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Shunzhi Yang , Jinfeng Yang , MengChu Zhou , Fellow, IEEE, Zhenhua Huang ,
Wei-Shi Zheng , Member, IEEE, Xiong Yang , and Jin Ren

Abstract—Existing studies on knowledge distillation typically
focus on teacher-centered methods, in which the teacher network
is trained according to its own standards before transferring the
learned knowledge to a student one. However, due to differences
in network structure between the teacher and the student, the
knowledge learned by the former may not be desired by the lat-
ter. Inspired by human educational wisdom, this paper proposes
a Student-Centered Distillation (SCD) method that enables the
teacher network to adjust its knowledge transfer according to the
student network’s needs. We implemented SCD based on various
human educational wisdom, e.g., the teacher network identified
and learned the knowledge desired by the student network on
the validation set, and then transferred it to the latter through
the training set. To address the problems of current deficiency
knowledge, hard sample learning and knowledge forgetting faced
by a student network in the learning process, we introduce and
improve Proportional-Integral-Derivative (PID) algorithms from
automation fields to make them effective in identifying the current
knowledge required by the student network. Furthermore, we
propose a curriculum learning-based fuzzy strategy and apply it to
the proposed PID control algorithm, such that the student network
in SCD can actively pay attention to the learning of challenging
samples after with certain knowledge. The overall performance of
SCD is verified in multiple tasks by comparing it with state-of-
the-art ones. Experimental results show that our student-centered
distillation method outperforms existing teacher-centered ones.

Index Terms—Curriculum learning, fuzzy PID, human
educational wisdom, knowledge distillation, student-centered.
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I. INTRODUCTION

KNOWLEDGE distillation (KD) [1] is a machine learning
technique similar to human educational wisdom, i.e., it

uses a powerful teacher network to guide a weaker student
network to learn knowledge. In this paper, the teacher and
student networks in KD are abbreviated as teacher and stu-
dent, respectively, for convenience. KD is a model compression
method to develop efficient networks for resource-constrained
devices [2], [3], [4]. KD methods involving two distinct networks
can be classified into online and offline distillations [3]. Both the
online and offline distillation studies have focused on mining
knowledge from a teacher and transferring it to a student.

However, existing KD methods typically adopt a teacher-
centered approach. In this methodology, the teacher acquires
and transfers knowledge based on its own standards, often
neglecting the student’s specific learning requirements. For
example, DML [5] involves two untrained networks learning
each other’s knowledge independently, without considering each
other’s needs. FitNets [6] transfers the pre-trained knowledge
of a teacher to a student. DML and FitNets are representative
online and offline KD methods, respectively. Typically, these
methods involve a teacher transmitting its acquired knowledge
to a student, without considering the latter’s learning situations.
Such a way may lead to misaligned knowledge transfer, as a
teacher may convey information that is not entirely relevant or
beneficial for a student. In contrast, human educational practices
emphasize a student-centered strategy [7], [8], where the focus
is on aligning teaching content with a student’s learning needs.
This alignment is crucial because the objective of KD is to
develop an efficient student for processing user tasks, rather than
enhancing a teacher. Moreover, while teachers are typically more
complex and capable of acquiring more knowledge, the primary
challenge lies in distilling their knowledge into a form that is
accessible and beneficial for a student. Disseminating irrelevant
knowledge could lead to inefficient use of a teacher’s abilities,
potentially reducing the effectiveness of the KD process.

To maximize the efficiency and effectiveness of knowledge
transfer in KD, this paper proposes a Student-Centered Dis-
tillation (SCD) method, where the teacher aims to learn the
knowledge desired by the student. In this paper, the knowledge
that a student desires is it lacks. Providing the student with
desired knowledge can improve its generalization performance.
Different from existing studies, which usually try to make a
student imitate the knowledge learned by a complex teacher,
both the ideas and the implementation methods of this paper
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follow the student-centered human educational wisdom. For ex-
ample, in human educational activities, teachers use test papers
to check students’ knowledge mastery before providing targeted
instruction. Accordingly, in this paper, a teacher identifies and
learns the knowledge desired by a student through the validation
set, and then transfers that knowledge to the student on the
training set. The validation set only evaluates the student’s
performance, and does not update its parameters. The validation
set contains almost all the knowledge that a student should have
to learn, similar to the knowledge that a human student should
have to master for admission to a university.

Although all of the knowledge on the validation set should
be learned by the student, the teacher is not required to learn
and transfer all of it, as some of it may already be mastered by
the student. In human educational activities, teachers regularly
work on overcoming students’ weaker areas of knowledge to
deepen their understanding [9]. Thus, in this paper, we follow
this teaching experience to enable a teacher to discover and
learn a student’s relatively weak knowledge. Afterwards, the
teacher transfer that knowledge into the student to effectively
improve the latter’s performance. In SCD, a teacher becomes a
facilitator for learning and transferring knowledge that a student
does not understand. With the help of a teacher, a student can
continuously discover and overcome its relatively weak knowl-
edge. However, the relatively weak knowledge of the student at
different epoch is usually different. It requires the teacher not
only to discover the weak knowledge of the student in time,
but also to prevent the student from experiencing knowledge
forgetting. Knowledge forgetting [10] refers to the fact that
when a student learns new knowledge, it may forget what it
previously learned. For example, at the tth epoch, a student’s
weakest knowledge is “♦”, whereas in the (t+ 1)th epoch, it
is “�”. Unfortunately, the student may forget knowledge “♦”
after learning knowledge “�”. Thus, the student in SCD should
maintain past knowledge while absorbing new one to alleviate
knowledge forgetting. In addition, a student usually learn almost
all of the knowledge in a simple sample through ground-truth
labels alone. However, the simple structure of a student makes
it difficult to learn rich knowledge contained in a hard sample.
Of course, whether a sample is simple or hard is decided by
the student, not the teacher. Accordingly, a teacher in SCD
should pay special attention to the hard samples that a student
consistently fails to master.

From the above analysis, in SCD, a teacher should not only
learn and teach the knowledge that a student desires in the
present and past, but also reduce knowledge forgetting. To
effectively meet these conditions, we introduce the Proportional-
Integral-Derivative (PID) control algorithm [11], [12] from the
automation discipline. The proportional, integral, and derivative
units can represent a student’s current error, cumulative error,
and error change trend on knowledge, respectively. Therefore,
in SCD, the PID control algorithm has the potential to address
a student’s learning difficulties. Nonetheless, they still have to
improve on several problems, to be shown in this paper. To
overcome these problems, we design an PID control algorithm to
effectively handle challenges that a student’s current deficiency
knowledge, hard sample learning, and knowledge forgetting. For

example, the integral unit is still difficult to distinguish hard
samples. The derivative unit is insufficient to reflect the degree
of knowledge forgetting effectively.

It’s worth noting that each of the proportional, integral, and
derivative units in the PID control algorithm can only address a
specific aspect of a student’s learning difficulties. The relative
sizes of these units are indicative of the importance of addressing
these issues to enhance student’s performance. For example,
when a student struggles with hard sample learning, the ratio of
the integral unit in the PID control algorithm should be increased.
However, the learning state of the student is not constant, but
rather constantly evolving. It means that we should dynamically
adjust the ratios of proportional, integral, and derivative units
to match the student’s changing developmental needs. While in
the field of automation, human-made fuzzy rules can adaptively
control these ratios, they cannot be directly applied to implement
student-centered distillation methods, to be shown in this paper.
Inspired by the Curriculum Learning (CL) [13], [14] of human
educational wisdom, we propose a CL-based fuzzy strategy for
adaptively tuning the proportions of proportional, integral, and
derivative units. It can make a student more active to explore rich
knowledge in hard samples after mastering certain knowledge.
More specifically, as student’s performance improves, we pro-
pose a fuzzy strategy that reduces proportional unit and increases
integral and derivative ones.

Therefore, we propose a student-centered distillation method
by drawing on the ideas of student-centered and curriculum
learning in education, introducing and improving the KD tech-
nology in artificial intelligence and the fuzzy PID control algo-
rithm in cybernetics. We combine our CL-based fuzzy strategy
and PID control algorithm, abbreviated as CL-FPID. CL-FPID
can effectively figure out what knowledge the student desires at
each epoch by controlling proportional, integral, and derivative
units and their ratios. The complete implementation of this work
is available at its Github repository.1 In a word, this work aims
to make the below contributions:

1) We propose a Student-Centered Distillation (SCD)
method by mimicking student-centered human educa-
tional wisdom, where the teacher adjusts the teaching
content according to the student’s needs and abilities.

2) We propose a PID control algorithm to handle the prob-
lems of current deficiency knowledge, hard sample learn-
ing and knowledge forgetting in student learning.

3) We present a CL-based fuzzy strategy that allows a stu-
dent to actively learn challenging samples after mastering
certain knowledge.

4) We show the effectiveness of SCD through extensive
experiments on multiple tasks. Experimental results show
that the student-centered distillation method outperforms
the existing teacher-centered ones.

Section II reviews the related work. Section III presents our
proposed SCD method. Section IV provides theoretical analyses
of our motivation. Section V compares SCD with its peers on
multiple tasks. Section VI concludes the paper.

1https://github.com/yangshunzhi1994/SCD

https://github.com/yangshunzhi1994/SCD
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II. RELATED WORK

A. Knowledge Distillation

Deep learning networks has received widespread attention
and rapidly developed in many fields for its robustness. How-
ever, these networks often require abundant resources, which
are scarce in resource-constrained devices such as edge com-
puting and mobile devices. To deploy deep learning networks
on resource-constrained devices and meet the requirements of
various application scenarios, researchers are exploring efficient
methods. One such method is KD [1], which has gained pop-
ularity as a model compression technique in the field of deep
learning.

Existing KD methods largely focus on three critical areas
to improve the performance of a student [15]. The first area
is determining what knowledge to transfer from a teacher to
a student. In KD, knowledge is an abstract concept, and var-
ious aspects of a network, including gradients, outputs, and
intermediate features, can all be considered as knowledge. For
example, Robust [16] leverages gradient information as a form of
knowledge transfer. CRD [17] utilizes contrastive objectives to
capture the correlation of feature knowledge and the dependen-
cies among higher-order outputs to acquire the knowledge of a
teacher. DKD [18] decouples logits information into knowledge
of target and non-target classes. A student in Filter-KD [19]
learns the output knowledge of a teacher with label smoothing
in early stopping epochs. Jiang et al. [20] use the weighting of
ground-truth labels and soft targets predicted by a teacher as
a supervised target for a student learning. FKD [21] transfers
the knowledge of the inner product of last-layer representations
across different sample inputs of a teacher into a student.

The second area is clarifying where the knowledge of a teacher
should be transferred into a student. A teacher usually has more
network layers than a student. Therefore, it is necessary to
extract knowledge from the most representative network layers
in a teacher. For example, CRKD [22] transfers a teacher’s
knowledge on the logits layer to a student. Ge et al. [23], [24] and
Massoli et al. [25] indiscriminately and selectively transfer the
knowledge at the mimic layer of a teacher with high-resolution
samples as input into a student with low-resolution ones as input,
respectively. KDEP [26] proposes a non-parametric feature size
alignment method in the penultimate layer.

The third area is studying how to transfer knowledge from
a teacher into a student. KD is to transfer knowledge from
a teacher into a student by minimizing the closeness of their
features. Therefore, some researches focus on loss functions to
increase KD performance. For instance, Leap [27] minimizes
the expected length of the gradient path of a meta-learner to
reduce knowledge forgetting of a student. Huang et al. [28]
propose a novel rank-based loss function that restricts the critical
relations in the student to approximate those in the teacher. In
addition to loss functions, some work proposes new distillation
methods to achieve knowledge transfer between a teacher and
student. For example, Jamal et al. [29] propose a “Lazy” MAML
model, in which a teacher guides the learning of a student at
intervals. A student in Annealing-KD [30] gets rid of the guid-
ance of a teacher after acquiring certain knowledge. ProKT [31]

constrains the path of student optimization by projecting the
knowledge of a teacher into a student’s parameter space. In
SCKD [32], a student learns the feature knowledge of a teacher
only if their gradients are similar. DGKD [33] gradually reduce
the difference in network output between a teacher and student
through multiple teacher assistants.

However, the above methods are all teacher-centered teaching
ones, also known as knowledge cramming education [34], in
which a teacher directly instills knowledge into a student. In
other words, a student in teacher-centered method can only be
in a “auditorium”, losing the autonomy in the learning pro-
cess. Different from teacher-centered methods, a student in our
student-centered one can actively learn the knowledge it desires.

B. Student-Centered Distillation

One of the key challenges in implementing a student-centered
KD method is determining which knowledge is desired by
the student before the teacher can learn and transfer it. This
implies that the method is an online KD one, where both the
teacher and the student need to train from scratch. However, the
problem with existing online KD methods [5], [35], [36], [37],
[38], [39] is that they usually involve two untrained networks
learning each other’s knowledge, rather than learning and trans-
ferring knowledge based on each other’s feedback. In human
educational activities, teachers typically learn about students
through questionnaire [7], case study reports or exam scores [7],
etc. Similarly, this paper uses validation sets to discover the
knowledge that the student desires. The validation set is akin to
an “examination” that helps to identify the knowledge that the
student has not yet fully grasped.

Currently, KD methods that involve student feedback are
based on meta-learning, where the teacher relies on the gradient
of the student’s loss on the validation set to update its param-
eters [40], [41], [42]. However, due to differences in network
architectures between the teacher and student, it can be challeng-
ing for the teacher to effectively absorb the gradient information
returned by the student. In other words, the gradient of a student’s
loss on the examination may not be suitable for updating the
teacher’s parameters. Fortunately, we can figure out where a
student’s knowledge is relatively weak through an examination.
For example, when a student’s losses on validation samples A
andB areLA andLB , respectively, whereLA < LB , it indicates
that the student is more interested in learning about sample B
than sample A. This means that the teacher should enhance
the understanding of the relevant knowledge in sample B and
transfer it to the student. Thus, our approach uses the validation
set to determine the knowledge desired by the student and allows
the teacher to identify and learn the relevant knowledge before
transferring it to the student.

III. PROPOSED METHOD

First of all, we provide the idea of our CL-FPID algorithm
for implementing a student-centred distillation method. What’s
more, a complete SCD method is introduced in which a teacher
learns and teaches the knowledge that a student desires. Once
again, we describe how the teacher learns the knowledge that
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the student desires through the validation set, including: the PID
control algorithm that tackles the issues of current deficiency
knowledge, hard sample learning and knowledge forgetting in
student learning; the CL-based fuzzy strategy, which enables
a student to actively learn the knowledge it desires with the
help of a teacher. The PID control algorithm and CL-based
fuzzy strategy, i.e., CL-FPID method, are used for a teacher to
learn the knowledge that the student desire through a validation
set. Finally, the teacher transfers the learned knowledge to the
student through the training set.

A. Motivation and Design Ideas

The PID control algorithm is a form of feedback control in
industrial applications that minimizes the error between actual
output and desired values [43]. The PID control algorithm ac-
complishes this by generating a feedback signal from a set of
proportional, integral, and derivative operations based on error.
The proportional, integral, and derivative operations represent
errors in present, past, and future states, respectively. Mathemat-
ically, it can be expressed as:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
, (1)

where Kp, Ki, and Kd denote the control gains of proportional,
integral, and derivative respectively. u(t) is the feedback signal
at time t, which is used to update the current state in order to
attain optimal performance. It is worth mentioning that u(t) is
used to control the learning weight of a teacher on a sample
from a validation set. If the u(t) of a sample is relatively
large, the teacher should focus more on the sample learning.
e(t) is proportional unit that represents the error at time t, i.e.,
the current loss of a student on a sample from the validation
set.

∫ t

0 e(t)dt is integral unit of the cumulative error, i.e., the
difficulty for a student to grasp the knowledge in a sample from
the validation set. A sample is considered hard if its

∫ t

0 e(t)dt is

relatively large. de(t)
dt is derivative unit that implies the trend of

the error, i.e., the state of knowledge forgetting by a student on
a sample from the validation set. If a sample’s de(t)

dt is positive,
the student has forgotten that knowledge, and the absolute value
of de(t)

dt indicates the degree of forgetting.
Therefore, the PID control algorithm in (1) has the potential

to deal with the problems of current deficiency knowledge, hard
sample learning and knowledge forgetting in student-centered
distillation method. However, it has the following four issues in
specific applications:

1) The PID control algorithm is only used to regulate one
sample, not multiples. We should compute feedback val-
ues for multiple samples to obtain their relative impor-
tance.

2) If we treat the integral unit of each sample equally, it is
difficult to distinguish which samples are easy and which
are hard because their differences are small. We should
make large integral units bigger and small ones smaller,
enabling the teacher to focus more on samples that are
hard for a student.

3) The derivative unit only considers the trend of the two
most recent losses, i.e., the change rate between e(t) and
e(t− 1), which may not adequately reflect the degree of
knowledge forgetting of a sample. We should calculate the
amount of knowledge forgetting for a sample over more
epochs.

4) Kp, Ki, and Kd are three constant parameters with no di-
rect knowledge of the process, resulting in the sub-optimal
of overall feedback algorithm. We should dynamically
modify the three parameters of PID control algorithm
according to the learning state of a student to improve
the KD performance.

For the first three issues, we improve the PID control algo-
rithm as:

u(t) = Kpe(t) +Kiσ

(∫ t

t−n−1

e(t)dt

)
+Kd

dne(t)

dtn
∈ R

N ,

(2)
where N is the number of samples in an iteration, and u(t)
and e(t) respectively are the feedback value and loss size of
N samples, which are used to solve the first issue. σ(·) is a
function to reduce the size of small values and increase the size
of large ones to deal with the second issue. For the third concern
of capturing long-term knowledge forgetting, we employ an nth

order difference, expressed as
∑n

i=0(−1)i

(
n

i

)
e(t− i). For

n = 1, this difference emphasizes the change between e(t) and
e(t− 1); at n = 2, it captures the variations among e(t), e(t−
1), and e(t− 2), allowing a holistic view of knowledge loss over
epochs.

For the fourth issue, it is challenging for a deep learning
algorithm to directly optimize discrete hyperparameters. To
overcome this challenge, we introduce a fuzzy PID control
algorithm [44] that incorporates human empirical knowledge.
The fuzzy PID control algorithm first calculates current error
and its change rate, then does inference using fuzzy rules to
identify the current values of three parameters Kp, Ki, and
Kd. The performance of the fuzzy PID control algorithm is
heavily influenced by the quality of fuzzy rules. The existing
rules are primarily designed for situations in which the error has
both positive and negative values [45], [46], such as speed and
direction control. However, the error of a student on a sample can
only be positive, rendering the existing fuzzy rules inapplicable
to the research in this paper. To enable PID parameters to auto-
matically adapt to the learning progress of a student, we propose
a CL-FPID algorithm based on curriculum learning [13], an
easy-to-hard training method that mimics human educational
wisdom. In human education, it is typical for a student to
master certain knowledge at the primary school stage before
effectively learning more challenging knowledge in secondary
school. Drawing inspiration from this concept, we propose a
fuzzy control strategy that allows a student to actively learn
challenging samples after mastering certain knowledge.

In this paper, if a student is still difficult to master the knowl-
edge of a sample after multiple training, it is considered that
the sample is challenging for the student. The difficulty degree
of a sample is reflected by the cumulative errors of the student,
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TABLE I
LIST OF THE MAIN SYMBOLS AND NOTATIONS

i.e., the integral unit. The integrated unit allows a student to
focus on the knowledge that is currently most difficult to master.
However, in different epochs, the student usually focuses on
different challenging samples. For example, the student focuses
on learning the knowledge of the hard sample “♦” at the ith
epoch, whereas it is “�” at the (i+ 1)th epoch. Unfortunately,
the student may forget knowledge “♦” after learning knowledge
“�”. It is known as knowledge forgetting [10], i.e., when the
student is focused on learning hard samples, it is more likely to
ignore the learning of other ones. As the student focuses more
on learning hard samples, the issue of knowledge forgetting
becomes more pronounced. The method proposed in this pa-
per addresses the issue of knowledge forgetting during student
learning by increasing the ratio of derivative units. Thus, as
student’s performance improves, we use fuzzy strategy to reduce
proportional unit and increase integral and derivative ones.

It is worth noting that the student informs the teacher of
what knowledge it desires instead of updating on the validation
set. The teacher learns the knowledge required by the student
on the validation set and transfers it into the student in the
process of KD. After the teacher has learned the knowledge
required by a student on the validation set, it is necessary to
identify which training samples correspond to this knowledge.
To achieve this, a score for the teacher’s knowledge in a training
sample is computed by comparing its output before and after
being updated on the validation set. It helps analyze the relative
importance of knowledge in a training sample to a student in the
current state.

B. Overview of the Proposed Method

A summary of the notation to be used in this paper is provided
in Table I. The method of the complete training and testing of
SCD is illustrated in Fig. 1. Our SCD method is based on the
following intuition: A teacher identifies the importance wi of
the knowledge of the sample xval

i to a student by analyzing
the current student’s performance on the validation set Dval.

Fig. 1. Proposed SCD method.

Fig. 2. Method of teacher learns what student desires.Lt records the historical
performance of the student on each validation sample. We propose the Fuzzy
PID method to evaluate the weight of each sample by fully considering the
current error, the past accumulated error, and the future trend of the student.

Through wi, a teacher can learn the knowledge desired by a
student on Dval, as presented on the left in Fig. 1. A teacher
learns knowledge on Dval, and then transmits it to the student
via the training set Dtrain. However, the samples in Dval and
Dtrain are not the same, and the only connection between them
is the teacher. By comparing the output of a sample xtrain

i on
f(θpT ) and f(θaT ), we can derive the importance score w̄i of its
knowledge to the current state student, as depicted in step 1©
on the middle in Fig. 1. f(θpT ) and f(θaT ) are used to represent
the teacher’s network parameters before and after the update
on the validation set, respectively. w̄i is used for the teacher to
learn knowledge desired by the student and to transfer them to
the latter in step 2©. Finally, we validate the performance of the
teacher and student on the testing set Dtest, as offered on the
right in Fig. 1.

C. Teacher Learns What Student Desires

A teacher learns the knowledge that a student desires through
a validation set, as presented in Fig. 2. This figure illustrates
the learning process with eight samples as examples. To op-
timize the parameters of a deep learning network, several it-
erations (or epochs) are required. In each iteration, we ran-
domly select N1 samples {xval

i , yi}N1
i from the validation
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set Dval = {xval
i , yi}NV

i for updating the teacher, where yi ∈
NK = {1, 2, . . . ,K}. Here, NV is the total number of sam-
ples in Dval, xval

i is the ith validation sample and i ∈ NNV
,

yi is the corresponding ground truth label and K is the total
number of image classes. Let f(θT ) denote the teacher with
independently trained parameters θT at the tth epoch. Take a
sample xval

i from the {xval
i }N1

i as the input of f(θT ), its output
logits ti = f(xval

i ; θT ) = (ti,1, . . . , ti,k, . . . , ti,K) ∈ R
K . For

a multi-class classification problem, we use cross-entropy loss
to calculate the loss size of teacher f(θT ) on sample xval

i :

Li = −
K∑

k=1

yi,k logpi,k, (3)

pi,k = softmax (ti,k) =
exp (ti,k)∑k
i=1 exp (ti,k)

, (4)

where yi,k andpi,k respectively represent the true and predicted
class probability of the xval

i on the kth category. It is to be noted
that yi,k is the kth value in the one-hot encoding of the true
label yi. Assuming that the value of knowledge in sample xval

i

for improving the present student’s performance is wi, the loss
size of the teacher in the current iteration is as follows:

L =

N1∑
i=1

wi × Li. (5)

Then, the teacher is updated on the validation set by taking
one gradient descent step with the loss function above, i.e.,

θT = θT − α∇θTL, (6)

where α is the learning rate of the teacher. We perform multiple
iterations so that all validation samples are trained in one epoch.
It allows the teacher to learn the knowledge that the student
desires through the validation set.

In order for the teacher to accurately learn the knowledge
desired by the student, we are required to be able to evaluate wi

effectively, wherewi is obtained fromu(t) in (2). Following that,
we introduce in detail the proportional, integral, and derivative
units in (2) and the reasoning methods of their hyperparameters
Kp, Ki and Kd, as offered in Sections III-C1 and III-C2,
respectively.

1) Proposed PID Control Algorithm: Our PID control algo-
rithm focuses on the improvement of the proportional, integral,
and derivative units in (2), making them capable of implementing
a student-centered distillation method. For a sample xval

i from
{xval

i }N1
i , we use Lt

i to denote the size of its cross-entropy loss
on the student f(θS), where t denotes the current epoch and
t ≥ 0. Similarly, the loss size of the sample xval

i at the (t− n)th
epoch is denoted by Lt−n

i . In experiments, we found that when
n = 2, the derivative term is more effective in responding to the
degree of knowledge forgetting, to be shown in this paper. There-
fore, our PID control algorithm can be specifically formulated
as follows:

u(t) = Kpe(t) +Kiσ

(
e(t) + e(t− 1) + e(t− 2)

3

)

+Kd × (e(t)− 2e(t− 1) + e(t− 2)) ∈ R
N1 , (7)

e(t) =
[
{Lt

i}N1
i

]
∈ R

N1 , (8)

where (e(t)− 2e(t− 1) + e(t− 2)) is derived from d2e(t)
dt2 .

e(t) contains the loss size of each sample in an iteration. σ(·)
is a function that makes small values smaller and larger ones
larger, so that the feedback values of hard and easy samples can
be clearly distinguished. Concretely, σ(·) is defined as follows:

σ (x) = tanh(x) =
(
ea − e−a

)
/
(
ea + e−a

) ∈ R
N1 , (9)

a =
2

max(x)−min(x)
× (x−min(x))− 1 ∈ R

N1 ,

(10)

where x represent the mean of the cumulative error of the
samples {xval

i }N1
i , i.e., x = (e(t) + e(t− 1) + e(t− 2))/3 ∈

R
N1 . a is the normalized form of x and any value in a belongs to

[−1, 1], which helps differentiate the values in x after the tanh
function.

It should be noted that Lt
i, L

t−1
i and Lt−2

i are the loss sizes
of the same sample at the tth, (t− 1)th and (t− 2)th epochs,
respectively. The establishment of (7) occurs when t ≥ 3. When
t < 3, the following formula is used to determine u(t):

u(t) = Kp e(t), s.t. t = 1. (11)

u(t) = Kp e(t) +Kiσ

(
e(t) + e(t− 1)

2

)

+Kd (e(t)− e(t− 1)) , s.t. t = 2. (12)

For hyperparameters Kp, Ki and Kd, our CL-based fuzzy
strategy dynamically tunes them, as detailed in Section III-C2.
After obtaining the feedback value u(t), we use the softmax
function to calculate the importance wi of the knowledge of a
sample xval

i in {xval
i }N1

i to the current student:

wi = softmax (ui(t)) =
exp (ui(t))∑N1

i=1 exp (ui(t))
, (13)

where ui(t) is the ith value in u(t), i.e., the feedback value
of the sample xval

i . It is worth noting that the student does not
update on the sample xval

i , but feeds back to the teacher that
the importance of the sample’s knowledge to the student in the
current state is wi.

2) Our CL-Based Fuzzy Strategy: Our CL-based fuzzy strat-
egy dynamically tunes the parameters ofKp,Ki andKd accord-
ing to the learning state of the student, i.e., Lt

i, to optimize u(t)
in real time. Fuzzy self-tuning PID controllers are calculated
in the domain of fuzzy sets. Therefore, we first quantify the
average performance of the student on the most recent test, i.e.,
the average loss of all validation samples in e(t− 1), before
determining the parameters of Kp, Ki and Kd for the current
state. The student’s performance at (t− 1)th epoch can be stated
as follows:

ē =
1

NV

NV∑
i=1

Lt−1
i . (14)

In automation disciplines, a fuzzy set usually consists of a
membership function with seven linguistic variables (NB, NM,
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NS, ZO, PS, PM, PB), which represent negative big, negative
medium, negative small, zero, positive small, positive medium,
and positive big, respectively [47]. We followed this time-tested
practical experience to divide the variable-range of ē into seven
grades. Specifically, let the student’s maximum loss size on the
validation set is Lm, we divide Lm into a membership function
m with seven linguistic variables on average. Therefore, the
membership function of ē is:

m1 =

⎧⎪⎨
⎪⎩
1 ē < 1

7Lm(
2
7Lm − ē

)
/ 1
7Lm

1
7Lm ≤ ē < 2

7Lm

0 else

(15)

mi
i∈{2,3,4,5,6}

=

⎧⎪⎨
⎪⎩
(
ē− i−1

7 Lm

)
/ 1
7Lm

i−1
7 Lm ≤ ē < i

7Lm(
i+1
7 Lm − ē

)
/ 1
7Lm

i
7Lm < ē ≤ i+1

7 Lm

0 else
(16)

m7 =

⎧⎪⎨
⎪⎩
(
ē− 6

7Lm

)
/ 1
7Lm

6
7Lm < ē ≤ Lm

1 ē > Lm

0 else
(17)

m = [m1,m2,m3,m4,m5,m6,m7] ∈ R
7. (18)

The membership function m is used to quantify the perfor-
mance of a student. Specifically, the greater the value of m1, the
better the performance of the student; the higher the value of
m7, the worse the performance of the student.

Second, we set the variable range kp of Kp according to the
same interval Δp, and the median value of kp is as the initial
value Kp0 of Kp, i.e.,

kp = [0,Δp, 2Δp, 3Δp, 4Δp, 5Δp, 6Δp] ∈ R
7, (19)

Kp0 = 3Δp, (20)

where Δp is a hyperparameter that controls the range of Kp

values.
Third, we perform defuzzification which uses the centroid to

derive the exact Kp value:

Kp =

7∑
i=0

kpi ×mi. (21)

Finally, we make the following tunes to Ki and Kd in light
of Kp:

Ki = Ki0 + (Kp0 −Kp) , (22)

Kd = Kd0 + (Kp0 −Kp) , (23)

where Ki0 and Kd0 are hyperparameters, and both Ki and Kd

are greater than or equal to 0. (22) and (23) are our proposed
CL-based strategies. In general, we first input ē into the mem-
bership function to calculate m, and then infer the value of Kp

according to the preset kp and (21). The higher the ē value, the
higher the Kp value, and the lower the Ki and Kd values. At
the same time, the smaller the value of ē, the smaller the value
of Kp, and the larger the value of Ki and Kd. The dynamic
tune process of Kp, Ki and Kd is primarily inspired by the
curriculum learning of human educational wisdom, so that the

Fig. 3. Method of teacher teaches what student desires. We evaluate the
importance w̄i of a training sample for the current student by measuring the
difference between its outputs on f(θpT ) and f(θaT ). w̄i is used to guide the
teacher f(θT ) to learn the knowledge that the student desires, and transfer it to
the latter through distillation training.

student can pay more attention to the integral, and derivative
units after mastering certain knowledge.

D. Teacher Teaches What Student Desires

A teacher teaches the knowledge that a student desires through
a training set, as presented in Fig. 3. Eight samples are used to
demonstrate the teaching process in this figure. Let xtrain

i rep-
resents the ith sample on the training set Dtrain, and f(θpT ) and
f(θaT ) denote the parameters before and after the nearest update
of the teacher f(θT ) on the validation set Dval, respectively. We
identify the knowledge learned by f(θT ) on the validation set
by the difference Δli of the output of sample xtrain

i on f(θpT )
and f(θaT ):

Δli = L̄p
i − L̄a

i , (24)

where L̄p
i and L̄a

i are the loss sizes of xtrain
i on f(θpT ) and

f(θaT ), respectively. It is worth noting that the value of Δli can
be positive or negative. The larger the value of Δli, the more
knowledge that f(θT ) has learned in a sample xtrain

i through
Dval. The teacher can useΔli to focus on learning the knowledge
that the student desires on the training set.

In each iteration, we randomly select N2 samples
{xtrain

i , yi}N2
i from the training set Dtrain = {xtrain

i , yi}NT
i

for updating the teacher and student, where NT is the total
number of samples in Dtrain. Thus, the importance score of the
knowledge in the {xtrain

i , yi}N2
i samples to the current student

can be expressed as:

ΔL = [Δl1, . . . ,Δli, . . . ,ΔlN2
] ∈ R

N2 . (25)
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Then, we use a softmax function to calculate the relative
importance w̄i of the knowledge in a sample xtrain

i from
{xtrain

i , yi}N2
i for the current student:

w̄i = softmax (γΔLi) =
exp (γΔLi)∑N2

i=1 exp (γΔLi)
, (26)

where ΔLi is the ith value in ΔL and γ is a hyperparameter.
γ is used to tune the weight of the relative importance of the
samples. When γ is large, the differences in {w̄i}N2

i among N2

samples are big; when it is small, the differences are tiny.
w̄i is used to update the teacher. In the same way as we did

in (3) and (4), we use cross-entropy to determine the loss of the
teacher on a training sample. Let L̄i denote the loss size of a
sample xtrain

i on the teacher f(θT ), the loss of f(θT ) in the
current iteration is:

L̄ =

N2∑
i=1

w̄i × L̄i. (27)

Then, the teacher is updated on the training set by taking one
gradient descent step with the loss function above, i.e.,

θT = θT − β∇θT L̄, (28)

where β is the learning rate of the teacher.
After the teacher learns the knowledge that the student desires

on the samples {xtrain
i , yi}N2

i , the former transfers that knowl-
edge into the latter. We propagate the trained teacher f(θT ) for-
ward once again, and set the output logits of the sample xtrain

i as
t̄i = f(xtrain

i ; θT ) = (t̄i,1, . . . , t̄i,k, . . . , t̄i,K) ∈ R
K . Simul-

taneously, let the output logits of the student f(θS) in the sam-
ple xtrain

i be s̃i = f(xtrain
i ; θS) = (s̃i,1, . . . , s̃i,k, . . . , s̃i,K) ∈

R
K . We use “Kullback-Leibler difference” as an indicator and

try to minimize the output distribution between teacher and
student:

L̃i = τ2
K∑

k=1

p̄ (t̄i,k, τ) log2
p̄ (t̄i,k, τ)

q̃ (s̃i,k, τ)
, (29)

p̄ (t̄i,k, τ) =
exp (t̄i,k/τ)∑K
k=1 exp (t̄i,k/τ)

, (30)

q̃ (s̃i,k, τ) =
exp (s̃i,k/τ)∑K
k=1 exp (s̃i,k/τ)

, (31)

where p̄(t̄i,k, τ) and q̃(s̃i,k, τ) are the “dark knowledge” of the
kth class in t̄i and s̃i, respectively, and τ is a higher temperature
factor. Thus, the distillation loss of the student in SCD on the
current iteration is expressed as:

L̃ =

N2∑
i=1

w̄i × L̃i. (32)

We can also use the ground-truth labels to train the student,
i.e., L̃ = L̃−∑K

k=1 yi,k log q̃(s̃i,k, τ = 1), where yi,k is the
true label of the kth category. Then, the student is updated on
the training set by taking one gradient descent step with the loss
function above, i.e.,

θS = θS − β∇θS L̃, (33)

TABLE II
MAIN SYMBOLS USED IN THEORETICAL ANALYSIS

where β is the learning rate of the student. The learning rate
is the same in both (28) and (33) to ensure a consistent pace
of learning between teacher and student. We perform multiple
iterations so that each training example in an epoch can be used
to update the teacher and student.

IV. THEORETICAL ANALYSIS

This section proves the importance of a teacher learning the
knowledge that the student desires. We assume that in a dataset,
the data subset B consists of the samples that the student can
learn effectively by labeling, and the data subset A consists of
the samples that are difficult to learn effectively. The teacher T
has a limited size and can only learn some sample knowledge.
Therefore, we suggest that the teacher focus on learning the
data subset A to use its capacity well and improve the student’s
performance. We call the teacher in the existing work T1 and
the teacher in our approach T2, both with the same size. The
difference is that T1 does not use feedback to determine which
samples of knowledge the student desires, and learns from both
data subsets B and A, while T2 learns only from data subset
A. To prove that T2 learns more or equal knowledge from data
subset A than T1, i.e., to prove that

CA (T2) ≥ CA (T1) .

Table II shows a detailed description of the symbols in this
section.

We assume that the teacher’s loss function L(T,A) on A is
a convex function with respect to θT , and that there exists an
optimal solution θ∗T such that L(T,A) is minimized. Then, we
can use gradient descent to update the teacher’s parameters and
write their parameter updating rules for each step:

◦ Parameter update rules for T1:

θ
(t+1)
T = θ

(t)
T − α∇L (T1, A)− β∇L (T1, B) .

◦ Parameter update rules for T2:

θ
(t+1)
T = θ

(t)
T − α∇L (T2, A) .

To show that our method can make the teacher parameter θT
converge to θ∗T , or at least be closer to θ∗T than existing methods,
we utilize the following property:

◦ If L(T,A) is a convex function on θT , then it has a unique
global minimum θ∗T and satisfies

∇L(T,A)|θT=θ∗
T
= 0.

◦ If L(T,A) and L(T,B) are both convex functions with
respect to θT , then their linear combination is also a convex
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function with respect to θT and satisfies

∇(L(T,A) + L(T,B)) = ∇L(T,A) +∇L(T,B).

Based on these properties, we can obtain the following deriva-
tion:

◦ For T1, if it converges to some parameter value θ̂T , then it
must satisfy

∇L (T1, A)|θT=θ̂T
+ ∇L (T1, B)|θT=θ̂T

= 0.

◦ For T2, if it converges to some parameter value θ̃T , then it
must satisfy

∇L (T2, A)|θT=θ̃T
= 0.

As L(T,A) is a convex function with respect to θT and there
exists a unique global minimum θ∗T , then

L(T,A)|θT=θ̂T
≥ L(T,A)|θT=θ̃T

≥ L(T,A)|θT = θ∗
T
.

SinceL(T,B) is a convex function on θT and there is a unique
global minimum (not necessarily θ∗T ), then we have

L(T,B)|θT=θ̂T
≥ L(T,B)|θT=θ̃T

≥ L(T,B)|min .

Combining the above two inequalities, we get

L (T1, A)|θT=θ̂T
+ L (T1, B)|θT=θ̂T

≥
L (T2, A)|θT=θ̃T

+ L (T2, B)|min .

Assuming that A and B contain different or opposite knowl-
edge, it can be assumed that L(T2, B)|min is a larger value
becauseT2 is not trained onB, so it has a low level of knowledge
about B. Then, we can further obtain

L (T1, A)|θT=θ̂T
+ L (T1, B)|θT=θ̂T

≥ L (T2, A)|θT=θ̃T

+ L (T2, B)|min 	 L (T2, A)|θT=θ̃T
.

This implies that the total loss of T1 on A and B is much
larger than the loss of T2 on A. In other words, the performance
of T1 on A is much lower than that of T2 on A. Since we assume
that the teacher’s loss function L(T,A) on A is convex with
respect to the teacher’s parameter θT , and that there is an optimal
solution θ∗T that minimizes L(T,A), then we can assume that
the teacher’s performance on A is positively correlated with the
amount of knowledge the teacher learned onA, i.e., T2 has more
knowledge than T1. This means that

L(T,A) ↓⇒ CA(T ) ↑ .

Therefore, we can conclude that

L (T1, A) 	 L (T2, A) ⇒ CA (T1) 
 CA (T2) .

V. EXPERIMENTS

Three sets of experiments are conducted to the performance
of the proposed SCD with the existing KD methods. The first
set is the cross-resolution experiment, wherein the teacher and
the student use high- and low-resolution samples as the in-
put, respectively. It assesses the performance of the proposed
approach by generating low-resolution datasets from multiple
existing high-resolution ones. The second set, referred to as the
same-resolution experiment, used the same samples as input

for both teacher and student. It evaluates the effectiveness of
the proposed method on various real-world computer vision
datasets. The third set is the different-architecture experiment,
wherein we test our method on various teacher-student archi-
tectures, following the existing KD literature. Finally, we carry
out various ablation studies and conduct a thorough qualitative
assessment to effectively highlight the proposed SCD method.
The details of the datasets and experimental implementations
are presented in the Supplementary File.

A. Experimental Results for Cross-Resolution Tasks

Low-resolution (LR) object recognition is a technology with
important application value in different scenarios, such as video
surveillance systems, remote sensing image analysis, etc. LR
images have lower resolution and less information content than
normal images, leading to poor feature extraction and classifi-
cation performance. Moreover, LR object recognition also faces
many challenges, especially in recognizing LR targets captured
from a far distance on resource-constrained edge computing
devices in real time [55]. To improve the recognition perfor-
mance of LR targets, KD is an effective solution, which can
use the “privileged information” provided by high-resolution
(HR) samples and teacher to guide the learning of student [55].
Privileged information refers to the rich details contained in
HR samples, such as clear textures, explanations, comments,
and comparisons. This subsection validates the advantages of
SCD on cross-resolution tasks. Specifically, the teacher and the
student use the same sample as input, but the former’s image size
is larger than the latter’s. We provide the performance of SCD
and its peers on multiple LR object recognition tasks and a task at
different resolutions, including very low resolution, as presented
in Tables III and IV, respectively. We evaluate performance using
three metrics: accuracy rate (A), unweighted average recall (U),
and F1 score (F1). A is the top-1 accuracy rate, which means
the percentage of times that the model predicts the correct class
with the highest probability. U is the average accuracy of each
class across all categories, for unbalanced data. F1 is a weighted
average of precision and recall.

According to the experimental results in Tables III and IV, our
method outperforms all other methods in the A. In most cases, U
and F1 are optimal. Because of the unbalanced data distribution,
our method is occasionally suboptimal in terms of U and F1.
In this paper, we save the network parameters of each method
at the highest A in the experiments and then calculate their
corresponding U and F1. Although U and F1 of our method are
not the best in a few cases, they are quite near to the best results
in the testing. It convincingly proves the robustness of our SCD
method. It also means that the teacher of other popular methods
have more room for improvement in learning and transferring
the knowledge that a student desires. Furthermore, Table IV
shows that the lower the resolution of the samples input into the
student, the worse the student’s performance in general.

As indicated in Table II of Supplementary File and Table III,
there are three distinctions among all KD approaches. The
first one is that the student in some studies has learned other
knowledge from a teacher in addition to soft targets. For exam-
ple, Robust [16] minimizes the difference between the gradients
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TABLE III
EXPERIMENTAL RESULTS ON LOW-RESOLUTION TASKS

TABLE IV
EXPERIMENTAL RESULTS ON DIFFERENT LOW-RESOLUTION CELEBA [56] DATASET

of the student and teacher. The student learns the gradient knowl-
edge of the teacher, which enhances its adversarial robustness.
However, learning knowledge in hard samples is tough for the
student but relatively simple for the teacher. Therefore, when
face with hard samples, the teacher learns as easy samples
and returns less knowledge into the student. The students in
CRD [17] and KDEP [26] imitate the knowledge of a teacher
in the mimic and penultimate layers, respectively. Generally
speaking, the more knowledge a student gains from a teacher, the
better the student’s performance [55]. Thus, many research tend
to explore the various kinds of knowledge existing in the teacher,
such as relational knowledge [2], [3]. However, such knowledge
may not be what the student desires, making it harder to increase
their performance. It can be seen from the experimental results
that even if the students in the peers acquires more knowledge,
their performances are still poor.

The second one is that the number of training samples
available to the student is not the same in all studies. In cases
where a validation set is not required, we use all of the training

set to update the student. However, for methods that require a
validation set, such as our SCD, we partition the training set into
separate training and validation ones. A validation set is required
for four methods: our SCD, MPL [40], Leap [27] and “Lazy”
MAML [29]. Among them, Leap [27] updates the student on
the validation set, while the remaining three do not. Generally,
a larger number of training samples enables the student to
acquire more knowledge. Therefore, the student in SCD does
not have much knowledge to learn compared to most of its peers.
Nevertheless, despite this disadvantage, the student in SCD still
performs well.

The third one is that the student in some methods only
learns from the knowledge provided by its teacher, without
self-learning from the ground-truth labels, i.e., MPL [40], Filter-
KD [19], ProKT [31] and SCD. In these four studies, none of
the ground-truth labels are exposed to the student. Therefore,
the student’s performance is entirely dependent on the teacher’s
dark knowledge, which consists of two elements: the quality of
the dark knowledge generated by the teacher and the extent to
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which it is absorbed by the student. Some studies [19], [61] have
shown that the closer the dark knowledge output by a teacher is
to the ground-truth dark knowledge, the better the performance
of its student. However, none of these studies consider whether
the student can effectively absorb the knowledge offered by
the teacher. The knowledge learned by the teacher may be too
obscure for the student due to their significant capacity gap,
making it challenging to improve the student’s performance.
For example, the teacher in MPL [40] and our SCD achieve
accuracies of 87.16% and 86.51%, respectively, on the RAF-DB
dataset. However, the performance of their students is reversed,
with the SCD’s student performing better than the MPL’s stu-
dent. The reason for this phenomenon is that the knowledge
learned by the teacher in the existing work may not be what
the student desires. Thus, we explain the observations of Cho
et al. [62] and our previous work [55] from the perspective of
human teaching experiences, i.e., a more competent teacher does
not necessarily produce a better student. Although the quality
of dark knowledge is critical for improving student’s perfor-
mance, its quality should be assessed by the student, not the
teacher.

Overall, our experimental results show that a teacher should
learn and impart knowledge that the student desires. The vali-
dation set serves as a “examination sheet” in a student-centered
method, containing almost all of the knowledge that the student
has to master. It can highlight the knowledge that the student
desires and help the teacher to learn it in a focused manner.
Therefore, with the help of the examination sheets, a teacher in
our student-centered distillation method can focus more on the
knowledge that the student desires, enabling the latter to study
more effectively. Furthermore, pupils’ absorption of knowledge
is a step-by-step process in human teaching. For this purpose,
we propose CL-FPID that can adapt to the student’s learning
process, making it easier to not only accept knowledge but also
to learn more actively, thereby improving performance.

In addition, we explain the reason why a good teacher may
not be able to teach a better student, i.e., the quality of a teacher
should be evaluated by the student. Knowledge in a teacher may
be useless if it is unnecessary or obscure for the student. This
occurrence is also common in human educational efforts. For
example, a professor with ordinary research ability may produce
better undergraduates than one with outstanding research skills.
This phenomena could be caused by two factors: 1) the former
has relatively strong teaching ability, allowing the student to
successfully absorb the knowledge it has gained; 2) the latter
is not good at teaching, making it difficult for the student to
absorb its knowledge effectively. Thus, it is not true that a higher-
performing teacher must be able to teach a better-performing
student.

B. Experimental Results for Same-Resolution Tasks

In addition to transferring rich privileged information from
a teacher with a HR sample as input to a student with a LR
sample as input, KD can transfer knowledge from a teacher
with strong learning ability to a student with weak learning
ability. The sample resolution for the teacher and student is

required to be different in the former and the same in the
latter. Therefore, we can term them as cross-resolution and
same-resolution tasks, respectively. Experiments on same- and
cross-resolution tasks have different setups and motivations. In
terms of experimental setup, experiments on cross-resolution
samples require the downsampling of HR samples as the input
to a student, whereas experiments on same-resolution samples
do not. Experiments on cross-resolution samples are typically
carried out to improve a student’s performance in processing LR
object recognition, while experiments on same-resolution sam-
ples are not necessarily used for that purpose. In this subsection,
we verify the performance of the proposed SCD method on the
same-resolution tasks for object recognition, object detection,
and object verification, respectively.

1) Experimental Results on Object Recognition: We validate
the performance of the proposed SCD on general object recog-
nition tasks with CIFAR-100 [57], CINIC-10 [58], SVHN [59]
and Tiny-ImageNet [60] datasets. All four datasets are popular
datasets and their widely used to evaluate the performance of a
KD method. The experimental results are presented in Table V.
Similar to cross-resolution tasks, a fraction of the samples in
the training set is used as the validation set in these experiments.
Specifically, we select 5,000 training samples on each dataset for
the teacher to identify and learn the knowledge desired by the
student. As a result, the student in our approach can only learn
the knowledge transferred by the teacher from a relatively small
number of samples compared to most of its peers. Nevertheless,
SCD can also perform well on the general object recognition
tasks.

2) Experimental Results on Object Detection: We follow the
experimental setup outlined by Zhang et al.’s [63] to validate the
performance of the proposed SCD method on an object detection
task. Specifically, each knowledge distillation method is trained
on WIDER FACE [64]’s training set, while their performance
is evaluated on AFW [65] and PASCAL [66] datasets. This
evaluation method not only effectively tests the generalization
performance of each method, but also validates their perfor-
mance in real-world scenarios. Our evaluation metric for object
detection is Intersection over Union (IoU), where an object is
considered detected if the IoU is at least 0.5 [67]. In line with
typical testing practices, we evaluated the performance of our
proposed SCD and its peers at IoU = 0.5, as indicated in Fig. 4.
Experimental results demonstrate that our student-centered dis-
tillation method outperforms existing teacher-centered methods
for object detection task.

3) Experimental Results on Object Verification: This subsec-
tion aims to assess the effectiveness of SCD and other existing
distillation methods in face verification tasks, which involve
determining whether two faces belong to the same person.
Each distillation method is trained using an IJB-C dataset [68].
The experiment performs object recognition during training,
and object verification during testing. The former enables each
distillation method to extract facial features, while the latter uses
the extracted features to determine whether two unknown faces
belong to the same individual. This approach is ideal for testing
the overall performance of each method, similar to the object
detection task.
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TABLE V
EXPERIMENTAL RESULTS ON CIFAR-100, CINIC-10, SVHN AND TINY-IMAGENET DATASETS

Fig. 4. Precision-recall curves on object detection tasks. AP = average precision.

We tested each distillation method’s performance on the IJB-
C dataset at every epoch, saving the optimal network parameters.
We then evaluated the methods’ performance on the LFW [69],
SCface [70] and TinyFace [71] datasets using these saved pa-
rameters. The performance of our SCD with its peers on the
object verification tasks of IJB-C, LFW, SCface and TinyFace is
presented in Table VI and indicate that our methods outperform
its 22 peers.

C. Experimental Results for Different Teacher-Student
Architectures

In this subsection, we evaluate the performance of our pro-
posed SCD method under the teacher and the student have
different network architectures. SCD is an online KD method
that only utilizes the teacher’s knowledge at the output layer,
which is different from most existing methods that use inter-
mediate layers or additional losses. We compare our method
with MetaDistil [42], a state-of-the-art online KD method that
uses meta-learning to optimize the distillation loss based on the

TABLE VI
EXPERIMENTAL RESULTS ON IJB-C, LFW, SCFACE, AND TINYFACE DATASETS
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TABLE VII
EXPERIMENTAL RESULTS ON CIFAR-100 DATASET WITH DIFFERENT

TEACHER-STUDENT ARCHITECTURES

TABLE VIII
EXPERIMENTAL RESULTS ON IMAGENET DATASET WITH DIFFERENT

TEACHER-STUDENT ARCHITECTURES

student’s feedback. MetaDistil is the most relevant method to
ours, as it also only uses the knowledge at the output layer and
is an online distillation method. We also compare our method
with L-MCL [39], another state-of-the-art online KD method
that uses contrastive learning to enhance the knowledge distil-
lation process. L-MCL is chosen as a baseline for ImageNet,
because MetaDistil did not report results on this dataset. We
conduct experiments on three datasets: CIFAR-100, ImageNet
and COCO. The experimental results are shown in Tables VII,
VIII and IX, respectively. We observe that using a larger teacher
can improve the student’s performance, but our method can still
generate a better student than existing methods under the same
teacher-student architecture. This indicates that our method can
effectively leverage a teacher’s knowledge.

D. Ablation Studies

This subsection investigates the influence of hyperparameters
on student’s performance, evaluates the effectiveness of each
module in the proposed approach, and provides the training cost
associated with implementing the proposed method.

1) Effect of Parameters on Student’s Performance: In this
paper, Kp, Ki, and Kd control the size of the proportional,
integral, and derivative units in the improved algorithm, respec-
tively. They are calculated from Δp, Ki0, Kd0 based on the

TABLE IX
TEST ACCURACY (%) OF STUDENTS ON MS-COCO2017 DATESET

student’s performance. τ is the temperature and is used to control
the smoothness of the knowledge transferred from a teacher to
a student. γ is used to control the relative importance of the
knowledge to be learned by the teacher. Lm is the magnitude
of the cross-entropy loss of a validation sample. The number of
linguistic variables in the membership function m controls the
fine-grained level of the student performance’s grades. We select
the CIFAR-100 dataset in the same-resolution task to validate
the effect of those hyperparameters on student’s performance, as
shown in Table X. We verify the effect of the value of a parameter
on the student’s performance when the other parameters are
fixed. Experimental results demonstrated that the optimal stu-
dent’s performance on the same-resolution task of CIFAR-100
dataset was achieved with the following parameters:Δp = 0.04,
Ki0 = 0.0, Kd0 = 0.1, τ = 20, γ = 0.06, Lm = 2.1, n = 2,
and seven linguistic variables.

2) Effect of the Proposed CL-FPID on Student’s Perfor-
mance: To further understand the importance of each compo-
nent in SCD, we perform the following multiple ablation studies:
� CNN-RIS: the performance of student without KD.
� CNN-RIS-KD: the performance of a student using the KD

of Hinton et al. [1].
� CNN-RIS-PID: the performance of a student on KD under

the PID algorithm in automation.
� CNN-RIS-PID (Our): the performance of a student on KD

under our improved PID algorithm.
� CNN-RIS-CL-FPID: the performance of a student on KD

under our CL-FPID algorithm, i.e., SCD method.
Their experimental results are shown in Table XI. Experi-

mental results show that both our proposed PID control algo-
rithm and CL-based fuzzy strategy are beneficial to improve the
performance of a student. Moreover, the performance between
CNN-RIS-PID and CNN-RIS-PID (Our) confirms the PID al-
gorithm from the automation field has limited improvement on
the student’s performance. In this paper, the PID algorithms are
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TABLE X
EFFECT OF PARAMETER ON STUDENT’S PERFORMANCE

improved to make them better suited to our proposed student-
centered distillation method.

3) Effect of Teacher Learning on Student Performance: To
validate the significance of teachers learning knowledge that
aligns with students’ desires, we conduct an ablation study
on four datasets: CIFAR-100, CINIC-10, SVHN and Tiny-
ImageNet. We use these datasets to represent the knowledge that
the student desires or does not desire, as shown in Table XII. The
red font indicates the knowledge that the student does not want,
while the blue font indicates the knowledge that the student
wants. For example, in the second row and second column of
Table XII, CIFAR-100 is the desired knowledge, and the teacher
only learns on CIFAR-100. In contrast, in the second row and
third column of Table XII, CIFAR-100 is still the desired knowl-
edge, but the teacher learns on both CIFAR-100 and CINIC-10.
Our comparisons of teacher learning across different dataset
combinations reveal that when a teacher learn knowledge not de-
sired by a student, it not only diverges from effective knowledge

transfer but also impairs the student’s performance. In contrast,
our SCD method, by focusing on aligning teaching content with
student needs, significantly enhances student performance by
avoiding the pitfalls of irrelevant knowledge transfer.

4) Training Costs for SCD versus Existing Studies: In this
subsection, we provide experiments of SCD with its peers on
training costs, as presented in Fig. 5. The reported results for
distillation methods that require pre-training of teachers include
the respective training costs for both the teacher and student.
The figure illustrates the time (in minutes) required for a single
epoch of training on the CIFAR-100 training set. All distillation
experiments are conducted in the same environment, utilizing
an Intel Xeon W-2255@3.70 GHz CPU and a GeForce RTX
3080 GPU. Experimental results demonstrate the efficiency of
the proposed method compared to the majority of its peers. The
efficiency of SCD, can be attributed to its online distillation
approach that eliminates the need for pre-training a teacher.
Consequently, the training cost of SCD is significantly lower
than that of offline distillation [72]. In particular, SCD, along
with the “Lazy” MAML [29], MPL [40], Leap [27], ProKT [31]
and IKD [41] methods, which also do not require pre-trained
teachers, exhibit lower training costs than other methods that
necessitate pre-trained teachers.

E. Qualitative Analysis

This subsection employs feature visual analysis to demon-
strate how our SCD method improves student’s performance.

1) Visualize the Change Process of wi: In this paper, we
represent the knowledge desired by the student as wi, where
a higher value of wi indicates a greater desire to learn the
knowledge from the corresponding sample. Thus, we illustrate
the evolution of wi for a sample across multiple epochs and
provide an explanation of the computation process in Fig. 6.
We use the proposed CL-FPID algorithm to evaluate the relative
importance wi of the knowledge from 10 randomly selected
validation samples, based on their current loss size Li and
the current state of the student. We provide the changes in wi

values for those 10 validation samples on the 5th and 105th
epochs, respectively. Experimental results demonstrate that our
proposed method enables a student to focus more on hard sample
learning in later stages of training. For example, on the 5th epoch,
the knowledge of the 2nd, 6th, 7th, 8th and 10th samples is more
valuable to the student than the other ones. However, on the 105th
epoch, the student places a higher priority on the knowledge
gained from the 5th and 8th samples.

2) Visualize the Working Mechanism of the Proposed CL-
Based Fuzzy Strategy: The fuzzy algorithm developed in this
paper aims to enable a student to adopt an “easy to difficult”
learning approach. To better present it, we added a Fig. 7 to il-
lustrate howKp,Ki andKd change with student’s performance.
We first present the trends in the average loss size of a student
on all validation samples in CIFAR-100, CINIC-10, SVHN, and
Tiny-ImageNet across epochs, as detailed in Fig. 7(a). Then,
we visualize the changes of Kp, Ki and Kd with epoch on
CIFAR-100, SVHN and Tiny-ImageNet datasets, respectively,
as provided in Fig. 7(b), (c), and (d). Experimental results show
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TABLE XI
ABLATION STUDIES OF SCD METHOD

Fig. 5. Number of minutes required for SCD and its peers to train an epoch on the CIFAR-100 training set.

TABLE XII
IMPACT OF TEACHER LEARNING OF STUDENT-UNDESIRED KNOWLEDGE ON

STUDENT PERFORMANCE

Fig. 6. Visualization of wi on different epochs.

that the proposed CL-based fuzzy strategy adaptively adjusts the
ratio of proportional, integral, and derivative units according to
the student’s performance. For example, when the performance

Fig. 7. Visualization the working mechanism of SCD.

of the student is poor, Kp has a higher value, while Ki and Kd

have lower values. As the performance of the student improves,
Kp decreases, whileKi andKd increase. Furthermore, for easily
identifiable datasets, such as SVHN, the values of Ki and Kd

are typically higher than in more challenging datasets, such as
Tiny-ImageNet. This is because there are fewer hard samples
in the former compared to the latter, which allows for a more
focused effort on mining knowledge from those challenging
samples.
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Fig. 8. Visualization of student’s performance using T-SNE.

3) Visualize the Student’s Features Generated by Proposed
Method and Existing Studies: Section II-B describes three ex-
isting studies [40], [41], [42] that use the validation set to
evaluate student’s performance, similar to our proposed method.
However, because a student and teacher have distinct network
structures, updating the latter with the gradients of the former
is impractical. To clearly prove that the gradient information of
the student could not be used to update the teacher, we used
T-SNE [73] to visualize the features in the student generated by
the proposed method and the work [40], [41], [42], as detailed in
Fig. 8. The figure uses CIFAR-100 test set with 10,000 samples
to show the performance of a distillation method on the mimic
layer. Experimental results indicate that the student’s gradient
is not suitable for updating a teacher. We can only identify
the knowledge desired by a student through validation sets, for
informing a teacher to learn and transfer that knowledge to the
student.

VI. CONCLUSION

Knowledge Distillation is a machine learning approach that
emulates the human teaching and learning process, utilizing
a high-performing teacher to guide the training of a student.
Current methodologies predominantly favor a teacher-centered
approach, which might relay redundant or undesired knowledge
to the student. This paper introduces a student-centered knowl-
edge distillation strategy grounded in the human educational
wisdom [74]. Specifically, the teacher first pinpoints the areas
where the student might falter using a validation set and then
systematically bolsters these areas through the training set. By

doing so, we harness the full capacity of the teacher, not just
to relay its existing knowledge, but to elevate the student’s
performance. Extensive experiments validate that our method
surpasses prevailing teacher-centered techniques.

In the realm of artificial intelligence, the behaviors of animals,
particularly their intelligent traits, have been the subject of metic-
ulous study. This has given rise to a vast array of applications,
especially within swarm intelligence [75]. Yet, the complexity of
human intelligent behavior offers even deeper insights. Though
human intelligence shares some parallels with swarm intelli-
gence, it also branches into profound emotional, creative, and
advanced cognitive facets. Thus, to truly advance the frontier
of artificial intelligence, it is pivotal to delve into and emulate
the intelligence of human behavior. This paper highlights the
potential for innovation at the intersection of engineering and
the humanities by emulating human intelligent behavior.
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