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Abstract—In this work, we concentrate on the detection of
anomalous behaviors in systems operating in the physical world
and for which it is usually not possible to have a complete set of all
possible anomalies in advance. We present a data augmentation and
retraining approach based on adversarial learning for improving
anomaly detection. In particular, we first define a method for gener-
ating adversarial examples for anomaly detectors based on Hidden
Markov Models (HMMs). Then, we present a data augmentation
and retraining technique that uses these adversarial examples to
improve anomaly detection performance. Finally, we evaluate our
adversarial data augmentation and retraining approach on four
datasets showing that it achieves a statistically significant perfor-
mance improvement and enhances the robustness to adversarial
attacks. Key differences from the state-of-the-art on adversarial
data augmentation are the focus on multivariate time series (as op-
posed to images), the context of one-class classification (in contrast
to standard multi-class classification), and the use of HMMs (in
contrast to neural networks).

Index Terms—Adversarial learning, anomaly detection, cyber-
physical systems, data augmentation, HMMs, robotic systems.

1. INTRODUCTION

EWLY conceived intelligent systems that operate in the
N physical world are required to reliably work over long
periods of time under changing and unpredictable environmental
conditions. In robotic applications, for instance, this is referred
to as long-term autonomy (LTA) [1]. In this context, anomaly
detection plays a paramount role because it allows to identify
as soon as possible situations that diverge from the desired (i.e.,
safe/optimal) ones. A key property of anomalies in autonomous
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robotic systems and Cyber-Physical Systems (CPSs) is that
they are often related to (dynamical) behaviours of the whole
system, rather than to specific components (e.g., a specific sensor
or actuator). Hence, they can be detected from observations
acquired by multiple sensors and spanning some time intervals,
rather than from single instantaneous observations. This requires
the analysis of multivariate time series to identify behavioural
anomalies. The literature about detectors for anomalous (dynam-
ical) behaviours is still in its early stages and further efforts are
needed to meet the requirements of autonomous robotic systems
and CPSs.

In this work we focus on Hidden Markov Models (HMMs) [2]
as they represent a powerful and widely used mathematical
model for learning robot behaviour [3] and for encoding noisy
time series [4]. Moreover, HMMs are known to be robust to
spatio-temporal variations and can successfully model intelli-
gent systems behaviours in several LTA contexts, where similar
sequences of actions (tasks) are typically repeated multiple
times [5], [6]. In particular, in [7] an online approach has been
proposed for detecting anomalous behaviours of robot systems
involved in complex LTA scenarios. The methodology uses
HMMs to model the nominal (expected) behaviour of arobot and
the Hellinger distance [8] to evaluate the dissimilarity between
the probability distribution of subsequences of observations (i.e.,
multivariate sensor time series) in a sliding window and the
emission probability of the related HMM hidden states. The
advantage of using such a distance measure instead of standard
measures (e.g., the likelihood of observation subsequences) is
twofold: first, the Hellinger distance is bounded and thus lends
itself to simpler interpretation and thresholding; second, it is less
noisy, hence more informative and discriminative [7]. For sim-
plicity, in the following we refer to the online algorithm proposed
in [7] as HMM-Hellinger-based Anomaly Detector (HHAD).

A key issue for behavioural anomaly detection in robotics
and CPSs is the lack (or paucity) of anomalous examples and
the noise that characterizes data in these contexts. To address this
issue, in this paper we propose an adversarial data augmenta-
tion and retraining approach for HHAD (called HHAD-AUG).
Following the recent promising trends of adversarial exam-
ple generation and adversarial attack generation for machine
learning models [9], we base our data augmentation method on
adversarial examples, namely, perturbed time series [10], [11],
[12], [13], that have the advantage of not requiring any prior
knowledge about the application domain and data conformation.
In particular, we generate adversarial examples for nominal
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points, the only knowledge available at training time, using
two algorithms. The first algorithm (called H-ADV) uses a loss
function' based on the Hellinger distance between the observed
and the expected data distributions (i.e., model parameters) and
the second (called L-ADV) uses a loss function based on sample
likelihood. We mathematically derive the gradients of both loss
functions and present a procedure to use them to augment the
original dataset. We then use adversarial data augmentation
to improve the detection performance of HHAD (in terms of
F1-score) when limited amounts of training data is available, but
we show that the methodology we propose achieves performance
improvements also when models are trained on large datasets.
Notice that we focus on anomaly detection as a one-class
classification problem, in which examples of the anomalous
class are not considered in the learning phase, hence the only
way to perform data augmentation is to generate new nominal
examples.

In contrast to the literature on generating adversarial ex-
amples, we focus on time series rather than images and we
consider HMMs rather than deep neural networks. Recently,
an approach for performing adversarial attacks on (univariate)
time series classifiers was proposed [12], but it is based on neural
network classifiers, hence it requires large datasets. Our method
employs the definition of adversarial attacks for time series used
in [12] but it is oriented to HMM-based anomaly detectors,
which achieve strong results on multivariate time series also on
small datasets [7]. Moreover, the proposed method focuses on
anomaly detection as one-class classification, a key difference
with respect to [12].

We evaluate our data augmentation and retraining approach
on four public datasets, three known real-world benchmarks for
anomaly detection in robotic systems and CPSs, i.e., Tennessee
Eastman [14], SWaT [15], and ALFA [16], and one created by the
authors using aquatic drones developed in a EU H2020 project,
i.e., INTCATCH [17]. The experimental evaluation of the pro-
posed approach shows that (i) H-ADV and L-ADV can generate
meaningful adversarial examples for HHAD; (ii) HHAD-AUG
can employ these new examples to significantly improve the
performance of HHAD; (iii) using examples from both H-ADV
and L-ADV outperforms state-of-the-art augmentation methods;
(iv) using examples generated by H-ADV is better than using
examples generated by L-ADV (i.e., the former wins on three
datasets and ties on one), hence we consider H-ADYV as the best
method to generate adversarial examples for data augmentation
of HHAD; (vi) the low computational complexity of H-ADV
and the high parallelizability of L-ADV allow for a fast data
augmentation and retraining of HHAD. The generated exam-
ples are guaranteed to have small distance from the original
examples, according to the definition of adversarial examples
for time series [12]. In summary, the main contributions of this
work to the state-of-the-art are the following:

® we propose an algorithm able to generate adversarial ex-

amples for a one-class anomaly detector based on HMMs
and working with multivariate time series (Section IV-A);

!"Throughout the manuscript we use term “loss” as a synonym of “anomaly
score”.
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® we propose an algorithm for data augmentation based on
adversarial examples which improves the performance of
the anomaly detector (Section IV-B);

® we evaluate, with positive results, both adversarial gener-
ation and data augmentation on four datasets of multivari-
ate sensor signals acquired from autonomous robots and
industrial CPSs (Section V).

II. RELATED WORK

Three research topics are mainly related to our work: data
augmentation, adversarial example generation, and anomaly
detection in autonomous robots and CPSs.

Data Augmentation: Data augmentation techniques are used
to increase the amount of available data by adding slightly
modified copies of already existing data with the aim of regular-
izing and reducing overfitting when training a machine learning
model. In [18], data augmentation methods for images are sur-
veyed. The main goal of data augmentation, both for images and
for other types of data, is to prevent class imbalance and model
overfitting due to data limitations, by adding synthetic examples
to available datasets [19].

Time series data augmentation is not an established prac-
tice. The majority of the state-of-the-art approaches for time
series do not use data augmentation, and the first surveys on
these techniques have been presented only recently [20], [21].
Methods related to adversarial training are still not considered
in the literature related to time series data augmentation. Most
data augmentation techniques for time series [20], [21], [22],
[23], [24] are instead based on random transformations, such
as, addition of random noise, slicing, cropping, scaling, random
warping in the time dimension, and frequency warping.

Adversarial data augmentation, also called adversarial train-
ing [25], is the process of augmenting a dataset using adversarial
examples (a.k.a. adversarial attacks) to achieve two main goals,
namely, making classifiers more robust to adversarial attacks
and reducing their test error on clean inputs, i.e., improving the
accuracy of the classifier on the test set. This practice has been
very recently applied to image classifiers [ 18], where adversarial
data augmentation has been used to improve generalization to
unseen domains. In [26], an iterative procedure is proposed to
augment a dataset with examples from a fictitious target domain
that is hard under the current model. The methodology is inspired
by recent developments in distributionally robust optimization
and adversarial training. For instance, in [27], a good perfor-
mance under adversarial input perturbations is guaranteed by
considering in the learning optimization problem a Lagrangian
penalty for perturbing the data distribution in a Wasserstein (a
distance over probability distribution) ball. In [28], it is proposed
a novel regularization term for adversarial data augmentation in
deep neural networks for image classification. The methodology
extends [26] and reduces to it when the maximum-entropy term
is discarded. These approaches show that adversarial training
can effectively help when searching for augmentations [18].

Our method applies these principles to a specific one-class
classification problem (i.e., anomaly detection), for time series
data instead of images. We apply, in particular, adversarial data



CASTELLINI et al.: ADVERSARIAL DATA AUGMENTATION FOR HMM-BASED ANOMALY DETECTION

augmentation to the HMM-based detector presented in [7]. The
adversarial-based strategy that we use to generate synthetic
examples makes our methodology deeply different from tradi-
tional time series augmentation methods, since we do not need
prior knowledge about the application domain to generate data
transformations. Furthermore, our strategy allows to improve
detection performance on both the original test set and the
adversarial attacks generated from the test set, hence it improves
also the robustness to adversarial attacks.

Adversarial Example Generation: Adversarial examples for
classification models are investigated in [29] and the analysis is
specialized to neural networks for image classification in [30],
where authors notice that “imperceptible non-random perturba-
tions applied to a test image can change the network prediction”.
An optimization procedure called box-constrained Limited-
memory Broyden—-Fletcher—-Goldfarb—Shanno algorithm (L-
BFGS) is proposed in [30] to compute adversarial perturba-
tions of images given network parameters. To overcome some
time-complexity issues of this method, another approach called
Fast Gradient Sign Method (FGSM) has been proposed [9]. It
produces sub-optimal adversarial examples, in terms of dis-
tance from the original example, but being very fast it has
quickly become popular and has inspired other approaches. Two
methods that produce smaller perturbations than FGSM while
ensuring good efficiency are Deepfool [31] and the Carlini-
Wagner method [32], that use iterative procedures based on
local linearization of the classifier function. A theoretical frame-
work for analyzing the robustness of classifiers to adversarial
perturbations is proposed in [33]. Adversarial training is used
as a regularization method for supervised and semi-supervised
learning of neural networks in [34]. A method for generating
universal adversarial perturbations is presented in [35]. Surveys
on adversarial attack methods are proposed in [36], [37].

Methodologies for generating adversarial attacks on time
series are proposed in [10], [11], [12], [13]. A strategy based
on Adversarial Transformation Networks (ATNs) is used, in
particular, in [11], [12] to generate adversarial attacks on a
target classifier of time series via a student model trained using
standard model distillation techniques. The target classifier can
be a fully convolutional neural network or a 1-nearest neighbor
classifier with Dynamic Time Warping. The ATN takes in input
a time series and its gradient with respect to the softmax-scaled
logits of the target class predicted by the attacked classifier, and
returns a perturbed time series that represents a possible adver-
sarial example. If the classifier being attacked is unknown (i.e.,
black-box attack) or it is 1-nearest neighbor with Dynamic Time
Warping (i.e., white-box attack on a non derivable classifier),
then the gradient cannot be computed. In these cases, the attack
is performed on the student model which is a neural network
that imitates the classifier and it is derivable. In [13], ATNs are
extended with autoencoders to attack multivariate time series
classification models.

In our work, we consider the same definition of adversarial
attacks used in [11], [12], [13] but the approach we propose
has a different objective and uses a different methodology. We
propose a data augmentation technique based on adversarial
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examples for improving HMM-based anomaly detectors that
work on multivariate time series, while [11], [12], [13] propose
new methodologies for generating adversarial attacks on time
series. We derive the gradient of the specific loss function of
the anomaly detector, hence our method generates adversarial
examples directly on the detector, not on a neural network that
approximates the detector. Also the target model is different:
in our case it is an anomaly detector trained using only nom-
inal examples, while in the literature examples of all classes
are considered to be available both in the training phase and
in the adversarial attack generation phase. The generation of
adversarial attacks has been studied also in the context of Natural
Language Processing [38], [39], where classification models are
sometimes similar to those used for time series classification.
However, to the best of our knowledge all the methodologies
proposed so far work with deep neural network models.

Anomaly Detection in Autonomous Robots and CPS:
Anomaly detection approaches for robotic systems and CPSs can
be divided into three main categories: model-based, knowledge-
based, and data-driven. Online data-driven methods are getting
more and more popular for autonomous robots and modern
industrial CPSs. Only few methods deal with anomalies in
system behaviours. Chandola et al. [40] refer to this type
of anomalies as contextual faults since they are originated by
observations in specific contexts. In other words, an observation
can be considered anomalous in a specific context but nominal
in another context [41], [42]. Recently, an approach has been
proposed for detecting anomalous process behaviours generated
by stealthy-attacks in CPSs and, in particular, in industrial
control systems [43]. Other approaches for the same application
domain have been recently presented [44], [45], some of them
based on deep learning [46], [47], [48], [49], [50], [51], [52].
The anomaly detector that we aim to improve by means of data
augmentation, called HHAD in this paper, considers contextual
anomalies (namely, observations that are infrequent in specific
contexts) but differs from other approaches in the literature
because it represents contexts as maximally frequent HMM
states in a time window instead of as sets of past observa-
tions [7]. The approaches that most resemble HHAD are [53]
and [54], in which HMMs are trained using multimodal sensory
signals for detecting anomalies in assistive robots. At run time,
the trained HMMs provide likelihood scores for data inside a
window, which are compared to an adaptive detection threshold
to identify putative anomalies. HHAD substitutes the likelihood
estimation used in these approaches with the Hellinger distance
which is a more informative and interpretable measure. While
other probabilistic distances [55] have been recently proposed
for anomaly and change detection, we focus on the Hellinger
distance since it is part of the original HHAD approach [7] and,
as discussed there, it is bounded and little noisy.

III. BACKGROUND AND NOTATION

In this section, we informally define the problem addressed in
this paper, the HMMs and Hellinger distance, and we describe
the HHAD algorithm. The main strategies for adversarial exam-
ple generation and data augmentation are finally presented.
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A. Problem Definition

Given the online one-class HMM-based anomaly detector
HHAD, introduced in [7], and trained on a dataset of nominal
multivariate time series, our goal is to improve its performance
by augmenting the training set with adversarial examples. More-
over, we aim at improving the robustness of the detector to
adversarial attacks.

B. Hidden Markov Models

We use HMMs [2] as a probabilistic model for the system that
generated a given d-dimensional time series X = (&1, ..., Z,)
where ¢, = [z}, ..., 2d],t € {1,...,n}, is the multivariate ob-
servation x; at time t. An HMM is a statistical model in which the
system being modeled is assumed to be a Markov process with K
hidden states. The mathematical notation A = {7, A, B} isused
to represent an HMM, where 7 = {m;} X, is the set of initial
state probabilities, A = {a;;},_, is the set of state transition
probabilities (i.e., a;; is the probability to move from state s;
to state s;), and B = {b;(x;)}X, is the set of the probability
distributions over observations in each state (emission prob-
abilities). In our setting, we assume a multivariate Gaussian
distribution for the emission probabilities, which means that
B = {N(u;,=;)}E |, where p; and X; are the mean and
the covariance matrix for state s;, respectively. To find the
parameters of the HMM A that maximize the fit (likelihood) to an
observed (sub)sequence X we use the Baum-Welch algorithm,
while to compute the optimal HMM state sequence (known as
Viterbi path) that best explains a given observed (sub)sequence
X we use the Viterbi algorithm. The number of hidden states and
the covariance type of an HMM can be found by minimizing the
Bayesian Information Criterion (BIC), which finds a trade-off
between maximizing the likelihood of the training data with
respect to. the model and minimizing the number of parameters
required (i.e., the number of hidden states) [56].

C. Hellinger Distance

The Hellinger distance [8] is a [0,1]-bounded function that
quantifies the similarity between two probability density func-
tions p; () and p2 (). In the case of two multivariate Gaussian
distributions p;(x) ~ N (u1,21) and pa(x) ~ N (pe, X2),
the Hellinger distance can be computed in closed form as

det(X1)"*det(X2)/*
det (Z422)'/?

1 T+ 3\ 7!
ea:p{—sml i) (B) n - m)}.
ey

H?(p1,p2) =1 —

D. The Online Anomaly Detector HHAD

The nominal behaviour of the system whose anomalies should
be detected is modeled as an HMM A ™ that is trained using the
Baum-Welch algorithm from a sequence X of observations col-
lected during the nominal functioning of the system. The number
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Algorithm 1: Anomaly Detection (HHAD) [7].

Input: W, < (zi—wi1,..., @), t €{w,...,n}
K <+ # hidden states, w +- window size,
AN « Baum-Welch(X, K), 7 < threshold

Output: a; € {0,1}

S, « Viterbi(A\Y, W5)

34 < most frequent state in S;

M(—{Ej cW; : Sj:.g’t}

p < E[M]

3 E[(M — p)(M — p)"]

if H*(b),N(p, X)) > 7 then

at = 1
else

‘ at = 0
end

return a;

© @ g SN Ul R W N =

-
= o

of hidden states and the covariance type are selected by mini-
mizing the BIC. Online anomaly detection at time step ¢ is per-
formed by means of a sliding window W, = (x;—y41,. .., T¢)
of length w (columns) and with observations that contain d
variables (rows), hence W € R%™_ For each example W, an
anomaly score is computed and, when the score exceeds a pre-
defined threshold 7, the behaviour is considered anomalous. The
score is the Hellinger distance between the estimated distribution
of the observations corresponding to the state §; occurring most
frequently in the Viterbi path St = (St_ w41, . . ., St) of window
W, and the emission probability of state 5, of V. See details
in [7].

HHAD, formalized in Algorithm 1, receives the current win-
dow of multivariate data W, the nominal HMM A" with its
number of hidden states K, the window size w and a threshold
7 € RT. The returned value is a label a; € {0, 1} representing
the class of W, namely, a; = 0 for nominal examplesora; = 1
for anomalous examples. Algorithm 1 is run for each window
W, that has to be classified. It first computes the Viterbi path
of the multivariate time series in W (line 1). For the state §;
occurring most frequently in the Viterbi path (line 2) a multi-
variate Gaussian distribution N (g, 33) is fit through maximum
likelihood to the corresponding data observed in the window
(lines 3-5). Then the Hellinger distance is computed (using (1))
between N (e, 3) and the emission probability of state §; in
AN (line 6). If the distance is larger than 7, then an anomaly is
reported (line 7). Otherwise, label 0 is returned (line 9). Usually
this algorithm is run with a sliding window W, which shifts of
one time instant at a time.

E. Adversarial Example Generation

A formal definition of (minimal)?> adversarial perturbation
for a g-dimensional object £ is provided in [31] as the minimal
perturbation 7 that is sufficient to change the label §j = (&) es-
timated by a classifier f : R? — {1,...,k}, ¢ € N for example
&. The L,-distance of such a minimal perturbation is therefore

A(g ) = minflnll, subjectto f(€ +m) £ £€). @)

2In [31] this is called adversarial perturbation but we specify minimal because
adversarial examples can also be related to non-minimal perturbations.
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This definition requires a distance metric L,, = || - ||,, to quantify
the similarity of the adversarial example to the original one.
The most used distances are L, i.e., the number of coordi-
nates changed by the perturbation, Lo, the standard euclidean
distance between the original and the perturbed example, and
L, the maximum change among all coordinates [32]. Different
distances L, have different impacts on the classification of the
perturbed example. The usage of a distance metric that reliably
captures the ground truth similarity is fundamental to generate
good adversarial examples®. In the context of time series data,
the ground truth of an example cannot be provided by human
perception, hence it must be known in advance to evaluate the
perturbed examples. Adversarial examples are then defined as
slight perturbations of original examples that produce a mis-
classification with respect to the ground truth. Since the ground
truth is not available for all examples, we use the definition
of [11], [12], [13], namely, the label predicted by the classifier
is assumed to be the ground truth and adversarial examples are
defined as examples whose predicted class label is different from
the ground truth label.

Fast Gradient Sign Method (FGSM) [9] is the foundation for
the approach we propose in this paper. It is untargeted, since it
does not allow to specify the target label, and optimized for the
L distance metric. This method does not guarantee to return the
closest adversarial examples but it is faster than L-BFGS [30].
Given an example &, FGSM searches for an example &' = £ +
€ - sign(Velossy(€,y)), where V¢ is the gradient function over
variable £. Given the parameters 0 of the classifier f, an example
&, its original class y in the training set, and the cost function used
to train the classifier lossy, an adversarial example is obtained
by linearizing the loss function around the current value of
and moving (in RY) in the direction that maximises the loss of f.
The time performance can be improved by efficiently computing
the gradient using backpropagation. The adversarial example
generation we propose in this paper (Section I'V-A) starts from
examples & that are time series X and generates new examples
¢’ that are new time series X', with the goal of having X’
classified differently from X by the HHAD classifier f.

F. Data Augmentation

The data augmentation problem consists in extending a
dataset by adding new examples to improve the performance
of a model trained with that dataset. Standard approaches for
time series data augmentation have been discussed in Section II.
Since usually new examples are generated from the original
ones, the problem can be formalized as the generation, from
original examples &, of perturbed examples £ 4 7 that maximize
the performance of model f. In the supplementary material,
available online (Section 3.1) we describe four methods for
time series data augmentation [21] that we use as baselines to
evaluate the performance of our method. They are, Random Data
Augmentation (R-AUG), Drift Data Augmentation (D-AUG),
Gaussian Data Augmentation (G-AUG), and Synthetic Minority

3In [32], authors refer to human perceptual similarity but this concept can be
extended to the similarity in the ground truth when the compared examples are
not images.
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Fig. 1.

Over-sampling Technique (SMOTE) [19] (S-AUG). We select
these methods as baselines because they are approaches that
do not require specific domain knowledge, similarly to our
adversarial example generation method.

IV. PROPOSED METHODS

We present two approaches for adversarial example gener-
ation on HHAD. The first uses a loss function based on the
Hellinger distance; the second a loss function based on the like-
lihood. Then, we introduce our adversarial data augmentation
methodology.

A. Adversarial Example Generation: H-ADV and L-ADV

Our approach for adversarial example generation is outlined in
Fig. 1 and formalized in Algorithm 2 (Hellinger-based loss) and
Algorithm 3 (Loglikelihood-based loss). As shown in Fig. 1, the
mainideais to take an example4 X, i.e.,aslice of the multivariate
time series X, and to pass it to the adversarial example generator
(Algorithms 2 or 3, called H-ADV and L-ADYV, respectively, in
the following) which uses some elements of HHAD (i.e., A"V
and 7) to generate the perturbation X + m. This perturbation is
called adversarial if it actually changes the class of X, as done
in the literature [11], [12], [13].

H-ADV: Algorithm 2 describes H-ADV, which uses a loss
function based on the Hellinger distance. It receives five inputs,
namely, i) a nominal examples, i.e., a slice of a multivariate

4With a slight abuse of notation, X represents both a multivariate time series
and a generic slice (window) of the time series; the latter is sometimes also
called W or W for a generic time ¢ (see Section III).

>The algorithm assumes X to be an example of the training set which we
want to augment, hence X is nominal.
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Algorithm 2: Adversarial Example Generation Based on
Hellinger Distance (H-ADV).

Input: X € R*** < original nominal example
AV + nominal HMM, ¢ € N « # steps per state
7 € [0,1] < H? threshold, ¢ < max perturbation size

Output: X' € R**: perturbed example

1 S, + Viterbi\V, X))

2 5; = most frequent state in X

3Y «—{x; € X : 55 =5}

4 p <+ E[Y]

55 B(Y - p)(Y — )7

6 g =sign(VxH?(bY , N (p, X)) // gradientin X

7 hmax = H? (b2 ,N(p1, X)) // Hellinger distance of X

8 X'=X

9 repeat

10 cont=False

1 X' =X"4+<.-g // X update

12 S « Viterbi(\"V, X')

13 | §; most frequent state for S}

14 Y +{z; € X' : s, =5}

15 p «— E[Y']

6 | S e BY - @)Y — )]

v | W= BN, E))

18 if b’ > Ry then

19 humax = h' // update max Hellinger

20 cont=True

21 end

2 if 3, # 5, then

23 // New most frequent state

2 g= sign(VX/HZ(bé\,i7./\/'(u’, ') // update g
25 St = §:5

26 end

7 until (|| X’ — X || > d - €) V (cont==False) V (hyax > 7)
28 return X’

N

time series X € R¥¥_ where w is the length of the considered
window and x; a d-dimensional observation at time ¢, ii) the
nominal HMM A" used by HHAD, iii) a parameter € € R*
representing the maximum perturbation size for each element
of X (which should be kept as small as possible), iv) the
number of steps ¢ € N in which the interval [0, €] is divided,
v) the threshold 7 for the Hellinger distance used by HHAD.
The algorithm returns an example X’ = X + n € R¥% close
to X (i.e., inside the hypercube with side 2¢ centered in X))
and perturbed in a direction which facilitates the change of
class, i.e., f(X') # f(X). Remember that HHAD is a function
f:R&>® — {0, 1}, where 0 is the class for nominal behaviours
and 1 that for anomalous behaviours (see Algorithm 1). We do
not consider adversarial examples generated from anomalous
points since our goal is to augment the training set, which
contains only nominal data.

Given the example X, whose class is assumed to be O (i.e.,
nominal example), Algorithm 2 first computes the direction of
the perturbation as the sign of the maximum loss increment
sign(Vx H? (b, N (i, X))) (lines 1-7), following the strategy
of FGSM. The classifier f is HHAD, hence it combines the appli-
cation of the Viterbi algorithm and the threshold on the Hellinger
distance between data distribution in X and distribution of the
HMM emission model, to determine the class of the example.
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Fig. 2. Iterative gradient ascent strategy performed by the adversarial gener-
ation algorithm H-ADV.

The loss function has in general a complex form in this case,
because it depends on the maximally frequent state in X. The
main obstacle in the computation of the derivative of the loss
function is related to the solution of the inverse Viterbi problem,
which is NP-complete [57]. Intuitively, it is very complex to
identify the point X’ of maximum increase of the loss function
in the e-neighbourhood of X because the reference emission
model bg\i in that neighbourhood can change if the most frequent
hidden state S, changes. To overcome this issue, we compute
the gradient in X and assume it does not change in a small
<-neighbourhood of X . Hence, we move in this neighbourhood
following the direction of the gradient in X and then we iterate
this procedure from the new point X' reached from X (lines
9-27). Namely, in X’ we re-compute the gradient of the loss in
X"’ and we move according to it. The algorithm in this way adapts
the gradient of the loss function to the reference emission model
that can change inside the e-hypercube with side 2¢ centered in
X The gradient of this loss function can be expressed in closed
form when the covariance matrix is diagonal (see details in
Section 2.1 of the supplementary material, available online). The
process is iterated until the border of the hypercube is reached,
or the Hellinger distance of the perturbed example starts to
decrease, or the Hellinger distance exceeds the threshold 7 (i.e.,
is X" classified as anomalous). Not all the perturbed examples
change their class; only the perturbed examples that change their
class® are adversarial examples.

Fig. 2 provides a graphical overview of the strategy im-
plemented by Algorithm 2. The algorithm computes the final
perturbed X' by iteratively performing two macro-steps. First,
it moves in the direction of the gradient of the loss function.
Second, if the reference emission model changes in the path,
then it recomputes the gradient based on the new emission

6Since original examples from the training set are nominal, the change of
class makes adversarial examples anomalous.
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Algorithm 3: Adversarial Example Generation Based on
Likelihood (L-ADV).
Input: X € R¥" « original nominal example
AN« nominal HMM
€ < maximum perturbation size
Output: X' € R4 perturbed example
1 g = sign(Vx P(X,A"N)) // likelihood gradient in X
2X'=X —e-g/l X update
3 return X’

model. The point is perturbed until it reaches the border of the
hypercube or the decision boundary of the anomaly detector
(i.e., a point in which the example is classified as an anomaly).
In the picture the most frequent state in example X is §; = 1,
hence the first perturbation is computed according to gradient
VxH?*(bY_,, N(ps, %)), that uses the emission model of the
first hidden state as a reference. Then, a change of the most
frequent state to §, = 2 occurs in X (1), hence, the gradient
is there recomputed according to the parameters of the emis-
sion model of that state, namely, V x H?(bY _,, N(p®, zM))
where p(1) and ) are computed in X (1), and that gradient is
followed from X (1) until the most frequent state changes again
in X to §; = 3. Again, the gradient is recomputed according
to the emission model of state §; = 3 and it is followed until the
decision boundary is reached in X (*). That point represents the
final perturbation of X, which is an adversarial example since
X' is classified as anomalous.

L-ADV: The second algorithm for adversarial example gener-
ation that we propose is applied to the same detector HHAD
but it generates adversarial examples following the gradient
of the likelihood of the example X instead of the gradient of
the Hellinger distance. This algorithm for adversarial example
generation is called L-ADV and is formalized in Algorithm 3. It
avoids the mathematical calculation of the gradient of the loss
function needed for the case of the Hellinger distance. With the
likelihood, in fact, the loss does not depend on the maximally
frequent state in the window, but it can be computed using the
standard forward algorithm [58]. The gradient of the likelihood
can be recursively calculated. Note that Algorithm 3 does not
require the £ steps of the case of the Hellinger distance, because
it does not matter if the maximally frequent state in the window
changes or not. Given an observation X, first it computes the
sign of the gradient of the likelihood of the example given
the nominal HMM (line 1), namely sign(Vx P(X,A"Y)) (see
details in Section 2.2 of the supplementary material, available
online). Then it moves the example in the direction of the
gradient for a step € in each dimension (line 2). The algorithm
returns the perturbed example X'. Notice that the perturbed
example X' is an adversarial example only if the Hellinger
distance between the maximally frequent observations in X’
and the emission model of the maximally frequent state in X’
is larger than threshold 7, namely, only if HHAD classifies X'
as anomalous according to its parameters AV and 7.

Complexity analysis: The time complexity of Algorithm 2 is
O(c-(wK? + wd)), where c is the number of steps per state,
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O(wK?) is the computational cost of the Viterbi algorithm, and
O(wd) is the cost of performing a gradient step (cost O(1))
on each dimension and time step of the window. The time
complexity of Algorithm 3 is O(K?w?d). Being the gradient of
the HMM likelihood not computable in closed form but only re-
cursively, its time complexity is O(wK?), which is considerably
higher than the complexity of the computation of the gradient
of the Hellinger distance, which is O(1) when computable in
closed form. As a consequence, the computational complexity
of Algorithm 3 is quadratic in the window length, which results
in a considerable increase of the running time (i.e., it is ~ 400
times slower than Algorithm 2). Fortunately, Algorithm 3 is quite
parallizable, in fact, after re-implementing it in Cython we
managed to achieve a running time similar to that of Algorithm
2 (see Section V). The complexities of the proposed algorithms
are summarized in the supplementary material (Section 1 and
Table 1), available online.

Remark: As discussed later, H-ADV empirically shows the
best performance but its gradients are not derivable in closed
form for HMM with non-diagonal covariance matrices of emis-
sion distributions. L-ADV should be employed in these cases.

B. Data Augmentation and Retraining: HHAD-AUG

Adversarial generation procedures H-ADV and L-ADV are
here integrated in a technique for data augmentation and retrain-
ing called HHAD-AUG. Since the two adversarial generation
procedures are used in a mutually exclusive way we refer to
the data augmentation using H-ADV as H-AUG and to the data
augmentation using L-ADV as L-AUG. Algorithm 4 formalizes
the proposed approach. It aims at improving the performance
of the anomaly detector HHAD and its robustness to adversarial
attacks. Inputs are the nominal time series X used to train HMM
AN the original HMM AN (having K hidden states), the window
size w, the loss function lossy (i.e., based on Hellinger distance
or on likelihood), the threshold 7 for the Hellinger distance, the
maximum perturbation size €, the number of steps ¢ in which ¢
is split during adversarial generation, and the number of times
m that adversarial examples are generated on the training set.
Outputs are the augmented training set of nominal examples
W, the augmented nominal HMM AN (trained on W), and the
augmented threshold 7 learned from A" and W (the original
training set generated from X).

The augmented dataset W is first initialized to the set of
examples in the training set generated by covering the complete
time series X with a sliding window of length w (line 2).
Similarly, the augmented nominal HMM is initialized to the
original nominal HMM (line 3) and the augmented threshold
to the original threshold (line 4). Then the augmentation loop
is iterated m times. The steps of this loop are described in the
following. For each training example W = (¢—wy41,. .., Tt)
in the training set W (line 7) a perturbed example W is
generated using algorithm H-ADV or L-ADV (lines 9 and 11)
depending on the loss function lossy chosen for adversarial
generation. The perturbed example W is added to the aug-
mented set VW as a nominal example only if it is classified as an
anomaly by HHAD (lines 13-15). We use label O for nominal
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Algorithm 4: Adversarial Data Augmentation and Retrain-
ing (HHAD-AUG).
Input: X < nominal d-dimensional time series,
AV« Baum-Welch(X, K), K <« # hidden states,
m € N « # iterations, ¢ <— max perturbation size,
w < window size, T < threshold,
lossy < loss function (H? or LL)
c € N « # steps per state
Output: W augmented set of nominal examples
AV aug. nominal HMM, 7 aug. threshold
1 W= {(®i—wt1,..., %) |t =w,...,n} // original
training set
W =W // initialization of the augmented dataset
AN = AN // initialization of the augmented HMM
7 =7 // initialization of the augmented threshold
foreachi=1,...,mdo
foreacht = w,...,n do
W, = (Ti—w+1,...,xe) // select example
if (loss; == H?) then
| W/ =H-ADV(W;,\" ¢,c,7)
else
| W/ =L-ADV(W,,\" ¢
end
y = HHAD(W/, K, AN, w, 7)
if (y==1) then
‘ W =WUW/, //add adversarial W}
end
end
AN = Baum-Welch(W, K) // retrain HMM A"
7/ = maximum value of H” for examples in W
computed using A
20 if (r > 7) then

© ® Nu U A W N

e -
Ul R W N = o

e~
o ®w N o

21 | 7#=7"// update threshold 7
22 end
23 end

24 return W, \V 7

and 1 for anomalous examples, hence the output of HHAD
can be 0 or 1 and in line 14 y == 1 means that the window
W, has been labeled as an anomalous. When all examples
in the training set have been perturbed, the nominal HMM
is retrained using the augmented dataset W (line 18) which
contains original examples and adversarial examples. The retrain
is performed from scratch to avoid any bias in the HMM param-
eters. The threshold is then updated, only if its value is increased,
to the value of the maximum Hellinger distance computed
using the augmented HMM on examples in the original dataset
W (lines 19-22 in Algorithm 4).

Again, we observe that adversarial examples are added to the
augmented dataset of nominal behaviours only if they have been
classified as anomalies by HHAD. They are added as nominal
examples, hence the learning process remains one-class also
after data augmentation. This is the main idea of our approach,
and it is based on the intuition that the adversarial examples are
very close to the original nominal examples, hence we consider
them as misclassified by the original detector. Finally, in line
7 we consider only examples W, from the training set in all
m iterations, i.e., adversarial examples are not considered as
original examples to generate other examples. This guarantees
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that the decision boundary is not moved away from the training
examples indefinitely.

The generation of adversarial examples from each example
in the training set is iterated m times (lines 5-23). Each time the
HMM is retrained and the threshold 7 updated. The algorithm
augments the training set m times, iteratively, each time using
adversarial examples based on the current version of the HMM.
At the first iteration the HMM is the original one, trained using
examples from the training set WW. At the second iteration
the HMM is retrained using both the examples in the original
training set and the adversarial examples generated at the first
iteration (all labeled as nominal). At the third iteration the
HMM is retrained another time, considering the examples pre-
viously generated. Our empirical analysis shown that the main
improvement in terms of Fl-score of the augmented detector
is achieved in the first three iterations, hence we set m = 3 in
our tests. The updated HMM AN and threshold 7 provide an
actual performance improvement in terms of anomaly detection
accuracy and other measures discussed in the next section.

Complexity analysis: The computational complexity of
Algorithm 4 is O(m - (| X| — w) - ADV'), where ADV is the
complexity of one of the adversarial generation algorithms, i.e.,
H-ADV or L-ADV. The computational complexity is linear in the
number of iterations, in the size of the initial training set, and in
the complexity of the adversarial example generation algorithm.
The empirical evaluation shows that the proposed approach can
scale to realistic scenarios.

V. EXPERIMENTAL RESULTS

Results of application of our approach are presented for
four application domains related to robotic and cyber-physical
systems. We evaluate the performance improvement (measured
as F1-score) of the augmented detectors on different training set
sizes and provide insights about the mechanisms that generate
the improvement. The adversarial examples generated by H-
ADV and L-ADV are shown to be very similar to original exam-
ples (for images, we would say that they are indistinguishable)
and to yield performance improvement if added to the training
set. In fact, perturbations of the same intensity but performed
using (non-adversarial) baseline augmentation methods are not
able to achieve the same performance improvement. The Python
code of the experiments is available’. Software and hardware
details are provided in Section 4 of the supplementary material,
available online.

A. Experimental Setting

Given a specific application domain and a related dataset
D containing multiple time series for a process of interest (in
which each time series has been standardized), our main results
show that the proposed data augmentation techniques H-AUG
and L-AUG outperform the baseline augmentation techniques
R-AUG, D-AUG, G-AUG, and S-AUG. We also show that
HHAD performs as or better than state-of-the-art detectors based

7https://github.com/HHADAdversarial Augmentation/adv_data_aug_hmm
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TABLE 1
SUMMARY OF EXPERIMENTAL PARAMETERS USED IN ALL APPLICATION
DOMAINS
Domain
Par. TE SWaT ALFA INTCATCH
| X| 250,500, 2500, 5000, 250, 500, 250, 500,
750, 1000 10,000 750, 1000 750, 1000
1250, 1500 20,000 1250, 1500 1250, 1500
#rep 30 30 30 30
|T| 3201 449,919 1068 6619
d 4 PCs 2 PCs 3 PCs 4 PCs
K [2,15] [2,25] [2,20] [2,15]
w 100 50 100 100
€ 0.05 0.05 0.05 0.05
m 3 3 3 3

on vanilla autoencoders (AEs), LSTM autoencorders (LSTM-
AESs), and one-class support vector machines (OCSVM) (see
details in Section 3.2 of the supplementary material, available
online), hence the performance of our augmented detectors
H-AUG and L-AUG exceeds not only that of HHAD but also
the state-of-the-art.

We assume to have a nominal HMM A" with K hidden states
(chosen by optimizing the BIC) and trained on a training set of
nominal time series X which s part of dataset D. Another part of
D, called T (i.e., test set) in the following, is used to evaluate the
performance of the anomaly detection and the data augmentation
and retraining algorithms. We also assume a specific window
size w and a threshold 7 learned on X as described in [7].
With these three elements, namely, AN w,and 7, a complete
instance of the original anomaly detector HHAD is available.
Notice that, when the number of variables in the dataset is high,
feature selection or dimensionality reduction could be necessary
to obtain good performance of the original anomaly detector.
The main dimensions of analysis that we consider are the fype
of loss function used to generate adversarial examples (i.e.,
Hellinger distance or likelihood) and the size of the training set
| X |. Table I summarizes the parameters of all the experiments
described in the following subsections. The number of repeti-
tions #rep of each test on different training sets of the same size
is set to 30 in all domains. It means that, given a training set size
| X'| we recompute the performance improvement 30 times, and
each time we train the HMM A"V and the threshold 7 on different
training sets of size | X|.

B. Performance Measures

Anomaly detection performance of algorithm HHAD is eval-
uated by Fl-score [56] (Cohen’s k-score and recall are also
reported in Section 3 of the supplementary material, available
online) on a test set T which is kept separated from the training
set used to learn A" and 7. We consider positive the nominal
examples and negative the anomalous examples. Hence, true
positives are nominal examples correctly classified by HHAD,
true negatives are anomalous examples correctly detected by
HHAD, and so on. The value of the F1-score must be maximized.

Data augmentation and retraining algorithms H-AUG and
L-AUG, using loss functions based on the Hellinger distance
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and the likelihood, respectively, are evaluated by two measures.
First, we compute the improvement of Fl-score on the test set
induced on HHAD by data augmentation and retraining. This
is the difference between the F1-score on the test set after and
before data augmentation and retraining. To test the statistical
significance of this difference we apply algorithm HHAD-AUG
to several training sets containing different examples and with
different size (see results in the next sections) and then use
Student’s t-test for testing the null hypothesis that the average
performance on test sets are significantly improved. Then we
evaluate the improvement of the robustness to adversarial attacks
introduced by HHAD-AUG. We measure it as the difference
in percent success rate SR% between original and augmented
HHAD. The percent success rate (SR%) of a detector is the
percentage of perturbed examples (on the test set) that are
actually misclassified by the detector. A small SR% means that
the detector is robust to adversarial attacks generated on the test
set. Differences in percent success rate SR% between HHAD
and HHAD-AUG are shown in Tables 3, 7, 11, and 15 of the
supplementary material, available online.

C. Tennessee-Eastman Industrial Process (TE)

In this domain a synthetic model of a real industrial chemical
process is used to evaluate process control strategies [14].

Domain and dataset description: This domain has become
popular in the Industrial Control System (ICS) security com-
munity because it allows to test attack and defense approaches
on a realistic (although simulated) environment. We used the
dataset provided by [43] which contains integrity attacks on both
sensors and actuators. We use data related to the stealth attack
named SA1. They have 41 variables and 4801 observations.
A label is available for each example, namely, O for nominal
observations and 1 for anomalous observations. The training set
is generated taking a slice of sequential nominal observations of
length | X| € {250,500, 750, 1000, 1250, 1500} (see Table I).
The test set is a sequence containing |T'| = 3201 observations,
of which 2400 are nominal and 801 anomalous. The training
sets are selected in the interval between time steps 0 and 1599,
and the test set in the interval between time steps 1600 and time
step 4801. For each training set size, we generate 30 training
sets (sampling the original dataset in different positions) and we
compute mean and standard deviations of the performance in
the test set.

Experimental parameters: For each training set, we reduce the
dimensionality to the first 4 principal components (using PCA).
The number of hidden states K of the nominal HMM A" is
then selected by BIC in the interval [2,15]. Diagonal covariance
matrix is used. The window length is w = 100 and the maximum
perturbation sizeis € = 0.05. The number of iterations of the data
augmentation and retraining procedure is m = 3 (see Table I).

Results: Fig. 3 shows the main results. The x-axis represents
the training set size |X| and the y-axis the Fl-score on the
test set. The blue solid line is the original detector HHAD with
related 95%-confidence interval (shaded area). Notice that this
detector is exactly the one that we use to generate adversarial
examples in the initial iteration of data augmentation. Dashed
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Performance improvement on TE dataset
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TABLE II

o g AVERAGE F1-SCORES ON THE TEST SET OF THE ORIGINAL (HHAD) AND
G AUGMENTED ANOMALY DETECTORS (H-AUG, L-AUG, R-AUG, D-AUG,
0.8 G-AUG, AND S-AUG) ON DIFFERENT TRAINING SET SIZES IN THE TE DOMAIN
0.6 Training set size [ X| (Tennessee Eastman)
n . nop. Detector Means 250 500 750 1000 1250 1500
7:7 L-AUG HHAD KF1 0.151 0.554 0.786 0.842 0.931 0.955
04 - R-AUG oF1 0.177  0.184 0.146 0.096 0.043 0.028
w DAUG H-AUG HF1 0452 0.844 0947 0957 0.979 0.99
0.2 Y- GAUG oF1 0.244 0.158 0.066 0.051 0.021  0.009
2 s alc AF1 0301 0.290 0.161 0.115 0.048 0.035
0.0 p-val 9.8e-6 1.5e-8 2.3e-6 4.9e-6 8.6e-7 1.le-6
250 500 750 1000 1250 1500 L-AUG HF1 0.156  0.600 0.858 0.879 0933 0978
X oF1 0163 0177 0116 0.088 0.045 0.023
A1 0.005 0.046 0.077 0.037 0.003 0.023
Fig. 3. Average Fl-score (over 30 datasets) for the original detector HHAD p-val 0676 0051 0.012 0019 0440 3.de-4
and augmented detectors H-AUG, L-AUG, R-AUG, D-AUG, G-AUG, S-AUG R-AUG  pra 0196 0.607 0784 0848 0928  0.956
on different training set sizes in the TE dataset. UAI;ll gégg gégg _%10%62 8882 _%%3062 883?
p-val 0.199 0.239 0952 0.794 0.834 0.693
D-AUG HF1 0.217  0.613 0.769 0.844 0.938 0.954
. . . . oF1 0.251 0.211 0.173  0.092 0.046  0.030
lines with other colors represent different data augmentation Api 0.066 0.059 -0.017 0.002 0.007 -0.001
strategies, namely, orange is H-AUG, green is L-AUG, red GAUG p-val 85? g'égg 8'%‘3 8'?23 8'322 8‘325
. . . . . - HF . . . . B B
is R-AUG, purple is D-AUG, brown is G-AUG, and pink is O-Fi 0309 0236 0135 0.082 0.041 0.024
S-AUG. The average performance improvement achieved by Lo W WAL ORI
. .. .. .. . p-val 0.156 0.792 0.273 0.011 0.261 0.581
H-AUG 1S statlstlcally 51gn1ﬁcant fOI' 3.11 tralnmg set sizes. In S-AUG F1 0.156 0.642 0.803 0.850 0.954 0.958
particular, the Fl-score of the augmented anomaly detector UAFl 88(1)2 %gg 8‘(1)‘1% 8%2 ggi‘; 8%;
(i.e., HHAD Wlth )\,N and ’TA') and show that lt is hlgher than p_‘l;;l 0:941 0:057 0:601 0:669 0:035 0:698

that of the original detector (i.e., HHAD with A"V and 7).
L-AUG provides a statistically significant improvement only for
| X| € {750, 1000, 15000}. A motivation for this is provided
below. Interestingly, HHAD augmented by baseline methods
do not achieve any significant performance improvement with
respect to the original HHAD. Overall, these results show that
the proposed adversarial data augmentation strategy is effective
in this application domain.

Table II provides a quantitative evaluation of the performance
improvement achieved by each data augmentation method with
respect to the original detector HHAD. The first two rows show,
respectively, the average Fl-score pp; and related standard
deviation o1 for HHAD. Both statistics are computed over 30
repeats for each training set size. Then, for each data augmenta-
tion algorithm we show in the white rows the average F1-score
and standard deviation, and in the gray rows the difference of
average Fl-score A (i.e., augmented detector minus original
detector) and the p-value of the Student’s t-test (p-val) for the
difference in the average F1-scores. We consider performance
improvements statistically significant when the p-value is less
than 0.05. These values are highlighted in bold in the table. The
improvement of H-AUG is large with small training sets and it
decreases as the training set size increases, as expected, hence
our methodology could be effectively used in applications with
small amounts of data to improve the detection performance. For
instance, the average F1-score (1 1) of the augmented detector
H-AUG trained with 500 examples is equivalent to the F1-score
of the original detector HHAD trained with 1000 examples.

Role of adversarial examples in data augmentation and re-
training: To investigate the role of adversarial examples in data
augmentation and retraining, we first observe that, on average,
1.12% of the adversarial examples generated on the training
set by H-AUG and 0.15% of those generated by L-AUG are
successful (i.e., they change the HHAD classification) in all

Averages are computed over 30 datasets, for each dataset size. Average F1-score
improvements Az; with respect to HHAD are also displayed with P-values for testing
their statistical significance. Statistically significant performance improvements
(P-value < 0.05) are highlighted in bold.

Performance comparison on TE dataset
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Fig. 4. Average Fl-score (over 10 datasets) for the original detector HHAD,

augmented detectors H-AUG and L-AUG, and state-of-the-art (non augmented)
anomaly detectors AE, LSTM-AE, and OCSVM on different training set sizes
in the TE dataset.

the m iterations of the related augmentation algorithm. This
corresponds to an average of 7.63 adversarial examples added
to the training set by H-AUG and 1.31 by L-AUG (these values
are averaged over different training set sizes). The Fl-score
improvement (on the test set) of H-AUG with | X | = 500, for
instance, is obtained adding only 6.05 adversarial examples on
average (over 30 repetitions on different training sets). The
small performance improvement of L-AUG on TE is instead
probably due to the too low success rate in generating adversarial
examples. Further results are available in Section 3.3 of the
supplementary material, available online.
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Comparison with state-of-the-art anomaly detectors: Fig. 4
shows the average Fl-score of the original anomaly detector
HHAD, the augmented detectors H-AUG and L-AUG, and the
three state-of-the-art (non-augmented) detectors AE, LSTM-
AE, and OCSVM (see details in Section 3.2 of the supplementary
material, available online), for different dataset sizes. Clearly,
H-AUG outperforms all methods. L-AUG have slightly better
performance than HHAD but worse than H-AUG. The detectors
based on artificial neural networks have very bad performance
in this case, because of the small size of the dataset and specific
data structure. OCSVM starts to increase its performance from
1000 examples but it does not reach the Fl-scores of HHAD.
Further details are provided in Section 3.3 of the supplementary
material, available online.

D. Secure Water Treatment Testbed (SWaT)

As a second test on an industrial CPS we use SWaT, a
scaled-down version of a real-world industrial water treatment
plant [15]. We report the description of domain and experiments,
and full results in the supplementary material (Section 3.4),
available online. Results are successful also in this case. The
average performance improvement achieved by both H-AUG
and L-AUG with respect to HHAD are statistically significant
for all training set sizes. Baseline augmented detectors R-AUG
and D-AUG in this case manage to improve the average F1-score
on the test set only for the smaller datasets but the improvement
is smaller than that achieved by H-AUG. For larger training
set sizes these two baseline methods achieve negative or null
improvement, while the proposed methods always get significant
improvement. G-AUG and S-AUG do not achieve significant
improvement with respect to. HHAD. The improvement of
H-AUG keeps almost constant with the increase of the training
set size, showing that the F1-score can still increase also starting
from relatively large datasets (i.e., 2500 examples). Also in this
case the gain is relevant, since the Fl-score obtained by the
detector augmented with H-ADV on 5000 examples is larger
than the F1-score obtained by the original detector HHAD using
20,000 examples, with a “saving” of about 15,000 examples.
The average improvement of success rate Agpro, of adversarial
attacks on the test set is always negative, meaning that the
data augmentation improves the robustness of the detector to
adversarial attacks.

E. UAV Fault and Anomaly Detection (ALFA)

The third domain is a robotic one related to Unmanned Aerial
Vehicles (UAV). The dataset® presents several fault types in
control surfaces of a fixed-wing UAV for use in Fault Detection
and Isolation (FDI) and Anomaly Detection (AD) research [16].
It includes processed data for 47 autonomous flights with 23
sudden full engine failure scenarios and 24 scenarios for seven
other types of sudden control surface (actuator) faults, with a
total of 66 minutes of flight in normal conditions and 13 minutes
of post-fault flight time. The platform used for collecting data is
a custom modification of the Carbon Z T-28 model plane. The

8http://theairlab.org/alfa-dataset
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Performance improvement on ALFA dataset
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Fig.5. Average Fl-score (over 30 datasets) for the original detector HHAD and

augmented detectors H-AUG, L-AUG, R-AUG, D-AUG, G-AUG, and S-AUG
on different training set sizes in the ALFA dataset.

average performance improvement achieved by H-AUG with
respect to HHAD on the ALFA domain is statistically significant
for all training set sizes. Fig. 5 graphically shows these results.
L-AUG has on average better Fl-score than HHAD and the
difference is statistically significant for all training set sizes
except for | X | = 250, however the amount of the improvement
is less than that achieved by H-AUG. Baseline methods R-AUG,
D-AUG G-AUG, and S-AUG do not achieve any significant per-
formance improvement except for a small improvement obtained
by D-AUG on | X | = 1500. In this case the larger improvement
is achieved by H-AUG on small and medium-size datasets,
with a maximum improvement of the Fl-score of 0.313 for
|X'| = 500. Out of the four, this is certainly the most difficult
dataset containing complex behaviours of a real autonomous
system, in fact, anomalies are often not recognizable at human
inspection. Nevertheless, H-AUG manages to strongly improve
the anomaly detection performance, reaching Fl-score up to
0.909 with the larger training sets considered in our analysis.
Section 3.5 of the supplementary material provides full details
about the results of experiments performed on this domain,
available online.

F. Water Monitoring With ASV (INTCATCH)

The fourth domain is again related to mobile robots but in
this case we consider an Autonomous Surface Vessel (ASV).
The dataset [17] has been generated by an ASV called Platypus
which operates in the context of the INTCATCH Project®, an EU
H2020 project aiming at developing new paradigms for water
monitoring in river and lakes. Also in this case the average
performance improvement of both H-AUG and L-AUG with
respect to HHAD and the baseline data augmentation techniques
is statistically significant for small training set sizes while it
becomes negligible for larger sizes. The robustness against
adversarial attacks on the test set also improves. A detailed
description of the domain, the experiments, and the results is
reported in Section 3.6 of the supplementary material, available
online.

“https://www.intcatch.eu
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VI. CONCLUSION

Detection of anomalous behaviours in intelligent systems that
operate in the physical world, such as autonomous robots and
CPSs, requires tools able to represent nominal behaviours and
discover patterns that do not match with them in sensor traces.
HMMs are a viable and established tool for modeling dynamical
behaviours contained in multivariate time series and recent
methods use them to detect anomalous behaviours in robotic
systems. The approach of adversarial data augmentation pre-
sented in this work improves the detection performance of such
tools without using any prior knowledge about the form of the
nominal time series, as traditional data augmentation requires.
The adversarial examples we generate are multivariate time
series very similar to the original but able to produce a significant
performance improvement (up to 0.313 of F1 improvement in
our empirical tests, see Apy of H-AUG on ALFA with training
set of 500 samples) if used to augment the training set of our
detector. The same examples improve also the robustness of the
detector to adversarial attacks (with an increase up to 8.6% in
our experiments, see Ag gy, of H-AUG on TE with training set
of 1000 samples).

This paper paves the way for future work along several direc-
tions. We will concentrate on three main extensions. The first
concerns the introduction of other time series distance measures
in the adversarial example generation strategy. The second is
related to the application of the proposed approach to other types
of anomaly detectors, such as autoencoders or one-class Support
Vector Machines. The third extension focuses on the application
of adversarial data augmentation to active anomaly detection,
which aims to make the system controller actively looking for
possible anomalies to detect them more precisely and promptly.
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