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RNNPose: 6-DoF Object Pose Estimation via
Recurrent Correspondence Field Estimation

and Pose Optimization
Yan Xu , Kwan-Yee Lin , Guofeng Zhang , Xiaogang Wang , and Hongsheng Li

Abstract—6-DoF object pose estimation from a monocular image
is a challenging problem, where a post-refinement procedure is
generally needed for high-precision estimation. In this paper, we
propose a framework, dubbed RNNPose, based on a recurrent
neural network (RNN) for object pose refinement, which is robust
to erroneous initial poses and occlusions. During the recurrent
iterations, object pose refinement is formulated as a non-linear
least squares problem based on the estimated correspondence field
(between a rendered image and the observed image). The prob-
lem is then solved by a differentiable Levenberg-Marquardt (LM)
algorithm enabling end-to-end training. The correspondence field
estimation and pose refinement are conducted alternately in each
iteration to improve the object poses. Furthermore, to improve
the robustness against occlusion, we introduce a consistency-check
mechanism based on the learned descriptors of the 3D model and
observed 2D images, which downweights the unreliable correspon-
dences during pose optimization. We evaluate RNNPose on sev-
eral public datasets, including LINEMOD, Occlusion-LINEMOD,
YCB-Video and TLESS. We demonstrate state-of-the-art perfor-
mance and strong robustness against severe clutter and occlusion in
the scenes. Extensive experiments validate the effectiveness of our
proposed method. Besides, the extended system based on RNNPose
successfully generalizes to multi-instance scenarios and achieves
top-tier performance on the TLESS dataset.

Index Terms—Object pose estimation, recurrent neural network,
uncertainty in optimization.

I. INTRODUCTION

6-DoF object pose estimation is of crucial importance
in various applications, including augmented reality, robotic

Manuscript received 18 March 2023; revised 9 September 2023; accepted 17
January 2024. Date of publication 30 January 2024; date of current version 5
June 2024. This work was supported in part by National Key R&D Program of
China Project under Grant 2022ZD0161100, in part by the Centre for Perceptual
and Interactive Intelligence (CPII) Ltd. under the Innovation and Technology
Commission (ITC)’s InnoHK, by General Research Fund of Hong Kong RGC
Project under Grant 14204021. Hongsheng Li is a PI of CPII under the InnoHK.
Recommended for acceptance by P. TAN. (Corresponding author: Hongsheng
Li.)

Yan Xu, Kwan-Yee Lin, and Xiaogang Wang are with the Multimedia Labo-
ratory, The Chinese University of Hong Kong, Hong Kong, SAR, China (e-mail:
yanxu@link.cuhk.edu.hk; junyilin@cuhk.edu.hk; xgwang@ee.cuhk.edu.hk).

Guofeng Zhang is with the State Key Lab of CAD&CG, Zhejiang University,
Hangzhou 310058, China (e-mail: zhangguofeng@zju.edu.cn).

Hongsheng Li is with the Multimedia Laboratory, The Chinese University of
Hong Kong, Hong Kong, SAR, China, also with the Centre for Perceptual and
Interactive Intelligence, Hong Kong, SAR, China, and also with the Shanghai
AI Laboratory, Shanghai 200031, China (e-mail: hsli@ee.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2024.3360181, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2024.3360181

manipulation, and autonomous driving. Influenced by varying
illuminations and occlusions, appearances of the differently
posed objects may vary significantly from different views, which
poses great challenges for 6-DOF object pose estimation from
a single color image.

The earlier-phase learning-based methods usually estimate
the 6-DoF pose in a one-shot manner. Yu et al. [1] proposed
to directly regress the object’s center and distance as well as
rotation components with a convolutional neural network. More
recent works [2], [3], [4], [5], [6], [7], [8] proposed to first
estimate 2D-3D correspondences between the observed image
and the object model, and then solve for the object pose with PnP
algorithm [9], [10]. The performance of these one-shot methods
is generally constrained by the network capacity and prone to
be affected by adverse conditions such as varying illumination
and occlusion.

The recent top-performing methods [11], [12], [13], [14],
[15] additionally include a pose refinement procedure which
substantially improves the performance. Some of these frame-
works [11], [12] rely on depth sensors and refine the poses with
the ICP algorithm [16]. To avoid the expensive depth sensor, Li
et al. [13] and Manhardt et al. [14] pioneered the RGB-based
pose refinement. During refinement, these methods first render
a reference color image according to the coarse pose estimate.
This rendered image along with the observed image is then fed to
a CNN to directly predict the residual pose for refining the coarse
pose [13], [14], [15]. While these methods perform well in ideal
scenarios based on massive training data, the pose regression
becomes less stable in practice. More recently, Iwase et al. [17]
formulated the object pose refinement as an optimization prob-
lem based on feature alignment, and reported significant per-
formance improvements. In their work, the encoded features
of a 3D model by a neural network are projected to the 2D
image plane according to the pose parameters. Thereafter, the
pose optimization is conducted by aligning the projected features
with the observed target image features. As the pose optimization
depends on the gradients from the pixel-level feature differences,
the feature alignment based methods are only applicable to small
inter-frame pose variations [18] and are not quite robust with
erroneous initial poses. Moreover, Iwase et al. [17] still have
a limited design for occlusion handling, which might limit the
deployment scope.

In this work, we propose a recurrent object pose refinement
framework, dubbed RNNPose. Unlike RePose [17] optimizing

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-3462-7931
https://orcid.org/0000-0003-0175-6398
https://orcid.org/0000-0001-5661-8430
https://orcid.org/0000-0002-8402-7504
https://orcid.org/0000-0002-2664-7975
mailto:yanxu@link.cuhk.edu.hk
mailto:junyilin@cuhk.edu.hk
mailto:xgwang@ee.cuhk.edu.hk
mailto:zhangguofeng@zju.edu.cn
mailto:hsli@ee.cuhk.edu.hk
https://doi.org/10.1109/TPAMI.2024.3360181


4670 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 7, JULY 2024

Fig. 1. Overall framework. (a) Before refinement, a reference image is
rendered according to the object initial pose (shown in a fused view).
(b) Our RNN-based framework recurrently refines the object pose based on the
estimated correspondence field between the reference and target images. The
pose is optimized to be consistent with the reliable correspondence estimations
highlighted by the similarity score map (built from learned 3D-2D descriptors)
via differentiable LM optimization. (c) The output refined pose.

poses based on feature alignment, we formulate the object pose
optimization based on the correspondence field estimated by a
carefully designed RNN. Given the extensive receptive field of
RNN and the enhancements from several proposed modules,
RNNPose is capable of handling significant initial pose errors
and occlusions. The overall pipeline is illustrated in Fig. 1.
Before refinement, a reference image of the object is rendered
according to the initial pose estimation. Our refinement module
refines the initial pose based on this rendered image and the
observed image. To increase the tolerance to erroneous initial
poses, our refinement is conducted within a recurrent framework,
where the pose optimization is formulated as a non-linear least
squares problem based on estimated correspondence fields. In
each recurrent iteration, the dense correspondences between
the rendered image and observed image are estimated, and
the object pose is then optimized to be consistent with the
correspondence field estimation. The architecture of our cor-
respondence estimation is inspired by the recent optical flow
estimation techniques [19], [20], which is integrated with our
pose optimization recurrently. To suit our task where unpatterned
objects and illumination variations are ubiquitous, we further
include a correspondence field rectification step in each recurrent
iteration based on the currently optimized pose. The inconsistent
correspondences are rectified by enforcing rigid-transformation
constraints. The rectified correspondence field is also used to
initialize the next recurrent iteration to improve the robustness
further.

For occlusion handling, we introduce a 3D-2D hybrid net-
work trained with a contrastive loss, which generates distinctive
point-wise descriptors for the 3D object model and observed
2D images. A similarity score is constructed for each estimated
correspondence pair based on the learned descriptors, with
which to downweight the unreliable correspondences during
pose optimization. The pose optimization is conducted by a
differentiable Levenberg-Marquardt (LM) algorithm (sharing
the ideas of [21], [22]) for end-to-end training.

Our contributions are summarized as follows:

1) We propose an RNN-based 6-DoF pose refinement
framework that is robust to large initial pose errors and
occlusions. During recurrent iterations, the pose optimiza-
tion is formulated as a non-linear least squares problem
based on the estimated correspondence field. Meanwhile,
the correspondence field is also being rectified and im-
proved by the optimized pose for robustness.

2) To handle the occlusions, a 3D-2D hybrid network is in-
troduced to learn point-wise descriptors which are used to
downweight unreliable correspondence estimations dur-
ing pose optimization.

3) We build a stand-alone system based on this pose re-
finement framework, which is able to handle multiple
instances of the same class in a scene efficiently.

4) We achieve new state-of-the-art performances on
LINEMOD, Occlusion LINEMOD, and YCB-Video
datasets. Our code is public at https://github.com/Deca
Yale/RNNPose.

II. RELATED WORK

One-Shot 6-DoF Object Pose Estimation: 6-DoF object pose
estimation systems aim to estimate the 3-DoF orientations and
3-DoF locations of rigid objects.

Classic methods are mainly based on template matching
techniques [23], [24], [25], which are prone to errors and cannot
generalize well to different environments. The boom of deep
learning has significantly improved object pose estimation. A
series of methods have been proposed to holistically estimate
object poses from monocular color images [1], [26], [27], [28]
or with the aid from depth sensors [29], [30], [31], [32], [33],
[34]. These methods took advantage of the CNNs’ regression
ability to learn mapping functions from the observed images to
object poses. More recently, correspondence-based methods [2],
[3], [4], [5], [6], [7], [8], [35], [36], [37], [38], [39], [40]
become more popular. They employed CNNs to estimate the
3D correspondences of a set of observed 2D keypoints of the
object in images. and then solve for poses with PnP [9], [10].
These methods may estimate the object’s bounding box cor-
ners [35], [36], predict dense 2D-3D correspondence maps [3],
or vote the predefined keypoint locations by all object pixels
jointly [4]. Hodan et al. [5] proposed to handle symmetric
objects by segmenting 3D models into patches and estimating the
patch centers. ZebraPose [8] proposed a coarse-to-fine surface
encoding scheme to improve the robustness of correspondence
association. Some recent works [6], [7], [28] developed net-
works to solve the PnP problem in a differentiable manner.
EPro-PnP [7] created a probabilistic Perspective-n-Points layer
and model the loss function with KL divergence for end-to-end
training to improve the estimation robustness. There is also a
series of works focusing on model-free [41], [42], [43], [44] or
self-supervised [45], [46], [47] 6-DoF object pose estimation.
However, these methods are still in the exploration stage and
their estimation accuracy still cannot satisfy the scenarios where
high-precision estimation is demanded.

6-DoF Object Pose Refinement: The above direct object pose
estimation methods usually become less stable when varying

https://github.com/Decapenalty -@M Yale/RNNPose
https://github.com/Decapenalty -@M Yale/RNNPose
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Fig. 2. Overview of the proposed method. For pose refinement, a reference image Iref is rendered with the object CAD model and its initial pose Pinit. The
image feature encoding module encodes the rendered image Iref and the observed image Iobs to feature maps and build a 4D global correlation volume. In
parallel, the 3D context feature encoding module encodes the 3D model geometry and render the 4D features to a 2D context feature map Fctx according to the
initial pose estimation. During pose refinement, the correspondence field Ĉt and the residual pose δP̂t are alternately estimated in a recurrent framework. After
the LM pose optimization, correspondence field estimation Ĉt is rectified as Ĉ′t by enforcing rigid-transformation constraints with the currently optimized pose
δP̂t to further improve next-iteration estimations. After N recurrent iterations, the reference image Iref is re-rendered with the current pose estimation.

illuminations and occlusions exist. Many methods [11], [12],
[13], [14], [15], [17] hence conducted pose refinement based
on the estimated coarse initial pose above, which achieved
significant performance gains. Some of these methods [11],
[12] relied on depth data from costly sensors and utilized ICP
to align the known object model to the observed depth image.
While [13], [14], [15] first rendered a 2D object image according
to the initial pose and then compared the rendered image with
the observed image via a CNN to estimate the residual pose.
These RGB-based methods are especially attractive due to their
economical nature. However, most of these methods need mas-
sive training data and are not quite robust in practical scenarios.
Moreover, they need a cumbersome CNN for pose regression,
which sacrifices efficiency. Iwase et al. [17] proposed to alleviate
such dilemmas by reusing the image features extracted by CNN
and attained real-time processing. Concretely, they employed the
CNN as an image feature encoder, based on which to formulate
a non-linear optimization problem to align the features from
the inference and target images for pose refinement inspired
by BA-Net [21]. Though efficient, their formulation is built
upon overlapped object regions across the reference image and
target image, which is thus less robust against erroneous pose
initialization. Grabner et al. [48] proposed to refine the pose
based on the correspondences, but their method is still limited
to ideal scenarios.

Non-Linear Least Squares Optimization With Deep Learning:
Non-linear least squares optimization algorithms, such as Gauss-
Newton [49] and Levenberg-Marquardt [50], are widely used in
computer vision [51], [52], [53], [54], given their efficient and ef-
fective nature. Recently, the differentiability of the optimization
algorithm itself has been widely studied and several works [21],

[22], [55], [56] have included the differentiable optimization
algorithm during the network training for localization systems
and visual SLAMs. These inspire our formulation for object pose
refinement.

III. METHOD

Given an observed object image Iobs, an initial object pose
estimate Pinit and the object’s CAD model M as inputs, a
6-DoF pose refinement system aims to further improve the
object pose estimation. In this paper, we propose a recurrent
pose refinement method, dubbed RNNPose, which is robust to
erroneous initial poses and occlusions. Our method is based
on a rendering pipeline and may have several rendering cycles
as illustrated by Fig. 2. At the beginning of the first rendering
cycle, a reference image Iref is rendered with the object’s CAD
model according to its initial pose Pinit (estimated by any
direct methods [4], [11]). Then, the rendered reference image,
the observed target image, and the vertices of the CAD model
are encoded as high-dimensional features which will be used
to estimate the correspondences (between the rendered image
and observed image) in the follow-up pose refinement module.
The pose refinement module constitutes our major contribution,
where we formulate an optimization problem based on the
correspondence estimations. We integrate correspondence field
estimation and pose refinement into a recurrent framework for
robustness and efficiency. To handle occlusions, we generate
point-wise distinctive descriptors for the 3D object model and
observed images with a 3D-2D hybrid network, with which to
downweight the unreliable correspondences during pose opti-
mization. After every several recurrent iterations, the reference
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image Iref is re-rendered with the currently optimized pose to
decrease the pose gap to the target for the next cycle.

In the ensuing subsections, we will detail the feature extrac-
tion (Section III-A), recurrent pose refinement (Section III-B),
and the loss functions for training (Section III-C).

A. 2D-3D Feature Encoding and Rendering

The rendered reference image Iref and observed target image
Iobs first need to be encoded into high-dimensional feature maps
Fref andFobs for the follow-up feature correlation volume con-
struction [19], [20], [57], [58], [59]. The correlation volume en-
codes the appearance similarities between image pixels, which is
essential for correspondence reasoning. In our work, we adopt
several residual blocks [60] for image feature encoding, and
the pair-wise correlations of the encoded features are calculated
to create a global correlation volume. The global correlation
volume will be frequently queried for correspondence field
estimation in the follow-up pose refinement module.

Besides the pair-wise correlation volume, popular dense cor-
respondence estimation methods also incorporate context fea-
tures of the reference image for guidance. As shown in Fig. 2, to
better encode the geometric contexts, unlike previous methods
encoding the context features from 2D images, we directly
encode the features from 3D object point clouds with a 3D
context feature encoder based on KPConv [61]. The point-wise
geometric features are then rendered as a 2D context feature
map Fctx according to the initial object pose estimation. Here,
we adopt a differentiable renderer [62] for feature rendering to
enable geometric feature learning. We empirically found that
encoding the context features from point clouds brings more
robustness. Besides, the vertex features only need to be extracted
once per object model and archived for inference after training,
which is quite efficient.

B. Recurrent Correspondence Field Estimation and 6-DoF
Pose Refinement

Based on the constructed correlation volume and encoded
context features, we propose a 6-DoF object pose refinement
system by integrating correspondence estimation and pose op-
timization as a recurrent framework. The correspondence field
estimation and pose optimization rely on each other and improve
recurrently for robust pose refinement. The basic pipeline is
illustrated in the pose refinement module in Fig. 2.

1) Correspondence Field Estimation: For correspondence
field estimation, we adopt a network architecture similar to
RAFT [20] but make major modifications to suit our task, i.e.,
including the 3D context feature encoding (Section III-A) and
correspondence rectification (Section III-B2). At the beginning
of each recurrent iteration, for each spatial location of the ref-
erence image’s feature map, we first look up and collect (from
the global correlation volume) its correlation values with the
candidate features of the target image. The candidate locations
are within a square local window centered at the estimated cor-
respondences from the previous iteration. The collected correla-
tions are then reshaped as a local correlation volume (a 2D map)
spatially aligned with the reference image. In the first iteration,

we use an all-zeros correspondence field to bootstrap correlation
candidate identification, while in the later iterations, the rectified
correspondence field (to be elaborated in Section III-B2) is used.

After the correlation lookup, the collected local correlation
volume, the rectified correspondence field, and the previously
encoded context feature map Fctx are concatenated as inputs to
a GRU network to estimate the correspondence field Ĉt for the
current (t-th) recurrent iteration.

2) 6-DoF Pose Refinement. Basic Formulation: Given a ref-
erence image (with depth map) and a target image, the ground-
truth correspondence field of the reference image can be derived
based on the ground-truth residual pose δPgt point-wisely:

C(xi; δPgt) = π
(
δPgtπ−1

(
xi, zi

))
, (1)

where C(xi; δPgt) ∈ R2 denotes the ground-truth correspon-
dence field value of point xi, and zi denotes the associated
rendered depth value. Here,π(·) andπ−1(·; zi) are the projection
(3D-to-2D) and inverse projection (2D-to-3D) functions of a
pinhole camera model.

To estimate the residual pose, we take the correspondence field
Ĉt estimated by the GRU as an approximation of its ground-
truth, i.e., Ĉt(x

i) ≈ C(xi; δPgt), and push the correspondence
field derived by the pose argument δP, i.e., C(xi; δP), close to
the GRU’s estimation by optimizing δP. In this way, the residual
pose parameter δPwill approximate the ground-truth δPgt after
the optimization. The specific formulation is a non-linear least
squares problem and the objective function is expressed as

E(ξ) =

M∑
i=1

(
Ĉt

(
xi
)−C

(
xi; ξ

))T (
Ĉt

(
xi
)−C

(
xi; ξ

))
,

(2)
where the residual pose argument δP is parameterized as its
minimal representationξ ∈ se(3) (of the associated Lie-algebra)
during optimization. Ĉt is the GRU-estimated correspondence
field at the t-th recurrent iteration, and C(xi; ξ) denotes the
correspondence of point xi derived with the pose parameter
argument ξ, and M is the total number of object points in the
rendered reference image.

Handling Unreliable Correspondences with Similarity
Scores: The formulation of (2) is based on an impractical
assumption that the correspondence field Ĉt can be reliably
estimated for all foreground regions, which is extremely dif-
ficult considering ubiquitous occlusions. We further propose to
incorporate a consistency-check mechanism to downweight the
unreliable values in Ĉt during pose optimization. To model the
reliability of estimated correspondence, one option is to adopt a
forward-and-backward consistency check [63], [64]. However,
the bidirectional consistency check doubles the computational
cost, and the domain gap between the rendered images and the
real images increases the learning difficulty.

We therefore propose a descriptor-based consistency check
to alleviate the dilemma. The basic idea is to represent the
3D object model M and the observed 2D target image Iobs
as two sets of distinctive descriptors point-wisely via a 3D-2D
hybrid network (with KPConvs [61] and a keypoint description
net [65] as backbones). The corresponding descriptors of the
object model and object images are enforced to be similar, while
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the non-corresponding descriptors are enforced to be dissimilar
(by training with a contrastive descriptor loss function being
described in Section III-C). The learned 3D model descriptors
are rendered as 2D feature maps, denoted as DM, according to
the object pose of the reference image for fast indexing. The
encoded target image descriptor map is denoted as DI .

With these high-dimensional distinctive descriptors, for each
estimated correspondence pair (xi, Ĉt(x

i)), we measure its
reliability according to the similarity between their associated
3D and 2D descriptors (di

M, di
I ). d

i
M and di

I here are col-
lected from the above descriptor maps: di

M = DM(xi) and
di
I = DI(Ĉt(x

i)), where bilinear interpolation may be applied
for non-integer correspondence coordinates.

The reliability of this correspondence pair is modeled with a
similarity score:

wi = exp

⎛
⎝−

∣∣∣1− diT

Mdi
I
∣∣∣

σ

⎞
⎠ , (3)

whereσ is a learnable parameter (initialized with 1) adjusting the
sharpness. The similarity scores are used as the weights of the
Mahalanobis distance measurements in (2), which effectively
downweight unreliable correspondences during optimization.

By introducing a diagonal weighting matrix wi =

(
wi 0
0 wi

)
,

the weighted version of (2) is written as

E(ξ)=

M∑
i=1

(
Ĉt

(
xi
)−C (

xi; ξ
))T

wi
(
Ĉt(x

i)−C (
xi; ξ

))
.

(4)

The pose optimization is thus formulated as

ξ̂ = argmin
ξ

E(ξ), (5)

where the pose parameter ξ ∈ se(3) is optimized by minimizing
the objective function defined by (4).

Differentiable Residual Pose Optimization: We solve the
non-linear least squares problem (5) with Levenberg-Marquardt
(LM) algorithm. For the optimization in the t-th recurrent iter-
ation, the pose parameter is initialized with the estimated pose
from the previous iteration i.e., ξ0 = log(δP̂t−1). Continuing
from the parameter ξp−1 of the previous LM iteration, the
left-multiplied increment�ξp is computed by

�ξp = (JTWJ+ λI)−1JTWr(ξp−1), (6)

with which we update the parameter as ξp ←�ξp ◦ ξp−1, to
approach the optimal solution. Here, J = − ∂r

∂ξ is the Jacobian
matrix containing the derivative of the stacked residual vector
r = (r1, r2, . . ., r2˜M )T (established from (4)) with regard to
a left-multiplied increment. We unroll the parameter update
procedure and make the LM optimization layer differentiable to
enable end-to-end network training. The differentiable optimiza-
tion procedure enhances the feature learning for correspondence
field estimation, which is essential to high performance. After
LM optimization, the residual pose of the t-th recurrent iteration
is estimated as δP̂t = exp(ξ̂), where ξ̂ denotes the optimized
parameter after several updates with (6).

Fig. 3. With the rectified correspondences, the related local correlation win-
dows are accordingly shifted to better locations, which improves the estimation
in the next recurrent iteration.

Fig. 4. Correspondence establishment between 2D image pixels and 3D model
points for 3D-2D descriptor learning. To associate the correspondences from the
observed 2D image to the 3D model for training, we first render a depth map and
then lift the 2D pixels to 3D space. We then associate them with the object point
cloud via k-NN search. The identified correspondences constitute the positive
set {˜}+ for contrastive learning in the descriptor loss Ld (8).

Correspondence Field Rectification: The erroneous initial
poses usually produce large offsets between the rendered ref-
erence object and the observed object, which poses challenges
for correspondence estimation. Moreover, unlike the standard
scenarios of optical flow estimation [19], [20], [58], [59], unpat-
terned objects and varying illuminations are ubiquitous in our
task, which further increases the difficulty. Considering the opti-
mized pose by (5) is mainly supported by the reliable correspon-
dence estimations with our weighting mechanism (3), we rectify

the correspondence field as Ĉ′t(x) = π
(
δP̂tπ

−1 (x; z)
)

based

on the currently optimized pose δP̂t. The rectification enforces
the rigid-transformation constraints among the correspondence
field, which improves the overall correspondence quality for the
correlation volume lookup in the following recurrent iteration.
A toy example is shown in Fig. 3 for better understanding.

Object Pose Estimation Update: After every N recurrent
iterations, the residual pose is estimated as δP̂N by the RNN.
We update the object pose estimation with the estimated residual
pose δP̂N as P̂← δP̂NPinit, and we re-render the reference
image Iref based on this updated pose to start the next N-
recurrent-iteration refinement, as illustrated in Fig. 2. We refer
to the N-recurrent-iteration refinement as a rendering cycle, and
the initial pose Pinit for the next cycle is set to P̂ accordingly.
The performance and efficiency with different rendering cycles
and recurrent iterations will be discussed in Section IV-B.
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Fig. 5. Extending RNNPose to a 6-DoF pose estimation system. Given an input image, the object detector predicts the bounding boxes of all the object instances
of interest. Then the regions covered by the bounding boxes are cropped out and sent to the rotation net for rotation estimation. For the translation part, we directly
approximate it with (10) based on the bounding box’s center and size with minimal computational overhead. The coarse estimates of rotation Rinit and translation
tinit are used to initialize RNNPose to obtain the refined object pose R̂, t̂.

TABLE I
(A) ABLATION STUDY ON LINEMOD DATASET

C. Loss Functions of RNNPose

Model Alignment Loss: To supervise the residual pose estima-
tions {δP̂t|t = 1 . . . N} generated in each rendering cycle (in-
cluding N recurrent iterations), we apply these residual poses as
the left-multiplied increments to the initial posePinit, having the
corresponding object pose estimations {P̂t|t = 1 . . . N}, where
P̂t = δP̂tPinit. Thereafter, we adopt a 3D model alignment loss
to supervise these pose estimations for each rendering cycle:

Lma =
N∑
t=1

||P̂tXmodel −PgtXmodel||1, (7)

where P̂t is the object pose estimation mentioned above andPgt

denotes the ground-truth pose. Here, Xmodel ∈ R4×M contains
homogeneous coordinates of the M model points. This loss
function encourages the pose estimation to be close to the
ground-truth so that the transformed model points can be well
aligned.

Correspondence Loss: We adopt L1 loss [20] for correspon-
dence field supervision, where the ground-truth correspondence
fields are derived with (1) based on ground-truth poses.

Descriptor Loss: We use circle lossLcir [66] as the contrastive
loss to supervise the point-wise descriptor learning of the 3D ob-
ject model and the target images for similarity score calculation
(3). Concretely, we view the target image Iobs as two parts, i.e.,

TABLE II
EFFICACY VERIFICATION OF THE PROPOSED SIMILARITY SCORES WITH THE

OCCLUSION-LINEMOD DATASET

the foreground region (object region) denoted as fg(Iobs) and
the background region denoted as bg(Iobs). For each foreground
descriptor di

I ∈ fg(Iobs), we first find a set of its corresponding
3D descriptors {dj

M}+ of object model via KNN searching see
Fig. 4 for details. Then, di

I ∈ fg(Iobs) is enforced to be similar
to {dj

M}+ and dissimilar to the remaining non-corresponding
descriptors {dk

M}−with circle lossLcir [66], which is expressed
as Lcir(d

i
I , {dj

M}+, {dk
M}−). Moreover, for background de-

scriptors di
I ∈ bg(Iobs), we constrain them to be similar to each

other in the background, while to be dissimilar to the foreground
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Fig. 6. Visualization of our pose estimations (first row) on Occlusion LINEMOD dataset and the similarity score maps (second row) for downweighting unreliable
correspondences during pose optimization. For pose visualization, the white boxes represent the erroneous initial poses, the red boxes are estimated by our algorithm
and the ground-truth boxes are in blue. Here, the initial poses for pose refinement are originally from PVNet [4] but added with significant disturbances for robustness
testing.

descriptor set fg(Iobs) with loss Lcir(d
i
I , bg(Iobs), fg(Iobs)).

Traversing all target image descriptors di
I , the descriptor loss is

calculated as

Ld =
∑

di
I∈fg(Iobs)

Lcir(d
i
I , {dj

M}+, {dk
M}−)

+
∑

di
I∈bg(Iobs)

Lcir(d
i
I , bg(Iobs), fg(Iobs)) (8)

to supervise descriptor learning. With contrastive learning, the
corresponding 2D-3D descriptors would be similar while the
noncorresponding ones would be dissimilar, which provides
the foundation for unreliable correspondence handling with
similarity scores (3).

D. 6-DoF Object Pose Estimation System Based on RNNPose

RNNPose relies on the direct estimation methods [1], [4]
for pose initialization. These conventional methods usually
adopt specially-designed networks for accurate pose estimation,
which are usually cumbersome and computationally intensive.
Moreover, most of these direct methods cannot handle multiple
instances of the same class in a scene.

To extend RNNPose into a more efficient object pose esti-
mation system, we 1) incorporate an object detection module
to address the scene containing multiple same-category objects
and 2) tailor a more lightweight initial pose estimation module
to initialize RNNPose.

Fig. 5 illustrates our overall system. We design our object
detector with MaskRCNN [67] to detect the instances of the
target object. Each detected instance is cropped out and sent
to the rotation estimation network to estimate object rotation
Rinit in the quaternion form. To handle symmetric objects,
we follow [34] to define a set of rotations S that lead to
the same appearance for each symmetric object, and define a
symmetric-aware loss function to supervise the rotation learn-
ing:

Linit = min
Rsym∈S

||RinitXmodel −RgtRsymXmodel||1, (9)

Fig. 7. ADD(-S) accuracies on LINEMOD when different recurrent iterations
and rendering cycles are conducted. (a) Results are based on the initial poses
from PoseCNN [11]. (b) Initial poses are the disturbed PoseCNN poses (with
Gaussian noise σt = 15 cm, σr = 10◦).

Fig. 8. Robustness comparison with RePOSE by degrading the initial poses
(from PVNet [4]) with Gaussian noise on LINEMOD dataset.

TABLE III
RUNTIME ANALYSIS OF INDIVIDUAL MODULES
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TABLE IV
COMPARISON OF ESTIMATION ACCURACY WITH THE COMPETITIVE DIRECT METHODS (POSECNN [11], PVNET [4], HYBRIDPOSE [73] AND EPRO-PNP [7]) AND

THE REFINEMENT METHODS (DPOD [15], DEEPIM [13] AND REPOSE [17]) ON LINEMOD DATASET IN TERMS OF THE ADD(-S) METRIC

TABLE V
ACCURACY COMPARISON WITH THE STATE-OF-THE-ART ON OCCLUSION LINEMOD DATASET IN TERMS OF THE ADD(-S) METRIC

whereXmodel ∈ R3×M are coordinates of the model points. This
loss function measures the L1 error between the transformed
object models by the estimated rotation Rinit and the ground-
truth rotation Rgt with the best symmetry choice Rsym.

Previous direct estimation methods [1], [4] depend on cum-
bersome networks to estimate the translation components. How-
ever, we find that RNNPose just needs a very coarse estimation
for initialization. To decrease the computational burden, we es-
timate the initial translation according to the detected bounding
box and the known object sizes. Specifically, given bounding-
box center c ∈ R2, bounding box diameter s =

√
h2 + w2 (h

and w are the height and width of the bounding box), object
diameter d, we approximate the translation vector as

tinit =
df

s
K−1

[
c

1

]
, (10)

where f denotes the focal length obtained from the diagonal
elements of the camera intrinsic matrix K. Although this esti-
mation is not in a strict form, it is found enough for RNNPose
to perform well.

The pose Pinit used to initialize the RNNPose is thereby

obtained as Pinit =

[
Rinit tinit

0T 1

]
.

TABLE VI
ABLATION STUDY ON T-LESS WITH OUR POSE INITIALIZATION MODULE

IV. EXPERIMENTS

A. Experimental Setup

Implementation Details: We train all of our networks end-to-
end using the Adam [68] optimizer with an initial learning rate
of 10−4 and adjust it with the cosine annealing strategy. The
weights of model alignment loss Lma and descriptor loss Ld are
set to 1’s, while the weight of correspondence loss is set to 0.5.
During training the RNNPose, we conduct 3 rendering cycles,
each of which performs 4 recurrent refinement iterations. The
crop size of the inputs is set to 240× 240 and the feature maps
used to construct the 4D correlation volume is of sizes 30×
30, i.e., H1 = W1 = H2 = W2 = 30 (1/8 input image sizes) in
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TABLE VII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS ON YCB-VIDEO DATASET WITH AUC ADD-(S) METRIC

TABLE VIII
PERFORMANCE EVALUATION OF OUR 6-DOF OBJECT POSE ESTIMATION SYSTEM ON TLESS DATASET [71], WHICH IS ALSO COMPARED WITH OTHER BASELINE

METHODS

Fig. 2. The memory consumption of this volume is aroundH1 ×
W1 ×H2 ×W2 × 4 Bytes = 3.24 MB, which is very limited.

For our rotation network training, we create a set of equivalent
rotations S for the symmetric objects in (9). For the objects with
infinite equivalent rotations, e.g., cylindrical objects, we dis-
cretize the rotation and create 64 rotation matrices that cover the
continuous rotation space as the set S in practice. All the models
are trained agnostic to the initial pose predictor with disturbed

ground-truth poses for training following [13]. For evaluation,
the numbers of rendering cycles and refinement iterations are the
same as those during training for most experiments if without
extra declaration, though more iterations could produce better
results.

Datasets: We evaluate our method on four datasets, including
LINEMOD [69], Occlusion LINEMOD [70], YCB-Video [11]
and TLESS [71].
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Fig. 9. Variation of the learnable parameter σ in similarity score (3) during
training.

LINEMOD is a standard benchmark for 6D object pose
estimation. This dataset contains cluttered texture-less objects
captured with challenging illuminance variations.

Occlusion LINEMOD is a subset of LINEMOD dataset but
with additional annotations for occluded objects, which is suit-
able for verifying the robustness to severe occlusions.

YCB-Video dataset contains the images of the YCB object
set [72] where strong occlusions, clutters are exhibited. It in-
cludes more than 110 k real images captured for 21 objects with
or without textures.

TLESS [71] is a benchmark that contains 30 industry-relevant
textureless objects for 6D object pose estimation. TLESS con-
tains 39 K training images and 10 K test images. Compared with
LINEMOD and YCB-Video, TLESS requires an object detec-
tion step to identify the target objects before pose estimation.
We follow similar conventions for data processing and synthetic
training data generation adopted by the previous works [4], [17].
For the evaluation on YCB-Video and TLESS, we adopt the
training data setups of [37], [73].

Evaluation Metrics: We evaluate our method with the metrics
ADD-(S) [69] AUC of ADD(-S) [11], and VSD [12].

The ADD-(S) metric is based on the average point-wise
distance between the transformed models, i.e., one transformed
with the pose estimation and the other transformed with the
ground-truth. With standard ADD-(S) metric, if the average dis-
tance is less than 10% of the model diameter, the pose estimation
is regarded as correct. In some of our experiments, we also test
the performances with this threshold set to 2% or 5% of the
diameter for stricter testing. For symmetric objects, the average
distance is computed based on closest point distances [69].

When evaluating on the YCB-Video dataset, we also com-
pute the AUC (Area Under Curve) of ADD(-S) by varying the
distance threshold from 0 cm to 10 cm following [11].

For evaluation on TLESS, we adopt VSD mertic following the
previous methods [3], [12]. VSD metric measures the distance
between the estimated and ground truth object depth surfaces
that are visible, which is ambiguity invariant. As in the previous
methods, we report the recall of correct object pose estimations
at errvsd < 0.3 with tolerance τ = 20 mm and >10% object
visibility.

B. Ablation Study

We conduct a thorough ablation study on LINEMOD and
Occlusion LINEMOD datasets to evaluate the effectiveness of
the components in our framework.

Correspondence Field Supervision: We first remove the cor-
respondence loss to study the influence of correspondence field
quality on pose estimation. The results ‘w/o correspondence
loss’ in Table I correspond to this ablation study. The perfor-
mance degrades significantly compared with our full model.
Since our pose optimization is based on correspondence field
estimation, the solid supervision on correspondence field esti-
mation is essential to the overall system.

Effectiveness of the Pose Supervision and End-to-end Learn-
ing: We further remove the supervision to the pose estimation
by setting the weight of the model alignment loss Lma to 0.
This is equivalent to adopting a typical non-differentiable LM
optimizer because no gradient is backpropagated through the
LM layer during training. It can be found that the object pose
can still be reasonably estimated (denoted as ‘w/o Lma’ in
Table I), but with humble performance, especially with stricter
evaluation criteria, i.e., by setting a smaller threshold 0.01d or
0.05d. The performance degradation reflects the importance of
end-to-end pose learning. The differentiable LM layer enables
the pose supervision to affect the feature learning for more
robust correspondence field estimation, which is essential to our
formulation.

Correspondence Field Rectification: Another key procedure
in our recurrent pose refinement is the correspondence field
rectification. To validate the effectiveness, we ablate this step
and directly use the correspondence estimation Ĉt from the
GRU as the initialization for the next iteration (denoted as
‘w/o Ĉ′t rect.’ in Table I). We find that the performance drops
significantly compared with our full framework, especially on
more strict metrics, i.e., 0.01d and 0.05d. This phenomenon
demonstrates that the corrected correspondence field with the
rigid-transformation constraints from the optimized pose can
facilitate the refinement in the following iterations.

3D Context Encoder: To verify the effectiveness of our 3D
context encoder, we test the system without the context en-
coder (denoted as ‘w/o 3D context Fctx’) or with a commonly
used 2D context encoder (denoted as ‘w/ 2D context’). The
performances of these two versions both degrade compared
to that with a 3D context encoder. The degradation not only
reveals the importance of context information as indicated by
previous works [19], [20], but also proves that our 3D context
encoder is a more effective choice than the 2D counterpart in
our task. We reckon that the more robust performance may be
attributed to the finer granularity of dense 3D point cloud fea-
tures (compared with the low-resolution 2D image features). The
finer-granularity features could provide more detailed geometric
contexts.

Pose Optimization Based on Correspondence Field versus
Feature Alignment: We formulate the object pose optimization
based on the correspondence field estimated by the RNN (4).
To compare our formulation to that based on feature alignment
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Fig. 10. Illustration of pose refinement process within one rendering cycle. We show four different cases in separate quadrants. We can find that the quality
of estimated correspondence fields (CFs), rectified CFs as well as object poses are improved steadily as the refinement continues (iter1-iter4). After warping the
observed image according to the estimated CFs, it can be observed that the textures of the observed images generally can be correctly mapped to the rendered
objects, which demonstrates the correctness of the CF estimations.

adopted by RePose [17], we tried to fit RePose’s pose opti-
mization into our framework. The evaluation result ‘w/ feature
alignment’ in Table VI corresponds to this variant. It can be
found that the average recall is appreciably inferior to our
method, i.e., 22.84% versus 53.86%.

RePose’s pose optimization is conducted by aligning the
projected 3D features with the observed image features. As the
pose optimization depends on the gradients from the pixel-level
feature differences, if the initial pose is very erroneous, the
overlap between the projected features and the observed image
features could be limited and thus the optimization would be

affected. In contrast, the correspondence field estimation is less
influenced by the pose differences between two images (thanks
to RNN’s large receptive field), which leads to a more robust
performance via our formulation (4).

Similarity Scores for Occlusion Handling: In Table II, we
evaluate the effectiveness of similar scores in occlusion han-
dling on the Occlusion LINEMOD dataset. The version ‘w/
similarity score’ performs better for severely occluded objects.
By including similarity scores during pose optimization, flawed
correspondence estimations in the occluded unreliable regions
are effectively downweighted. Fig. 9 plots the variations of
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Fig. 11. Visualization of the outputs from each stage of our 6-DoF object pose estimation system. The 1-3 columns respectively exhibit the detection results, our
estimated initial poses and the final pose refinement result by RNNPose. Better viewed in color.

parameter σ values (that control sharpness of the similarity
score function) during training. As the training proceeds, the
value of σ gradually decreases resulting in a shaper bell-shaped
score function. This reflects that the descriptors become more
distinctive as the training proceeds and the similarity scores
become more effective in downweighting the unreliable corre-
spondences. Some similarity score map examples are exhibited
in Fig. 6 for better understanding.

Recurrent Iterations versus Rendering Cycles: The number of
refinement iterations affects the system performance, especially
when erroneous initial pose estimations exist. We analyze the
performances with different recurrent iterations and rendering
cycles in Fig. 7. From Fig. 7(a), it can be found that, by
solely increasing the recurrent iterations while rendering the
reference object image only once, we have achieved a high
accuracy of 96.05% which is comparable to RePOSE [17]. If
conducting refinement with more recurrent iterations and render-
ing cycles, steady improvements are reported, which reflect good
convergence of our method. To further validate the robustness
to erroneous initial poses, we add Gaussian noise to the initial
poses. Specifically, we randomly disturb translation components
and rotation Euler angles with Gaussian noise. For the rotation,
we add angular noise with standard deviation (STD, denoted as

σr) of 10◦ in all three axes. For the translational disturbance,
we apply noise with a STD of 15 cm along the z axis (the axis
perpendicular to the image plane) and STDs of 3 cm in x and y
directions ( 15×) considering current methods usually have larger
variances on depth estimations. From Fig. 7(b), we find that the
necessity of recurrent refinement becomes more noticeable.

Though more rendering cycles bring performance gains as
well, the extra costs are significant, since most of the in-
put features need re-encoding. Based on the runtime analysis
(Table III), increasing the recurrent iterations is more economi-
cal for better performance as only the CF (correspondence field)
estimation, pose optimization and CF rectification modules are
activated for a recurrent iteration.

C. Comparison With State-of-the-Art Methods

We compare with the cutting-edge methods on LINEMOD,
Occlusion LINEMOD, and YCB-Video.

For the LINEMOD dataset, we compare with the recent pose
refinement methods RePOSE [17], DPOD [15] and DeepIM [13]
as well as some direct estimation baselines [4], [7], [11], [73].
Table IV contains the comparison results and we achieve a
state-of-the-art performance. Interestingly, we achieve slightly
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better average performance when using PoseCNN [11] as the
initial pose generator rather than the PVNet [4], although the
pose accuracy of PVNet is much better as exhibited in Table IV.
This phenomenon reveals the good tolerance of our system to
erroneous initial poses. To test our robustness to even larger
initial pose errors, we add random Gaussian pose noises to
the initial rotation and translation components separately for
accuracy evaluation similar to those in Section IV-B. Fig. 8 plots
the accuracy variations w.r.t.the disturbance magnitudes. Our
method exhibits strong robustness and works reasonably even
with extremely noisy initial poses.

We also conduct comparisons on Occlusion LINEMOD. As
shown in Table V, we outperform the cutting-edge method [17]
by a significant margin (51.6↗ 60.65), which manifests the
system robustness to occlusions. We visualize some of our pose
estimates from severely occluded images in the first row of
Fig. 6, where the initial poses from PVNet are disturbed with
Gaussian noise like before (σt = 15 cm, σr = 10◦) to pose more
challenges. It is shown that our system is capable of handling
large initial pose errors even in highly occluded scenarios.

We further evaluate RNNPose on the YCB-Video dataset.
We use different methods as the pose initializer, including
PoseCNN [1], GDR-Net [37], and SO-Pose [38], to test the
generality of RNNPose. RNNPose still performs well on this
large-scale dataset. The experimental results are shown in
Table VII. We consistently improve the initial poses from other
off-the-shelf methods and achieve a higher average accuracy.
Besides, when adopting the same pose initialization methods,
i.e., PoseCNN, our method outperforms the previous refinement
methods DeepIM and RePose by significant margins.

D. Evaluation of Our 6-DoF Object Pose Estimation System
Based on RNNPose

To test the applicability to multi-instance scenarios, we further
evaluate our proposed 6-DoF object pose estimation system
(Section III-D) on a more challenging dataset, i.e., TLESS
dataset. Table VIII exhibits our results with the comparisons with
previous counterparts. Our object detection module is based on
MaskRCNN [67].

To verify the effectiveness of our pose initialization module,
we separately test the performances when substituting the pose
initialization module with AutoPose, Pix2Pose, and our initial
pose estimation. Compared with the initial poses provided by
AutoPose and Pix2Pose, our refinement technique significantly
improves their performance, i.e., ‘Ours+AutoPose’ improves
from 19.17% to 50.00%, and ‘Ours+Pix2Pose’ improves from
26.95% to 53.46%. Notice that, although our lightweight pose
initialization module (denoted as ‘Our Init.’) has much infe-
rior accuracy (merely 0.65%) compared with AutoPose and
Pix2Pose, by working with the robust RNNPose, the overall
performance (with an accuracy of 53.86%) even slightly sur-
passes the counterparts ‘Ours+AutoPose’ and ‘Ours+Pix2Pose’.
Fig. 10 shows more detailed refinement procedures within a ren-
dering cycle. We also illustrate the intermediate outputs across

TABLE IX
RUNTIME COMPARISON OF INITIAL POSE ESTIMATION METHODS

different recurrent refinement iterations for better understand-
ing. It can be observed that, even with significant initial errors,
the initial poses can be steadily improved as the refinement
iteration increases.

To give a better view of the overall working pipeline, Fig. 11
additionally visualizes the outputs of different stages of our
system. It is shown that our system can robustly work in cluttered
scenes containing multiple instances (even of the same class).
Moreover, as shown in Table IX, our pose initialization module
is significantly more efficient compared with other off-the-shelf
counterparts.

V. CONCLUSION

We have presented a recurrent framework for 6-DOF object
pose refinement. A non-linear least squares problem is for-
mulated for pose optimization based on the estimated corre-
spondence field between the rendered image and the observed
image. Descriptor-based consistency checking is included to
downweight unreliable correspondences for occlusion handling.
Our method performs robustly against erroneous pose initial-
izations and severe occlusions, which achieves state-of-the-art
performances on public datasets.

We, humans, can easily identify the correspondence of the
objects in two different frames or even in different modalities but
usually have difficulties directly estimating their pose difference
accurately. Our framework endeavors to exploit the network’s
learning capability for 2D-2D and 2D-3D correspondence iden-
tification, while leaving the pose optimization to mathematics
to improve the robustness. Although this paper mainly focuses
on rigid object pose estimation, we hope our findings can also
inspire researchers in the field of localization, odometry, human-
pose modeling etc., where 6-DoF pose is also a focus.

Despite the robust performance, it is still undeniable that our
method is still limited to the known objects similar to many
other works [13], [15], [17]. In the future, we plan to extend our
method to handle unknown objects for better generality.
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