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Abstract—Edge Artificial Intelligence (AI) relies on the integra-
tion of Machine Learning (ML) into even the smallest embedded
devices, thus enabling local intelligence in real-world applications,
e.g. for image or speech processing. Traditional Edge Al frame-
works lack important aspects required to keep up with recent and
upcoming ML innovations. These aspects include low flexibility
concerning the target hardware and limited support for custom
hardware accelerator integration. Artificial Intelligence for Em-
bedded Systems Framework (AIfES) has the goal to overcome
these challenges faced by traditional edge AI frameworks. In this
paper, we give a detailed overview of the architecture of AIfES
and the applied design principles. Finally, we compare AIfES with
TensorFlow Lite for Microcontrollers (TFLM) on an ARM Cortex-
M4-based System-on-Chip (SoC) using fully connected neural net-
works (FCNNSs) and convolutional neural networks (CNNs). AIfES
outperforms TFLM in both execution time and memory consump-
tion for the FCNNs. Additionally, using AIfES reduces memory
consumption by up to 54% when using CNNs. Furthermore, we
show the performance of AIfES during the training of FCNN as
well as CNN and demonstrate the feasibility of training a CNN
on a resource-constrained device with a memory usage of slightly
more than 100 kB of RAM.

Index Terms—Edge Al Framework, embedded systems, machine
learning framework, on-device training, resource-constrained
devices, TinyML.

1. INTRODUCTION

VER recent years, Machine Learning (ML) has become
O one of the main drivers of innovation in engineering and
scientific applications [1], [2]. With currently estimated more
than 250 billion embedded devices in use [3], this trend also ex-
tends to embedded systems bringing ML-enabled computing ca-
pabilities closer to the data sources. Often referred to as edge Ar-
tificial Intelligence (AI) or TinyML, these methods have recently
found their way into microcontroller units (MCUs), which make
up the Internet of Things (IoT). According to [4], using TinyML
offers numerous improvements compared to cloud Al solutions
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in terms of data protection, low processing latency, energy
saving, and minimal connectivity dependency. An extensively
researched application for TinyML based on artificial neural net-
works (ANNSs) pertains to condition monitoring utilizing intelli-
gent sensor systems (e.g. [5], [6], [7], [8]). The primary objective
is to detect anomalous machine behavior directly within the sen-
sors themselves. This approach enables the transmission of only
anomalous data, thereby reducing energy consumption as trans-
mitting data is more energy-intensive compared to local pro-
cessing [9], [10]. Furthermore, the sensor system can be directly
connected to the machine’s control system, allowing for imme-
diate intervention in the event of a defect. Consequently, there is
no need for data to be sent to a cloud server for defect detection,
highlighting the data protection aspect of TinyML and empha-
sizing the reduced processing latency. Additionally, this system
can be deployed in remote areas with limited or no connectivity.

To develop efficient and effective ML methods, numerous
frameworks are available that utilize high-performance com-
puting hardware, like graphic processing units (GPUs). Py-
Torch [11] and TensorFlow [12] are two of the most popular
and widely used frameworks in this context.

However, since the hardware resources of embedded sys-
tems are often very restricted, these frameworks cannot be
used. Therefore, specialized tools and frameworks have been
developed that allow migrating of ML models, trained on
high-performance hardware using large datasets, to resource-
constrained devices. Such traditional edge Al frameworks, like
TensorFlow Lite for Microcontrollers (TFLM) [13] or Apache
TVM [14], focus mainly on the inference and optimization of a
wide variety of ANNs, enabling the deployment of deep neural
networks (DNNs) on embedded platforms like MCUs. However,
converting the ML models between frameworks and even pro-
gramming languages is unavoidable since the training was done
on a PC. Furthermore, the frameworks are often bound to spe-
cific hardware platforms with limited possibilities of integrating
specialized hardware acceleration. As a result, developing or
training an ANN directly on a resource-constrained system is
impossible.

Therefore, several developments in the domain of on-device
training of ML models have been carried out in the last two
years [15], [16], [17], [18], [19], [20]. On-device training of ML
models such as support vector machine (SVM) [21], k-nearest
neighbor (K-NN) [19] and decision trees (DT) [16] were made
feasible first. However, SVM and K-NN have the drawback
that the training data must be retained in order to make robust
predictions, resulting in high memory requirements [22]. In
addition, while SVM, K-NN, as well as DT can learn linear
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Fig. 1. Structure of AIfES to build a model and perform on-device training includes four steps: (1) building the model, (2) selecting the loss, (3) choosing the

optimizer, and (4) training the model. The AIfES model is built from a customizable structure composed of the modules ailayer, ailoss, and aiopti. Each module
consists of the hierarchy layers Type (functions of the module), Implementation (use of hardware accelerators), and Data type (data type with which the ML models

are executed).

relationships very effectively, they reach their limits when non-
linear correlations are learned. In contrast, ANN are able to
acquire and train nonlinear relationships in data and are therefore
suited for complex problems [23]. As the number of embedded
systems continues to rise, there is also increasing interest in
having more complex tasks, such as condition monitoring, pre-
dictive maintenance or object detection in images, performed
on MCUs [20]. Due to restricted resources of MCUs, on-device
training of fully connected neural network (FCNN) and con-
volutional neural networks (CNNs) was considered unfeasible
until recently [24]. However, preliminary work has shown that
on-device training of FCNN [15] and CNN [20] on MCUs is
feasible. Although the frameworks and methods are compatible
with different MCUs such as RISC-V, Cortex-M, or ESP32,
many lack open access and modular software structure so that
customized functions can be integrated by the user, e.g., activa-
tion function. Even though training FCNNs and CNNs on MCUs
is now feasible, complex arithmetic operations (e.g., matrix mul-
tiplication) are still performed that are challenging for MCUs.
With customized hardware accelerators, complex calculations
are performed faster which saves resources and energy [25],
[26], [27]. However, none of the existing developments enable
a modular structure to insert custom hardware accelerators in
their framework.

We introduce Artificial Intelligence for Embedded Systems
(AIfES),' a hardware-independent edge Al framework that
bridges the gap between resource-constrained embedded sys-
tems and sophisticated machine learning models. As depicted
in Fig. 1, the modular structure of AIfES is designed to follow
the well-known structure of ML frameworks, such as Keras or

1 [Online].  Available:

Arduino

https://github.com/Fraunhofer-IMS/AIfES _for_

PyTorch. This structure includes four steps: (1) building the
model, (2) selecting the loss, (3) choosing the optimizer and
(4) training the model. This approach enables users to easily
transfer their experiences to AIfES. Furthermore, the ailayer
module of AIfES offers a selection of different function types,
such as dense layer. Users can assign a data type, such as
8-bit, to each function. This feature can help to save memory or
enable faster training or inference on devices without floating-
point unit (FPU). Moreover, AIfES is the first framework that
provides the ability to use hardware accelerators in a modu-
lar fashion within an ML framework. The software’s modular
design allows for the addition of new user-specific hardware
accelerators, function types, data types, or modules. This allows
customization of the framework according to the user’s needs
and preferences. Leveraging C and optimized modules, AIfES
enables on-device training and inference of ML models without
requiring an operating system. To perform the inference, AIfES
requires only the structure and weights of a pre-trained ANN
model. Optimized modules and custom hardware accelerators
can be easily integrated to enhance the inference or training
performance of the model. ANNSs can be loaded, fine-tuned, or
the network structure can be changed at runtime. Even training
from scratch is possible without pre-training, avoiding the need
to send training data to a more powerful and energy-consuming
device. Energy is saved without sharing the raw training data,
and privacy increases. Furthermore, on-device training enables a
new generation of self-learning systems and sensors that adapt to
new data and can even be combined on-demand using Federated
Learning (FL) [28] to increase performance further. The main
contributions of this paper are:
e AIfES an open source edge Al framework that provides
inference and on-device training for resource-constrained
devices that is hardware agnostic and software modular
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e The framework supports the modular addition of user-
specific hardware accelerators to enhance the performance
of inference and on-device training. It also includes soft-
ware optimization modules for activation functions

® Modular framework that allows network architectures to
be adapted or changed at run time

® We conducted an extensive evaluation to demonstrate the
framework’s effectiveness and variety of settings. Start-
ing with FCNNs for inference, comparing our framework
with TFLM using hardware accelerators, quantization, and
on-device training. Furthermore, we evaluated CNNs on-
device training on well-known datasets

The remainder of this paper is organized as follows. In

Section II, we provide background on on-device learning frame-
works and an overview of related work. Subsequently, we
present our proposed framework, AIfES, in Section III. Fur-
thermore, detailed insight is provided into the design principles,
such as modular architecture, memory usage, and hardware
and software optimizations for reduced runtime. Section IV
the inference is evaluated for different datasets and network
structures for FCNNs and CNNGs. Also, an analysis of on-device
training of AIfES is presented. Finally, Section V summarizes
the paper and provides an outlook on future work.

II. BACKGROUND AND RELATED WORK

Due to the enormous potential of and interest in edge Al
and TinyML, the number of frameworks, libraries and tools
is constantly growing [4], [29]. The most commonly used
conversion approach relies on deploying pre-trained ML mod-
els on embedded platforms, like MCUs. Consequently, well-
known ML libraries such as TensorFlow [12], Scikit-Learn [30]
or PyTorch [11] are used to create the model and train it.
Subsequently, the pre-trained ML model can be used on the
resource-constrained system. Frameworks such as TFLM have
been developed to apply the models to MCUs. TFLM optimizes
TensorFlow models to run efficiently on mobile and embedded
devices. Utility functions are provided to reduce the size and
complexity of an ML model. Several ANN architectures are
supported, which can be used for inference on different plat-
forms after conversion. These include smartphones, embedded
Linux systems and 32-bit MCUs. [13]. Edge Impulse [31] is a
service that uses a completely different approach to pre-train
ML models and deploys them on the edge device. First, the
data must be uploaded to the cloud, where the training will be
performed. Afterward, the ML model can be converted to various
libraries of the required hardware, such as C++, Arduino, or
Cube.Al library. Even conversion to WebAssembly and binary
files are supported. Subsequently, the library can be deployed
on smartphones, CPU/GPU, or a variety of supported MCUs,
e.g., Nordic Semi nRF52840 DK. TFLM is used to run the Edge
Impulse ML models on the resource-constrained devices [31].

There are also manufacturer-specific solutions that oper-
ate according to a similar principle. A first example is the
STM32Cube.Al [32] toolkit for STM32 ARM Cortex-M-based
MCUs and their X-Cube-Al [33] extension for optimizations.
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The toolkit can convert pre-trained ANNs from TensorFlow,
Keras [34] or models in ONNX [35] format into C code. With
NanoEdge AI Studio [36] it is also feasible to incrementally
train the ML models on STM32 MCU. Another tool is Mi-
crosoft’s Embedded Learning Library (ELL) [37], which en-
ables the development and deployment of pre-trained ML mod-
els on resource-constrained platforms, such as Arm Cortex-A
and Cortex-M-based architectures. ELL is an optimized cross-
compiler that runs on a regular desktop computer and outputs
MCU-compatible C++ code [29].

Several techniques have been developed to address TinyML’s
low-resource challenges, including pruning [38], [39], [40],
[41], [42], [43], [44], Quantization [38], [45], [46], [47], [48],
[49], [50], [51], [52], [53], [54] and neural architecture search
(NAS) [52], [55], [56], [56], [57], [58], [59], [60], [61], [62].
These methods reduce model parameters while maintaining
model accuracy, allowing the models to be applied to MCUs.
Although quantization is supported in the framework, other
optimizations such as pruning or NAS are not yet available.
Instead, the framework emphasizes a modular software architec-
ture and the modular addition of custom hardware accelerators.
This modular approach allows adding pruning or NAS methods
individually, as described in Chapter I1I-A.

In addition to the frameworks capable of performing infer-
ence only, there were developments on on-device training of
ML models using MCUs. Table I depicts a detailed list of
publications. In the review, 19 publications were identified in
which on-device training was conducted. The majority support
the ARM Cortex family, and [15], [19], [21], [24], [63], [64],
[65] support even multiple MCU families such as ESP32 or AVR
MCUs. The publications used the programming languages C or
C++ to implement the ML algorithms since these languages
are suitable for hardware-near implementations and offer fast
execution times with low memory requirements [66].

There have been many successful attempts to train ML al-
gorithms on MCUs, besides from ANNs a variety of algo-
rithms such as SVM, DT, RF or K-NN have been applied and
shown to allow training of these algorithms on MCUs. These
publications include Edge2Train [21] and Train++ [24], which
use SVM for on-device training, whereas [16] only supports
training of K-NN or DT. Other papers such as [19], [22], [65]
support further algorithms such as SVM in addition to FCNN
or CNN. For instance, [22] compares the memory requirements
and inference time of different algorithms for TinyML, including
FCNN, SVM, RF, LR, GNB, and DT. Lee et al. [19] proposed
an intermitted learning framework for energy-harvested com-
puting platforms supporting unsupervised and semi-supervised
learning algorithms. Although they publish their framework and
support a software modular architecture, they have neglected
to support hardware accelerators, which can save energy [25],
which is particularly relevant in energy-saving systems operated
by energy harvester [19]. Almost 80 % of the publications in the
field of microcontrollers and on-device training address FCNN
or CNN, since these methods can train complex nonlinear corre-
lations, allowing more complex applications of ML methods on
MCUs [23]. There are seven recent publications [17], [18], [67],
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TABLE I
COMPARISON BETWEEN AIFES AND VARIOUS PAPERS WITH ON-DEVICE TRAINING USING MCU. \/ = TRUE, X = FALSE, - = NOT IDENTIFIED

. Open Modularity
Paper Compatible MCU Language ML-Model Source Software Hardware
[3] nRF52840 C/C++ FCNN, CNN X - -
[17] Cortex-M C/C++ FCNN X - -
[18] Cortex-M4 C++ FCNN X - -
[67] Cortex-M C FCNN X - -
[68] Cortex-M7 C FCNN X - -
[22] nRF52840 C DT, Random Forest (RF), X - -

Logistic Regression (LR),
Gaussian Naive Bayes
(GNB), FCNN SsVM
[69] Cortex-M3 C CNN X - -
[65] STM32 C FCNN, CNN, K-NN, SVM X - -
[63] STM32 C CNN X - -
[64] Adafruit Feather, STM32, C - v X X
ESP32, Adafruit METRO

[24] Xtensa, ESP32, Cortex-M C++ SVM v X X
[70] Arduino Uno C/C++ FCNN v X X
[21] ESP32, Cortex-M C++ SVM v X X
[71] Cortex-M4 C++ FCNN v X X
[72] Arduino Portenta H7 C/C++ FCNN v X X
[16] Cortex-M C K-NN, DT v v X
[19] AVR, PIC, MSP430 C K-NN, K-Means, FCNN v v X
[20] Cortex-M7 C CNN v v X
[15] RISC-V, STM32 C FCNN, CNN v v X
AIfES All GCC compatible MCU C FCNN, CNN v 4 4

(e.g., Cortex-M, Arduino,
STM32, Atmel AVR, etc.)

[68], [70], [71], [72] that have successfully performed on-device
training using only FCNNs. In [17], on-device training is inves-
tigated and compared using an Arduino Nano 33 BLE Sense and
an Arduino Protenta H7, resulting in the Portenta H7 training
a FCNN 4.2 times faster. Incremental learning is performed
for supervised and unsupervised learning using an autoencoder
in [18]. To use a self-adaptive control algorithm for a DC motor
controller, [67] trains a FCNN from scratch. An autoencoder
without anomalies was initially trained in [68] to monitor the
condition of rotating machines on MCU. The model was then
used to detect anomalies in the machines afterward. With the
increasing interest in FL. where different devices collaborate
to train ML models, several methods have been proposed for
MCUs [3], [71], [72], [73]. Ren et al. [3] proposed a feder-
ated meta learning approach for resource constrained-devices.
However, they did not specify whether they used an existing
library or developed the on-device training from scratch. In [72]
and [73] algorithms from [70] are included. In contrast, the

training in [71] was developed from scratch since no available
frameworks supported it yet [71]. Similarly, due to a lack of
support in available frameworks, [69] proposed a method for
training CNNs on MCUs. Additionally, Lin et al. [20] proposed
a method for training CNNs models with less than 256 KB
random access memory (RAM) including two key innova-
tions for on-device training through Quantization-Aware Scaling
(QAS) and Tiny Training Engine (TTE). First, QAS stabilizes
training by automatically scaling the gradient of tensors with
different bit-precisions. Second, TTE optimizes the runtime by
performing auto-differentiation and sparse update at compile-
time. Although Lin et al. [20] demonstrated the feasibility of
on-device training with less than 256 KB RAM, they pre-trained
the models and performed post-training quantization in their
experiments before running fine-tuning on MCUs. Therefore, it
is uncertain whether training under these resource constraints
would be possible without pre-training and post-quantization
(i.e., training from scratch). An optimization was also proposed
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with Parallel-Ultra-Low-Power (PULP) [15], using a RISC-V-
based parallel software approach. Also, they propose a strategy
to automatically select the fastest kernel depending on the tensor
shapes in each DNN layer. In addition to FCNN, PULP is also
capable of training CNN in parallel on different RISC-V cores.
Opt-SGD and Opt-OVO are presented as optimization methods
for binary and multiclass ML classifier training in the paper [64].
In [65] and [63], the X-Cube-Al [33] extension of STM is used
for on-device training, while in [65] the Forward-Forward [74]
training method is used for the first time on MCUs, where no
backpropagation is required. De Vita et al. [63] use the extension
to train an echo state network [75], which is a form of recurrent
neural network (RNN), on an STM32 board.

Although a total of 19 publications have been published on the
topic of on-device training on MCUSs, the source code has only
been published for slightly half of the papers, so validation or
further development of the work is not possible, which slows
down the acceleration of the research area and optimization
of the algorithms. Furthermore, slightly more than half are
available with open access, whereas only [15], [20], [19] uses
a modular software structure. A modular software structure is
shown by the implementations being systematically divided into
logical sub-blocks.

We noticed that there are some promising solutions
with [20], [65], [19] and [15] to deal with little resources while
training not only FCNN but also CNNs and RNN. However,
none of the current work includes a modular hardware structure
allowing users to include their hardware accelerator into the
framework. A modular hardware structure implies that arbitrary
hardware accelerators can be added to the framework as long as
they are callable by the used programming language. In addition,
training is developed from scratch in several publications such
as [17], [67], [68], [69], [71]. Thus, we conclude that there is a
need for a modular TinyML framework for on-device training
on resource-constrained devices. To address this gap, we present
AIfES.

To overcome this gap, the open source framework AIfES,
presented in this paper, has been developed. It targets all types
of MCUs ranging from small 8-bit MCUs up to powerful e.g.,
ARM Cortex-M-based MCUs and supports both inference and
on-device training of FCNN and CNN. However, AIfES can as
well be used on a PC for evaluation or visualization purposes.

III. DESIGN PRINCIPLES

AIfES is specifically designed to run on embedded, low-
resource devices like MCUs. Therefore, the requirements differ
compared to usual machine learning frameworks. A major goal
of AIfES is to make the usage of the library as simple and
intuitive as possible while being efficient enough to run even
on the smallest MCUs and flexible enough to support most of
the use cases in ML. Therefore, we propose a modular cuboid
structure of AIfES depicted in Fig. 2, which is designed to
provide a flexible and customizable structure in which users
can individually select the available functions from the modules
ailayer, ailoss and aiopti. Each module in itself has different
hierarchy layers Type (functions of the module), Implementation
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Fig.2. Modular and customizable cuboid structure of AIfES composed of the
modules ailayer, ailoss and aiopti. Each module consists of the hierarchy layers
Type (functions of the module), Implementation (use of hardware accelerators)
and Data type (data type with which the ML models are executed).

(use of hardware accelerators) and Data type (data type with
which the ML models are executed), which allows different
settings and configurations. For instance, in the ailayer module,
users can select different layers, such as Dense or Conv2D layer,
to be included in their ML model. The cuboid structure allows
the user to extend the existing modules and hierarchy levels or
even add new ones as required.

A. Modular Architecture

The AIfES framework has a modular architecture. An ANN
model can be built out of processing blocks called layers that
are connected to form the whole model, which is also employed
by the commonly used modern deep learning frameworks like
Keras [34] and PyTorch [11]. This allows experienced users of
Keras or PyTorch to use AIfES more easily. For training, loss
functions are assigned to the model, and it can be trained with dif-
ferent optimizers to perform the gradient steps of the backprop-
agation algorithm. Unlike other frameworks, AIfES also takes
the data type and the underlying system particularities in the
foreground, which are essential factors on resource-constrained
devices. Moreover, it provides all components required for train-
ing an ANN right on the device, like backward implementations
of all layers, several loss functions and optimizers, and weight
initialization functions. An overview of the supported compo-
nents is given in the appendix. These components follow the
same modular concept and are flexible and adaptable to any
system and use case.

Fig. 3 shows the hierarchical structure of modules in AIfES.
Every category (e.g. layer, loss, optimizer) contains specific
modules (e.g. Dense layer, ReLLU layer) that define the func-
tionality of the module. Each module #ype can work on data of
several data types (e.g. float32, int8). The final implementation
can then be system-specific (e.g. Arm Cortex M, AVR ATMega)
to get optimal performance on any hardware.
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Fig. 3. Structural concept of the modules in AIfES. Arrows are indicating sub-types, similar to inheritance in object-oriented programming. On the left side the
hierarchy is given, while the right side gives some examples for an implementation of the hierarchy. The examples describe what type of parameters are set at each

level of the hierarchy, to allow software and hardware flexibility.

Thereby, the higher modules pass on general properties to the
modules below them. This is done by using structures, which are
part of the structures of the lower-level modules. In the case of
a layer, the category ailayer contains common attributes like a
pointer to the previous and following layer. Furthermore, some
function pointer are provided. These function pointer are called
during a forward or backward pass of the ANN and represent
an abstract (data type- and implementation-independent (DII))
call location during the passes. In contrast, the ailoss and aiopti
categories contain abstract loss- and optimization-specific at-
tributes, respectively (e.g., function pointer for loss calculation
for ailoss or function pointer for parameter update for aiopti).

The module fype describes common attributes which are
DII but specific to their operation. This allows for different
functions, e.g., dense layer in contrast to activation function
layer for ailayer or different loss functions for ailoss. For the
example of a dense layer, the module rype provides arguments
like the number of neurons, tensor pointers for weights and bias,
and initializes the function pointers from the category for the
forward and backward pass with DII function implementations
for dense layers. In the case of an activation layer, the function
pointer for the forward and backward pass are initialized with
DII versions of the activation layer. Those DII functions use
the underlying mathematical functions to implement the desired
functionality (e.g., tensor add and multiply operations or matrix
multiplication). Hereby, the mathematical functions are also

DII, as they are referenced as function pointers from the final
implementation module.

Consequently, the data type-specific representation initial-
izes the data type of the layer. Combined with the final im-
plementation module, the DII function pointers are initialized
with data type- and implementation-dependent versions. All
the needed mathematical functions are provided by a separate
mathematics module, where the needed functions are refer-
enced for the initialization of the DII function pointers. The
mathematics module contains implementations for each data
type and implementation, e.g., the matrix multiplication of the
forward pass in 32 and q7 data type. AIfES currently offers two
different types of implementations. The default implementation
is purely software-based and is tested on various systems to
provide the best performance in most cases. In contrast, the
Common Microcontroller Software Interface Standard (CMSIS)
implementation uses the CMSIS digital signal processor (DSP)
functions for an efficient implementation on Arm Cortex-M
MCUs by optimizing the implementation of the mathematical
functions.

In order to use a different hardware accelerator (in the shape
of existing or custom-designed hardware units), the hardware-
optimized mathematical functions (like tensor multiplication)
need to be added to the mathematics module. Additionally, a final
implementation must be added to the desired layer. In the final
implementation the specialized mathematical functions need to
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be referenced. No further adjustments are necessary, as the DII
implementations of the modules type and category automatically
use the mathematical functions given in the implementation.
With this design concept, a hardware developer does not need
to know about neural networks to develop hardware acceler-
ators. Instead, a machine learning expert can use accelerated
building blocks provided by the hardware expert. Moreover, this
allows for a hardware/software co-design workflow where the
developer starts with the default implementations and gradually
replaces them with custom accelerated functions. An example
for customized hardware accelerators can be found in [25]. In
this example, custom single-instruction-multiple-data (SIMD)
instructions were integrated into an RISC-V MCU to improve
the calculation of dense layers. Here, only the implementation
of the dense layer needed to be updated. For this, the function
pointer for the default implementation needs to be replaced
with the SIMD specific implementation. No further changes are
necessary, highlighting the modular structure of AIfES. With
this concept, a hardware developer only needs to develop a
mathematical function for matrix multiplication, which is then
referenced by the function pointer inside the implementation.
Furthermore, the activation functions were optimized with cus-
tom hardware accelerators, where also only the function pointers
needed to be updated to automatically use the optimized hard-
ware accelerators.

Moreover, easy porting of the framework to other hardware
architectures is possible. As the framework is entirely written in
C and is compatible with the GNU Compiler Collection (GCC),
the default implementation is executable on any hardware that
is supported by the GCC and customized hardware accelerators
can be included as described above.

With this modular concept, adding new components and
adapting to new use cases is straightforward without diving deep
into the framework code, as seen by integrating new hardware
accelerators. Additional rypes can be added, e.g., to support
new activation functions, where the additional mathematical
functions need to be added and referenced in the new final
implementation. The clear design choice of structuring AIfES
into the different modules data type and implementation leads
to a more efficient system, as unnecessary functions can be
excluded during implementation, compilation and, therefore,
during deployment.

B. Memory

A main constraining factor on embedded devices is limited
memory. On the one hand, the RAM for storing variables and
mutable data is often only a few kilobytes (or even a few bytes)
of size and must therefore be used very sparingly. On the other
hand, the read-only memory (ROM) for program code storage
and constant variables is also essential. This contrast with non-
edge devices, where the code size is often not considered. With
its modular design, AIfES makes it easy for C-compilers to
remove unused code and thus shrink the code size. The memory
for the parameters (e.g. weights) and intermediate results of an
ANN can be individually assigned depending on the applica-
tion. Constant parameters, like non-trainable parameters, can be
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stored in ROM (e.g. Flash memory or EEPROM) or external
storage components, while mutable parameters (e.g. gradients,
errors, momentum, quantization parameters) need to consume
space in RAM. For instance, gradients, errors, intermediate
results, and quantization parameters will be placed in RAM.

Unlike a dynamic memory allocation like Keras [34], or a
custom caching memory allocator such as PyTorch [11], AIfES
uses a different approach. As a primary design concept, all the
memory is assigned before running the network. For this, AIfES
provides scheduler functions to calculate the required memory
size beforehand based on the network structure of the FCNN
and distribute a block of memory to the model.

First, the memory size for the inference of each layer is calcu-
lated. Thereby, the number of mutable parameters is multiplied
by the selected data type. The memory size for the intermediate
results of the quantization parameters is also determined if quan-
tization is used. For this, the size of the used data type is added
to the memory block. Subsequently, the address sections of the
memory block are added to the individual layers depending on
the number of variable parameters by the scheduler. Afterward,
the memory size for the training is identified if the FCNN
should be trained by AIfES. Hereby, the memory size for the
intermediate results of the different layers for the forward- and
backward-pass is computed. The memory size for the forward
and backward pass is determined by the data type and the
most significant number of weights and biases in the FCNN.
Furthermore, the memory size of the gradients and optimization
memory (e.g. first or second momentum) is ascertained. The size
of the gradients is determined by the size of the tensor and the
used data type. The memory size for the optimizer depends on
the chosen one, as Adam in contrast to SGD needs additional
storage for the moments. In addition, if applied, the memory
size of the quantization parameters is calculated by the utilized
data type. After calculating the size of the memory block, the
scheduler allocates the address ranges of each layer based on the
size of the mutable parameters, optimization size, and memory
size for the intermediate results.

Thus, AIfES has no internal dynamic memory allocation
(apart from local variables on the call stack). This ensures that the
system can not run out of memory during inference or training
of an ANN, which is particularly important in safety-critical
applications like autonomous driving. Furthermore, no memory
fragmentation can occur because the memory scheduler knows
when and how much memory is needed during runtime and can
optimize the assignment.

C. Hardware and Software Optimizations for Reduced
Runtime

Keeping the runtime of ML inference and training low is a
key objective of AIfES. A major portion of the execution time of
state-of-the-art neural networks is devoted to matrix operations,
e.g. in fully-connected or convolutional layers. However, com-
parably small neural networks are frequently used on embedded
systems due to prevailing resource constraints. With decreasing
network size, the activation layers become increasingly relevant
concerning their contribution to the execution time. Therefore,
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AIfES includes runtime-optimized activation functions and lay-
ers in addition to the matrix multiplication-based layers. As
several activation functions require the calculation of the expo-
nential function, that can be costly in its default implementation,
AIfES includes an optimized variant [76]. Furthermore, AIfES
employs piecewise linear approximation (PLA) of activation
functions that introduce minor calculation errors but speed up
their execution. Hence, AIfES allows adapting the degree of ap-
proximation depending on the precision and runtime constraints
of the application. AIfES does not use look-up table-based
activation functions to prevent a further increase of the library’s
memory requirements.

For the backward pass of the model, no automatic differentia-
tion is executed. Consequently, a separate implementation of the
backward pass is provided for every layer. Thus, no additional
bookkeeping of the executed functions on a tensor is necessary,
resulting in reduced storage and computing requirements.

AIfES provides two complementary backpropagation work-
flows to achieve lower memory consumption during training.
Both commence with a forward pass that retains the results. The
traditional approach progresses by iterating over all layers in
reverse, computing and storing the gradients at each step. All
parameters are only updated at the very end of this process. The
lightweight stochastic gradient descent (L-SGD) algorithm [77]
operates differently, retaining only the partial derivatives neces-
sary for the subsequent layer and directly updating the parame-
ters using the calculated gradients. Thus, it only keeps two layers
in memory at any given moment.

We have expanded this algorithm to include other optimizers
such as ADAM. Additionally, we have made it possible to use
the lightweight backpropagation workflow with batch learning,
enhancing its practical utility. In this context, we accumulate
the gradients over a complete batch in each iteration and update
before advancing to the next layer. The lightweight procedure
becomes increasingly efficient as the depth of the model in-
creases. For larger batch sizes, the algorithm is quicker due
to memory access, though this comes at the expense of higher
peak memory usage. AIfES provides users with the flexibility
to select the workflow that best suits their network architecture
and performance requirements.

Another factor to be aware of when developing a library for
embedded purposes is the huge range of underlying hardware
configurations. On systems with only 8-bit memory bandwidth
and no FPU, the optimal implementation of an algorithm is
different than on 32-bit systems with SIMD instructions or
DSP accelerators. The modular concept of AIfES allows the
development of individual components that fit perfectly to the
given hardware platform and instruction set (cf. Section III-A
and Fig. 3). For example, the CMSIS for ARM-based MCUs
allows acceleration of the calculations by utilizing, among other
optimizations, SIMD instructions. The CMSIS can be used in
AIfES by the additional CMSIS-implementation.

AIfES allows quantizing your model. Quantization enables
an adaptation for different hardware architectures, e.g. to the
named 8-bit MCU with no FPU. A quantized ANN to Q7 can
improve the calculations. Two quantizations (Q7 and Q31) are
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offered as a symmetric 8-bit/32-bit integer quantization facili-
tates integer-only calculations on real values by following the
proposed techniques of [50].

IV. EVALUATION

In order to evaluate the performance of AIfES a benchmark
including multiple ANN architectures (FCNNs and CNNs) and
datasets was developed. The performance of AIfES in terms of
execution time and memory consumption is compared to TFLM
for the inference of the models and AIfES is evaluated in a
training scenario.

A. Benchmark Setup

The experiments were conducted on the nRF52840 DK
(ARM Cortex-M4-based) by Nordic Semiconductor [78]. The
nRF52840 System-on-Chip (SoC) runs at a clock rate of 64 MHz.

For the software development and programming of the SoC,
the PlatformIO IDE [79] was used. For the compilation, the
GCC included in the GNU ARM Embedded Toolchain [80] was
used with maximum optimization (-O3). The execution time
of inference and training was measured with a logic analyzer
(Digital Discovery by Digilent) and the results were evaluated
statistically. In the following, only the mean execution time is
reported, as the deviations were insignificant. The given values
for the memory consumption in terms of RAM and flash memory
were taken from the compilation report of PlatformlIO. For the
inference setting, the parameters of the ANNs were declared
with the const classifier to place them in the flash memory
of the SoC during compile time. The same procedure for the
inference and training experiments was used to place the input
data in the flash memory for AIfES and TFLM, respectively.
However, the input data size was subtracted from the reported
flash memory consumption, as only the storage requirements
of the two frameworks should be compared and the size of
input data varies with the different ANNs. The benchmarks were
conducted with the two data types F32 and Q7 for the FCNNs
and only F32 for the CNNs. For the Q7-based versions, the
pre-trained model from Keras was quantized.

To be able to control the behavior of TFLM, the official
repository from GitHub [81] was downloaded and the provided
converter tool was used to create the library for ARM Cortex
architectures with and without optimized CMSIS kernels. The
library is then included in the PlatformIO IDE. For TFLM,
pre-trained ANNs from TensorFlow needs to be converted to a
TensorFlow Lite model. The converted models are then exported
and included in the benchmarking environment. The size of the
kTensorArenaSize was estimated empirically for each ANN, as
it contains all necessary parameters for the ANN and therefore
changes size with each tested ANN. A conversion of the pre-
trained models from Keras [34] to AIfES is executed. Only the
weights and bias are transferred to AIfES to convert a pre-trained
model. For both AIfES and TFLM, version 5.8.0 of CMSIS is
used [82].
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TABLE II
SUMMARY OF INFERENCE EXPERIMENTS WITH FCNNS

Ex-
. # of inputs .
peri- Dataset & outputs Hidden layers
ment
1 hidden layer with 10
neurons (1 x 10)
1st hidden layer with 10
1 Tris[85] 4 features, neurons, 2nd with 50
3 classes
neurons (10 + 50)
10 hidden layers with 10
neurons each (10 x 10)
Breast 1x10
Can- 30 features,
2 cer 2 classes 10 + 50
[86] 10 x 10
1x10
MNIST 64 features,
3 [84] 10 classes 10+50
10 x 10
32 + 32 + 16 (FCDNN 1)
4 MNIST 784 features,
10 classes 128 + 64 +32 + 16

[84]
(FCDNN 2)

B. Inference Benchmark

1) FCNNs: For the evaluation of the FCNNs, the model
architectures from an existing TinyML benchmark [83] were
adopted. Three representative datasets with several numbers of
input features (4 - 64 features) were selected. Additionally, two
larger fully connected deep neural network (FCDNN) architec-
tures were evaluated based on the MNIST dataset [84] using the
complete and flattened images (784 features). The experiments
with the corresponding evaluated datasets and models are sum-
marized in Table II. Experiments 1 to 3 were conducted first.
The results are shown in Figs. 4, 5 and 6.

Fig. 4(a) shows that the execution time of the AIfES models
exceed that of the TFLM models in most of the cases. Without
CMSIS, a speed-up by factors of up to 2.1 for F32 respectively
2.2 for Q7 was measured. The execution times of the slower
F32-AIfES models (MNIST 1x10 and MNIST 10 + 50) lie
within 17% of that of the TFLM models. At the same time the
Q7-based version of MNIST 1x10 is slightly faster (speed-up
by factor 1.2), whereas the Cancer 10 + 50 model is slightly
slower (by 2 %). An explanation for the lower performance of the
MNIST F32 ANNs might be an optimized matrix multiplication
implementation of TFLM, taking effect for fully connected
layers with a higher number of parameters. This fits with the
results for the Q7 Cancer 10 + 50, as for the Cancer 10 + 50
the execution time from AIfES is slightly longer than TFLM.
At the same time the optimizations by Q7 allows AIfES to be
slightly faster than TFLM in the Q7 MNIST 1 x 10 setting.
Fig. 4(b) shows that the AIfES models with CMSIS are faster
than the TFLM models in all cases by factors of up to 2.4
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Fig. 4. Comparison of the execution times between AIfES and TFLM for

different FCNNs (experiments 1 to 3) is shown, with comparisons between
the F32 and Q7 versions illustrated in both subfigures. (a) Represents the
inference time with the standard implementation, and (b) with the CMSIS
implementation.

and 2.3 for F32 respectively Q7. The slow performance of the
F32-based versions of TFLM can be attributed to the fact that
TFLM uses the default implementation for F32 without using
any function from the CMSIS. This leads to almost the same
results as for F32 without CMSIS. For the Q7 setting, TFLM
uses CMSIS-based implementations, showing a performance
increase, also compared to the Q7 implementations without
CMSIS by factors of up to 1.6 (mean 1.4). At the same time,
TFLM can reduce the execution time of Q7 ANNSs further
with CMSIS in comparison without it by factors of up to 2.7
(mean 2.1). These results demonstrate the effectiveness of the
modular and open AIfES architecture, enabling the integration
of arbitrary accelerated or optimized implementations of ANN
functionalities.

Figs. 5 and 6 show that the AIfES models require overall less
memory than the TFLM models by factors of up to 3.9 (starting
by factors of 2.1 with amean of 2.7). The RAM requirements are
similar for both frameworks in most cases, while the significant
difference is due to the flash memory consumption. We attribute
this result to the memory-efficient implementation of AIfES con-
cerning program code and constant variables, typically placed
inside the flash memory. Furthermore, it is to note that the
flash memory consumption increases for the TFLM models with
CMSIS enabled, while it slightly decreases for the F32 AIfES
models. The reason for this is that AIfES integrates only a subset
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Fig.5. Memory comparison for the frameworks AIfES and TFLM in the F32

version using different FCNNs (experiments 1 to 3) is shown. Furthermore,
the RAM and flash consumption is depicted for the standard and CMSIS
implementation. (a) Shows the standard implementation, and (b) illustrates the
implementation with CMSIS.

of the CMSIS modules. This can also be seen in the Q7 based
implementation, where the flash memory consumption increases
for both frameworks but the amount of increase is larger for
TFLM. TFLM either uses more or other CMSIS modules with an
increased code size or more constant variables. An explanation
for the decrease in memory consumption for the F32 AIfES
models is the higher efficiency of the CMSIS functions in terms
of code size compared to the native AIfES implementations.
Table III shows the results of the FCDNN architectures (ex-
periment 4 in Table IT). The execution time of the TFLM models
without CMSIS is 17% and 16% lower than that of the AIfES
models. This result supports our hypothesis concerning the op-
timized native matrix multiplication implementation of TFLM
for fully-connected layers with higher numbers of parameters.
With CMSIS, the execution time of the AIfES models exceed
that of the TFLM models by factors of 1.4 and 1.3, respectively.
Nevertheless, the RAM requirements of the TFLM models are
slightly lower (12% for FCDNN 1 and 5% for FCDNN 2). The
flash memory consumption of the AIfES models fall below that
of the TFLM models by the same absolute differences as in the
previous experiments 1 to 3 (31 kB and 41 kB on average without
and with CMSIS respectively). Overall, these results prove the
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Fig. 6. The memory comparison for the frameworks AIfES and TFLM in the

Q7 version using different FCNNs (experiments 1 to 3) is shown. Furthermore,
the RAM and flash consumption is depicted for the standard and CMSIS
implementation. (a) Shows the standard implementation, and (b) illustrates the
implementation with CMSIS.

effectiveness of the AIfES architecture again for the integration
of external optimized ANN modules and its memory efficiency
with respect to flash memory storage.

2) CNNs: Subsequently, 2D-CNN architectures using the
MNIST, CIFAR-10 [87] and Visual Wake Words (VWW) [88]
dataset were evaluated. The network architecture changes with
every dataset since the datasets have a different number of
input channels and also a different amount of outputs. For the
CIFAR-10 and the VWW, an input of 3 x 32 x 32 was used
since the datasets contain RGB images. The images of the VWW
were previously resized to fit the input shape of the CNN. The
inputof 1 x 28 x 28 was used for the MNIST dataset. However,
the basic architecture is the same for all of them. Each network
has two convolutional layers, the first layer using four kernels
and the second layer eight kernels with a size of 3 x 3 using
no padding and a stride of one. ReLU is used in both layers,
and maxpooling is performed with a kernel of 2 x 2 after each
convolutional layer. As the CMSIS support for CNNs is not
yet included in AIfES, only the native implementations were
compared.
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TABLE III
EVALUATION OF EXECUTION TIME AND MEMORY CONSUMPTION OF THE FCDNNS (EXPERIMENT 4)

Execution Time (ms) Memory (kB)
NN Frame-
No CMSIS CMSIS
Arch. work  No CMSIS CMSIS
RAM  Flash RAM  Flash
AIfES 14.47 8.67 10.99 122.28 1098 121.11
FCDNN 1
TFLM 11.97 12.40 9.69 153.03 9.69 162.84
AIfES 58.20 40.71 11.22  461.09 11.21 459.92
FCDNN 2
TFLM 49.13 50.95 10.71 491.84 10.71 501.66
TABLE IV TABLE V
EVALUATION OF EXECUTION TIME AND MEMORY CONSUMPTION OF THE EVALUATION OF THE ON-DEVICE TRAINING WITH AIFES OF THE FCNN ON
2D-CNN THE NRF52840 DK (BATCH SIZE: 5)
Frame- Execution Memory (kB) . .
Dataset "ok Time (ms) RAM  Flash e Archi ?am/mg Mf}?l;‘;w
VNIST AFES 5116 2701 3435 TEE T tecture (ms)
TFLM  43.53 16.58  66.63 RAM  Flash
AIfES  111.03 43.33  38.53
- 1x10 15.04 8.34 2096
CIFARIO Tprvi 7085 3296 7044 * (001)
AIfES 12242 4330 2848 '
VWW' TRELM 7040 3296  61.19 Breast 10+50 4034 2127 21.22
Cancer
(£0.02)
10 x 10 55.74 29.85  23.33
The results in Table IV show that the TFLM CNN exceeds the (£0.02)
AIfES model in terms of execution time and RAM requirements
by factors of up to 1.74 (VWW) and 1.63 (MNIST) respectively 1x10 03.62 354 20.96
. . . . (%£0.00)
in the worst case evaluations. An explanation for the difference
in execution time is the optimized implementation of matrix Iris 10 + 50 05.41 1745  21.22
multiplications in TFLM. AIfES currently uses simple direct (£0.01)
convolutions. Sophisticated methodologies such as general ma- 10 x 10 07.76 2458 2321
trix multiply (GEMM)- or fast Fourier transform (FFT)-based (0.01)
implementations are not yet included. Similar to the previous
experiments, the flash memory consumption of the AIfES CNN 1x10 33.43 1825 21.36
is lower than that of the TFLM model with a maximum absolute (£0.02)
difference of 32 kB for all datasets. As aresult, the flash memory MNIST 10 + 50 7457 3480 21.63
occupancy increases up to 53% in the worst case for the VWW (40.04)
dataset. The significant differences are related to the flat buffer
used to store the weights, network structure, and activation 10x 10 (i%%i) 39.06 23.74

functions so that the neural network can be built at run time
of TFLM.

C. Training Benchmark

Subsequently, we investigated the on-device training for
the FCNN and CNN with AIfES. For the evaluation of the
FCNN, the same architectures were used for experiments 1 to 3
of the inference benchmark shown in Table II. For the CNNs,
the same architectures were chosen as for the inference bench-
marks in Section IV-B2. All models were trained using a cross-
entropy loss and the Adam optimizer with = 0.01, 51 = 0.9,
B2 = 0.999 using € = le~7 for FCNN and € = 1e~° for CNNs.
Only the training with the default implementation (i.e., without
CMSIS) is shown. We measured the execution time per epoch

and normalized it by dividing it by the number of batches per
epoch, as the batch size is the same (5) for each model.

1) FCNNs: Table V shows that the training of FCNNs on
resource-constrained embedded devices is possible with AIfES
while keeping the execution time and memory consumption at
an acceptable level. This means that the platform is not fully
utilized, and enough resources remain. For example, on the
experimental platform based on the nRF52840 SoC, 15% of
the RAM and 2% of the flash memory are utilized by AIfES in the
worst evaluated case (MNIST 10 x 10). Hence, other tasks such
as communication, sensor sampling, or signal pre-processing
can also run on the embedded system. The overall training
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TABLE VI
EVALUATION OF THE ON-DEVICE TRAINING WITH AIFES OF THE 2D-CNN ON
THE NRF52840 DK (BATCH SIZE: 5)

Training Memory (kB)

Dataset .
Time/Batch (s) RAM  Flash
MNIST 1.19 104.14 39.60
CIFAR-10 2.61 14990 38.80
VWW 2.56 103.64 38.48

execution time of the evaluated models on the experimental
platform lies in the range of milliseconds to seconds.

Despite these results, it has to be considered that the model
architecture and especially the memory requirements of the
training process can be the main limitations of the on-device
training with AIfES. We also included a training of a complex
deep autoencoder in the appendix B.

2) CNNs: The results of the on-device training benchmark
of the CNNs can be seen in Table VI, where we used the same
datasets as for the inference evaluations. Also, similar architec-
tures as in the inference analyses were used. The architectures
were extended by adding a batch normalization layer after both
convolutional layers with momentum = 0.9 and € = le~5,
which accelerates the training according to [89]. Compared to
the evaluations of the FCNNSs, the training time per batch and the
RAM consumption has increased significantly. The CNN trained
with the CIFAR-10 dataset takes the most time to train, with
2.61 seconds, and the RAM memory consumption with almost
150 kB. The training time and the memory consumption of the
RAM have increased since the number of trainable parameters
also increased in the CNNs. For instance, the CNN used in
the analysis with the CIFAR-10 dataset uses four times the
amount of parameters as the FCNN with the MNIST dataset
using 10 x 10 architecture. Hence the memory requirement is
about 3.8 times larger.

The benchmark shows that the training of CNNss is feasible
with AIfES, but the training time, as well as the memory con-
sumption, goes up compared to the FCNN training. Neverthe-
less, the training time remains within an acceptable time frame.
However, training deep CNN would be challenging. In addition,
the amount of data required to train a deep CNN cannot be stored
directly on an MCU.

D. Approximation Benchmark

Since AIfES uses approximations, an important aspect is to
examine the relative error of these approximations. For this
purpose, the Deep Autoencoder included in the TinyML Perf
Benchmark [90] was used. The ReLLU activation functions were
replaced with sigmoid activation functions to enable an inte-
grated approximation of the activation function in AIfES. First,
the autoencoder was trained in Tensorflow. Then, the model was
exported to Tensorflow Lite and AIfES. These two models were
then executed on the PC, and the mean squared error from the
input value was calculated. Based on the 2459 test datasets, the
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reference values were determined using Tensorflow. Afterwards,
the same test data was used to measure the mean squared error of
the autoencoder using Tensorflow Lite and AIfES. Subsequently,
the mean relative error of Tensorflow Lite and AIfES with
respect to the reference values from Tensorflow was determined.
Tensorflow Lite has a mean relative error of 1200.95588 %o,
while AIfES has an error of 38.4283 %o. Thus, the mean relative
deviation of AIfES is negligible. The applied approximations in
an application example lead to no significant difference in the
pAUC (—0.027) value compared to Tensorflow and to minimal
difference in the mean value of the AUC of —0.032.

V. CONCLUSION & FUTURE DIRECTIONS

In this paper, we presented the next-generation edge Al
framework AIfES. It is specifically designed to leverage the
full potential of ML on resource-constrained embedded devices.
Compared to other traditional edge Al frameworks, AIfES not
only supports the inference on embedded systems but also the
on-device training. This allows the use of FL and online learning
(OL) techniques in real-world applications. Furthermore, due to
its modular architecture, AIfES enables the easy integration of
arbitrary optimized and hardware-accelerated ANN functional-
ities. We performed benchmarks comparing AIfES to TFLM
in multiple inference scenarios on an ARM Cortex-M4-based
SoC. Especially for FCNN architectures, we showed that AIfES
is capable of outperforming TFLM in terms of execution time
and memory consumption. Furthermore, we demonstrated the
feasibility of the training of ANNs and CNNs on embedded
devices with AIfES. The current main limitation of AIfES is the
implementation of the native matrix multiplication, leading to a
lower performance of ANNs compared to TFLM. In the future,
we will enhance AIfES with more advanced matrix multipli-
cation methods for ANNs and optimize the overall on-device
training for ANN with e.g. pruning. Furthermore, new ANN
architectures, such as transformers will be added, and we will
focus on the further development of FL and OL techniques with
AIfES.
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