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Abstract—Deep convolutional neural networks (CNNs) can be
easily tricked to give incorrect outputs by adding tiny perturbations
to the input that are imperceptible to humans. This makes them
susceptible to adversarial attacks, and poses significant security
risks to deep learning systems, and presents a great challenge in
making CNNs robust against such attacks. An influx of defense
strategies have thus been proposed to improve the robustness of
CNNs. Current attack methods, however, may fail to accurately
or efficiently evaluate the robustness of defending models. In this
paper, we thus propose a unified �p white-box attack strategy,
LAFIT, to harness the defender’s latent features in its gradient
descent steps, and further employ a new loss function to normal-
ize logits to overcome floating-point-based gradient masking. We
show that not only is it more efficient, but it is also a stronger
adversary than the current state-of-the-art when examined across
a wide range of defense mechanisms. This suggests that adversarial
attacks/defenses could be contingent on the effective use of the
defender’s hidden components, and robustness evaluation should
no longer view models holistically.

Index Terms—Adversarial robustness, white-box attacks, latent
feature attack.

I. INTRODUCTION

R ECENT years have witnessed a wide scale adoption of
deep learning in many safety-critical systems such as

aviation [1], [2], [3], medical diagnosis [4], [5], autonomous
driving [6], [7], [8]. Deep learning models, however, are highly
vulnerable to adversarial attacks: adding small specially-crafted
perturbations to the input image may cause drastic changes in
the model outputs [9], [10], [11]. As safety-critical systems
are increasingly automated by CNNs, adversarial attacks could
potentially endanger the safety of such systems, it is now incum-
bent upon us to not only defend deep learning models against
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adversarial attacks, but also provide an efficient and accurate
evaluation of their robustness under attack.

The strongest assumption commonly used for generating ad-
versarial examples is the white-box �p threat model, where the
adversary assumes full visibility of the defender [11] and can
perturb a natural input by adding a small perturbation within
the �p-norm. For instance, the model architecture, parameters,
training algorithm and dataset, etc. are completely exposed to the
attacker. By leveraging the gradient of the output loss w.r.t. the
input image, white-box attacks, for instance projected gradient
descent (PGD) [12], thus operate under this assumption to craft
adversarial examples that can effectively decimate the accuracy
of non-robust models. Many new techniques to improve the
robustness of DL models have since been proposed to defend
against such attacks. Recent years have therefore seen a tug of
war between adversarial attack [10], [12], [13], [14], [15], [16],
[17] and defense [12], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29] strategies. Attackers search for a per-
turbation that maximizes the loss of the model output, typically
through gradient ascent, whereas defenders attempt to flatten the
loss landscape w.r.t. the perturbation. Many defenses employ
a wide range of non-trivial gradient masking techniques [30],
[31], [32], [33], [34], [35], i.e., rendering gradients unusable
by inducing numerical instability. Recent literatures [17] reveal
that such defenses may offer a false sense of security, as high
accuracies under existing gradient-based attacks, does not au-
tomatically correlate with high robustness. Reliably evaluating
their robustness thus often requires manually designing special-
ized attacks [36].

From a human perception perspective, shallow layers of deep
learning models extract simple local textures, whereas deep lay-
ers specialize in recognizing shapes and patterns in complex ob-
jects [37], [38]. Intuitively, we expect that incorrectly extracted
features from shallow layers often cannot be pieced together to
form correct high-level features. We illustrate this phenomenon
with LPGD, which equips PGD with the ability to attack only one
of the intermediate layers (Fig. 1). LPGD scrambles the features
of an intermediate layer by training an auxiliary classifier for
the layer, and then attacking a layer by maximizing the loss of
this classifier. In deeper layers, we observe greater discrepancies
between the pairs of features extracted from the natural images
and their corresponding adversaries.

Some defense strategies [30], [31], [32], [33], [34], [35],
[39] report high robustness under PGD attacks, giving a false
sense of robustness. Understandably, these models specialize
their defenses to counter existing conventional attacks. We
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Fig. 1. Distribution of 32 most excited channels on average of convolutional
layers in a naturally trained WideResNet-32-10 when being shown CIFAR-10
“airplane” images. We compare that against the corresponding channel activa-
tions under adversarial “airplane” examples with LPGD-10. Attacking the 17th
layer (shaded in red) resulted in scrambled features across the entire model and
incorrect final model outputs.

Fig. 2. We used LPGD-100, or PGD with 100 iterations to attack only the nth
residual block of a “robust” model. Except the 0th denotes the output layer and
PGD is used. To our surprise, adversaries generated by attacking an early layer
are highly transferable to the final classification output of the model. Respective
defending models are [30], [31], [32], [34], [35], [39], [40].

hypothesize one of the reasons why PGD fails to break through
their defenses is because of its model-holistic nature. This notion
prompts us to consider two important questions: Can latent fea-
tures be vulnerable to attacks; and subsequently, can the falsely
extracted features cascade to make the model output incorrect? It
turns out that the new adversarial examples generated by LPGD
can detrimentally affect the accuracies of the above defenses.
Experiments in Fig. 2 show that although the “robust” models
produced by these defenses can effectively defend against PGD,
they fail spectacularly when faced with an attack which simply
targets their latent features. This finding may also suggest that
a flat model loss landscape w.r.t. the input image does not
necessarily entail flat latent features w.r.t. the input (Fig. 3).

Nevertheless, existing attack and defense strategies approach
the challenge of evaluating or promoting the white-box model
robustness in a model-holistic manner. Namely, for classifiers,
they regard the model as a single non-linear differentiable
function f : RC×H×W → RK that maps the input image x ∈
RC×H×W to output logits y ∈ RK . While these approaches can

Fig. 3. Averaged loss surfaces of [39] across all samples in the image space
x+ gεa + g⊥εr after 10 iteration of PGD (a) and LPGD (b) attacks. Here, g and
g⊥ respectively denote normalized adversarial perturbation after 10 iterations
of gradient updates at the natural input x, and its random orthogonal.

be readily applied across most defenses, they tend to ignore the
latent features extracted by the intermediate layers within the
model f .

Motivated by the findings above, this paper proposes a new
attack strategy, LAFIT, which seeks to harness latent features
in a generalized attack framework. To push the envelope of
existing state-of-the-art (SOTA) in adversarial robustness as-
sessment, it draws inspiration from recent effective techniques
discovered, such as the use of momentum [15], [17], step size
schedule [17], [41], and multi-targeted attacks [24], [41], [42].
An initial version of this paper can be found at [43], which makes
the following contributions:
� We introduce how intermediate layers can be leveraged in

adversarial attacks.
� We show that latent features provide faster convergence,

and accelerate gradient-based attacks.
� By combining multiple effective attack tactics, we propose

LAFIT. Empirical results show that it rivals competing
methods in both the attack performance and computational
efficiency. We perform extensive ablation analysis of its
hyperparameters and components.

In addition, this paper improves upon [43] by including further
contributions below:
� We further enhance the effectiveness of LAFIT, and ex-

pand the experiments to compare against recent SOTA
attack strategies on additional defenses. Finally, we extend
LAFIT to evaluate defending models under the �2-norm
threat model, and CIFAR-100 defenses (Table I in Section
IV).

� New extensions to LAFIT allows it to extend to ensemble-
based defenses (Section III-G). Empirical results show its
effectiveness (Section IV).

� Comparisons of the design of the surrogate loss function
used by LAFIT against other alternatives (Section V).

� Extensive ablation analyses of individual components used
by LAFIT, and sensitivity analyses of the hyperparameters
searched during attack (Section V).

� We provide visualization and analyses of the challenges
of gradient masking in existing attacks. Experiments show
that improving the loss function alone is insufficient to
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TABLE I
COMPARING ACCURACY UNDER ATTACK (%) OF LAFIT AGAINST ITERATIVE METHODS [12], [15], [49], [50], AUTOATTACK (AA) [17],

ADAPTIVE AUTO ATTACK (A3) ACROSS VARIOUS DEFENSE STRATEGIES

improve robustness evaluation, hence it is pertinent to
leverage latent features (Section VI).

To the best of our knowledge, LAFIT is currently the strongest
against a wide variety of defense mechanisms. Compared to
existing SOTAs that diversify their strategies by comprising mul-
tiple attacks, LAFIT is a unified algorithm that achieves faster
convergence and much improved attack success rates. Since
latent features are vulnerable to adversarial attacks, which could
in turn break robust models. We believe the future evaluation of
model robustness could be contingent on how to make effective
use of the hidden components of a defending model. In short,
model robustness should no longer be viewed from a holistic
perspective.

II. PRELIMINARIES & RELATED WORK

A. Adversarial Attacks

Since the discovery of adversarial examples [9], i.e., adding
a small perturbation to the original image can fool a model
under attack into making an incorrect prediction, it has revealed
safety concerns [44], [45] of deep learning systems, can be
used to improve transfer learning [46], GAN training [47], DNN
interpretability [48] and etc.

Let us assume a defending classifier model fθ(x), with the
model function fθ : I → RK maps the input image x ∈ I ⊂
RC×H×W to its classification result z. Here, C is the number
of channels, in the image (typically 3 for RGB-colored inputs),
H and W respectively the height and width of the image, and
θ denotes model parameters. Finally, argmax z ∈ C, where C
is the set of all classes, gives the model’s class prediction of the
input image x.

The attacker’s objective is thus to find an adversarial
examplex̂ ∈ I of the model under attack fθ by (approximately)
solving the optimization problem:

max
x̂∈I∧d(x,x̂)≤ε

L(fθ(x̂), y), (1)

To confine the range of perturbation, d(x, x̂) ≤ ε limits the
distance between the original x and the adversarial x̂ to be less
than or equal some small constant ε. Here, L : RK × C → R
is typically the softmax cross-entropy (SCE) loss taking as
inputs both the output fθ(x̂) and the ground truth label y. By
maximizing the loss value, one may arrive at a x̂ such that
argmax fθ(x̂) �= y. In other words, by slightly perturbing the
natural imagex to become x̂, the model can be fooled to produce
an incorrect classification.
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The distance metric d(x, x̂) represents the �p-distance be-
tween x and x̂, i.e., d(x, x̂) � ‖x− x̂‖p. Different choices of
p are explored in literature. In this paper, we focus on the �p
white-box scenario which completely exposes to the attacker
to the inner mechanisms of the defense, i.e., it reveals to the
attacker the model architecture, its parameters, training data
and algorithms, and etc. In particular, we consider the standard
euclidean distance (p = 2) as used by [9], [13], [14], and the
maximum pixel perturbation distance �∞, i.e., |max(x− x̂)| as
in [10], [12].

The optimal solution of (1) is, however, generally unattain-
able. In practice, we instead seek after approximate solution,
often with gradient-based methods. A commonly used attack by
defenders to evaluate white-box adversarial robustness is the
projected gradient descent (PGD). PGD finds an adversarial
example by performing the following iterative update [12]:

x̂i+1 = Pε,x(x̂i + αi sign(∇x̂i
L(fθ(x̂i), y))). (2)

Initially, x̂0 = Pε,x(x+ u), where u ∼ U([−ε, ε]), i.e., u is
a uniform random noise bounded by [−ε, ε]. The function
Pε,x : RC×H×W → I clips the range of its input into the ε-ball
�p-distance neighbor of the original image x and the I. The
term ∇x̂i

L(fθ(x̂i), y) computes the gradient of the loss w.r.t.
the input x̂i. Finally, αi is the step size, and for each element
in the tensor z, sign(z) returns one of 1, 0 or −1, if the
value is positive, zero or negative respectively. For simplicity,
we define PGDε,x,y(L,α, i) to be x̂i synthesized with PGD
using a sequence of step sizes α and the loss function L on
the original image x. Other gradient-based methods include
fast gradient-sign method (FGSM) [10], basic iterative method
(BIM) [49], momentum iterative method (MIM) [15] and fast
adaptive boundary attack (FAB) [50] for �∞-norm attacks. Car-
lini and Wagner (C&W) [14] and DeepFool [13] can additionally
carry out �2-norm attacks. Similar to PGD, they only iteratively
leverage the loss gradient∇x̂i

L(fθ(x̂i), y), as all adopt a holistic
view on the model fθ .

B. Tactics Employed by Adversarial Attacks

Many auxiliary techniques can push the limit of existing attack
methods, which we will discuss in the following section.

Surrogate Losses: Because the SCE loss function Lsce in the
objective (1) is highly non-linear, easily saturated, and normally
evaluated with limited floating-point precision, gradient-based
attacks may experience vanishing/exploding gradients and diffi-
culty converging [17]. Recent attack methods hence instead use
surrogate losses for gradient calculation [14], [41], and optimize
an alternative objective by replacingLsce with a custom surrogate
loss function. Assuming z = fθ(x̂), and allowing the notation zi
to represent the ith component ofz, popular and effective choices
to replace the SCE objective include the difference-of-logits
(DL) [14], also known as hinge loss, where C \ y denotes the
set of all classes except y:

Lcw(z, y) � −δy = −zy + max
ŷ∈C\y

zŷ, (3)

and the difference-of-logits ratio (DLR) loss [17]:

Ldlr(z, y) � Lcw(z, y)/(zπ1
− zπ3

), (4)

where zπ1
and zπ3

respectively denote the 1th and 3th largest
components of z. It is clear that maximizing the alterna-
tive goals is consistent with the original objective of making
argmax f(x̂) �= y. Moreover, as the surrogate losses avoid
the softmax operation, they are less easily saturated, allowing
gradient-based optimizations to converge more efficiently.

Improving Gradient Optimization Algorithms: Momentum-
based gradient methods can notably improve convergence rates,
and are widely used by white-box attacks to further increase their
attack success rates [15], [41]. Using the Adam optimizer [51]
also shows effectiveness at quickly finding adversarial exam-
ples [14].

Step Size Schedule: A step-size schedule [17], [41] with a de-
caying step-size in relation to the iteration count could improve
the overall success rate. With a fixed step size, gradient-based
attacks such as PGD may oscillate among suboptimal solutions.
For this reason, recent attacks propose to decay the step size
either linearly [41], or with an adaptive schedule [17].

Multi-Targeted Attacks: Using the optimization objective (1)
alone can fail to find adversarial examples. To further improve
success rates, recent literatures [17], [24], [42] introduce the
use of label-specific surrogate losses. Instead of maximizing
the untargeted objective L(fθ(x̂), y), they propose to minimize
L(fθ(x̂), t), where t ∈ C \ y enumerates over all possible target
labels except the ground truth label y.

Multiple Restarts: In addition to the above tactics, attacks
may restart gradient-based attacks multiple times, each with
a random initial perturbation usually sampled from a uniform
distributionU(−ε, ε), in order to avoid converging to suboptimal
local minima [11]. Output diversified sampling (ODS) [52]
diversifies starting points to prevent similar local minima, and
adaptive auto attack (A3) [53] further learns to sample initial
points adaptively.

Ensemble of Attacks: To further improve success rates, re-
cent strong baselines for robustness evaluation may comprise a
large arsenal of diverse attack algorithms. For instance, AutoAt-
tack [17] incorporates PGD-based attacks with query-efficient
black-box attacks such as Square Attack [54] and FAB [50].
Composite Adversarial Attacks (CAA) [55] search for optimal
sequences of diverse attack steps with an evolutionary algorithm.
Although these techniques are powerful adversaries to defending
models, their performance is a direct result of high computa-
tional costs. In stark contrast, without resorting to a large arsenal
of attacks, LAFIT achieves higher success rates with much faster
convergence, while using a single unified attack algorithm that
is easy to implement.

Leveraging Latent Features: Finally, there are a few recent
publications that leverage latent features in their attacks [56],
[57]. Recent publications on black-box attacks also demonstrate
that latent features can enhance attack transferability [58], [59],
which also motivates LAFIT to leverage latent features in white-
box attacks. Unlike these methods, LAFIT considers �p-norm
white-box attacks, and further differentiates itself from them as
it learns to attack defending models.
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Generative Methods: Generative networks that learn from the
adversarial loss can synthesize adversarial examples [60], [61].
One can further enhance this approach with generative adver-
sarial networks (GANs) [62], where the discriminator network
encourages the distribution of adversarial examples to become
indistinguishable from that of natural examples [16], [63].

C. Defending Against Adversarial Examples

The objective of achieving robustness against adversarial
examples can be formalized as a saddle point problem, which
finds model parameters that minimize the adversarial loss [12]:

min
θ

E(x,y)∼Dtrain

[
max

x̂∈I∧d(x,x̂)≤ε
L(fθ(x̂), y)

]
, (5)

where Dtrain contains pairs of input images x and ground truth
labels y, and L is by default the SCE loss. A straightforward
approach to approximately solving the above objective (5) is
through adversarial training [64], which trains the model with
adversarial examples computed on-the-fly using, for instance,
PGD [12].

Adversarial Training Methods: Many adversarial defense
strategies follow the same paradigm, but train the model with
different loss objective functions in order to further boost robust-
ness. Along with the standard classification loss, TRADES [21]
minimizes the multi-class calibrated loss between the output
of the original image and the one of the adversarial exam-
ple. Misclassification-aware regularization [25] encourages the
smoothness of the network output, even when it produces mis-
classified results. Self-adaptive training [40] allows the training
algorithm to adapt to the noise added to the training data. Feature
scattering [30] generates adversarial examples for training by
maximizing the distances between features extracted from the
natural and adversarial examples. Neural level-sets [39] and
sensible adversarial training [32] use different proxy robustness
objectives for adversarial training. Hypersphere embedding [24]
normalizes weights and features to be on the surface of hyper-
spheres, and also normalizes the angular margin of the logits
layer. Prototype conformity loss [35], and manifold regulariza-
tion [34] adopt different regularization losses to allow the model
to learn a smooth loss landscape w.r.t. changes in x. Stylized
adversarial defense [33] and learning-to-learn (L2L) [61] pro-
pose to use neural networks to generate adversarial examples
for training. Self-training with unlabeled data [19], [20] can
substantially improve robustness in a way that cannot be trivially
broken by adversarial attacks. Finally, others provide practical
considerations and tricks for stronger adversarial defense under
adversarial training [11], [27], [65], [66], [67].

Efficient Adversarial Training: Adversarial training often re-
quires several iterations to compute adversarial examples for
each model parameter update. This process is considerably more
time-consuming than traditional training with natural examples.
Adversarial training for free [18] address this problem by in-
terleaving adversary updates with model updates for efficient
training of robust CNNs. Fast adversarial training [68] further
accelerates the training by using a simpler FGSM-based adver-
sary.

Efficient Robust Models: As robust models may be substan-
tially larger than non-robust ones, there have been a recent inter-
est in making them more space and time efficient. Alternating
direction method of multipliers (ADMM) has been applied to
prune and adversarial train CNNs jointly [69]. HYDRA [70]
preserves the robustness of pruned models by integrating the
pruning objective into the adversarial loss optimization.

Ensemble-Based Robustness: Adversarial training can eas-
ily overfit [19] and is often compute-intensive. The resulting
models are often unable to achieve high clean accuracy [71].
Ensemble-based defenses thus aim to work around the above
limitations by training multiple small non-robust models to form
a large robust ensemble. These defense strategies [22], [23],
[29] learn to reduce the transferability of adversarial examples
among sub-models, presenting an obstacle for the attacker to
successfully fool sub-models simultaneously. This approach
allows the ensemble model to gain a certain level of robustness
even without adversarial training.

III. THE LAFIT METHOD

A. High-Level Overview

We introduce LAFIT by providing a high-level illustration
(Fig. 4) of its attack procedure. First, to obtain a firm grasp
on latent features, it starts by training fully-connected layers
for each residual block with the training set until convergence.
Note that we ensure the original model fθ to remain constant
during this process. To compute adversarial examples x̂, we
maximize a novel surrogate lossLlf(x̂, y), which leverages latent
features from individual layers. For the assessment of adversarial
robustness, we then transfer the generated adversarial example
to the original model fθ for evaluation.

B. Logit Normalization

Many defenses may rely on gradient masking techniques [72],
[73], i.e., making models produce unusable gradients, to stymie
adversarial attackers. Gradients computed from the SCE loss
has been notoriously shown to easily underflow in floating-point
arithmetic for such defending models [14], [17]. Consider the
DL as defined in (3) δy = zy −maxŷ∈C\y zŷ , and z = fθ(x̂),
if δy ≥ λ, where λ � 16.6, 103.3, 744.4 respectively under
half-, single-, and double-precision floating-point arithmetics,
the result of the softmax operation s = softmax(z) would sat-
urate, and sy thus evaluates to 1. Conversely, δy ≤ −λ gives
sy = 0. Under the SCE loss, we therefore identify that the
defending model may exhibit zero-valued gradients, with the
root cause of this attributed to this saturation behavior (Figs. 5
and 8).

For this reason, surrogate loss functions have been pro-
posed [14], [17], [41] to work around this limitation. Despite
their effectiveness in breaking through defenses, it is difficult to
interpret why they work as they no longer maximize the original
adversarial objective (1) directly.

Yet, it is desirable to maximize the original softmax cross-
entropy loss, as it models the negative log-likelihood of the
data. As a result, we propose the logit-normalized softmax
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Fig. 4. High-level overview of LAFIT. Note that in each of the steps, layers in gray regions remain fixed, dotted outline regions denote new layers added by
LAFIT. We train components in green to respectively minimize and maximize losses in cyan and red blocks. (a) illustrates the original pre-trained model, where
f (l) denotes the lth layer (or residual block). (b) trains additional fully-connected layers from intermediate layers, each with a softmax cross-entropy loss until
convergence. (c) computes adversarial examples iteratively with a weighted sum of surrogate losses. (d) uses the adversarial examples from (c) to evaluate the
robustness of the original model.

Fig. 5. Comparing the relative error in the half-precision gradient of the SCE
loss with its true value as δy varies.

cross-entropy (LNSCE) loss, a small modification to the original
SCE loss, which scales the logits adaptively before evaluating
the softmax operation. For untargeted attacks, the objective is as
follows:

Llnsce(x, y) � Lsce(norm(fθ(x)), y), (6)

and the targeted variant maximizes −Llnsce(z, k) to instead
encourage the final prediction argmax{z � fθ(x)} towards a
predefined class target k ∈ C \ y. Here, to prevent saturated soft-
max values, the logit-normalization function norm normalizes
the logits by the DL δy = zy −maxŷ∈C\y zŷ before applying
the softmax operation:

norm(z) �
{
0 δy ≤ 0
z/(t · detach(δy)) otherwise,

(7)

where the condition δy ≤ 0 effectively disables the contribution
of z when the logit vector signifies a successful attack, detach
prevents gradients from back-propagating to its input, and the
temperature factor t = 1 in all of our experiments, and Section
V gives a sensitivity analysis of t.

The new surrogate lossLlnsce has three-fold advantages. First,
it prevents the gradients from floating-point underflows and im-
proves convergence performance. Second, unlike the DL or the

DLR loss, it can still represent the original SCE loss faithfully,
and all values in the logit vector can still contribute to the final
loss. Finally, it maintains the same mathematical optimality as
the SCE loss in order to avoid deviation from the objective.

C. Latent Feature Adversary

Following the footsteps of surrogate losses, in Section I we
postulate that a similarly indirect loss on latent features can
also effectively enhance adversarial attacks. LAFIT exploits the
features extracted from intermediate layers to craft even stronger
adversarial examples for fθ . We assume the model architecture
fθ to generally comprise a sequence of N layers (or residual
blocks) and can be represented as:

fθ(x) = f (N) ◦ f (N−1) ◦ · · · ◦ f (1)(x), (8)

where f (1), f (2), . . . , f (N) denotes the sequence of intermediate
layers in the model. For simplicity in notation, we omit the
parameters from individual layers. We therefore formalize this
proposal by generalizing the traditional PGD attack (2) with a
latent-feature PGD (LFPGD) adversarial optimization problem:

max
g,λ,α,Lsur

Lsce(fθ(PGDε,x,y(Llf,α, I)), y),

where Llf(x) = Lsur(fθ(x), {g(l)(x(l)) : l ∈ [1 : N ]}, y). (9)

Here, the constant I is the maximum number of gradient-update
iterations; for each layer l ∈ [1 : N ], the term x(l) � f (l) ◦ · · · ◦
f (1)(x) denotes the features extracted from the lth layer, and
the function g(l) maps the features x(l) to logits. Finally, α
denotes the step-size schedule. Our goal is hence to find the right
combinations of surrogate loss Lsur with model output fθ(x),
auxiliary classifiers (g(1), . . . , g(N)), and the step-size schedule
α to use.

Solving the LFPGD optimization problem as in (9) is unfortu-
nately infeasible in practice. For which we devise methods that
could approximately solve it, and nevertheless enable us to gen-
erate adversarial examples stronger than competing methods.
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D. Training Intermediate Auxiliary Layers

To allow the attack to utilize latent features, we begin by intro-
ducing auxiliary classifiers to the original model for individual
intermediate layers f (l) for all l ∈ [1 : N − 1]. The auxiliary
classifiers can be formed by appending new branches defined as
g(l) : RC(l)×H(l)×W (l) → RK , with each comprising a sequence
of layers. First, two 3× 3 convolution operations (conv1 and
conv2), both with stride sizes of 2 andC ′ output channels, reduce
the feature map dimensions to C ′ × H(l)

4 × W (l)

4 . This is then
followed by an adaptive pooling layer pool further lowering
the size of resulting features to C(l) × 2× 2, and finally a
fully-connected layer fc for classification:

g(l)(x(l)) � fc ◦ pool ◦ conv2 ◦ conv1(x
(l)), (10)

where ◦ denotes composition, and x(l) is the features extracted
from the lth layer. In practice, we let hidden channel numbers
be C ′ = 64. As the final layer f (N) is already a classification
layer, we assume g(N) � id is an identity function. The training
process, then trains the parameters within auxiliary classifiers to
minimize the SCE loss Lsce(g(l)(x(l)), ypred) between the logit
outputs g(l)(x(l)) and the predicted labels ypred = argmax fθ(x)
with sampled images x.

Depending on the availability, we could train the added layers
by sampling x from either Dtrain, the data samples used for
attack Dattack, or both together. While we used Dtrain in our
experiments, we observed in practice negligible differences
in either attack strengths given sufficient amount of training
examples, as they are theoretically drawn from the same data
sampling distribution. Moreover, this paper differs from the
original approach described in [43], as we found in practice,
training more accurate auxiliary classifiers improves LAFIT,
and the new training procedure does not require ground truth
labels, making LAFIT an even more versatile tool.

It is important to note that during the training procedure
of g(l) classifiers, the original model fθ is used as a feature
extractor, with all training techniques (e.g., dropout layers,
parameter updates, etc.) disabled. This means that the model
parameters θ, the layers f (l) and their parameters, batch nor-
malization [74] statistics, and etc. remain constant, while only
the parameters in g(l) functions are actively being trained. For the
experiments in Section IV, the training process takes only 250
iterations, which is minuscule compared to the full robustness
evaluation.

E. Surrogate Loss With Auxiliary Logits

Intuitively, the new surrogate loss should leverage the aux-
iliary logits g(l)(x(l)) if the auxiliary classifier makes a correct
prediction, and otherwise by default use the output logits fθ(x)
only. Given a pretrained auxiliary classifier g(l), LAFIT then
maximizes a loss:

Llf(x, y) � Lsce(h(x, y), y), (11)

which combines the model output logits and auxiliary logits
with:

h(x, y) � β norm(g(l)(x(l))) + (1− β) norm(fθ(x)). (12)

Here, β ∈ [0, 1] is a hyperparameter that interpolates between
the model output and auxiliary logits.

The above formulation enables the choices of the interpolation
constant β and which auxiliary logits g(l) to use. As illustrated
in Fig. 2, the auxiliary logits g(l)(x(l)) of layers that are closer to
the final layer may exhibit adversarial transferability to success-
fully deceive the model output. As it is impractical to enumerate
over all intermediate layers and β values, we thus search the
last 3 intermediate layers, i.e., l ∈ [N − 3 : N − 1], and further
explore β ∈ [0.50, 0.25, 0.75] to find adversarial examples.

F. Helpful Tactics

In addition to the original contributions explained above, we
also employ simple yet helpful tactics from previous litera-
ture. First, early stopping helps to prevent successful attacks
from reverting to unsuccessful ones, and save computational
resources for difficult images. Second, improving on the orig-
inal linear step-size schedule, we introduce a cosine schedule
αi = ε(1 + cos(iπ/I)), where ε is the perturbation bound, I is
the total number of gradient-update steps, and αi is the step size
of the ith step. i is the current iteration number and I denotes
the total number of iterations. Third, we adapt momentum-based
updates from [17].

To summarize, we illustrate the LAFIT algorithm in
Algorithm 1. The function LAFIT_Attack computes an ad-
versarial example x̂I as return, by accepting the following
inputs: the model fθ , the pretrained logits function for the lth
layer to be attacked jointly, natural image x and its true label y,
an optional target label k, the interpolation parameter β between
the lth layer and the output layer, the momentum weight used ν,
the perturbation boundary ε, and lastly the maximum iteration
count I .

With the algorithm above, we can perform a simple grid search
on the combined configurations of β ∈ [0.5, 0.25, 0.75] and
l ∈ [N − 1 : N − 3] for untargeted attacks. Since using latent
features results in faster convergence, the search starts from the
penultimate layer (l = N − 1) with an interpolation mid-point
(β = 0.5), to minimize the number of iterations required to at-
tack each image. Finally, to push the limit of LAFIT, we can fur-
ther incorporate the multi-targeted attack [41]. After attempting
attacks with the untargeted surrogate loss (11), we additionally
enumerate k ∈ C \ y, i.e., all possible target classes except for
the ground truth y to compute the targeted adversarial variants.
For computational efficiency, the above search procedure can
be early-stopped upon the discovery of successful adversarial
examples, until it progressively sifts through all images inDattack,
the set of all natural images that require adversarial counterparts.

G. Attacking Ensemble Defenses

LAFIT further extends the original version to attack ensem-
ble defenses. Unlike conventional defenses, ensemble defenses
learn to reduce transferability of adversarial examples among
multiple sub-models, in hope that the attacker may be unable
to fool sub-models simultaneously, and can thus gain a certain
degree of robustness.
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Algorithm 1: LAFIT White-Box Attack.

1: function LAFIT_ Attack(fθ, g(l),x, y, k, β, ν, ε, I)
2: x̂0 ← Pε,x(x+ u), �Random start
3: where u ∼ U([−ε, ε])
4: μ0 ← 0
5: for i ∈ [0 : I − 1] do
6: z← fθ(x̂i)
7: z(l) ← g(l)(f (l)(x̂i))
8: δ ← zy −maxŷ∈C\y zŷ �DL of output logits
9: if δ < 0 then

10: return x̂i�Successful attack
11: end if
12: δ(l) ← z(l)

y −maxŷ∈C\y z
(l)

ŷ �DL of latent logits
13: βi ← 1 if δ(l) < 0 else β �Adaptive weight
14: z← βiz/δ + (1− βi)z

(l)/δ(l) �Surrogate loss
15: if k �= Null then �Sign-Gradient
16: gi+1 ← − sign(∇x̂i

Lsce(tz, k)) �Targeted
17: else
18: gi+1 ← sign(∇x̂i

Lsce(tz, y)) �Untargeted
19: end if
20: αi ← ε(1 + cos(iπ/I)) �Step-size schedule
21: μi+1 ← Pε,x(μi + αigi+1) �Momentum
22: x̂i+1 ← Pε,x(x̂i + �Iterative update
23: ν(μi+1 − x̂i) + (1− ν)(x̂i − x̂i−1))
24: end for
25: return x̂I �Give up after I iterations
26: end Function

Fig. 6. High-level overview of applying LAFIT on ensemble defense strate-
gies, with new components highlighted in red. Instead of directly attacking the
ensemble output, LAFIT further considers each sub-model output as a latent
feature, and leverage them jointly with the original output. Here, ens represents
the prediction forming process in (13).

Typically, each sub-model in an ensemble readily provides
logits outputs for its prediction, and it is thus not required to
train additional auxiliary classifiers. In this case, LAFIT can
simply use the outputs of each sub-model f (m) as the latent
logits. Formally, let f (E)(x) be the ensemble output of M
sub-models, and f (m)(x) denotes the mth sub-model output for
all m ∈ [1 : M ]. Ensemble strategies [22], [23], [29] examined
in this paper typically forms model predictions via averaged
softmax values of the sub-model outputs, namely:

f (E)(x) � 1

M

∑
m∈[1:M ]

softmax(f (m)(x)). (13)

As we identify earlier, the softmax operations are notoriously
difficult for conventional PGD attacks as they can saturate easily.

To tackle this, a surrogate loss the ensemble can thus be formed
as follows to leverage all sub-model predictions (Fig. 6):

Lens(x, y) � Lsce(βj(x) + (1− β) norm(f (E)(x)), y),

where j(x) =
1

M

∑
m∈[1:M ]

norm(f (m)(x)). (14)

It is notable that by the definition of logits normalization in (3),
the norm function not only normalizes the sub-model logits
by the respective DLs, but also disables the contributions from
the corresponding sub-models with incorrect predictions. This
allows LAFIT to concentrate its effort on the remaining robust
sub-models, and in practice we observe that this approach can
notably improve success rates.

IV. EXPERIMENTS

To compare fairly against existing SOTA attacks in our evalua-
tion, we test a wide variety of defense techniques that assume the
�∞-norm and �2-norm threat models on the CIFAR-10 dataset,
and also �∞-norm bounded perturbation on the CIFAR-100
dataset [75], and ensure the list of defenses to be as compre-
hensive as possible. As baselines, we reproduce and report
traditional white-box attacks (e.g., PGD [12], BIM [49] and
FAB [50]), each with 100 iterations and a constant step-size
of 2/255.

We examine LAFIT with 4 attack strengths: LAF1

chooses the penultimate layer, i.e., l = N − 1 and β = 0.5,
and performs 100 iterations of gradient updates; LAF2

further restarts the 100-iteration attack multiple times by
varying β ∈ {0.25, 0.5, 0.75} and the choice of latent layers
l ∈ {Unused, N − 1, N − 2, N − 3}, with “Unused” using no
latent layers. On top of this, LAF3 then carries out multi-targeted
attacks with 9 closest incorrect targets, all without latent layers.
Finally, LAF4 further repeats the multi-targeted attacks with
latent layer enumeration under β = 0.5. We fix the momentum
of all iterative updates at ν = 0.75.

A full comparison can be found in Table I. It reveals that not
only is LAF3 an even stronger attack than the current SOTAs
in the robustness evaluation of defense strategies, i.e., AutoAt-
tack (AA) [17], Composite Adversarial Attacks (CAA) [55],
and Adaptive Auto Attacks (A3) [53], but it also improves
the worst-case complexity in terms of the maximum num-
ber of forward-passes required for each image. Particularly,
with 1.9 k iterations, LAF3 matches and even surpasses the
success rates of AA in Table I, which uses 8.3 k iterations.
This equates to an approximate speedup of 4.4×. Despite
AA’s diverse set of white-box and black-box attack strategies
and a generous computational budget, it can still fall short
in accurately evaluating certain defense mechanisms. To push
the boundary of LAFIT, we also report LAF4, which enjoys
a substantial increase in computational effort. Note that AA
as an ensemble combines multiple strategies (PGD with mo-
mentum and two surrogate losses [17], square attack [54] and
FAB [50]), and CAA requires an extensive search of attack
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Fig. 7. Comparing the performance of LAFIT with 100 iterations against other
adversarial attack methods (APGDDLR [17] and PGD [12]) on defenders [19],
[21], [35], [39]. The horizontal and vertical axes respectively show the number
of iterations used so far, and the percentage of remaining unsuccessful exam-
ples. The iteration count needed for LAFIT to defeat APGDDLR-100 is also
marked.

Fig. 8. Higher proportion of underflow gradients correlates with greater dif-
ficulty in defeating the defending model. Here, we attack the model obtained
from [21] using PGD with 100 iterations. The horizontal axis represents the
temperature t in the logit normalization (7).

Fig. 9. Accuracy under attack versus different β, the interpolation between
the output and latent logits for [30], [33], [35], Here, β = 0 uses only the output
logits, and 1 uses only the latent logits.

TABLE II
ROBUSTNESS EVALUATION OF ENSEMBLE L∞ ADVERSARIAL DEFENSES BY LAFIT

TABLE III
PGD-7 ADVERSARIAL TRAINING VERSUS LAF100,10, BOTH EXPLORED WITH

(+LF) AND WITHOUT (–LF) LATENT FEATURES

TABLE IV
EFFECT OF LAFIT WITH 4.6 K ITERATIONS ON THE ADVERSARIAL TRAINED

AND COMPRESSED WIDERESNET-28-4 MODELS FROM HYDRA [70]

Fig. 10. Comparing the performance of new loss against the standard SCE
loss and other surrogate loss functions, i.e., C&W [14], and DLR [17] on
defenders [19], [21], [70], [80]. The horizontal and vertical axes respectively
show the number of iterations used so far, and the percentage of remaining
unsuccessful examples. The figures also mark the iteration count needed for
the LNSCE loss to surpass all other loss functions. Note that the LNSCE loss
converges much faster than competing losses.
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TABLE V
COMPARING THE PROPOSED LNSCE LOSS (LLNSCE), AGAINST SCE (LSCE), C&W (LCW), AND DLR (LDLR) LOSSES

policies for each model. In contrast, LAFIT uniformly uses only
Algorithm 1.

Faster Convergence: It is sensible to argue that models could
also rely on computational security as one of their defense
tactics. In contrast to most attack methods, the effectiveness of
LAFIT is not accompanied by high computational costs. By
exploiting latent features, we find that it generally leads to faster
convergences to adversarial examples than competing methods.
In Fig. 7, we compare the speed of convergence among different
methods. The two baselines include PGD and APGDDLR, the
most effective attack method of the AA ensemble [17] across
most defense methods in Table I. For computational fairness,
LAFIT uses β = 0.5 with the penultimate latent layer to com-
pete. All methods run for 100 iterations. The results show that
for all 4 defending models, LAFIT is not only stronger, but also
often orders of magnitude faster than APGDDLR and PGD for
successful attacks. Finally, the logits layers introduce minuscule
overhead (≤0.008% additional FLOPs in all models), and have
no discernible impact on the iteration time.

Ensemble Defenses: Following the ensemble-based latent
attack introduced in Section III-G, we examine LAFIT on re-
cent ensemble-based defenses, i.e., adaptive diversity promoting
(ADP) [22], diversifying vulnerabilities (DVERGE) [29] and
diversity training with gradient alignment loss (GAL) [23]. Table
II shows that LAFIT consistently achieves the strongest results
on the defending models.

Adversarial-Trained Latent Features Improve Model Robust-
ness: As demonstrated earlier with LAFIT, one can exploit the
latent features learned by defending models to craft powerful
adversarial examples. This raises a question: is it possible to
fortify latent features against attacks to improve model robust-
ness? To answer this, we performed a simple experiment and
trained 2 WideResNet-32-10 models, both with PGD-7 adver-
sarial training [12]. The only difference is that in one model, we
introduced additional logits layers for the residual block outputs,
which were adversarially trained along with the output layer.
For attacks, we likewise carry out ablation on the use of latent
features. The results are in Table III. It reveals that training latent
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Fig. 11. We ablate LAFIT of its 4 tactics on a complete lattice. Here, the bottom
node is standard PGD with 100 iterations. Each node is a unique combination of
4 tactics, where λ introduces the use of latent layers andβ intopolation weights; s
applies logit normalization; α uses the linear step-size schedule; and m denotes
multiple targets, and the number indicates the number of methods where LAFIT
is better than AA across 14 different defenses [19], [21], [25], [30], [31], [32],
[33], [34], [35], [39], [40], [68], [70], [80]. The arrows , , and represent the
introduction of the corresponding tactics, and each number on an arrow indicates
the average accuracy degradation as a result of adding that tactic.

features to be more robust can improve the overall robustness
even when faced against attacks without using latent features.

Compression versusRobustness: In Table IV, compressed
models from HYDRA [70] display a worsening robustness
degradation between the reported (PGD-50 with 10 restarts) and
LAF4 for an increasing pruning ratio. This shows that model-
holistic attacks can potentially overestimate the robustness of
compressed models.

V. SENSITIVITY AND ABLATION ANALYSES

Temperature t in the Logit-Normalized SCE Loss: Fig. 8
explores the effect of temperature t on the LNSCE lossLlnsce (6).
Note that varying the temperature t effectively controls the
magnitude of the DL δy after logit normalization, i.e., smaller
t means larger δy . We find that large DL δy typically results
in zero-valued gradients, making PGD attack more difficult to
converge.

Interpolation Between Latent and Output Logits: Fig. 9 varies
the interpolation weight between the most effective latent feature
and the final logits output for LAFIT with 100 iterations. The
experiment used β ∈ {0.0, 0.1, . . . , 0.9} and 100 iterations for
each. The results showed that different defense strategies call
for distinct β values, making the exploration of β a compelling
necessity.

Comparing the SCE Loss, Surrogate Losses and Logit-
Normalized SCE Loss: We compared the effectiveness of attacks

using either standard SCE loss, or existing surrogate losses
(C&W [14] and DLR [17]), with the newly introduced logit-
normalized SCE loss Llnsce. To compare fairly, for each loss we
run standard PGD with 100 iterations, but enhance it with the co-
sine step size schedule. The full results are provided in Table V,
and Fig. 10 further compares their convergence rates. It is notable
that the logit-normalized SCE loss can consistently outperform
the other 3 losses in terms of attack success rates. We believe the
reasons of its effectiveness are as follows. First, as it maintains
numerical stability across ranges of logit values, it does not suffer
from gradient masking as often shown by traditional attacks that
use SCE loss function. As many defenses often use the SCE loss
as their training loss, well-trained models may thus exhibit low
gradient magnitudes under such loss. Second, both C&W and
DLR surrogate losses do not use all output values provided by the
logit output simultaneously, and could render them less effective.
Finally, for certain defenses that do not obscure gradients within
the loss function, the DL loss notably exhibits lower performance
in comparison to the standard SCE loss. The LNSCE loss thus
retains the same mathematical optimality as the SCE loss to
prevent deviation from the objective.

Combinatorial Ablation of Attack Tactics: Table VI presents
the ablation analysis of the 4 tactics employed by LAFIT across
various defending models, including the use of latent features
and logit normalization introduced in the paper. The remain-
ing two tactics, multi-targets and the cosine decay step-size
schedule, were inspired by related publications. Fig. 11 further
summarizes the results by showing the average accuracy degra-
dations caused by introducing new tactics to all possible combi-
nations. Across all 16 strategy combinations, we discovered that
adding latent features to an existing combination consistently
has the most significant impact on accuracy among possible
choices.

VI. UNDERSTANDING GRADIENT MASKING UNDER THE LENS

OF THE DIFFERENCE-OF-LOGITS

In this section, we study the effect of gradient masking under
the lens of the distribution of the difference-of-logits (DL)
δy = zy −maxŷ∈C\y zŷ , where z = fθ(x) and the data points
(x, y) span the natural images in the CIFAR-10 test set. As
mentioned earlier, the DL δy is of great importance as a negative
δy directly signifies a successful attack, and thus all adversarial
attack strategies thus attempt to minimize δy with respective
means to compute bounded perturbations.

By the chain rule, the gradient of the lossLsce(fθ(x))w.r.t. the
input image x is ∇zL∇xz, where ∇zL and ∇xz respectively
signify the gradient of the loss function w.r.t. the logitsz = fθ(x)
and the logits w.r.t. the input image x. We thus examine all
the defending models tested in this paper, and identify three
typical failure modes of model robustness assessment using
standard PGD, namely gradient masking in: (1) ∇zL, i.e., the
loss function, (2) ∇xz, the model function, and (3) general
rounding errors. To illustrate, we provide representative exam-
ples to explain the above characteristics:

1) Gradient masking in the loss function: Some defending
models may exhibit a high degree of gradient masking in the
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Fig. 12. (a, b, c) DL δy = zy −maxŷ∈C\y zŷ distributions of defending models on correctly predicted natural examples. The dotted lines denote the attack
success rate of the image given the initial DL. All results are averaged over 100 bins. (d, e, f) The average convergence rates of δy under attack iteration constraints.
The vertical and horizontal axes respectively denote the average magnitudes of δy and the current number of attack iterations. We average the results over images
which PGD-100 with the SCE loss Lsce fail to attack but Llnsce succeeds. (g, h, i) Evaluating model robustness (vertical axes) with varying temperature constants
t (horizontal axes) in the logit normalization function (norm) with 100 PGD attack iterations.

loss function. For instance, controlling the neural level sets [39]
generates models that move decision boundaries a constant dis-
tance away from all training data, and can surprisingly achieve
79.8% accuracy under PGD-100 attack. Upon inspection, as
shown in Fig. 12(a), the magnitudes of δy of correctly classified
natural images can be very large, which gives a false sense
of high confidence in the model’s output. Interestingly, these
models often exhibit a property where random perturbations
to the input image are even more effective than the gradients
in increasing the loss (Fig. 13(a)). Clearly, larger differences
between logits δy lead to saturated results following the softmax
operation (as explained in Section III-B), making it challenging
for PGD to gather useful gradients using the conventional SCE
loss. In such cases, one can address the challenge with surrogate
losses [17], [41], to avoid saturated gradients. Consequently, we
substitute the SCE loss with its logit-normalized variant Llnsce

as described in Section III-B, resulting in a notable reduction in
model accuracy under PGD-100 to40.0%. By normalizing logits
using (7) before computing the SCE loss, gradient masking can
be overcome as the new step eliminates softmax saturation, and
notably improve robustness evaluation.

2) Gradient masking in the model: Differing from defenses
that make the gradients from the SCE loss unusable, some
defending models may mask gradients in the model output
logits w.r.t. the input images, i.e., ∇xz, rendering them less
effective in gradient-based white-box attack algorithms. As an
example, the model trained with feature scattering [30] shows
this behavior, and can resist PGD-100 attacks with a 69.0%
accuracy under perturbed images. Using the logit-normalized
variant Llnsce in lieu of the SCE loss can notably improve
robustness evaluation, bringing the accuracy down to 64.4%;
exploring the effect of temperature t can further lower it to
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TABLE VI
DETAILED ABLATION STUDIES OF THE 4 STRATEGIES IN LAFIT ACROSS 14 DEFENSES

Fig. 13. Averaged loss surfaces Lsce(x̂, y) w.r.t. the input space x̂ = x+ gεa + g⊥εr across all samples remaining after resisting attacks of defending models.
Here, g and g⊥ respectively denote normalized adversarial gradient after accumulating 10 iterations of gradient updates at the natural input x, and its randomized
orthogonal.

47.6% (Fig. 12(h)). Notably, modifying surrogate losses still
gives an overestimated robustness, as we find that exploiting
latent features can reduce the accuracy to 38.58% using only
100 iterations.

(3) Gradient masking with rounding errors: Such models
are unable to show exaggerated robustness against PGD-100
attacks. For instance, LAFIT can only reduce the estimated

robustness of the adversarially trained TRADES model [21]
from 55.3% under PGD-100 to 53.3%. We find that the attacks
on newly generated adversarial examples tend to stop converging
as δy approaches 0 under PGD-100 (Fig. 12(f)). This might
suggest that the added numerical stability introduced by Llnsce

and the use of latent features can help cross the δy ≤ 0 boundary,
allowing them to be attacked successfully.
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VII. CONCLUSION

LAFIT has demonstrated that exploiting latent features is
highly effective against many recent defense techniques. It
has efficiently outperformed the current SOTA attack methods
across a wide range of defenses. We believe that the future
progress in adversarial attack and defense on CNNs depends
on the understanding of how latent features can be effectively
used as novel attack vectors. The evaluation of adversarial ro-
bustness, therefore, cannot view the model solely from a holistic
perspective. LAFIT is open-source1, and we hope it can pave the
way for gaining knowledge on robustness evaluation through the
explicit use of latent features.
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