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Abstract—Inference at-the-edge using embedded machine learn-
ing models is associated with challenging trade-offs between re-
source metrics, such as energy and memory footprint, and the
performance metrics, such as computation time and accuracy.
In this work, we go beyond the conventional Neural Network
based approaches to explore Tsetlin Machine (TM), an emerg-
ing machine learning algorithm, that uses learning automata to
create propositional logic for classification. We use algorithm-
hardware co-design to propose a novel methodology for training
and inference of TM. The methodology, called REDRESS, com-
prises independent TM training and inference techniques to reduce
the memory footprint of the resulting automata to target low and
ultra-low power applications. The array of Tsetlin Automata (TA)
holds learned information in the binary form as bits: {0, 1}, called
excludes and includes, respectively. REDRESS proposes a lossless
TA compression method, called the include-encoding, that stores
only the information associated with includes to achieve over 99%
compression. This is enabled by a novel computationally minimal
training procedure, called the Tsetlin Automata Re-profiling, to
improve the accuracy and increase the sparsity of TA to reduce
the number of includes, hence, the memory footprint. Finally, RE-
DRESS includes an inherently bit-parallel inference algorithm that
operates on the optimally trained TA in the compressed domain,
that does not require decompression during runtime, to obtain
high speedups when compared with the state-of-the-art Binary
Neural Network (BNN) models. In this work, we demonstrate
that using REDRESS approach, TM outperforms BNN models
on all design metrics for five benchmark datasets viz. MNIST,
CIFAR2, KWS6, Fashion-MNIST and Kuzushiji-MNIST. When
implemented on an STM32F746G-DISCO microcontroller, RE-
DRESS obtained speedups and energy savings ranging 5-5700×
compared with different BNN models.
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I. INTRODUCTION

THE emergence of AI in sensor based systems has em-
powered greater model functionality thus allowing for

substantial advances in intelligent wearables, personalized
healthcare [1] and smarter and more sustainable cities [2]. To
address the burden of long inference times and meeting embed-
ded device resource constraints, offloading the data for cloud
computation is often the method of choice [3], [4]. This comes
with the added issues of privacy, increased latency and network
connectivity.

To enable true wide-spread integration of AI sensors for low
and ultra-low power edge inference there is a need for focused
design effort towards delivering energy efficient and memory
frugal implementations [5], [6], [7]. The prevailing approach to
edge inference is based on Neural Network (NN) models [5], [8].
However, for a given inference application, designers are forced
to choose intelligent trade-offs through hardware-software co-
design considerations as the deep neural network (DNN) mod-
els are resource hungry in terms of storage, runtime memory
(RAM) and computation. These trade-offs stem from finding
the balance between two key considerations: the memory and
compute limitations of the target platform and selecting a trained
model that achieves a competitive accuracy within acceptable
latency [9]. Recently, dedicated Application Specific Integrated
Circuits (ASIC) have been designed and validated for ultra-low
power edge inference using NN variants [10], [11]. They present
custom hardware capable of operating at near-threshold voltages
with power-gating to reduce active chip power during operations.

Several approaches have already been considered for easing
NN based edge transition. This includes network pruning [12],
[13] to reduce the number of parameters and reduce model com-
plexity, weight quantization [9], [14] to alleviate the compute
intensity of floating point arithmetic or layer decomposition [15]
to allow for model compression. These methods all tackle one
significant and unavoidable challenge: the arithmetic nature of
Neural Networks. Moreover, there are practical limitations of
black box ML models being used in critical applications to
make high-stake decisions [16] which suggests exploration of
interpretable models instead [17]. This work considers a funda-
mentally different machine learning (ML) architecture called the
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Tsetlin Machine (TM) [18]. The TM addresses the aforemen-
tioned challenges by removing floating-point arithmetic from
training and inference routines. The learning element of the TM
is the Tsetlin Automata (TA), which decides whether to include
or exclude a feature while creating logic propositions to the
learning problem. The includes and excludes are represented
by bits ‘1’ and ‘0’, respectively. The logic-based underpinning
enables bit-wise operations, in the inference routine, between
boolean input features and include-exclude decisions making it
computationally less intensive and energy frugal.

While TM offers the advantage of logic based inference,
the memory footprint of trained models is usually quite sig-
nificant [19]. A naive implementation would use the model
as it is, which makes it impractical for edge inference. Each
TM contains user-specified number of clauses each of which
hold the TA that forms logic proposition. As the classification
problem complexity increases, so does the number of logic
propositions (or clauses) required by the TM. All TM related
work clearly demonstrate that more clauses lead to better model
accuracy with a large associated impact on memory. However,
there is no deterministic and definitive method of selecting
the optimum number of propositions per class for a given
problem to minimize the memory footprint. MILEAGE [20] is
the first attempt at determining the number of clauses or logic
propositions sufficient to classify a given dataset. It proposes
an automated method to minimizes the number of clauses at
runtime depending on their contribution towards correct clas-
sification. Although it demonstrates that high-accuracy can be
achieved using relatively fewer clauses, the model size still
remains large for edge-inference. Therefore, to reap the ad-
vantages of logic over arithmetic computation when compar-
ing against NNs in inference, TM’s require substantial model
compression.

This work proposes REDRESS: a novel leaRning EDge
infeRence methodology for Embedded tSetlin machineS. RE-
DRESS’s primary objective is to find the optimum balance be-
tween the TM model size, accuracy and latency. To achieve this,
the methodology first employs an automated TM architecture
search paradigm to find the optimal model size and hyperpa-
rameters to best represent the classification problem. This is
accomplished by automated training of multiple candidate TM
configurations. The user can examine the resulting models to
decide which model should proceed to the next stage. The next
stage involves a computationally minimal REDRESS training
procedure involving Tsetlin Automata Re-profiling, which at-
tempts to increase the sparsity of useful automata decisions
(the number of include decisions) but provides an optimally
trained model with high accuracy. REDRESS proposes a lossless
compression approach called include-encoding to compress the
TA by storing only the information associated with includes,
achieving over 99% compression in terms of memory foot-
print for all benchmark datasets. Finally, REDRESS proposes
a bit-parallel inference methodology that operates on TA in the
compressed domain and performs fast multi-class classification.
The key difference between MILEAGE and REDRESS is that
MILEAGE aims to reduce the model size by reducing the

number of clauses while REDRESS aims to minimize the model
using sparsity of includes irrespective of the number of clauses.

The study of TM in this work mainly targets microsystems
with resource constraints for, e.g., IoT or edge inference ap-
plications, which fall in the low and ultra-low power category
with limited storage and computational capacity. The scope of
the paper is therefore limited to smaller datasets with Boolean
features such as images encoded with Booleans. The validation
is performed on STM32F746G-DISCO micro-controller that
offers 1 Mbytes of flash memory and 340 Kbytes of runtime
memory (RAM) with an ARM Cortex-M7 core. Deploying large
models trained for CIFAR 10/100 or ImageNet is not possible
on such a platform and lies outside the scope of this paper.
Other variants of TM have been evaluated with larger datasets
such as CIFAR10 and CIFAR100 where they have demonstrated
accuracy up to 75% and 45%, respectively [21]. TM is an actively
evolving field of research where novel architectures and training
methods are being developed.

Through the REDRESS workflow we propose the following
contributions:
� A novel TM training approach using TA Re-profiling pro-

cedure to find the best trade-off between model accuracy
and memory footprint.

� An Include-Encoding based lossless TA compression tech-
nique.

� A fast inference algorithm capable of using bit-parallel
arrangement to perform many image classifications simul-
taneously, achieving order-of-magnitude speedups.

� Extensive validation of the REDRESS-based TM vis-à-vis
the state-of-the-art Binary Neural Networks [9] using sev-
eral ML benchmark datasets on STM32 micro-controller.

II. BINARY NEURAL NETWORK (BNN)

The BNN, first proposed by Courbariaux et al. [22], is the
state-of-the-art NN variant used for edge inference and embed-
ded applications [9]. It performs the most extreme quantization
of features and weights to a single bit, where the weights are
passed through a sign function that converts them to ±1. The
negative weights are clamped to −1 and positive weights are
clamped to 1, and are represented with 0 and 1 respectively. BNN
enables fast computation by replacing 32-bit weights that require
multiply accumulate operations to a 1-bit weights, utilizing
xnor and popcount [9], [22]. This is similar to the TM clause
output and class sum computation. A comparative analysis of
TM and NN based approaches can be found in [23].

The use of the sign function poses challenges in training
during back-propagation given that gradient will be zero and
thereby eliminating the possibility of gradient descent. To ac-
commodate for this Courbariaux et al. retain the real value
weights and binarize them each time for the forward pass and
a straight-through-estimator is used to update the real weights
during the backward pass. This is a key difference between DNN
and BNN. For details interested readers should refer to [22],
[24]. To further optimize the effectiveness of the feed forward
process, McDanel et al. propose the combination of the BNN
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TABLE I
TABLE OF KEY TERMS FOR EXPLAINING TM TRAINING AND INFERENCE AND

THE REDRESS METHODOLOGY

layer computation with batch normalization (if specified) and the
activation function. The temporary results are stored as binary
outputs which further reduce the memory footprint in embedded
implementation [9]. It is enabled by re-ordering the operations
such that instead of computing all intermediates of a layer, the
layer is computed in chunks where the batch normalization and
activation function can be applied to this chunk and produce
on the final output, thus, trading extra computation effort for a
reduced memory footprint. To date this is the best performing
method of deploying BNN to a resource constrained device,
hence, has been used in this paper as gold standard for compar-
ison.

BNN and TM are two completely different approaches to
learning data. BNN is very similar to multilayered or DNN as
it uses floating-point operations, backpropagation and multiple
layers to learn input data. TM is single layered and the training
process uses learning automata devoid of floating-point opera-
tions with randomised feedback process. In BNN, all neurons
receive feedback while in the TM the clauses and the automata
that receive feedback are selected randomly. In this paper, we
have trained BNN in different configurations including single
layered FC-128 which closely resembles the TM and shows that
it outperforms FC-128 in computation time and energy.

III. TSETLIN MACHINES

The Tsetlin Machine is a machine learning algorithm that
relies on the principles of learning automata called Tsetlin
Automata and game theory to create logic propositions for classi-
fication. Theoretical proof of TM’s capability to solve complex
pattern recognition problems and derivations of propositional
formulas and its alignment with Nash equilibrium can be found
in [18]. Interested readers can find the proof of convergence
of TM in [25], [26] and further details on theoretical aspects
of TM in [27], [28], [29], [30]. In this section, we visualize
the details of the working principle and actual implementation
of TM algorithm. A visual depiction is extremely helpful in
understanding the REDRESS approach and facilitating TM
adoption, exploration and knowledge sharing. In Section III-A,
we examine the pre-processing methodology for input literals
and the inference process to highlight the logic driven nature of
the TM. In Section III-B, we present the training methodology
used by TM to illustrate the reduced computational intensity
in comparison with the gradient descent based NN approaches.

Table I collates the key terms that will be used across these
subsections and the subsequent sections.

A. Data Preparation and Inference

Fig. 1 demonstrates the inference routine for TM. It shows
how raw data is prepared through a Booleanization method, this
Boolean data is then linked to the learning elements, the TA,
by computation of a Clause output. Multiple clause outputs are
passed through a voting system, the class with the most votes is
the inferred class.

Data Preparation: The TM requires Boolean Literals as in-
puts to the model. To transform raw data into Boolean Literals
a Booleanization process is used, as demonstrated in the upper
left corner of Fig. 1. Raw features that are of integer or floating
point value are passed through a Booleanizer that compares
it with a pre-determined threshold and generates a single bit
boolean value of 0 or 1 called the Boolean Features. In the
example presented in Fig. 1, the threshold is chosen arbitrarily
for demonstration proposes, however, generally the threshold(s)
can be created as per the designer’s choice. For example, a
threshold can be decided as a mid-point in the raw feature
range or chosen through off-the-shelf adaptive thresholding
techniques for images. It should be noted that the number of bits
used to represent the Booleanized data is user and application
dependent. It allows the designer control over the granularity of
the input space seen by the TM. In Fig. 1, we have used a single
bit to store the Booleanized data but the granularity required by
datasets used in this work is discussed in detail in Section VII.
The Boolean Features are then expanded into Boolean Literals
by including their complements. By using both the features
and their complements the Boolean Literal space can represent
every possible value that each Boolean Feature can acquire. In
Fig. 1, we have presented the Booleanization process using two
Boolean features that produce four literals to be used as inputs
to the TM.

Clause Computation: The main computation component in
the inference is the clause output which interprets Boolean liter-
als using the TA. Fig. 1 presents the clause computation process
using the four literals, obtained from the previous Booleaniza-
tion step, in conjunction with the TA that pass through the
proposition logic consisting of NOT, OR and AND gates. Each
literal is assigned a corresponding TA in each clause. Each
automaton in our diagram has 6 states, the three on the left
are the exclude states and the other three on the right are the
include states. If the state of the automaton is exclude then its
output will be a bit ‘0’, else if the state is include then the output
will be a bit ‘1’. The number of states that each TA can have is a
design choice. Having a larger number of states will increase the
granularity of the decision making. We will explore this later in
Section VI. The positions of TA states shown in Fig. 1 assume
that they have settled in near optimum positions after training.
During inference the positions of TA can no longer transition
and, therefore, have a fixed include or exclude decision. Through
the logic circuitry for the clause, we create a logic proposition
that relates the literals to the TA state decision and generate a
1-bit Clause Output.
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Fig. 1. Visualization of Multiclass Tsetlin Machine inference process. Booleanization stage prepares the input features from raw data. Clause computation
presents the logic operations involved in generating the Clause Output from input features and trained automata. The inference routine illustrates the summation
of the N Clause Outputs multiplied with their polarity for M classes to generate the respective Class sums. The one with the largest class sum is the classification
output. Here, Fi is the ith input features and Bi and Bi are the corresponding ith Boolean features and its complement derived from the Booleanizer.

Structure and Inference: To classify a problem with multiple
classes, we need the Multiclass TM model. Since most problems
have multiple classes, we will use TM and Multiclass TM
interchangeably in this work. In Fig. 1, we present a hypothetical
example of a Multiclass TM of M classes with N clauses each
containing 4 TA per clause. In actual implementation the number
of TA per clause will mirror the number of input literals l
(= 2× f ), where f is the number of Boolean input features.

An important design choice determining the size of TM and
compute complexity is the number of clauses N specified by
the user for any application. This is illustrated in the bottom
half of Fig. 1. For every input datapoint,1 which includes l
Boolean literals, we compute a 1-bit Clause Output using the
TA of the respective clauses. Each class must contain an even
number of clauses, as each clause carries a polarity of +1
and −1 alternatively. The clause polarity determines whether
the 1-bit Clause Output is multiplied with +1 or −1 before
they are summed together to determine the Class Sum. The
clause polarity indicates whether the clause will support or
oppose the classification, i.e., a +ve polarity clause will support
the classification while the −ve polarity clause will oppose
the classification. With the (Class Sums) for all the classes, an

1A datapoint can be any instance of information that needs to be classified by
a trained model, for example, an image or audio clip.

Fig. 2. Visualization of a trained TM model of size M ×N × l. The range of
values TA states can acquire is [1,400]. Any value >200 is regarded as include
while the rest are excludes.

argmax function is used to determine the largest value and
determines the classification for the given datapoint.

Fig. 2 visualizes a trained TM model with model/automata
size of M ×N × l (see Table I). Each class has the same
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Fig. 3. Overview of the training procedure followed in Multiclass Tsetlin Machine classification. It begins with the initialization of the Tsetlin Automata with
one of two randomly chosen values: middle_state± 1. In an epoch, the training procedure iterates over all the datapoints in the training sample space. For each
datapoint, two classes receive feedback, one of them is the expected class and the second is any randomly chosen class other than the expected class. They are
indicated by expected output yc ∈ (0, 1), with yc = 1 indicating the feedback is to the expected class while yc = 0 indicating the feedback to random class.

number of user-specified clauses N and each clause consists
of l automata, where l is the number of literals. For a dataset
with f features l = 2× f . In Section VI-C, we discuss how an
appropriate value of N is selected for a particular dataset. The
range of values that TA states can acquire is [1, 400], with any
value>200 is considered as include and the rest as exclude. The
range of values TA can acquire is a user design choice. From our
experimentation and the available literature, mostly the ranges
of [1, 200] or [1, 400] are used and are sufficient for all encoun-
tered classification problems. The difference between the two is
discussed in Section VI. In Fig. 2, the include-exclude decisions
corresponding to TA state values can be seen. The includes are
highlighted and purposefully shown relatively sparse compared
with excludes as is, generally, the case. The sparsity of TA will
be discussed further in Section VI.

B. Training Tsetlin Machines

The rationale behind the training process is to find an optimum
combination of state positions for the TAs across the model to
achieve high classification accuracy. TM provides Feedback to
each automaton for its state transition. The TM is a supervised
learning algorithm, therefore, TM feedback procedure is that it
is independent of classification output obtained at the end of
TM inference in Fig. 1. Instead it requires the class sum and the
actual class the input datapoint belongs to.

Fig. 3 presents an overview of the training procedure. The pro-
cess starts with initialization of TA states randomly to one of the
two values: middle_state± 1. Using uniform random number
generator, initialization gives every automaton an equal chance
of becoming an include or exclude. Let us assume a training
sample spaceStrain consisting of τ datapoints: (X, y) ∈ Strain.
X ∈ (0, 1)l is a binary literal vector of length l belonging to class
y, referred to as the expected class. In each epoch, the feedback
process iterates for all τ datapoints. In an M multiclass TM, each
class is assigned one TM that consists of N clauses each with l
automata. For each datapoint Xi, a pairwise learning approach
is employed where two classes are selected for feedback. One
of them belongs to the expected class yi as in (Xi, yi) ∈ Strain,
while the other is any randomly chosen class �= yi. To differ-
entiate between the two selected classes they are assigned an
expected output value yc = 1 or 0, as shown in Fig. 3. yc is used

to determine the type of feedback at a later stage, which will be
discusses as follows.

Fig. 4 shows the feedback procedure within a selected
class using decision tree. The feedback procedure requires
two user defined hyperparameters viz. s and threshold T. For
the selected class, class_sum is calculated using the infer-
ence procedure discussed in Section III-A. While training the
class_sum needs to be clipped to lie within the threshold range
of [−T, T ] such as: Class_sum = clip(class_sum, [−T, T ]).
The clipped Class_sum plays a crucial role in determining the
probability of a clause getting feedback using T and a random
number comparison as shown in Equation C1 and C2 in Fig. 4.
This ensures that all clauses have equal chance of getting feed-
back and are randomly selected. A clause can get one of the two
types of feedback, viz. the Type I and Type II, depending on the
clause polarity and yc. For Type I feedback, the hyperparameter
s and the random number are used to determine the probability
of an automaton transitioning state, be it increment or decrement
in the state value, as shown in Equations S1 and S2 in Fig. 4. The
clause output and the literal determine whether the state value
will be incremented or decremented. The Type II feedback is
straight forward and always increments the state value if clause
output is 1 and the automaton is exclude. The hyperparameters
will be discussed further in Section VI.

The Type I feedback combats false negatives and Type II feed-
back combats false positives. Ideally, for accurate classification,
the class sum of the expected class must be higher than that of
all other classes. By randomly selecting another class, all other
classes have an equal chance to calibrate their TA for smaller
class sums. Class sum increments if a+ve polarity clause output
is 1 and decrements if−ve polarity clause output is 1. Therefore,
to obtain a high class sum more +ve clauses need to have
an output 1 and −ve clause outputs should be 0. Similarly, it
is vice-versa if a smaller class sum is desired. As shown in
Fig. 5, the Type I and Type II feedback attempts to change
the clause outputs to achieve desired class sums. The figure
presents a qualitative comparison of the motives and effects
of both the types of feedback. To change the clause outputs,
the feedback will alter the number of automata that identify as
includes. The number of includes is extremely crucial to the
TM model memory footprint as we will see in Sections IV
and VI.



MAHESHWARI et al.: REDRESS: GENERATING COMPRESSED MODELS FOR EDGE INFERENCE USING TSETLIN MACHINES 11157

Fig. 4. Overview of the feedback procedure within the class. There are two types of feedback, viz. Type I and Type II. The type of feedback a clause gets depends
on the hyperparameters, clause polarity, expected output (yc), and probabilities C1 and C2. C1 and C2 determine if a clause will get any feedback based on the
comparison with random number, generated from uniform distribution. Similarly, in the Type I feedback, random number is used to determine the probability
of an automaton getting increment or decrement in state value. y - Yes, n - No, Inc - Include, Exc - Exclude, T - Threshold hyperparameter and s - the second
hyperparameter, as mentioned in Table I.

Fig. 5. A comparison of motives and effects of Type I and Type II feedback
on clause output and number of includes.

IV. INCLUDE-ENCODING

The proposition logic used for clause computation is shown
again in Fig. 6(a). Here, we observe an interesting property of
TM, where only the literals corresponding to includes contribute
to the clause output. Assuming Exc means exclude, bitwise OR
with 1 (= NOT Exc) will invariably result in output of 1 and
does not affect the output of the following AND gate. In the
hypothetical example shown in Fig. 6(a), only the literalsB1 and
B2 determine the clause output as their corresponding automata
are includes. In almost all datasets trained using standard TM, the
TA has been found to be extremely sparse consisting of >99%
excludes. Considering the fact that < 1% of TA are includes
and only contribute in the clause computation, its reasonable to
individually store only include-related information. Fig. 6(b)
shows l TA corresponding to l literals and their respective
offsets (or addresses). We encode these offsets along with some
additional information in a 16-bit integer. It should be noted that
only includes determine the clause outputs and we encode and
store all includes, therefore, no loss of information occurs in the
proposed compression scheme making it lossless.

Fig. 6(c) presents the detailed explanation of the encoded
include. The additional information indicates the polarity of
the clause and demarcate the change of clause while comput-
ing clause output. The encoded includes are stored serially,
hence, it is required to know the polarity of the clause it
belongs to, alongside clubbing all includes belonging to one
clause together using 2nd most significant bit (MSB). Fig. 6(c)
presents three cases to show how the first two MSB bits flip
depending on the serial number of clause and its polarity. If
a clause with all excludes is encountered then there is noth-
ing to store, hence, the 2nd MSB flips only when the next
include is encountered in the 3rd clause as shown in Fig. 6(c).
Using Including-Encoding scheme, 2 Bytes is required to store
each include. Hence, the memory footprint of the TM model
becomes directly proportional to the number of includes. In
Section VI, we present the REDRESS training procedure using
TA re-profiling to address this challenge. We will present the
details on compression achieved using the proposed encoding
scheme in Section VIII. Although not specifically encoded, the
least significant bit (LSB) in Fig. 6(c), by default, indicates the
literal polarity. Literal polarity is used during inference to access
the literals from the features of an input datapoint in the testing
dataset and will be discussed along with the proposed inference
algorithm in Section III-A. The include-encoding scheme stores
only includes, hence, if more clauses with all excludes are
encountered then they can be skipped entirely resulting in higher
compression. The algorithm scans through the TAs once, and
while, scanning it keeps track of clause changes, thus, no extra
overhead is involved when more classes with only excludes are
encountered.

V. REDRESS INFERENCE

The data structure obtained following the Include-Encoding
method comprises of two arrays: one holds the number of
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Fig. 6. Overview of the Include-Encoding methodology. (a) Clause output from the Tsetlin Machine proposition logic depends only on literals whose corresponding
automata are includes. (b) The encoding of include offsets, in a clause, into 16-bit integers with two most significant bits (MSB) holding additional information.
(c) The MSB holds the information on clause polarity and the bit next to it indicates the change of clause. Four consecutive clauses are shown to explain the flipping
of two MSB bits. If an all exclude clause is encountered then the 2nd MSB bit does not flip, it flips only when an include is encountered in the next clause. Inc -
Include, Exc - Exclude and Bi and Bi are ith literal and its complement.

Fig. 7. Data structure and input required in proposed REDRESS inference
algorithm. (a) The array with number of includes per class. (b) The array of
encoded includes. (c) A bit-packed testing dataset which clubs the corresponding
bits of W datapoints into a W -bit integer. f - the number of Boolean features.

includes per class and the second holds the encoded includes as
shown in Fig. 7. The input datapoints from the testing dataset are
bit-packed by forming W -bit integers from the corresponding
bits of W datapoints. As we will see, this enables classification
of W images simultaneously taking advantage of the maximum
wordsize, which is assumed here to be 32 as we validate TM
models on a 32-bit micro-controller. The input datapoints only
contain the features and literals are obtained during runtime by
complementing them such as: {li0 = fi, li1 = f i}. The LSB of
encoded include indicates if the corresponding literal is li0 or
li1, where i is the feature offset and 0 or 1 indicates the literal
polarity, respectively.

Algorithm 1 presents the pseudocode of the proposed RE-
DRESS inference algorithm. Inference of W datapoints is per-
formed simultaneously in each iteration and hence, the total
number of iterations performed is �τ/W �, where τ is total
number of datapoints in the testing dataset. The algorithm is

based on the assumption that W = 32 and 16 bits or 2 bytes
are used to encode each include which justifies the constants
appearing in the pseudocode. However, theoretically different
values of W can be used depending on the maximum word size
of the underlying hardware.

The algorithm iterates through the array of encoded includes
IncEnc once for every W datapoints. This enables parallel
inference of W datapoints and significantly reduces the total
computation time. While iterating through the IncEnc array,
the algorithm, basically, scrolls through all the includes in the
model. It uses the offset from the IncEnc to identify the
literals corresponding to includes in each clause, and ANDs
them to calculate the clause outputs, simultaneously, for W
datapoints. When the end of the clause is encountered, the clause
outputs are then added/subtracted to the class sums depending
on +ve or -ve clause polarity, respectively. The algorithm keeps
track of the maximum class sum and the corresponding class.
literal_polarity is used in line 21 to determine if the literal is
the input feature or its complement as it is needed to compute
the clause output. Comments in the Algorithm 1 provide further
explanation to its implementation.

VI. REDRESS TRAINING

A. Hyperparameter: T

The hyperparameter T (or threshold) plays a crucial role in
classification accuracy and the number of includes. Section III-B
and Fig. 4 show that the class sum is clipped to [−T, T ] and
cannot exceed the threshold in magnitude. Equations C1 and
C2, shown again in Fig. 8, determine the probability that a
clause will get feedback, i.e., either Type I or Type II. Fig. 8
presents the average probability of a clause getting feedback
for the possible range of class sums with respect to T = 20. It
assumes that all classes obtain the same number of feedback hits
τ × α for τ training samples and a certain constant α. We can
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Algorithm 1: REDRESS Inference Algorithm Pseudocode.

see that for the expected class the probability reduces to zero if
Class_sum = T , implying that no further change will happen
in TA profile of the expected class. Similarly, random class with
Class_sum = −T will stop getting feedback to prevent further
deterioration of its TA profile vis-à-vis the expected class, as
they already can be clearly distinguished with high accuracy
due to the large difference in their class sums. At this point,
a higher T would allow continued feedback even though not
required.

Ideally, it is assumed that the training sample space Strain

is unbiased such that all classes have equal number of sam-
ples for training. However, it is seldom the case in practi-
cal scenarios. With more samples the expected class will get
more chances of obtaining higher class sums in comparison

to other classes that can skew the training in favor of a par-
ticular class. Moreover, any classification problem has inher-
ent biases where some class is relatively easier to distinguish
among others depending on its properties, input raw data prepro-
cessing and the underlying ML algorithm. Threshold combats
these biases by limiting the number of feedback as shown in
Fig. 8.

Fig. 9 presents the number of feedback actions per class
for 4 epochs of training a TM: (D = MNIST,M = 10,
N = 100, l = 1568, s = 5, τ = 50, 000) (see Table I for
key term definitions), using MNIST dataset for T =
{5, 10, 20, 40, 60, 100}. We can draw the following observations
from the figure:
� The higher the T the more the number of feedback.
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Fig. 8. This figure shows the mean probability of a clause getting feedback
for a particular class sum. The mean is taken for C1 or C2 = TRUE over τ × α
(=1 million) total comparisons for each class sum indicated on the x-axis. τ
is total number of training samples and we assume that each class gets same
proportion (α) of feedback hits.

� Feedback per class varies considerably for small T while
remains relatively uniform for high T .

� The training accuracy deteriorates with epoch for highT =
40, 60, 100.

� T = 10 outperforms T = 5 as can be seen from their
accuracy in four epochs: epoch 1 - 91.23% versus 90.05%,
epoch 2 - 92.81% versus 90.73%, epoch 3 - 92.97% versus
91.98% and epoch 4 - 93.25% versus 92.39%.

High T generates excess of feedback deteriorating the classi-
fication accuracy and more feedback increases the training time.
It is unable to combat the aforementioned biases in the dataset.
Similarly, a very small T fails to calibrate the TA profile to
capture the important features. Fig. 9 shows that an optimum
range of T exists for a specific datasets that will result in high
accuracy.

B. Hyperparameter: s

The hyperparameter s is used to determine if the state tran-
sition (increment or decrement) will happen for an automaton
in the Type I feedback, as shown in Fig. 4. Fig. 10 shows the
Equations S1 and S2 again and plots the probability of S1 and
S2 to beTRUE for β = 1million checks for different values of s,
each one being an independent trial. If S1 is TRUE then the state
will decrement with the aim of making it exclude, if not already.
If S2 is TRUE then the state will increment and more includes
may appear for automata whose corresponding literal is 1. A high
s will lead to more includes and vice-versa as shown by their
probabilities in Fig. 10. Thus, the hyperparameter s determines
the learning rate and capacity. The learning capacity relates to
the maximum training accuracy at which the TM saturates and it
will require an increase in s to achieve any better accuracy. The
hyperparameter s plays an extremely crucial role in avoiding
overfitting and achieving high accuracy while minimizing num-
ber of includes and forms the core of TA Re-profiling. We will

TABLE II
AN EXCERPT FROM THE TABULATED OUTPUT OF TM ARCHITECTURE SEARCH

PARADIGM FOR MNIST ARRANGED IN THE DESCENDING ORDER OF

ACCURACY. THE DATA BELONGS TO FIG. 11

continue to discuss hyperparameter s in detail in the upcoming
sections. However, it should be noted that similar to T , there
exists an optimum range of s for accurate classification of a
dataset. The empirical evidence will be provided in the following
sections.

C. TM Architecture Search Paradigm

There does not exist a deterministic method to find TM
architecture parameters suitable to classify any dataset with
satisfactory accuracy and a certain number of includes. TM
architecture parameters are determined empirically and mainly
consist of the number of clauses, T and s and less often the
number of epochs as it can be decided during runtime. As
mentioned previously, there exists a range of TM architecture
parameters that can produce an optimal result for a dataset.
To identify the optimal solution, we propose a automated TM
Architecture Search Paradigm (TMASP) approach where TM
source code is integrated with data visualization tool from
Weights & Biases [31]. It generates sweeps for each combination
of architectural parameters specified, a subset of which can be
visualized in Fig. 11 and tabulated in Table II. TMASP is an
automated process that stores the raw state values of TA for each
sweep, generates visualization, tabulate the results and can work
in both online and offline modes. Multiple instances of TMASP
can run simultaneously by running one architecture combination
per core to speedup the exploration process. The source code can
found at: https://github.com/nclaes/tmasp.

From Table II, we notice that s = 7.5 has consistently pro-
duced high accuracy compared to others while s = 2.5 is the
worst performer. The number of includes is quite high for
high T = 15, 20 for s = 7.5, N = 300 and epochs = 100. This
reinforces the understanding developed in Section VI-A that
high threshold increases the number of feedbacks, specifically
the Type I feedback, resulting in more includes. Often more
clauses may lead to more includes. The storage and compu-
tational requirements are directly proportional to the number
of includes. Fewer includes will require smaller space to store
and will consume less computation time during inference. It
should be noted that using the REDRESS training procedure
the number of includes can be reduced and the accuracy can be
improved as will be discussed in Section VI-D, hence, the se-
lection here determines the configuration at the start of training.

https://github.com/nclaes/tmasp


MAHESHWARI et al.: REDRESS: GENERATING COMPRESSED MODELS FOR EDGE INFERENCE USING TSETLIN MACHINES 11161

Fig. 9. These figures show the variations in number of feedback received by classes with varying T = {5, 10, 20, 40, 60, 100} while training TM: (D =
MNIST, M = 10, N = 100, l = 1568, s = 5, τ = 50, 000). For very small or large T , the accuracy deteriorates all through the 4 epochs, indicates an
existence of optimum range of T values for a dataset. D- name of the dataset, M - the number of classes, N - the number of clauses per class, l - the number of
literals(≡automata) per clause, s - hyperparameter, T - hyperparameter and τ - the number of samples).

Fig. 10. This figure shows probability of Tsetlin automaton state transition
with respect to different s values. The comparison operations with random
numbers were performed β = 1 million times and its ratio with sum of TRUE
outputs is plotted.

Using Table II, we can select the TM architecture parameters
for MNIST that satisfy our requirements of includes and accu-
racy. Among other choices, we select the following parameter
values: N = 200, s = 7.5, T = 10. Section VII elaborates on
the parameters selected for other datasets in this paper while
discussing the complete REDRESS flow.

D. Tsetlin Automata Re-Profiling

TA re-profiling is the procedure to disturb the Nash equilib-
rium of the automata [18] while retaining the include-exclude
decisions, hence, the training accuracy from the last training

epoch. It, basically, involves forced resetting of state to min-
imum possible value such that it retains the include-exclude
characteristic. Fig. 12 presents examples of two automata where
they retain include and exclude decision, however, their values
are reset to middle_state+ 1 and 1, respectively. The standard
training procedure initializes the TA with random values around
the middle of the state value range as shown in Fig. 3. TA
re-profiling enables us to initialize the TM with a previously
trained model and gives TM an opportunity to re-calibrate the
automata with user specified hyperparameters. Re-profiling TA
saves us from starting the training process from scratch and
enables TM to search for global optimal solution. It enables
re-using a well trained model for fine tuning to increase the
accuracy and decrease the model size.

E. Methodology

The proposed REDRESS training methodology is based on
the hypothesis that by re-profiling the TA and adjusting the s hy-
perparameter, a similar or better accuracy may be achieved with
fewer includes. We discuss the methodology here and empiri-
cally validate this hypothesis in Section VIII. Fig. 13. (a) presents
the REDRESS training methodology using the TA re-profiling
procedure. First, the TMASP is performed to determine optimal
values for clauses and hyperparameters. In TMASP mentioned
in Section VI-C, the TA is initialized randomly to includes and
excludes following the standard training procedure presented in
Section III-B. However, in our experiments we have found that
when all TA are initialized as excludes and assigned the state
value of 1 then the TM tends to achieve same accuracy with fewer
includes albeit with more epochs of training. Similarly, the range
of state values from [1, 200] to [1, 400] increases the number of
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Fig. 11. Visualization of the sweeps of TM Architecture Search Paradigm (TMASP) for MNIST generated using ML visualization tools from Weights &
Biases [31]. Only a subset of all the sweeps are shown for understanding. The TMASP was performed for all combinations of the following architecture parameter
ranges: N = [100, 200, 300], T = [10, 15, 20], s = [2.5, 5, 7.5, 10], epochs = [50, 100]. N - the number of clauses per class.

Fig. 12. Tsetlin Automata Re-profiling: The state value of each automaton
is reset to minimum possible value such that it retains the include-exclude
decisions.

automaton-level increments in the Type I feedback required to
become an include. Therefore, any include requires double the
feedback and may demonstrate high confidence and importance
in accurate classification. Larger ranges of state value may be
explored by interested readers. However, this exploration is
beyond the scope of this paper.

TMASP, also, provides the raw TA file for the chosen archi-
tectural parameters to start the training process. The raw TA
file can be used to initialize the TA after going through the TA
re-profiling procedure or, at user’s discretion, the first training
cycle can start from scratch with all TA initialized as excludes
with state value of 1. A training cycle includes the TA re-profiling
based initialization of TA file obtained from the previous training
cycle followed by the desired number of training epochs. In
all training cycles the number of clauses and T are kept fixed,
however, s can vary as per user-specification. The training
procedure saves the raw TA file every time the training accuracy
improves. If the accuracy and include profile, i.e., the number of
includes, after the current epoch are found to be satisfactory
then the training process can be terminated. Otherwise, the
user has a choice of continuing training or start next training
cycle that will require TA re-profiling based re-initialization

TABLE III
ENLISTING THE OPTIMUM TM MODEL PARAMETERS OBTAINED FROM TMASP

RUNS FOR DIFFERENT DATASETS

of the TA. In Section VIII, we will see that the choice of s is
crucial before starting the training cycle to achieve the desired
model. Fig. 13(b) presents the overview of the entire REDRESS
approach. All the datasets used in this paper for validation have
gone through the same flow to obtain the optimized TM models.

VII. EXPERIMENTAL SETUP

We use five datasets for validation viz. MNIST [32], Fashion-
MNIST [33] (FMNIST), Kuzushiji-MNIST [34] (KMNIST),
CIFAR2 [35] and 6-keyword spotting [36] (KWS6). MNIST,
FMNIST and KMNIST are well known 10-class benchmark
containing 60 k training and 10 k testing datapoints composed
of 28× 28 pixel images (≡784) features. MNIST, FMNIST and
KMNIST are Booleanized using adaptive Gaussian thresholding
procedure with window size 11 and threshold value 2. KWS6 is
Booleanized form of six speech commands which include: {yes,
no, up, down, left, right} [19]. CIFAR2 is a variant of CIFAR-10
with 2 classes of images viz. animals and vehicle, containing 50 k
training and 10 k testing 32× 32 pixel grayscale images with
1,024 features.

The same REDRESS training and inference methodology,
shown in Fig. 13(b), is used with all the five datasets (or bench-
marks). Before training, however, we initialize the TA as ex-
cludes with state value of 1 in all our experiments. The state value
range used in our experiments is [1, 400]. Table III presents the
optimum TM architecture configuration obtained from TMASP
runs for different datasets. We compare REDRESS models with
seven models of BNN with the configurations shown in Table IV.
We have used the default settings to train the BNN as provided
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Fig. 13. (a) This figure presents the REDRESS training methodology combining various components together. It starts with TM architecture search followed with
TA re-profiling based initialization and standard training routine for one epoch. Depending on the resulting accuracy the training continues to iterate. It saves raw
TA file once the accuracy improves. The user can terminate and restart the training using the TA re-profiling based initialization with a change of hyperparameters
in search of a better model. (b) The complete overview of the REDRESS training and inference methodology.

TABLE IV
ENLISTING THE BNN MODELS. ALL THE STATED MODELS WERE EVALUATED

FOR EACH DATASET. Li DENOTES THE NUMBER OF NEURONS IN THE ith

LAYER

by the authors of cited works. Typically BNNs already provide
a frugal means of encoding weights using signed binary repre-
sentations of weights in neurons. Modifying those settings and
exploring DNNs with different precision has already been stud-
ied in [9]. We have validated the inference time, accuracy and
energy of using the proposed REDRESS TM on STM32F746G-
DISCO, running at 216 kHz, equipped with ARM Cortex-M7
core, 1 Mbytes of flash memory and 340 Kbytes of RAM. The
power used by the micro-controller during inference is measured
at source using Keysight N6705 C DC Power Analyzer [37].
The power and energy measurements presented in this pa-
per include the entire micro-controller SoC board power. The
source code of REDRESS approach can be found at: https:
//github.com/nclaes/tm-redress

VIII. RESULTS AND DISCUSSION

Fig. 14 presents the effect of T on the number of includes. TM
parameters for each dataset are taken from Table III and for each
T = {15, 20, 25, 30} they are kept constant. For each dataset the
training is performed for the same number of epochs. We can see
that for all datasets the includes increase with T . For MNIST,

Fig. 14. The effect of threshold (T ) on includes when all other parameters are
kept constant. Other TM parameters are taken from Table III.

the number of includes are particularly larger compared to other
dataset and hence, a different y-axis is used for representational
purpose. This reinforces the choice of T = 10 for MNIST with
the aim to reduce includes.

As mentioned in Section VI-B, the probability of state incre-
ment tends to 1 with increase in s, implying that includes will
increase with s. This is, also, demonstrated in Fig. 15, which
presents the effect of s on the number of includes. For all datasets
the includes increase with s.

Fig. 16 presents the changes in the TA profile and accuracy
when a TM model goes through cycles of TA re-profiling based
REDRESS training procedure. The experiments have been per-
formed for all five datasets where all parameters, taken from
Table III, are kept constant except s. Two sets of experiments

https://github.com/nclaes/tm-redress
https://github.com/nclaes/tm-redress
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Fig. 15. The effect of hyperparameter s on includes when other parameters
are kept constant. Other TM parameters are taken from Table III.

are performed for each dataset, one with decreasing and the
other with increasing s, shown in the left and right columns
in Fig. 16, respectively. In each REDRESS training cycle, the
TM is trained for variable number of epochs, generally, less
that 10 and the training starts from scratch by initializing all
TA as excludes with state value = 1. The hyperparameter s is
kept the same for three consecutive REDRESS training cycles
as shown in Fig. 16. We exit the current training cycle once the
training results in improved accuracy. The accuracy shown in
the figure is test accuracy in the latest epoch. At the start of the
next REDRESS training cycle the TA re-profiling is induced to
initialize the TA. Thus, the TA file obtained from the previous
training cycle is used in the next after re-profiling.

For MNIST the chosen s = {2.5, 5, 7.5, 10}. Within the three
consecutive training cycles with the same s, we notice that better
accuracy is achieved with similar or fewer number of includes.
The number of includes dip when s is reduced from 10 to 7.5
and rises when it increases from 2.5 to 5. This corroborates
our observation in Fig. 15. An important observation in the
decreasing s case can be seen when s is reduced from 5 to 2.5,
which leads to significant decrease in the number of includes
and accuracy, both. This suggests that s = 2.5 is too small for
this dataset. For other experiments, we avoid s = 2.5 as they all
demonstrate the same trend.

For FMNIST, KMNIST, CIFAR2 and KWS6, s ∈ [5, 15]. For
higher s values such as 12.5 and 15, we observe erratic behaviour
in the case of decreasing s in FMNIST and KMNIST. This
happens when TM is unable to improve the accuracy while at
the current optimal solution and hence, the number of includes
jump to find a better solution. However, once the accuracy
improves this jump in includes can be mitigated at a later stage
by decreasing the s as shown in Fig. 16. This demonstrates that
higher s can help approach a global optima with satisfactory
accuracy and then the TA re-profiling based REDRESS may be
used with smaller s to minimize the number of includes. Fig. 16
shows the effectiveness of our approach in finding an optimum
model with high accuracy and a minimum number of includes.

TABLE V
COMPARISON BETWEEN REDRESS TM AND BNN MODELS BASED ON

MEMORY FOOTPRINT (MEM), ACCURACY (ACC), ENERGY (E) AND INFERENCE

TIME OF TESTING DATASET. REDRESS OUTPERFORMS BNN MODELS EXCEPT

FOR THE VALUES IN BLUE COLORED CELLS

The three colums of subfigures, in Fig. 17, each representing
a training cycle, show the trends of feedback and includes before
and after the junction at which TA re-profiling is applied twice.
It shows the number of includes in the y-axis (left), feedback
on the secondary y-axis (right), and accuracy (in the plot) at the
TA re-profiling junctions. All TM parameters are kept constant
in all the three training cycles with each cycle training for 10
epochs. Only MNIST test case is provided here, the subfigures
for CIFAR2, KWS6, FMNIST and KMNIST can be found in
Fig. 1 of the supplementary material, (available online). We
can observe that the number of includes dip along with accu-
racy immediately after the TA re-profiling and gradually rises
producing better training accuracy with fewer includes, in the
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Fig. 16. These figures demonstrates the advantage of using TA re-profiling through variations in the number of includes and accuracy vis-à-vis s. TM parameters,
taken from Table III, are kept constant through the runs except s that is changed after every three consecutive training cycles. The TA file obtained from the previous
training cycle is used to initialize the TA in the next training cycle after re-profiling. A total of 12 training cycles, in the decreasing and increasing order of s are
shown for each dataset. It demonstrates how optimal model can be obtained through REDRESS training approach with changes in s. High s can help identify
global optimal solution and decreasing s in the following training cycles can reduce the number of includes and fine-tune the model.

case of CIFAR2 and KWS6, or similar number of includes as in
the case of MNIST, FMNIST and KMNIST. This demonstrates
that TA re-profiling is a computationally minimal procedure to
fine-tune the model to improve accuracy and reduce memory
footprint.

Table V presents the inference results obtained from the
micro-controller for the testing dataset of MNIST, FMNIST,
KMNIST, CIFAR2 and KWS6. It compares seven different
BNN models against TM models obtained from REDRESS. All

BNN models were trained for 100 epochs as per the parameters
mentioned in Table IV. The parameters used in TM models
are mentioned in Table III. The memory footprint displayed in
Table V consists of the model size together with the size of the
source code. The model size in kilo bytes (kB) includes coeffi-
cients in the case of BNN and encoded includes in the case TM.
The accuracy is measured over the testing dataset. The stabilized
power measured during Conv-1 L and Conv-2 L inference was
found to be 1.3 W while in the case of all other BNN and TM
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Fig. 17. The effect of TA re-profiling while training MNIST if all parameters are kept constant and trained for the same number of epochs. The training accuracy
improves at the end of every training cycle with fewer or similar number of includes. It demonstrates how REDRESS Training procedure can help fine-tuning a
TM model.

TABLE VI
MEMORY FOOTPRINT COMPARISON OF COMPRESSED MODEL OBTAINED FROM

RLE [38] AND REDRESS VERSUS UNCOMPRESSED TA IN KILO BYTES (KB)

models, it was measured to be 1.35 W. The difference can be
attributed to larger model sizes leading to more data movement.
The model size, excluding the source code size, for Conv-1 L and
Conv-2 L range between 4-10 kB while the minimum model size
for other models is >16 kB. Energy is the product of inference
time with power shown in the unit of Joule. The blue colored cells
in Table V demarcate those instances where the BNN models
outperform TM. As we can see, in most cases TM outperforms
BNN, especially, in the amount of energy and computation time
by orders of magnitude. The difference in accuracy for MNIST
and CIFAR2 between best performing BNN model compared
to TM is <1.2%. TM results in notably better test accuracies
in the case of FMNIST, KMNIST and KWS6. Overall, TM
models demonstrates significantly better overall performance
compared to the state-of-the-art BNN models. Table VI presents
a comparison of the memory footprint of TM model upon
compression using the proposed Include-Encoding method. It
shows that the REDRESS model occupies 86-367× less memory
on the micro-controller compared with the entire TM model, if
1 B is used to store an automaton.

Run length encoding (RLE) based compression approach
is presented in [38] to use TM in edge inference scenario.
Table VI presents a comparison of memory footprints of com-
pressed TA obtained using RLE and REDRESS relative to
the original uncompressed TA in kilo bytes. We can see that
REDRESS considerably outperforms RLE producing 81-354×
more compression. It is possible that the TM models have
many alternating include-exclude bits that may be responsi-
ble for relatively poor performance of RLE. The compression
is performed after training is complete and the raw TA file
with include-exclude decisions is available. Here, the same TA

file goes through RLE and REDRESS compression methods
and both techniques are lossless, hence, both have the same
accuracy.

IX. CONCLUSION

This article proposes how to significantly improve the sparse-
ness of Tsetlin Machines (TMs), a recent and increasingly pop-
ular machine learning algorithm. After introducing the vanilla
TM training and inference methodology to a wider audience,
we present an off- and online TM Architecture Search Paradigm
(TMASP) named REDRESS for exploring model architectures
and hyper-parameters on application-specific datasets. The pro-
posed training methodology drastically increases the sparseness
of TM models. We achieve this by re-profiling the underlying
Tsetlin Automata that drives the learning, helping the TM search
for a better solution with fewer includes (more concise pattern
representation). The sparse models then go through lossless
compression using the so-called include-encoding, which distills
the bare minimum information required to perform inference
without loss in accuracy. Using the compressed-domain infer-
ence algorithm, the REDRESS TM outperforms seven BNN
models on inference time, energy, and memory footprint across
five benchmarks viz. MNIST, FMNIST, KMNIST, CIFAR2 and
KWS6. REDRESS further simplifies the vanilla TM clause
compute by skipping unnecessary excludes, thereby classifying
with fewer bitwise operations. In conclusion, the REDRESS
approach demonstrates that highly sparse TMs yield improved
accuracy while boosting computation speed and energy effi-
ciency.
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