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Comprehensive Vulnerability Evaluation of Face
Recognition Systems to Template Inversion

Attacks via 3D Face Reconstruction
Hatef Otroshi Shahreza and Sébastien Marcel

Abstract—In this article, we comprehensively evaluate the vul-
nerability of state-of-the-art face recognition systems to template
inversion attacks using 3D face reconstruction. We propose a new
method (called GaFaR) to reconstruct 3D faces from facial tem-
plates using a pretrained geometry-aware face generation network,
and train a mapping from facial templates to the intermediate latent
space of the face generator network. We train our mapping with
a semi-supervised approach using real and synthetic face images.
For real face images, we use a generative adversarial network
(GAN)-based framework to learn the distribution of generator
intermediate latent space. For synthetic face images, we directly
learn the mapping from facial templates to the generator inter-
mediate latent code. Furthermore, to improve the success attack
rate, we use two optimization methods on the camera parameters
of the GNeRF model. We propose our method in the whitebox and
blackbox attacks against face recognition systems and compare the
transferability of our attack with state-of-the-art methods across
other face recognition systems on the MOBIO and LFW datasets.
We also perform practical presentation attacks on face recognition
systems using the digital screen replay and printed photographs,
and evaluate the vulnerability of face recognition systems to differ-
ent template inversion attacks.

Index Terms—Face recognition, face reconstruction, facial
template, generative adversarial network (GAN), geometry-
aware, neural radiance fields (NeRF), preseantation attck, semi-
supervised learning, template inversion (TI), transferability,
vulnerability evaluation.

I. INTRODUCTION

FACE recognition (FR) is one of the most well-known
biometric authentication tools, and its applications tend

toward ubiquity, including smart phone unlock,1 e-banking2
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Fig. 1. Sample face images from the FFHQ dataset (first row) and frontal
2D image (second row) from our 3D reconstruction (third row) in the whitebox
template inversion attack against ArcFace. The values below each image of the
second row show the cosine similarity between the templates of the original and
frontal reconstruction face images. The decision threshold for FMR = 10−3 is
0.24 on the LFW dataset.

national identity system,3 border control,4 etc. In addition to the
security applications, FR is also being used in entertainment5

applications. Generally in FR systems, some features (also
known as templates or embeddings) are extracted from each
face image. The extracted templates are stored in the system’s
database during the enrollment stage, and are later used for
recognition.

Among different types of attacks against FR systems that are
studied in the literature [1], [2], [3], [4], [5], template inversion
(TI) attack can considerably jeopardize both security and privacy
of users. In a TI attack, the adversary gains access to the tem-
plates stored in the system’s database and tries to invert facial
templates to reconstruct the underlying face image. Then, the

3https://bbc.in/3QeIsO2
4https://nyti.ms/3XEIbaW
5https://apple.co/3ZOxW5S
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Fig. 2. General block diagram of the proposed method: we train a mapping network from facial templates (input) to the intermediate latent spaceW of GNeRF
model. The mapped latent codes along with camera parameters are fed to the GNeRF generator and renderer network (fixed) to generate face image from desired
view. Sample outputs of our model (frontal image, view-grid, and 3D face reconstruction) for face reconstruction from B. Obama’s facial template are depicted.

adversary can use the reconstructed face image to impersonate
and enter the system (security threat). In addition, the recon-
structed face image may reveal privacy-sensitive information of
the enrolled user, such as age, gender, ethnicity, etc. (privacy
threat). In this paper, we focus on TI attacks in FR systems
and present a comprehensive vulnerability evaluation of FR
systems to TI attacks using 3D face reconstruction. We propose a
new method (called geometry-aware face reconstruction, shortly
GaFaR) to 3D reconstruct faces from facial templates using a
geometry-aware face generator network. To our knowledge, this
is the first work to reconstruct 3D faces from facial templates.
Fig. 1 illustrates sample face images from the FFHQ [6] dataset
and their corresponding 3D reconstruction from ArcFace [7]
templates using our proposed method.

In recent years, the neural radiance fields (NeRF) [8] has
attracted attentions in the computer vision community because
of its impressive results in the novel-view generation problem.
Generative NeRF (GNeRF) methods such as [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21] combine
conditional NeRF with generative models, such as a gener-
ative adversarial network (GAN), for geometry-aware image
generation tasks. In GNeRF methods, a generative model is
used to embed the appearance and shape of an object into a
latent space. Then, the camera parameters along with the latent
code of the generative model are fed into a NeRF model for
the rendering process. Among GNeRF methods, several works
proposed geometry-aware 3D face generation models that can
generate face images from different views [13], [14], [15], [16],
[17], [18], [19], [20].

In our proposed 3D face reconstruction method, we use
a geometry-aware face generator network based on GNeRF,
and learn a mapping from facial templates to the intermedi-
ate latent space of the GNeRF model. We train our model
with a semi-supervised approach using real and synthetic face
images. For real training face images, where we do not have
the corresponding GNeRF latent codes, we train our map-
ping within a GAN-based framework to learn the distribution
of GNeRF intermediate latent space (unsupervised learning).
However, for the synthetic training face images, we have the
corresponding GNeRF latent codes, and directly learn the map-
ping from facial templates to the GNeRF intermediate latent
space (supervised learning). At the inference stage, we have
the 3D reconstructed face and can generate a face image from
any arbitrary pose. Thus, we apply optimization on the camera

parameters to generate face images with a pose that can increase
the success attack rate against the FR system. Fig. 2 illustrates
the general block diagram of our proposed template inversion
attack.

We introduce our face reconstruction method for whitebox
and blackbox TI attacks against FR systems. In the whitebox
scenario, the adversary knows the internal functioning and
parameters of the feature extraction model. However, in the
blackbox scenario, the adversary does not have any knowledge
about the internal functioning of the feature extraction model
and can only use it to extract features from an arbitrary image.
We consider the scenario where the adversary uses another FR
model, with known internal functioning and parameters (i.e.,
whitebox knowledge), and uses this FR model for training the
face reconstruction network. We present a comprehensive vul-
nerability evaluation of state-of-the-art (SOTA) FR systems to
our TI attacks in whitebox and blackbox scenarios. We evaluate
the transferability of the reconstructed face images by con-
sidering the situation where the adversary tries to reconstruct
face images of the templates leaked from a FR system and
use the reconstructed face images to impersonate the same
users in another FR system (with a different feature extraction
model) that the users are enrolled. Indeed, the transferability
of TI attacks reveals a critical threat to FR systems, since the
reconstructed face images can be used to enter other FR systems
that the victim is enrolled in. Considering the whitebox/blackbox
scenario and the adversary’s knowledge of the target FR system,
we define five different TI attacks, and comprehensively evaluate
the vulnerability of SOTA FR systems to TI attacks. Further-
more, we perform practical evaluations based on presentation
attacks using the digital replay and printed photographs of the
reconstructed face images, and evaluate the vulnerability of
SOTA FR systems.

To elaborate on the contributions of our paper, we summarize
them hereunder:
� We present a comprehensive vulnerability evaluation of

SOTA FR system to TI attacks using 3D face reconstruction
from facial templates. Considering the whitebox/blackbox
scenarios and the adversary’s knowledge of the target FR
system, we define five different TI attacks and evaluate the
vulnerability of SOTA FR systems to different TI attacks
as well as transferability of reconstructed face images in
TI attacks. We also perform a practical evaluation based
on presentation attacks using the digital replay and printed
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photograph of the reconstructed face images in TI attacks
against SOTA FR systems.

� We propose a new method to reconstruct 3D faces from
facial templates using a geometry-aware face generator
network based on GNeRF. We use the proposed 3D face
reconstruction method to introduce whitebox and blackbox
TI attacks against FR systems. To our knowledge, this is
the first work to reconstruct 3D faces from facial templates.
To use 3D reconstructed face in TI attack against 2D FR
systems during the inference stage, we apply optimization
on the camera parameters in the input of the GNeRF
model and find a pose that improves the success attack
rate.

� We learn a mapping from facial templates to the intermedi-
ate latent space of GNeRF. We train our mapping network
with a semi-supervised approach, using real and synthetic
face images. For the real training face images, we train
our mapping within a GAN-based framework to learn the
distribution of intermediate latent space of GNeRF. For
the synthetic training face images, we directly learn the
mapping from facial templates to the GNeRF intermediate
latent codes.

The remainder of this paper is structured as follows. First,
we review the related works in Section II. Then, we describe
the threat model, our five different defined attacks, and our
proposed method in Section III. Next, in Section IV, we present
our experiments and discuss our results. Finally, the paper is
concluded in Section V.

II. RELATED WORKS

Methods in the literature for face reconstruction in TI
attacks against FR systems can be generally categorized
from different aspects, including the basis of the method
(optimization/learning-based), the type of attack (white-
box/blackbox attack), and the resolution of reconstructed face
images (high/low resolution). However, all previous methods
generate 2D images in TI attacks against FR systems.

Several methods have been proposed for reconstructing low-
resolution 2D face images from facial templates [22], [23],
[24], [25], [26], [27]. In [22], authors proposed two whitebox
methods to reconstruct 2D low-resolution face images from
facial templates. In the first method (optimization-based), they
used a gradient-descent-based approach on a guiding image
or random (noise) image to find an image that minimizes the
distance between the template of the reconstructed face image
and the target template. In addition, they used several regular-
ization terms to generate a smooth image, including the total
variation and Laplacian pyramid gradient normalization [33] of
the reconstructed face image. In their learning-based method,
they trained a deconvolutional neural network with the same
loss function as in their optimization-based method, to generate
reconstructed face images. For the evaluation of their method,
they only discussed the visual reconstruction quality and did not
provide any security evaluation on a FR system.

In [23], authors trained a multi-layer perceptron (MLP), to
find the facial landmark coordinates, and a convolutional neural

network (CNN), to generate face texture from the given facial
template. Next, they used a differentiable warping to combine
the estimated landmarks (from MLP) with the generated textures
(from CNN) and reconstruct low-resolution 2D face images.
They used their method for whitebox and blackbox attacks.
In the whitebox attack, they trained their MLP and CNN by
minimizing the distance between templates of the original and
reconstructed face images. However, for their blackbox attack,
they trained MLP and CNN separately, and used the warping in
the inference only. For the security evaluation, they only reported
the histogram of scores between the templates extracted from the
original and reconstructed face images and compared it with the
histogram of genuine scores.

In [24], authors proposed a learning-based method to generate
low-resolution 2D face images in the blackbox attacks against
FR systems. They proposed two new deconvolutional networks,
called NbBlock-A and NbBlock-B, and trained them with either
pixel loss (�1 norm of pixel-level reconstruction error) or percep-
tual loss (distance of middle layers of VGG-19 [34] when given
the original and reconstructed face images). For the security
evaluation, they considered two types of attacks and evaluated
vulnerability of FR systems. In their first type of attack, they
compared the templates extracted from the original and recon-
structed face images, and in their second type of attack, they
compared the templates extracted from reconstructed images
with templates of a different face image of the same user.

In [25] and [26], a same method based on bijection learn-
ing is used to train GAN networks with PO-GAN [35] and
TransGAN [36] structures, respectively. In the whitebox attack,
authors minimized the distance between target templates and
templates extracted from the reconstructed face images using the
FR model. To extend their method to the blackbox attack, they
proposed to use the distillation of knowledge to train a student
network that mimics the target FR model. However, they did
not report any detail about the training of the student network
(e.g., network structure, etc.) nor published their source code.
For the security evaluation, they reported the matching accuracy
between the reconstructed image and another original image in
each positive pair in their TI attacks. However, they did not
evaluate the vulnerability of FR systems at different threshold
configurations.

In [27], authors proposed a 3-step method to reconstruct low-
resolution 2D face images in the blacbox attack. In the first step,
they trained a general face generator network based on GAN.
In the second step, they trained a MLP to map the templates to
the templates of a known (i.e., whitebox knowledge) FR model.
In the third step, they used an optimization on the latent space
of their face generator to find a latent code that can generate
a face image that maximizes two terms; the cosine similarity
between the templates (mapped templates and the templates
extracted by the known FR model) and the discriminator score
(for being a real face image). For their security evaluation, they
reported the adversary’s success attack rate (SAR), but they did
not specify the system’s operation configuration, such as the
system’s recognition false match rate (FMR).

In contrast to the most works in the literature that gener-
ate low-resolution 2D face images, recently few methods are
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TABLE I
COMPARISON WITH RELATED WORKS

proposed for high-resolution 2D face reconstruction. In [28],
authors proposed a learning-based method to reconstruct high-
resolution 2D face images in the blackbox attack. They used a
pretrained StyleGAN2 [37] to generate some face images and
extracted the templates using the FR model. Then, they trained
a MLP to map facial templates to the input latent codes of
StyleGAN2 [37]. For the security analysis, they considered two
types of attacks as defined in [24] and evaluated the vulnerability
of FR systems. They also evaluated their reconstructed face
images with a commercial-off-the-shelf (COTS) presentation
attack detection (PAD) system, also known as face liveness
detection in their paper. However, the authors did not perform
a practical presentation attack scenario, in which the images
should have been recaptured by camera prior to be fed to the
COTS PAD. Similarly, in [29], authors proposed a learning-
based method for high-resolution 2D face reconstruction in the
blackbox attack. They learned three mapping networks from
the facial templates to three separate parts in the intermediate
latent space of StyleGAN. Each of these mapping networks is
composed of a MLP and is used to reconstruct coarse to fine in-
formation of face image. They also proposed to find this mapping
with optimization instead of learning the mapping networks.
For the security analysis, they did not report success attack
rate (percentage) for any configuration. They only reported the
histogram of the distance between templates of reconstructed
and original face images and compared it with the histogram of
templates for random pair of images (i.e., zero-effort impostor).

In [30], authors used a learning-based method based on a con-
ditional denoising diffusion probabilistic model to reconstruct
2D face images in blackbox attack. They used the conditional
diffusion model in [38] and iteratively denoise an input
Gaussian noise conditioned with facial templates to generate
low resolution (i.e., 64× 64) face images from facial templates.
Then, they used a super-resolution network to generate face
images with a higher resolution (i.e., 256× 256). Compared
to other learning-based methods, their proposed method is

relatively very slow,6 because of iterative reconstruction in
the inference stage. In addition, compared to other methods,
that directly generate high-resolution face images, the method
in [30] first reconstructs low-resolution face images and then
uses a super-resolution to generate high-resolution face images.
For security analysis, similar to [25], [26], they reported the
matching accuracy between the reconstructed and a different
original image in each positive pair, and did not evaluate the
vulnerability of FR systems at different threshold configurations.

In [31], authors proposed a optimization on the latent vec-
tor (i.e., input noise) of StyleGAN2 [37] to find latent codes
which generates face images with templates similar to the target
templates. They solved this optimization with a grid-search and
simulated annealing [39] approach for the blackbox scenario.
However, since their method is computationally expensive,7 they
evaluated their method on only 20 face images and reported
distance between the original templates and templates of the
reconstructed face images. Along the same lines, in [32] authors
considered a similar optimization to [31] on the latent vector of
StyleGAN2 [37], but instead of grid-search, they solved the opti-
mization using the standard genetic algorithm [40] for the black-
box attack. For the security analysis, they also considered two
types of attacks as defined in [24] and evaluated the vulnerability
of FR systems. Moreover, they evaluated their reconstructed
face images using three COTS PAD systems (called liveness
detection in their paper). However, similar to [28], they did not
perform a practical presentation attack scenario by recapturing
the reconstructed face images.

Table I compares our paper with the previous works in the
literature. To our knowledge, our proposed method is the first
method on 3D face reconstruction from facial templates (which

6They reported four minutes to reconstruct64× 64 face images and the super-
resolution to 256 × 256 on a NVIDIA RTX 3090 GPU.

7They reported 5 minutes execution time to reconstruct each single image on
a system equipped with graphic card.
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Fig. 3. Block diagram of our threat model.

are extracted from 2D face recognition models). Moreover, in
contrast to most works in the literature, our method generates
high-resolution face images. We also propose our method for
both whitebox and blackbox attacks against FR systems and
evaluate the transferability of our reconstructed face images
(which has not been reported before for TI attacks). Furthermore,
we perform practical presentation attacks against FR systems
using the reconstructed face images. Last but not least, the source
code of all the experiments in this paper is publicly available to
facilitate the reproducibility of our work.

III. PROPOSED METHOD

We describe our threat model and define different TI attacks
against FR systems in Section III-A (as depicted in Fig. 3).
Then, we describe our proposed method to reconstruct 3D faces
from facial templates in Section III-B. In the inference stage,
we optimization on the camera parameters to generate a face
image that can improve the success attack rate, as described in
Section III-C. Fig. 4 illustrates the block diagram of the proposed
TI attack, including our 3D face reconstruction method and our
optimization on camera parameters during the inference stage.

A. Threat Model

We consider the situation where the adversary gains access
to the database of a FR system (Ftemplate), and aims to invert its
templates. The adversary is also assumed to have access8 to a
feature extractor modelFproxy (which can be the same or different
than Ftemplate). The adversary trains a face reconstruction model
to reconstruct face images from templates extracted by Ftemplate,
and uses the reconstructed face images to impersonate into the
same or a different FR system (Ftarget). Therefore, we consider
the following properties for the adversary:
� Adversary’s goal: The adversary aims to reconstruct face

images from templates stored in the database of a FR
system (Ftemplate), and use the reconstructed face images
to enter the same or a different FR system (we call it the
target FR system, Ftarget).

� Adversary’s knowledge: The adversary has the following
information:
– The leaked face templates tleaked of users, which are

enrolled in the database of Ftemplate.

8The adversary can use Fproxy for training the face reconstruction network.

– The adversary also has the whitebox knowledge of a
feature extractor model (Fproxy). It is worth mentioning
that Fproxy can be similar to or different from Ftemplate

and Ftarget.
� Adversary’s capability: We consider two scenarios for the

adversary’s capability:
– The adversary can perform a presentation attack using

the reconstructed face images to impersonate and enter
the target FR system (e.g., using digital replay attacks
or printed photographs).

– The adversary can inject the reconstructed face image
as a query to the target FR system.

� Adversary’s strategy: The adversary trains a face recon-
struction model to invert the leaked facial templates tleaked.
Then, based on the adversary’s capability, the adversary
can use the reconstructed face images to either perform a
presentation attack or inject the reconstructed face image
as a query to the target FR system.

In our threat model, we consider three different feature ex-
traction models, including Ftemplate(.), Fproxy(.), and Ftarget(.).
Fig. 3 illustrates the block diagram of our threat model. Based
on the target FR system and the adversary’s knowledge, we can
define five different attacks:
� Attack 1: The adversary has the whitebox knowledge of the

feature extractor of the FR system from which the template
is leaked and aims to impersonate to the same FR system
(i.e., Ftemplate = Fproxy = Ftarget).

� Attack 2: The adversary has the whitebox knowledge of the
feature extractor of the FR system from which the template
is leaked, but aims to impersonate to a different FR system
(i.e., Ftemplate = Fproxy �= Ftarget).

� Attack 3: The adversary aims to impersonate to the same
FR system from which the template is leaked, but has only
the blackbox access to the feature extractor of the FR sys-
tem. Instead, the adversary has the whitebox knowledge of
another FR model to use for training the face reconstruction
model (i.e., Ftemplate = Ftarget �= Fproxy).

� Attack 4: The adversary aims to impersonate to a different
FR system than the one which from the template is leaked.
In addition, the adversary has the whitebox knowledge of
the feature extractor of the target FR system (i.e.,Ftemplate �=
Fproxy = Ftarget).

� Attack 5: The adversary aims to impersonate to a different
FR system from which the template is leaked, and has only
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TABLE II
DIFFERENT TI ATTACKS AGAINST FR SYSTEMS IN OUR THREAT MODEL

the blackbox knowledge of the both the FR systems. How-
ever, the adversary instead has the whitebox knowledge of
another FR model to use for training the face reconstruction
model (i.e., Ftemplate �= Fproxy �= Ftarget).

Table II summarizes different TI attack types in our threat
model as well as the adversary’s knowledge of different FR
models in each type of attack. In all types of attacks, the leaked
facial templates to be reconstructed are from Ftemplate and the
reconstructed face image is used to attack target FR system
Ftarget. In attack 1 and attack 3, the target FR system is the
same as the FR system from which the template is leaked (i.e.,
Ftemplate = Ftarget). However, in attacks 2, 4, and 5, the target FR
system is different from the FR system from which the template
is leaked (i.e., Ftemplate �= Ftarget), and therefore in attack 2, 4,
and 5, the transferability of reconstructed face images in attacks
against different FR systems is evaluated. Comparing different
types of attacks, in attack 1 the adversary has knowledge of the
FR system from which the template is leaked and aims to enter
the same FR system, therefore it is expected that attack 1 may
be the easiest attack. In contrast, in attack 5 the adversary does
not have the whitebox knowledge of the FR system from which
the template is leaked or the target FR system, and thus attack 5
may be the hardest attack for the adversary.

B. Proposed 3D Face Reconstruction

To reconstruct 3D faces from facial templates, we use a
pretrained EG3D [18] model as a geometry-aware face gen-
erator network based on GNeRF. This model consists of two
networks, a mapping network and a generator and renderer
network. The mapping network MGNeRF takes a random noise
z ∈ Z in the input and generates an intermediate latent code
w =MGNeRF(z) ∈ W . The intermediate latent code w pro-
vides more control over the generated face images than input
random noise z. The generator and renderer network G(·, ·)
takes the intermediate latent code w and camera parameters c,
to generate a face image I = G(w, c) from an arbitrary view.
To reconstruct 3D faces from facial templates, we learn a new
mapping Mrec : T → W from the facial templates t ∈ T to
the intermediate latent space W of the GNeRF model. Then,
we feed the mapped intermediate latent vector ŵ along with
camera parameters c into the GNeRF model G(·, ·) to generate

a face image Î = G(ŵ, c) from an arbitrary view corresponds
to the camera parameters c. We train our mapping networkMrec

simultaneously using real and synthetic training data with a
semi-supervised approach as follows:

1) Unsupervised Learning Using Real Training Data: To
train our mapping networkMrec(.)with the real training data, we
use a set of real face images {I real,i}Ni=0 and extract the facial
template treal,i = Ftemplate(I real,i) from each face image I real,i

using the FR model Ftemplate(.). We assume that the adversary
does not have any information about the training dataset of
Ftemplate(.)andFtarget(.), and thus use another dataset for training
the face reconstruction model. Since we do not have the true
value of the intermediate latent spaceW of the GNeRF model
for the real face images in {I real,i}Ni=0, we consider training our
mapping network using the real training data as unsupervised
learning. For the real training data, we train our mappingMrec(.)
within a GAN-based framework based on Wasserstein GAN
(WGAN) [41] algorithm to learn the distribution of intermediate
latent space W of the GNeRF model. In this framework, our
mapping network Mrec acts as the generator of our WGAN
training and generates a latent code ŵ =Mrec([n, t]) from a
random vector n ∈ N and the facial template t. In our WGAN
framework, we can also generate the real latent code w =
MGNeRF(z) ∈ W using the GNeRF mapping function MGNeRF

and a random vector z ∈ Z . Then, we can use a critic network
C(.) to score the latent codes generated by GNeRF mapping
(as real) and our mapping (as fake). Hence, we can train our
mapping Mrec along with the the critic network C(.) in the
WGAN framework using the following loss functions:

LWGAN
C = Ew∼MGNeRF(z)[C(w)]− Eŵ∼Mrec([n,t])[C(ŵ)] (1)

LWGAN
Mrec

= Eŵ∼Mrec([n,t])[C(ŵ)] (2)

In addition to the WGAN training, we feed the generated
latent code ŵ =Mrec([n, t]) to the GNeRF model to generate
the face image Î = G(ŵ, c), and then use the generated face
image Î to optimize our mapping network Mrec(.) using the
following multi-term loss function:

Lrec
real = LPixel + LID, (3)

whereLPixel andLID are pixel loss and ID loss, respectively, and
are defined as:

LPixel = Eŵ∼Mrec([n,t])[‖I −G(ŵ, c)‖
2
2] (4)

LID = Eŵ∼Mrec([n,t])[‖Fproxy(I)− Fproxy(G(ŵ, c))‖22] (5)

The pixel loss LPixel minimizes the pixel-level reconstruction
error and the ID loss LID optimizes the model to generate face
images that have similar facial templates (extracted by Fproxy)
to the templates of the original image I .

2) Supervised Learning Using Synthetic Training Data: To
train our mapping network Mrec(.) with the synthetic training
face images, we use the pretrained GNeRF model to generate a
set of random face images {Isyn,i}Ki=0. Therefore, as opposed to
real training data, we have the true value of intermediate latent
space w ∈ W to generate the same synthetic face image, and
therefore can directly learn the GNeRF intermediate latent code
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Fig. 4. Block diagram of our proposed TI attack: during the training process, a semi-supervised approach is used to learn our mappingMrec (illustrated as a green
block) from the facial templates to the intermediate latent space of the GNeRF model. We use real training data (where we don’t have the corresponding latent
code) and synthetic training data (where we have the corresponding latent code w), simultaneously, for unsupervised and supervised learning in our method. In
the inference stage, the leaked template t is fed into our mapping network to find corresponding vector ŵ =Mrec([n, t]) in the intermediate latent space of the
GNeRF. Then, camera parameters c along with ŵ are given to the generator and renderer of GNeRF G to generate a reconstructed face image Î = G(ŵ, c). To
enhance the attack, we propose an optimization (grid search or continuous optimization) on two of the camera parameters, θ and ψ, from c, to find the best pose,
which minimizes the distance between the template of reconstructed face image and the leaked template t.

w =MGNeRF(z) from template tsyn,i = Ftemplate(Isyn,i). Hence,
we consider training our mapping network using the synthetic
data as supervised learning. In addition to directly learning the
intermediate latent code w, we use the generated face image
to optimize our mapping network by minimizing the following
multi-term loss function:

Lrec
syn = Lw + LPixel + LID, (6)

where LPixel and LID are the pixel loss (4) and ID loss (5),
respectively. Moreover, Lw is w-loss to directly learn the latent
space of GNeRF by minimizing the mean squared error between
w and ŵ =Mrec([n, t]) as follows:

Lw = Ew∼MGNeRF(z)[‖w −Mrec([n, t])‖22] (7)

To train our networks, we use Adam [42] optimizer and
optimize the parameters of our new mapping networkMrec(.) for

Lrec
real (i.e., (3)) and Lrec

syn (i.e., (6)) losses in every iteration of our
training process (also shown in Fig. 4). However, in the WGAN
framework, we update weights of our new mapping network
Mrec(.) and critic network C(.) every nWGAN

M (for minimizing
LWGAN
Mrec

in (2)) and every nWGAN
C (for minimizing LWGAN

C in
(1)) iterations, respectively. Algorithm 1 represents our training
process. We should note that our mapping network Mrec has 2
fully-connected layers with Leaky ReLU activation function.

C. Camera Parameters Optimization

After generating a 3D reconstruction of face from the facial
template using our proposed method described in Section III-B,
the adversary needs to select a pose to generate a 2D recon-
structed face image to inject into the system or perform a
presentation attack. To this end, during the inference stage we
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Algorithm 1: Training Process of Our New Mapping Net-
work.

Require: θM , parameters of Mrec(.) network. θC ,
parameters of network C(.).

Require: nepoch, no. epochs. niteration, no. iterations in each
epoch. nWGAN

M , no. training iterations after which to
optimize θM in WGAN. nWGAN

C , no. training iterations
after which to optimize θC in WGAN. δ, the WGAN
clipping parameter.

Require: αreal
M , learning rate for optimizing θM based on

Lrec
real. α

syn
M , learning rate for optimizing θM based on Lrec

syn.
αWGAN
M , learning rate for optimizing θM in WGAN.
αWGAN
C , learning rate for optimizing θC in WGAN.

Require: Dreal, a dataset of real face images and
corresponding facial templates extracted using Ftemplate.

1: procedure Training
2: Initialize θC and θM
3: for epoch = 1, . . ., nepoch do
4: for itr = 1, . . ., niteration do
5: Sample a batch from Z and calculate:
6: gsyn

θM
← ∇θMLrec

syn

7: θM ← θM − αsyn
M · Adam(θM , g

syn
θM

)
8: Sample a batch from Dreal and calculate:
9: greal

θM
← ∇θMLrec

real

10: θM ← θM − αreal
M · Adam(θM , g

real
θM

)

11: if itr mod nWGAN
M = 0 then

12: gWGAN
θM

← ∇θMLWGAN
M

13: θM ← θM − αWGAN
M · Adam(θM , g

WGAN
θM

)
14: end if
15: if itr mod nWGAN

C = 0 then
16: Sample a batch w ∼ W and calculate:
17: gWGAN

θC
← ∇θCLWGAN

C

18: θC ← θC − αWGAN
C · Adam(θC , g

WGAN
θC

)
19: θC ← clip(θC ,−δ, δ)
20: end if
21: end for
22: end for
23: end procedure

can optimize the camera parameters to find a pose that increases
the success attack rate (SAR). In other words, having the 3D
reconstruction of a face, we would like to find the camera
parameters so that the 2D generated face image has a facial
template that is more similar to the leaked templates than the
templates of any other pose. Among different camera parameters
c, we consider the parameters that corresponds to the camera
rotations and therefore can change the pose of the generated face
image. It is noteworthy that by changing the camera rotations,
we want to vary the pitch and yaw rotations of the reconstructed
face and do not want to modify the roll rotation. As a matter of
fact, the effect of any roll rotation will be eliminated in the FR
system through the face alignment in the pre-processing step of
the feature extraction. We consider two different approaches to
optimize camera parameters as follows:

1) Grid Search (GS): In our grid search approach, we con-
sider pre-defined steps to change the camera pitch θ ∈ Θ and
yaw ψ ∈ Ψ and generate corresponding camera parameters c.
We generate the 2D face images for all values of camera ro-
tation steps (θstep and ψstep) and find the facial templates for
each generated image. Finally, we select the face image Î =
G(Mrec([n, t]), c) which has a template t̂ = Ftemplate(Î) that
minimizes the mean squared error with the leaked template t:

min
θ,ψ

∥
∥t̂− t

∥
∥
2

2
, (8)

Note that the grid search can be applied in both whitebox and
blackbox scenarios (i.e., all attacks defined in Section III-A)
using the FR model Ftemplate.

2) Continuous Optimization (CO): For continuous optimiza-
tion, we start from the frontal camera parameters and use the
Adam [42] optimizer to solve the following minimization using
the mapped latent code ŵ =Mrec([n, t]):

min
θ,ψ
‖Ftemplate(G(ŵ, c))− t‖22 , (9)

By solving this optimization, we can find the θ and ψ rotations
and the corresponding camera parameters c that lead to a face
image with the template close to the leaked template t. In contrast
to the grid search, the continuous optimization approach can be
applied only when the adversary has the whitebox knowledge of
Ftemplate (i.e., attack 1 and attack 2).

IV. EXPERIMENTS

In this section, we evaluate the vulnerability of SOTA FR
systems to our TI attacks defined in Section III. First, in
Section IV-A we describe our experimental setup. In Sec-
tion IV-B, we consider the case where the adversary can inject
the reconstructed face image as a query to the system to imper-
sonate, and present our experimental results. In Section IV-C, we
consider the situation where the adversary uses the reconstructed
face images to perform presentation attacks and evaluate the
vulnerability of SOTA FR systems. Finally, we discuss our
findings in Section IV-D.

A. Experimental Setup

1) Face Recognition Models: In our experiments, we eval-
uate the vulnerability of different SOTA FR models to our TI
attacks. We consider two SOTA models, including ArcFace [7],
ElasticFace [43], as the models from which templates are leaked
(i.e., Ftemplate) and use our proposed method to reconstruct face
images. Then, to evaluate the transferability of reconstructed
face images, we also use four different FR models with SOTA
backbones from FaceX-Zoo [44] for the target FR system (i.e.,
Ftarget), including AttentionNet [45], HRNet [46], RepVGG [47],
and Swin [48]. The recognition performances of these models
are reported in Table III.

2) Datasets: All the FR models used in our experiments are
trained on the MS-Celeb1M dataset [49]. However, we assume
that the adversary does not have knowledge about the training
data of the FR network (either Ftemplate or Ftarget), and uses
another dataset for training the face reconstruction model. We
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Fig. 5. Block diagram of a FR system and data flows in normal usage (gray solid arrows), TI attack by injecting the reconstructed face image (orange dashed
arrows), and performing presentation attack using the reconstructed face image (red dashed arrows).

TABLE III
RECOGNITION PERFORMANCE OF FACE RECOGNITION MODELS USED IN OUR

EXPERIMENTS IN TERMS OF TRUE MATCH RATE (TMR) AT THE THRESHOLDS

CORRESPOND TO FALSE MATCH RATES (FMRS) OF 10−2 AND 10−3

EVALUATED ON THE MOBIO AND LFW DATASETS

use the Flickr-Faces-HQ (FFHQ) dataset [6], which consists of
70,000 high-resolution (i.e., 1024× 1024) face images crawled
from the internet (without identity labels), for training our 3D
face reconstruction model. We randomly split the FFHQ dataset
to train (90%) and validation (10%) subsets.

To evaluate the vulnerability of FR systems to TI attacks, we
consider two other different face image datasets with identity
labels, including the MOBIO [50] and Labeled Faces in the
Wild (LFW) [51] datasets. The MOBIO dataset includes face
images captured using mobile devices from 150 people in 12
sessions (6-11 samples in each session). The LFW dataset in-
cludes 13,233 face images of 5,749 people collected from the
internet, where 1,680 people have two or more images.

3) Evaluation Protocol: To implement each of the attacks
described in Section III-A, we build one or two separate FR
systems using the same or two different SOTA feature extractor
models (based on the attack type). If the target FR system is
the same as the system from which the template is leaked (i.e.,
Ftemplate = Ftarget, as in attack 1 and attack 3), we have only one
FR system. Otherwise, if the target system is different than the
system from which the template is leaked (i.e.,Ftemplate �= Ftarget,
as in attack 2, attack 4, and attack 5), we have two FR systems
with two different feature extractors. We should note that in
the transferability evaluations, we need that the subjects whose

templates are leaked to be enrolled in the target system too.
Therefore, to implement any of the attacks which require two
FR systems (i.e., attack 2, attack 4, and attack 5), we use one of
our evaluation datasets to build both FR systems (i.e., Ftemplate

and Ftarget).
To evaluate the vulnerability to all our TI attacks, we assume

that the target FR system is configured at the threshold corre-
sponding to a false match rate (FMR) of 10−2 or 10−3, and we
evaluate the adversary’s success attack rate (SAR) in entering
that system. In our experiments, we consider two situations,
where the adversary can inject the reconstructed face image as a
query to the FR system (Section IV-B), or use the reconstructed
face image to perform a presentation attack (Section IV-C).
Fig. 5 depicts and compares two scenarios of injecting the
reconstructed face image or performing a presentation attack. In
our evaluation of TI attacks by injecting the reconstructed face
image (Section IV-B), we directly inject the reconstructed face
images into the feature extractor of the FR system and evaluate
the TI attack in terms of SAR. However, in our evaluation
of the presentation attack using the reconstructed face image
(Section IV-C), we present the reconstructed face image (using
either a digital screen or a printed photograph) in front of the
camera and evaluate the attack in terms of SAR.

4) Implementation Details and Source Code: To build the FR
pipeline and evaluate the TI attacks against FR systems, we use
the Bob9 [52] toolbox. We use the PyTorch package and trained
all the networks on a system equipped with an NVIDIA GeForce
RTXTM 3090. For the GNeRF model, we use the pretrained
model of EG3D10 with StyleGAN [37] backbone to generate 3D
faces with 512× 512 high-resolution images from any arbitrary
view. For the FR models, we use the pretrained models11 form
Bob and FaceX-Zoo [44] toolboxes.

To train our 3D face reconstruction networks, we consider
nepoch = 15, nWGAN

C = 4 and nWGAN
M = 2 in Algorithm 1. Fur-

thermore, the input noise vectors to the mapping network of

9Available at https://www.idiap.ch/software/bob/
10Available at https://github.com/NVlabs/eg3d
11Available at https://gitlab.idiap.ch/bob/bob.bio.face

https://www.idiap.ch/software/bob/
https://github.com/NVlabs/eg3d
https://gitlab.idiap.ch/bob/bob.bio.face
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GNeRF’s pretrained network (i.e., z ∈ Z) and to our mapping
network Mrec (i.e., n ∈ N ) are both from the standard normal
distribution and with 512 and 16 dimensions, respectively. The
intermediate latent space of GNeRF model has 14× 512 di-
mensions, i.e., W ⊂ R14×512. The templates extracted by the
FR models in Table III have 512 dimensions. For simplicity
in training our mapping network, we assume that our train-
ing face images from the FFHQ dataset (i.e., real data) are
frontal.

In our experiments, we use the continuous optimization (in
whitebox attacks only) and grid search optimization (in both
whitebox and blackbox attacks) in the inference stage, as de-
scribed in Section III-C, to optimize camera parameters. In
the grid search approach, we consider ψ ∈ [−45◦,+45◦] and
θ ∈ [−30◦,+30◦] for a 11× 11 grid with step sizes ofψstep = 9◦

and θstep = 6◦. For the continuous optimization, we use Adam
optimizer [42] with the learning rate of 10−2 and 121 iterations.
An ablation study on the effect of these hyperparameters and the
corresponding execution times are reported in Section IV-D.

We should note that the source code and the captured images
for our presentation attack evaluation are publicly available to
help reproduce our results.12

B. TI Attack by Injecting Reconstructed Face Images

In this section, we consider the situation where the adversary
can inject the reconstructed face image to the feature extractor
of the target FR system. We consider SOTA FR models and
evaluate the vulnerability of these systems to different TI attacks
described in Section III-A in the whitebox (attacks 1-2) and
blackbox (attacks 3-5) scenarios.

1) Whitebox Scenario: In attacks 1-2, we assume that the
adversary has the whitebox knowledge of the FR system from
which the template is leaked (i.e., Ftemplate) and uses the same
feature extraction model for training (i.e., Fproxy) the face re-
construction network. We considered ArcFace and ElasticFace
models for the system from which the template is leaked (i.e.,
Ftemplate) and evaluate the vulnerability of SOTA FR systems as
the target FR systems against attacks 1-2. Table IV compares
the vulnerability of different target systems to attacks 1-2 using
our method13 in terms of adversary’s SAR at the system’s FMR
of 10−3. As this table shows, our proposed face reconstruction
method achieves considerable SAR values against ArcFace and
ElasticFace target FR systems in attack 1. Comparing the SAR
values between attack 1 and attack 2, the SAR values degrade
for different target FR models in attack 2. However, the re-
constructed face images are transferable and can still be used
to enter a target system with a different feature extractor. It is
also noteworthy that considering the recognition performances
in Table III, we can conclude that the target FR system with
a higher recognition accuracy is generally more vulnerable to
attack 2. For example, when ArcFace is used for Ftemplate in
Table IV, attacks against ElasticFace and Swin as target FR

12Project page: https://www.idiap.ch/paper/gafar
13Note that as reported in Table I, none of the whitebox face reconstruction

methods in the literature has an available source code, and we neither could
reproduce their results.

TABLE IV
EVALUATION OF WHITEKBOX ATTACKS (I.E., ATTACKS 1-2) AGAINST SOTA FR

MODELS IN TERMS OF ADVERSARY’S SUCCESS ATTACK RATE (SAR) WHEN

INJECTING RECONSTRUCTED FACE IMAGE GENERATED USING OUR FACE

RECONSTRUCTION METHODS EVALUATED ON THE MOBIO AND LFW
DATASETS

systems result in the highest SAR, and there is the same order for
their recognition performance in Table III. Comparing the frontal
reconstructed face images by our proposed method (iGaFaR)
with our camera parameter optimizations methods (GaFaR+GS
and GaFaR+CO), the results show that camera parameter opti-
mization methods improve SAR in both attack 1 and attack 2.
Therefore, camera parameter optimization methods not only
enhance the attack against the same system (i.e., attack 1), but are
also transferable to other FR systems (i.e., attack 2). Comparing
the grid search and continuous optimization methods for camera
parameter optimization, the results show that the continuous
optimization method achieves higher SAR values, and therefore
further enhances our TI attack. Fig. 6 illustrates sample face
images and their corresponding frontal face reconstruction as
well as a sub-grid of reconstructed face images with different
poses from ArcFace templates in the whitebox TI attacks (i.e.,
attacks 1-2). We should note that the reconstructed face images
in attack 1 and attack 2 are the same, however, they are used to
enter different target FR systems.

2) Blackbox Scenario: In attacks 3-5, we assume that the
adversary has the blackbox knowledge of the feature extractor
of the FR system from which the template is leaked (i.e.,Ftemplate)
and uses another feature extraction model for training (i.e.,
Fproxy). Similar to Section IV-B1, we consider ArcFace and
ElasticFace models for Ftemplate and evaluate the vulnerability of
SOTA FR systems in the target FR systems against attacks 3-5.
In each case, we also use the other model forFproxy (i.e., ArcFace
as Ftemplate and ElasticFace as Fproxy or ElasticFace as Ftemplate

and ArcFace as Fproxy). Table V compares the performance of
our method with blackbox methods in the literature [24], [28],
[31] for attacks 3-5 in terms of adversary’s SAR at system’s FMR
of 10−3. As the results in this table show, the frontal face recon-
struction by our method (i.e, GaFaR) achieves superior perfor-
mance than previous methods in the literature. Moreover, when
we apply camera parameter optimization (i.e., GaFaR+GS) the

https://www.idiap.ch/paper/gafar
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TABLE V
EVALUATION OF BLACKBOX ATTACKS (I.E., ATTACKS 3-5) AGAINST SOTA FR MODELS IN TERMS OF ADVERSARY’S SUCCESS ATTACK RATE (SAR) WHEN

INJECTING RECONSTRUCTED FACE IMAGE GENERATED USING DIFFERENT FACE RECONSTRUCTION METHODS EVALUATED ON THE MOBIO AND LFW DATASETS

Fig. 6. Sample face images from the FFHQ dataset (first row) and their
corresponding frontal face reconstruction (second row) as well as reconstructed
face images within the camera parameters sub-grid (third row) using our method
in the whitebox TI attacks (i.e., attacks 1-2) against ArcFace. The values below
each image show the cosine similarity between templates of original and frontal
reconstructed face images.

performance of our attack improves up to 11.91%, 3.98%, and
10.00% compared to our frontal face reconstruction (i.e, GaFaR)
in attack 3, attack 4, and attack 5, respectively. Comparing the
use of ArcFace and ElasticFace as Fproxy, the results show that
the SAR values in attacks with the ArcFace model are higher.
This can be due to the fact that according to Table III, ArcFace
has a better recognition performance than ElasticFace.

Table V also shows that SOTA FR systems are vulnerable to
our TI attacks in the blackbox scenario. In particular, in attack 5
which is the hardest TI attack, where Ftarget, Ftemplate, and Fproxy

are different, the results show that SOTA FR models (as the target
FR system) are still vulnerable to our TI attack. The results of

Fig. 7. Sample face images from the FFHQ dataset (first row) and their
corresponding frontal (second row) reconstructed face images using our method
in the blackbox attack against ElasticFace using ArcFace as Fproxy. The values
below each image show the cosine similarity between templates of original and
frontal reconstructed face images.

attack 5 for our proposed method also show the transferability
of our attack to different FR systems. In addition, similar to the
whitebox scenario, we can also observe that for TI attacks in
the blackbox scenario, the FR model with a higher recognition
performance is generally more vulnerable to our TI attacks.
Comparing the results in Tables IV and V and as expected,
attack 1 is the easiest attack with the highest SAR, where
Ftemplate, Fproxy, and Ftarget are the same, and attack 5 is the most
difficult attack, where Ftemplate, Fproxy, and Ftarget are different.
Fig. 7 shows sample face images and their corresponding frontal
face reconstruction as well as their sub-grids of reconstructed
face images with different poses from ElasticFace templates
in the blackbox TI attack (i.e., attacks 3-5) using ArcFace as
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Fig. 8. Our evaluation setup for performing different types of presentation and
capturing presentation using mobile devices: (a) replay attack using Apple iPad
Pro, and (b) presentation attack using printed photograph.

Fproxy. Similar to attacks 1-2, the reconstructed face images in
attacks 3-5 are the same, however, they are used to enter different
target FR system.

C. Practical Presentation Attack Using Reconstructed Face
Images

In this section, we consider the situation where the adversary
uses the reconstructed face image to perform a presentation
attack to enter the target FR system. We consider reconstructed
face images from ArcFace templates using our proposed face
reconstruction method and camera parameter optimizations (i.e.,
GaFaR, GaFaR+GS, and GaFaR+CO) in both whitebox and
blackbox scenarios, and use the reconstructed face images in
each case to perform presentation attacks. We perform our
presentation attacks against different SOTA FR systems based
on the various TI attacks described in Section III-A. Therefore,
we similarly have five different presentation attacks according
to the adversary’s knowledge of the FR system from which
the template is leaked (i.e., Ftemplate) and the target FR system
(i.e., Ftarget). We also assume that the adversary can use the
reconstructed face images to perform two types of attacks as
follows:
� Presentation attack via digital replay (replay attack): In

this type of presentation attack, the adversary presents the
reconstructed face image using a digital display in front of
the camera. To perform this attack, we use a tablet (Apple
iPad Pro) showing the reconstructed face image and put it
in front of the camera of the target FR system.

� Presentation attack via printed photograph: In this type of
presentation attack, the adversary prints the reconstructed
face image and presents the printed photograph. To perform
this attack, we print the reconstructed face images with
a colorful laser printer (Develop Ineo+C364e) on typical
papers and present the printed photograph in front of the
camera of the target FR system.

To perform the presentation attacks (with either digital re-
play or printed photograph), the reconstructed image should

Fig. 9. Sample image from the MOBIO dataset, its corresponding recon-
structed face images using our face reconstruction methods (i.e., GaFaR,
GaFaR+GS, and GaFaR+CO) in the whitebox and blackbox scenarios, the
corresponding digital replay attacks and presentation attacks using printed
photographs captured with different mobile devices.

be presented in front of the camera of the target FR system.
For each of these cases, we considered three different mobile
devices, including Apple iPhone 12, Xiaomi Redmi 9 A, and
Samsung Galaxy S9, as the camera of the target FR system
and capture images from the presentations. Fig. 8 shows our
evaluation setup for capturing presentation attacks from tablet
and printed photographs using different mobile cameras. It is
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TABLE VI
VULNERABILITY EVALUATION OF THE SIMULATION (I.E., INJECTION) AND PRACTICAL WHITEBOX AND BLACKBOX TI ATTACKS USING ARCFACE TEMPLATES

AGAINST DIFFERENT FR SYSTEMS AS TARGET IN TERMS OF SAR/IAPMR FOR FR SYSTEMS WITH FMR OF 10−3 EVALUATED ON THE MOBIO DATASET

noteworthy that we used the default display scale on the digital
screen (i.e., iPad), in which the reconstructed face images with
512× 512 resolution do not cover all the screen. However, the
face area in the captured images is still larger than the required
resolution to feed to be used in the target FR systems.

Fig. 9 illustrates a sample face image from the MOBIO
dataset, its reconstructed face images from ArcFace templates
using our different methods (GaFaR, GaFaR+GS, and Ga-
FaR+CO) in the whitebox and blackbox (using ElasticFace as
Fproxy) scenarios, and captured images from the reconstructed
face images using different mobile devices in replay attacks
and presentation attacks using printed photographs. As this
figure shows, the captured images from replay attacks are more
similar to the reconstructed face images, while the ones from
printed photographs suffer from quality degradation. In addition,
different mobile devices introduce different sensor qualities, and
therefore different image qualities for the captured images in
our experiment. We use the captured images14 by each mobile

device from presentation attacks as inputs to different SOTA
FR systems as target FR systems, and evaluate the vulnerability
of these FR systems to the presentation attack using the recon-
structed face images.

Table VI reports the result of the vulnerability evaluation
against SOTA FR systems to TI attacks (by injecting the re-
constructed face images in our simulation), and different pre-
sentation attacks (digital replay attack and printed photograph)
in the whitebox and blackbox scenarios in terms of SAR.15 It
is noteworthy that based on the presentation type, we have two

14The reconstructed face images and all captured images for our presentation
attack evaluation are publicly available.

15According to the ISO/IEC 30107-3 standard [53], the adversary’s success
attack rate in the evaluation of presentation attack is reported in terms of the
Impostor Attack Presentation Match Rate (IAPMR). However, for consistency
with our experiments in Section IV-B, we use “SAR” to report the success attack
rate in the evaluation of our presentation attacks using reconstructed face images
too.
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TABLE VII
COMPARISON OF OUR PROPOSED METHOD WITH PREVIOUS BLACKBOX TI

METHODS IN PRACTICAL PRESENTATION ATTACKS (REPLAY ATTACKS

CAPTURED BY IPHONE 12) USING ARCFACE TEMPLATES AGAINST DIFFERENT

FR SYSTEM (I.E., ATTACKS 3-5) IN TERMS OF SAR/IAPMR AT FMR OF 10−3

ON THE MOBIO DATASET

types of presentation attacks (replay attack and printed photo-
graph), and based on the adversary’s knowledge of the FR system
from which the template is leaked (i.e., Ftemplate) and the target
FR system (i.e., Ftarget), we have five different TI attacks (as
described in Section III-A) and thus five different corresponding
presentation attacks. The results in Table VI show that SOTA FR
models as target systems are vulnerable to our attacks. In general,
and as also seen in Section IV-B, attack 1 is the easiest attack, and
as the adversary’s knowledge becomes more limited, the attack
gets more difficult in attack 2, attack 3, attack 4, and attack 5,
respectively. Comparing our different reconstruction methods
(i.e., GaFaR, GaFaR+GS, and GaFaR+CO), we can observe
that camera parameter optimizations improve SAR values. The
results also show that replay attacks achieve higher SAR values
compared to presentation attacks using printed photographs.
Comparing the results in Table VI for different mobile devices,
the SAR values are comparable across different methods and in
different attack types.

We also compare the performance of our method with two
best blackbox methods in the literature from Table V (i.e.,
NBNetB-P [24] and Vebdrow and Vendrow [31]) in presentation
attacks based on TI attacks 3-5 against SOTA FR models.
Table VII reports this evaluation for digital replay presentation
attack (captured by Apple iPhone 12) based on TI attacks using
ArcFace templates against SOTA FR models in terms of ad-
versary’s SAR at the system’s FMR of 10−3 on the MOBIO
dataset. The results in this table show that our method still
achieves superior performance than previous methods in the
literature. Comparing this table with Table V, we can see there
are in average −4.7%, 0%, −0.87%, and −2.69% changes
in the SAR values in presentation attacks than the injection
of reconstructed face images (Table V) for NBNetB-P [24],
Vebdrow and Vendrow [31], GaFaR, GaFaR+GS, respectively.

D. Discussion

Our experiments in Section IV-B show that our proposed
method outperforms previous methods in the literature in TI
attacks against FR systems. To evaluate the effect of each part
in our proposed method, we perform an ablation study and
train different models. To this end, we evaluate the effect of
semi-supervised learning approach in our method compared to
fully supervised learning (i.e, using only synthetic data where

TABLE VIII
ABLATION STUDY ON THE PROPOSED SEMI-SUPERVISED LEARNING APPROACH

AND EVALUATION OF THE EFFECT OF LOSS TERMS IN ATTACK 1 AGAINST

ARCFACE MODEL IN TERMS OF SUCCESS ATTACK RATE (SAR) ON THE

MOBIO AND LFW DATASETS

we have the corresponding latent code for each template) and
fully unsupervised learning approach (i.e., using only real data
where we do not have the corresponding latent code for each
template). In each of fully supervised learning and fully un-
supervised learning approaches, we also evaluate the effect of
each loss function. In the case of the fully unsupervised learning
approach, we also evaluate the effect of adversarial learning in
our method. Table VIII reports our ablation study on the effect of
each part in our proposed method in attack 1 (injection) against
ArcFace model on the MOBIO and LFW datasets in terms of
SAR at system’s FMR of 10−2 and 10−3. As the results of our
ablation study show, the proposed semi-supervised approach has
a better reconstruction performance (in terms of SAR) than fully
supervised learning and fully unsupervised learning approaches.
Moreover, our ablation study on the effect of loss terms shows
that each of the loss terms has an important impact on the perfor-
mance of our face reconstruction network. In particular, using
WGAN for our unsupervised learning (i.e., using real training
data where we don’t have the true value of intermediate latent
codes for each training data) helps our mapping network Mrec

to learn the distribution of GNeRF intermediate latent spaceW .
However, if we do not use WGAN in training with real data, our
mapping network Mrec cannot learn the distribution of GNeRF
intermediate latent spaceW , and therefore the generated latent
codes by our mapping network Mrec will be out of distribution
W . This will cause the generator part of GNeRF to generate
non-face-like images. In addition to WGAN training, the results
in Table VIII show that each of the pixel loss and ID loss
terms enhances the reconstruction performance of our method
in training with either synthetic (supervised learning) or real
(unsupervised learning) data.

As another ablation study, we evaluate the effect of hyperpa-
rameters in the camera parameter optimization for our proposed
grid search (GS) and continuous optimization (CO) approaches.
For the grid search optimization approach, in our experiments in
Sections IV-B and IV-C, we considered ψ ∈ [−45◦,+45◦] and
θ ∈ [−30◦,+30◦] for a 11× 11 grid with step sizes ofψstep = 9◦

and θstep = 6◦. Fig. 10 illustrates a sample face image from the
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Fig. 10. (a) Sample face image from the FFHQ dataset, (b) its frontal recon-
structed face image, (c) its 3D face reconstruction, and (d) the corresponding
reconstructed face images with camera parameters grid using our method in the
whitebox attack against ArcFace. The cosine similarity between templates of
original (a) and frontal (b) reconstructed face images is 0.679.

FFHQ dataset and its frontal and 3D reconstruction as well as
the grid of reconstruction with the size of 11× 11 and camera
parameters ψ ∈ [−45◦,+45◦] and θ ∈ [−30◦,+30◦]. For our
ablation study, we use the same hyperparameters and only
change one of these hyperparameters (i.e., grid size, interval of
Φ, and interval of Θ) to evaluate its effect on the performance of
our method in terms of SAR and average execution time. Fig. 11
reports our ablation study in the attack 1 (injection) against the
ArcFace FR system configured at FMR = 10−3 on the MOBIO
dataset. The results in this figure show that the intervals of Φ
and Θ are not required to be very large. Moreover, by increasing
the size of our search grid (i.e., the number of steps) we can
achieve a better SAR with the cost of a higher execution time.
For the continuous optimization approach, in our experiments
in Sections IV-B and IV-C, we considered ψ ∈ [−45◦,+45◦]
and θ ∈ [−30◦,+30◦] and used Adam optimizer [42] with 121
iterations and the learning rate of10−2. Similarly, for the ablation
study, we use the same hyperparameters and only change one of
these hyperparameters (i.e., learning rate, number of iterations,
interval of Φ, and interval of Θ) to evaluate its effect on the per-
formance of our method in terms of SAR and average execution

time. Fig. 12 reports our ablation study in the attack 1 (injection)
against the ArcFace FR system configured at FMR = 10−3 on
the MOBIO dataset. According to these results, similar to the
ablation study for the grid search optimization, the intervals ofΦ
and Θ should not be necessarily very large. In addition, similar
to the effect of the grid size in the grid search optimization, by
increasing the number of iterations we can achieve a better SAR
with the cost of a higher execution time.

According to the results in Tables IV, V, and VI, our camera
parameter optimization methods improve the performance of
our face reconstruction network. In particular, we observe that
GaFaR+GS and GaFaR+CO also improve the SAR in attacks
against different target FR systems (i.e., transferability evalu-
ation in attacks 2, 4, and 5) too. This shows that our camera
parameter optimization methods improve the attacks in the way
that the reconstructed face images have more similar templates
to templates of the original face images, even if extracted by
a different FR model. Achieving such improvements in attacks
against different target FR systems shows the transferability of
our pose-optimized reconstructed face images.

We further investigate the effect of our camera parameter
optimization methods on our attacks. In attack 1 against Arc-
Face, our grid search method increases the similarity between
templates of original and reconstructed face images for 89.52%
and 88.70% of cases on the MOBIO and LFW datasets, respec-
tively. Moreover, our continuous optimization method increases
the similarity between templates for 99.04% and 98.66% of
reconstructed face images on the MOBIO and LFW datasets,
respectively.16 We also use the pose estimation model in [54]
to find the histograms of the pose of original and reconstructed
face images in attack 1 against17 ArcFace on the MOBIO and
LFW datasets. As the histograms in this figure show, most of the
pose-optimized reconstructed face images have a small variation
around the frontal pose. This observation is also consistent with
our ablation study in Figs. 11 and 12, where we see that the
intervals ofΦ andΘ are not required to be very large. In addition,
Fig. 13 also shows that the pose of reconstructed face images
does not have the same distribution as that of the original face
images. This demonstrates that our camera parameter optimiza-
tion methods (CO or GS) do not try to find the same pose
as the original images, but rather try to find a pose that has
a template with higher similarity to the leaked template. Our
transferability evaluations in Tables IV, V, and VI (i.e., attacks 2,
4, and 5) also confirm that the pose-optimized reconstructed
face images also achieve better performance in attacks (either
inject or even presentation attack) against different FR systems.
Therefore, 3D reconstruction is essentially more useful than 2D
reconstruction to generate better 2D reconstructed face images
in our attacks. Fig. 14 shows sample reconstructed face images
from the MOBIO dataset in whitebox and blackbox (using Elas-
ticFace) TI attacks using our different reconstruction methods.

16These results can also explain the superiority of GaFaR+CO compared to
GaFaR+GS in Tables IV and VI.

17We should note that since we use the same reconstructed face images for
injection and presentation attacks, the histograms in Fig. 13 are valid for both
injection and presentation attacks.
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Fig. 11. Ablation study on the effect of different hyperparameters in grid search for camera parameters optimization in terms of success attack rate (SAR) and
average execution time for each image reconstruction for whitebox attack (i.e., attack 1) against a FR system based on ArcFace configured at FMR=10−3 on the
MOBIO dataset: a) grid size, b) interval of Φ, and c) interval of Θ.

Fig. 12. Ablation study on the effect of different hyperparameters in continuous optimization for camera parameters in terms of success attack rate (SAR) and
average execution time for each image reconstruction for whitebox attack (i.e., attack 1) against a FR system based on ArcFace configured at FMR = 10−3 on the
MOBIO dataset: a) learning rate, b) number of iterations, c) interval of Φ, and d) interval of Θ.

Fig. 13. Histogram of pitch and yaw in (a) original, (b) GaFaR+GS, and
(c) GaFaR+CO for attack 1 against ArcFace on the MOBIO (first row) and
LFW (second row) datasets. Note that for GaFaR without any camera parameter
optimization, the reconstructed face images are frontal (i.e., pitch and yaw values
are zero), and thus the histogram for GaFaR is not depicted in this figure.

We can observe that our camera paramter optimization leads to
different poses to increase SAR.

Comparing our result in whitebox (Table IV) and blackbox
(Table V) attacks in Section IV-B, we observe that our proposed
face reconstruction network, GaFaR, achieves better perfor-
mance in whitebox attacks (attacks 1-2) than blackbox attacks
(attacks 1-2) when inverting ArcFace templates (i.e., ArcFace
as Ftemplate). However, in inverting ElasticFace templates, the
results show that GaFaR achieves better performance in black-
box attacks (attacks 3-5) than whitebox attacks (attacks 1-2).
As a matter of fact, the difference in whitebox and blackbox
attacks in our method is the FR model used as Fproxy for training
our network. In blackbox attacks against ElasticFace templates,

Fig. 14. Reconstruction of sample images from the MOBIO dataset in white-
box and blackbox (using ElasticFace) TI attacks against ArcFace templates using
our methods.

the ArcFace model is used as Fproxy while in whitebox attacks,
the ElasticFace model is used as Fproxy. Similarly, Table III
also shows that ArcFace has a superior recognition performance
than ElasticFace, and thus it can more help the training of the
face reconstruction network. To further investigate the effect of
Fproxy for difference attacks, as another experiment we compare
the performance of our method in whitebox attacks (attack 1)
and blackbox attacks (attack 3 using ArcFace as Fproxy) against
different FR systems on the MOBIO and LFW datasets. As
the results in Table IX show, in all cases except attacks against
Swin, blackbox attacks with ArcFace as Fproxy achieve superior
performance than whitebox attacks for templates of different FR
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TABLE IX
WHITEBOX (ATTACK 1) AND BLACKBOX (ATTACK 3) TI ATTACKS WITH OUR

METHOD, GAFAR, AGAINST DIFFERENT TARGET FR SYSTEMS IN TERMS OF

SAR AT FMR OF 10−3 ON THE MOBIO AND LFW DATASETS

models. In contrast to other FR models in our experiments which
are CNN-based, Swin is a transformer-based FR model, which
can be the reason why in blackbox attacks with Swin templates
using ArcFace (which is a CNN-based FR model) asFproxy could
not lead to superior performance.

In drawing our discussion to a close, our experiments in
Section IV-B show the vulnerability of SOTA FR systems
to TI attacks using our face reconstruction methods (GaFaR,
GaFaR+GS, and GaFaR+CO). Similarly, our experiments in
Section IV-C show that the reconstructed face images by our
proposed methods can be used for presentation attacks against
the same FR system or different FR systems that the correspond-
ing user is enrolled (i.e., transferability of the reconstructed face
images). In fact, our experiments show potential threats that
can seriously jeopardize the security and privacy of users if
the facial templates are leaked. In addition to the experiments
in Sections IV-B and IV-C, we should note that our proposed
method can generate 3D face from facial templates (as shown
in Figs. 1 and 10). Such 3D reconstruction can be used for
more sophisticated presentation attacks (e.g., 3D face mask,
etc.) against FR systems, which require further studies in future
works.

V. CONCLUSION

In this article, we presented a comprehensive vulnerability
evaluation of SOTA FR systems to TI attacks using 3D face
reconstruction from facial templates. We proposed a new method
(called GaFaR) to reconstruct 3D faces from facial templates us-
ing a geometry-aware face generation network based on GNeRF.
We learned a mapping from facial templates to the intermediate
latent space of the GNeRF model with a semi-supervised learn-
ing approach using real and synthetic training data. For the real
data, where we do not have correct intermediate latent code, we
used a GAN-based training to learn the distribution of interme-
diate latent space of the GNeRF model (unsupervised learning).
For the synthetic data, we have the corresponding intermediate
latent code and directly learn the mapping (supervised learning).
In addition, we proposed two optimization methods on the
camera parameters in GNeRF to find a pose that improves the
TI attack: grid search and continuous optimization. In the grid
search method, we considered a grid for pitch and yaw rotations
of the reconstructed face, and in continuous optimization, we
used a gradient-based optimizer to optimize camera parameters.

We proposed our method in the whitebox and blackbox attacks
against face recognition systems and comprehensively evaluated
the vulnerability of SOTA FR systems to our method. Consider-
ing whitebox and blackbox blackbox scenarios and adversary’s

knowledge of target FR system, we defined five types of TI
attacks and evaluated the transferability of our reconstructed
face images across other FR systems on the MOBIO and LFW
datasets. We evaluated the TI attacks by injecting reconstructed
face images as queries to the target FR systems. In addition,
we performed practical presentation attacks against SOTA FR
systems using digital screen replay and printed photographs
of reconstructed frontal and pose-optimized face images. Our
experiments showed the vulnerability of SOTA FR models to our
TI attacks and also presentation attacks using our reconstructed
face images.

Last but not least, our proposed method can generate 3D faces
from facial images, and we used the 3D reconstruction to find a
pose that improves the adversary’s success attack rate. However,
3D reconstruction of users’ faces paves the way for new types of
attacks (e.g., 3D face masks, etc.), which need to be investigated
in the future.
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