and
label them as “unknown.” Then, the novel categories are
progressively annotated. The model learns incrementally
with new data and recognizes the newly-annotated cate-
gories. Inspired by this setting, open world object detec-
tion (OWOD) [31] expands the recognition task to object
detection. The authors propose a novel method that uti-
lizes contrastive clustering and an energy-based unknown
identification module. Following them, OW-DETR [308]
introduces an end-to-end transformer-based framework. It
consists of three dedicated components, namely, attention-
driven pseudo-labeling, novelty classification, and object-
ness scoring, to address the OWOD challenge explicitly.
Meanwhile, open world DETR [309] proposes a two-stage
training approach based on Deformable DETR. It focuses
on alleviating catastrophic forgetting when the annotations
of the unknown classes become available incrementally
using knowledge distillation and exemplar replay technolo-
gies. PROB [310] proposes a probabilistic objectness head
into the OW-DETR to better mine unknown background
classes. Recently, researchers [311] propose unknown-
classified open world object detection (UC-OWOD), which
aims to detect and classify unknown instances into different
unknown classes. This task is close to the open vocabulary
object detection but requires incremental learning.

* Open-Set Panoptic Segmentation: Similar to other open-set
tasks, open-set panoptic segmentation (OSPS) [312] re-
quires the model to identify novel categories as ‘unknown’
in a panoptic segmentation task. The "un classes are chosen
from the thing classes (foreground objects). The authors
apply exemplar theory for novel class discovery. After
that, Dual [313] proposes a divide-and-conquer scheme
to develop a dual decision process for OSPS. The results
indicate that by properly combining a known class dis-
criminator with an additional class-agnostic object pre-
diction head, the OSPS performance can be significantly
improved.

IV. CHALLENGES AND OUTLOOK

A. Challenges

Base Classes Over-fitting Issues: Most approaches detect and
segment novel objects by learning proposals from base class
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annotations. Thus, there are natural gaps in shapes and seman-
tic information between novel and base objects. VLM models
can bridge such gaps via pre-trained visual-text knowledge.
However, most detectors still easily overfit the base classes
when the novel classes have similar shapes and semantics,
since these classes are trained with higher confidence scores.
More fine-grained feature discriminative modeling [314], [315],
[316], including parts or attributes, is required to handle these
problems.

Training Costs: Most state-of-the-art methods need huge data
for pre-training to achieve good performances. However, the
costs are expensive and even unavailable for many research
groups to follow. Thus, with the aid of VLM, designing more
efficient data learning pipelines or learning methods is more
practical and affordable. One simple solution can be adopting
a frozen backbone. However, this may limit the representation
capacity.

Across Dataset Generation and Evaluation: As shown in
the benchmark section, current state-of-the-art methods design
specific models for each benchmark. Designing one shared
model [213], [257], [317], [318], [319] across different datasets
on open vocabulary detection and segmentation follows the ori-
gin spirits of open vocabulary learning. However, there are still
performance gaps between unified models and dataset-specific
models in several OVD benchmarks, such as LVIS datasets.

Better Benchmarks and Metrics: Since several classes contain
overlapping concepts (for example, building and tower, person
and woman), designing more new metrics [320] is also needed to
better measure the open vocabulary methods. Moreover, current
datasets are still small. To realize real open vocabulary settings,
more datasets like SAM-1B [41] are needed.

B. Future Work

Explore Temporal Information: In practical applications,
video data is readily available and used more frequently. Ac-
curately segmenting and tracking objects that are not predeter-
mined requires a great deal of attention, which is necessary for a
wide range of real-world scenarios, such as short video clips and
autonomous vehicles. However, there are only a few works [269]
exploring open vocabulary learning on detection and tracking in
video. Moreover, the input scenes [56] are simple. For example,
several clips only contain a few instances, which makes the
current tracking solution more trivial. Thus, a more dynamic,
challenging video dataset is needed to fully explore the potential
of vision language models for open vocabulary learning.

3D Open Vocabulary Scene Understanding: Compared with
image and video, point cloud data are more expensive to anno-
tate, in particular for dense prediction tasks. Thus, research on
3D open vocabulary scene understanding is more urgent. Current
solutions for 3D open vocabulary scene understanding focus on
designing projection functions for better usage of 2D VLMs.
More new solutions for aligning 2D models knowledge into 3D
models will be a future direction.

Explore Foundation Models With Specific Adapter For Cus-
tom Tasks: Vision foundation models [15], [41] can achieve
good zero-shot performance on several standard classification
and segmentation datasets. However, for several custom tasks,
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such as medical image analysis, and aerial images, there are still
many corner cases. Thus, designing a task-specific adapter is
needed for these custom tasks. Such adapters can fully utilize
the knowledge of pre-trained foundation models. One possible
solution is to explore the in-context learning [321], [322] to fully
explore or connect the knowledge of VLMs and LLMs.

Combining with Incremental Learning: In real scenarios, the
data annotations are usually open-world and non-stationary,
where novel classes may occur continuously and incrementally.
However, directly turning into incremental learning may lead
to catastrophic forgetting problems. On the other hand, current
open world object detection [308] only focuses on novel class
localization, rather than classification. How to handle both catas-
trophic forgetting problems and novel class detection in one
framework is worth exploring in the future.

Combining with Large Language Models: Compared with
VLMs, most LLMs contain more text concepts, which natu-
rally have a broader scope than various dataset taxonomies,
even larger than the recent V3Det [49] dataset. Thus, how to
better align the LLMs knowledge [323] with visual detectors
or segmenters to achieve stronger zero-shot results still needs
exploration.

V. CONCLUSION

This survey offers a detailed examination of the latest de-
velopments in open vocabulary learning in computer vision,
which appears to be a first of its kind. We provide an overview
of the necessary background knowledge, which includes fun-
damental concepts and introductory knowledge of detection,
segmentation, and vision language pre-training. Following that,
we summarize more than 50 different models used for various
scene understanding tasks. For each task, we categorize the
methods based on their technical viewpoint. Additionally, we
provide information regarding several closely related domains.
In the experiment section, we provide a detailed description of
the settings and compare results fairly. Finally, we summarize
several challenges and also point out several future research
directions for open vocabulary learning.
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