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Abstract—For each partition of a data set into a given number of
parts there is a partition such that every part is as much as possible
a good model (an “algorithmic sufficient statistic”) for the data
in that part. Since this can be done for every number between one
and the number of data, the result is a function, the cluster structure
function. It maps the number of parts of a partition to values related
to the deficiencies of being good models by the parts. Such a function
starts with a value at least zero for no partition of the data set and
descents to zero for the partition of the data set into singleton parts.
The optimal clustering is the one selected by analyzing the cluster
structure function. The theory behind the method is expressed
in algorithmic information theory (Kolmogorov complexity). In
practice the Kolmogorov complexities involved are approximated
by a concrete compressor. We give examples using real data sets:
the MNIST handwritten digits and the segmentation of real cells
as used in stem cell research.

Index Terms—Algorithmic sufficient statistic, cluster,
classification, data mining, Kolmogorov complexity, pattern
recognition, similarity.

I. INTRODUCTION

THE aim of this work is to introduce the cluster structure
function and apply it to propose a method for finding

the number of clusters in a given dataset that is unsupervised,
feasible, justifiable an terms of its theory, and more accurate
than previous methods for this task. Clustering is a fundamental
task in unsupervised learning, partitioning a set of objects into
groups called clusters such that objects in the same cluster are
more similar to each other than to those in other groups [26].
Every object in a computer is represented by a finite sequence
of 0’s and 1’s: a finite binary string (abbreviated to “string”
in the sequel). There are many methods and algorithms for
clustering and determining the number of clusters in data as
for example surveyed in [2], [14], [16], [26]. We explore a
new method for determining the number of clusters based on
Kolmogorov’s notion of algorithmic sufficient statistic [8], [24]
which is expressed in terms of Kolmogorov complexity [17].
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For technical reasons we use prefix Kolmogorov complexity [19].
In the sequel we also use K for the number of clusters in the
data, agreeing with customary use. Confusion is avoided by the
context.

A brief overview of the needed notions is given here. Details
and proofs can be found in the textbook [21]. A prefix Turing
machine is a Turing machine (we use a binary alphabet) such
that the set of input programs for which the machine halts is
a prefix code (no input program is a proper prefix of another
one). The prefix Turing machines can be computationally enu-
merated T1, T2, . . . and this list has a universal prefix Turing
machineU such thatU(i, p) = Ti(p) for all integers i and halting
programs p for Ti. Formally, the conditional prefix Kolmogorov
complexityK(x|y) is the length of the shortest input string z such
that the reference universal prefix Turing machine U on input z
with auxiliary information y outputs x. The unconditional prefix
Kolmogorov complexity K(x) is defined as K(x|ε) where ε is
the empty string. The quantity K(x) is the length of a shortest
binary string x∗ from which x can be effectively reconstructed.
If there are more than one candidates for x∗ we use the first one
in the enumeration. The string x∗ accounts for every effective
regularity in x. In these definitions both x and y can consist
of strings into which finite multisets of finite binary strings are
encoded.

Informally, a finite set A of strings containing x is an al-
gorithmic sufficient statistic for x iff K(A) + log |A| = K(x).
That is, the encoding of x by giving A (a model) and the index
of x in A is as short as a shortest computer program for x
(sometimes one adds also a small value). This means that A
is a good model for x [31]. As we show in Lemma 1 it is
impossible that A is such a good model for all y ∈ A. Therefore
we have to relax the condition of sufficiency. If the equality
above holds up to some additive term then this term is called the
optimality deficiency. We propose to group the elements from a
data set (a multiset) into clusters (submultisets) such that the
optimality deficiencies in every cluster are minimal in some
sense. This seems to require a specification of the number of
clusters. However, the aim is to find the number of clusters. To
solve this conundrum the proposed method proceeds as follows.
The cluster structure function has the number of clusters as
argument and a quantity involving the optimality deficiencies
as value. Such a function decreases to 0 when the number of
clusters grows to the cardinality of the data set. The optimal
number of clusters can then be selected related to the cluster
structure function.

We give the definitions and the ideal method of application in
Section II. Proofs are deferred to Section II-B. An explanation
of the probability relations of members of a cluster is given
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in Section III. A brief survey of related literature is given in
Section IV. Finally, Section V shows examples of real appli-
cations including estimating the number of unique digits in a
set of MNIST handwritten digits and an ensemble segmentation
approach to human stem cell nuclear segmentation.

II. THEORY OF THE CLUSTER STRUCTURE FUNCTION

The aim is to partition a multiset into submultisets such that
each submultiset constitutes a cluster. In probabilistic statis-
tics the relevant notion is the “sufficient statistic” due to R.J.
Fisher [8], [13]. According to Fisher:

“The statistic chosen should summarise the whole of the relevant
information supplied by the sample. This may be called the Criterion
of Sufficiency . . . In the case of the normal curve of distribution it is
evident that the second moment is a sufficient statistic for estimating
the standard deviation.”

This type of sufficient statistic pertains to probability distri-
butions. In the problem at hand the data are individual strings.
Therefore the probabilistic notion is not appropriate. For indi-
vidual strings the analogous notion is the “algorithmic sufficient
statistic.” For convenience we delete the adjective “algorithmic”
in the sequel (probabilistic sufficient statistic doesn’t occur in the
sequel). We equate a multiset being a cluster with the multiset
being, as close as possible according to a given criterion, an
(algorithmic) sufficient statistic for the members of the cluster.
The new method partitions S such that each resulting part is
as close as possible to the given criterion a sufficient statistic
for all of its members. Therefore they are good models for its
members [31]. This is different from existing methods which
use some metric which does not say much about this aspect.

Definition 1. A multiset A of strings is an algorithmic suf-
ficient statistic abbreviated as sufficient statistic for a element
x ∈ A if K(A) + log |A| = K(x).

Here A is a model and the log |A| term allows us to pinpoint x
in A. Therefore, every y ∈ A satisfies K(A) + log |A| ≥ K(y).
Reference [11] tells us that if A is a sufficient statistic for
the string x then K(A|x) = O(1). That is, A is almost com-
pletely determined by x. If A is a sufficient statistic for x,
then K(x|A) = log |A|. Namely, K(x) ≤ K(A) +K(x|A) ≤
K(A) + log |A| = K(x). We call x a typical member of A.

This is akin to the minimum description length (MDL) prin-
ciple in Statistics [12]. To illustrate, if the length of a binary
string x is n and K(x) = n+K(n) (the maximum) which
means that x is random then A = {x} is a sufficient statistic
of x (the minimal one) and A = {0, 1}n is also a sufficient
statistic of x (the maximal one). There is a tradeoff between
the cardinality of a sufficient statistic A of a string x and the
amount of effective regularities in the string x it represents. The
greater the cardinality of A is the smaller is K(A) which is the
amount of effective regularities it represents. The multiset A
accounts for as many effective regularities in x as is possible for
a set of the cardinality of A. This means that A is the model of
best fit, which we call the best model, forxwhich is possible [31,
Section IV-B]. Thus, if A has the property that for every y ∈ A
it is as much as possible a sufficient statistic, then all members
of A share as many effective regularities as is possible. All the

y ∈ A are similar in the sense of [4], [20]. We cluster the data
according to this criterium.

If A contains elements y such that K(A) + log |A| > K(y)
(trivially < is impossible) then K(A|y) �= O(1). Let us look
closer at what this implies and consider A containing only
elements of length n. Then by the symmetry of information [10]
we have K(A|x) = K(A) +K(x|A)−K(x) +O(log n). For
example, let A be the set containing all integers in an interval
with complex endpoints and x an integer in this interval of low
complexity. For example K(A) = Ω(n) and K(x) = o(n/4).
Therefore K(x|A) = o(n/4) and this yields K(A|x) = Ω(n).
That is, A is not at all determined by x.

Definition 2. The optimality deficiency of A as a sufficient
statistic for x ∈ A is

δ(A, x) = K(A) + log |A| −K(x). (1)

The mean of the optimality deficiencies of a set A is

μA =
1

|A|
∑
x∈A

δ(A, x).

Here δ(A, x) ≥ 0with equality for a proper sufficient statistic.
IfμA = 0 then δ(A, x) = 0 for allx ∈ A, that is,A is a sufficient
statistic for all of its elements. But this is not possible for |A| ≥ 2
by the following lemma.

Lemma 1. Let A be a finite multiset of strings of length n.
i) Let δ(A, x) = 0 for some x ∈ A. For all y ∈ A holds

K(y) ≤ K(x) and if |A| > 2 then K(y) < K(x) for
some y ∈ A, δ(A, y) > 0, and μA > 0.

ii) There exist A and x ∈ A such that δ(A, x) < 0 and for
such A no y ∈ A satisfies δ(A, y) = 0.

Remark 1. The optimality deficiency should not be confused
with the randomness deficiency of x ∈ A with respect to A:

δ(x|A) = log |A| −K(x|A).
By the symmetry of information law K(A) +K(x|A) =
K(x) +K(A|x) up to a logarithmic additive term
O(logK(A)). Therefore δ(x|A) +K(A|x) = log |A|+
K(A)−K(x) +O(logK(A)) and hence δ(A, x) =
δ(x|A) +K(A|x) +O(logK(A)). ♦

For clustering we want ideally the model to be a sufficient
statistic for all elements in it. But we have to deal with optimality
deficiencies which are greater than 0, and with real data typically
they are all greater than 0. There are many ways to combine the
optimality deficiencies (or other aspects) to obtain criteria for
selection. This is formulated in the criterion function as follows.

Let N denote the natural numbers and S = {x1, . . . , xn} be
a finite nonempty multiset of strings. Consider a partition π of
S into k nonempty subsets S1, . . . , Sk such that

⋃k
i=1 Si = S

and Si

⋂
Sj = ∅ for i �= j. Denote the set of partitions of S

into k submultisets by Πk and the set of all partitions by Π.
The criterion function f : Π → N takes as argument a partition
π ∈ Π of S and as value a natural number computed from the
optimality deficiencies involved in the partition subject to the
following: (i) the value of f(π) does not increase if one or more
optimality deficiencies are changed to 0; and (ii) f(π) = 0 if
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all optimality deficiencies are 0. (One can use other aspects as
well.)

Definition 3. The Cluster Structure Function (CSF) 1 for a
multiset S of n strings is defined by

Hf
S(k) = min

π∈Πk

f(π) (2)

where f is the criterion function, for each k (1 ≤ k ≤ n). The
graph of this function is called the CSF curve. If f is understood
we may write HS for the CSF function.

Example 1. Let π ∈ Πk. The bandwidth of Si is
bi = maxx∈Si

{δ(Si, x)} −minx∈Si
{δ(Si, x)}. Define f(π) =

min
∑

1≤i≤k bi. For every k (1 ≤ k ≤ n) the value Hf
S(k)

is based on the partition π ∈ Πk that minimizes the minimal
sum of the bandwidths of the parts in a k-partition of S. If we
consider the graph of Hf

S in a two-dimensional plane with the
horizontal axis denoting the number k of parts of S, and the
vertical axis denoting the value of Hf

S , then left of the graph of
Hf

S there are no possible k-partitions while right of the graph of
Hf

S there are redundant k-partitions. On the graph of Hf
S occur

the witness partitions. ♦
Remark 2. By Lemma 1 parts A with |A| > 2 of a witness

partition π of S can not be a sufficient statistic for all of its
elements and therefore f(π) > 0. ♦

Remark 3. In clusters the members of a cluster typically share
some characteristics but not all characteristics. It turns out that
the members of a cluster are probabilistically close, Section III.♦

A. Properties

It is convenient to ignore possible O(1) additive terms in the
sequel.

Lemma 2. Let S = {x1, . . . , xn} with n ≥ 1. For every f

we have Hf
S(n) = 0 and Hf

S is monotonic non-increasing with
increasing arguments on its domain [1, n].

The graph of Hf
S descends until Hf

S(k) = 0 for the least k ≤
n, Hf

S(k) = · · · = Hf
S(n) = 0. We give a lower bound on Hf

for some datasets S.
Lemma 3. There existS ⊆ {0, 1}m with |S| = n and n ≤ m

such that Hf
S(k) = 0 for all 1 ≤ k ≤ n up to an additive term

of O(logK(S)).
The following lemma establishes that there are sets S of

n elements such that Hf
S stays at a high value for arguments

1, . . . , n− 1 and drops suddenly to 0 for argument n.
Lemma 4. There exists a set S ⊆ {0, 1}m and |S| = n with

m a sufficiently large multiple of n such that Hf
S(k) ≥ m/n for

1 ≤ k ≤ n− 1 and Hf
S(n) = 0.

In practice we may use the optimality deficiencies within the
standard deviation around the mean to determine the criterion
function f(π) for a partition π ∈ Πk of S into parts S1, . . . , Sk.
This is a more refined method since it eliminates the outliers.
only counting the central items (68.2% if they are normally
distributed) of the optimality deficiencies in each part Si. The

1The cluster structure function is named in analogy with the Kolmogorov
structure function hx : N → N defined by hx(k) = minS⊆{0,1}∗{log |S| :
x ∈ S, K(S) ≤ k} associated with a binary finite string x [31].

mean of S is μS = 1/|S|∑x∈S x. The standard deviation of
the δ(S, x) of a multiset S is

σS =
1

|S|
√∑

x∈S
(δ(S, x)− μS)2.

Definition 4. Let S be a multiset of strings, Sσ = {x ∈ S :
|δ(S, x)− μS | ≤ σS} and fσ is the criterion function of Sσ .

Hfσ
Sσ

(k) = min
π∈Πk

max
1≤i≤k

fσ(π), (3)

where π divides Sσ =
⋃

1≤i≤k Sσ,i into k parts Sσ,1, . . . , Sσ,k

That is, Hfσ
Sσ

(k) is the minimum over all partitions of Sσ into

k parts. It clusters possibly better since Hfσ
S (k) ≤ Hf

S(k) for
all k (1 ≤ k ≤ n) implying by Section III that the conditional
probabilities between most members of a part of a witness
partition may be larger but never smaller using Hfσ

S (k) than
using Hf

S(k).
Lemma 5. Let S = {x1, . . . , xn} with n ≥ 2. Then

Hfσ
Sσ

(1) > 0, Hfσ
Sσ

(n) = 0, and Hfσ
Sσ

is monotonic non-
increasing.

Lemma 6. There exists S ⊆ {0, 1}m with |S| = n such
that Hfσ

Sσ
(k) = 0 for all 1 ≤ k ≤ n up to an additive term

O(logK(S)).
Lemma 7. There exists a multiset S ⊂ {0, 1}m and |S| = n

with m multiple of n such that Hfσ
Sσ

(k) ≥ m/n for 1 ≤ k ≤
n− 1 and Hfσ

Sσ
(n) = 0.

B. Proofs

Proof. of Lemma 1 (i) For all y ∈ A we have K(y) ≤
K(A) + log |A| which implies K(y) ≤ K(x) (since K(x) =
K(A) + log |A|) and therefore δ(A, y) ≥ 0 and hence μA ≥ 0.
For |A| > 2 there are y ∈ A such that K(y) < K(x) since
K(y) < K(A) + log |A| = K(x). For example if y is the first
element of A and therefore K(y) ≤ K(A). Hence δ(A, y) > 0
and μA > 0.

Ad (ii) There is an x ∈ A such that δ(A, x) < 0. For example
A is a sufficiently long interval of integers of (represented by
n-bit strings) of length O(2n) with end points of O(log n)
Kolmogorov complexity and x ∈ A is a random string in that
interval which means K(x) = Ω(n). Then δ(A, x) < 0 and by
Item (i) there are no y ∈ A such that δ(A, y) = 0. �

Proof. of Lemma 2 The graph of Hf
S starts with the partition

of S into 1 part (no partition).
n = 1. The optimality deficiency involved is 0 and by Defi-

nition 3 we have Hf
S(1) = 0.

n > 1. Let 1 ≤ k < |S|. By Item (i) in the definition of
the criterion function, if π ∈ Πk+1 and we change one of the
optimality deficiencies of the elements to 0 then the criterion
function f does not increase. Hence the minimum of f for a
partition inΠk is not larger than the minimum of f for a partition
in Πk+1. Therefore Hf

S is monotonic non-increasing. For k = n
the multiset S is partitioned into singleton sets which all have
optimality deficiency 0. Hence Hf

S(n) = 0. �
Proof. of Lemma 3 Choose x ∈ {0, 1}m and S with

|S| = n such that S = {y : |y| = m and y equals x
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with the ith bit flipped (1 ≤ i ≤ n)}. Then for each
y ∈ S we have K(S) = K(y) +O(log n). Therefore
δ(S, y) = K(S) + log n−K(y) = O(log n) for all y ∈ S.
Hence Hf

S(1) = O(log n) = O(logK(S)). For every k
(1 < k ≤ n) we describe the partition π ∈ Πk which
witnesses Hf

S(k) by giving S in K(S) bits, the integer
k in O(log n) bits and an O(1) program. This program
does the following: given k and S it generates all finitely
many partitions π ∈ Πk. A partition π ∈ Πk of S divides
it into, say, S1, . . . , Sk. By the symmetry of information
law [10] we have K(S) = K(Si) +K(S|Si) +O(logK(S))
or K(Si) ≤ K(S)−O(logK(S)). For every y ∈ Si

therefore δ(Si, y) = K(Si) + log |Si| −K(y) ≤ K(S)−
O(logK(S)) + log |S| −K(y) = δ(S, y)−O(logK(S)).
Since 1 ≤ k ≤ n this proves the lemma. �

Proof. of Lemma 4 Let S = {x1, . . . , xn} with K(xi) =
im/n for 1 ≤ i ≤ n. (This is possible since all n members of
are strings of length m and they can have complexity varying
continuously between at least m and close to 0.) Since for
each finite multiset A and x ∈ A we have δ(A, x) = K(A) +
log |A| −K(x) and therefore

max
x∈A

δ(A, x)−min
x∈A

δ(A, x) = max
x∈A

{K(x)} −min
x∈A

{K(x)}.
For a k-partition of S at least one Si in the partition has cardi-
nality at least n/k. Therefore, if n/k > 1 then by the displayed
equality Hf

S(k) > m/n. This holds for k = 1, . . . , n− 1. For
k = n all parts Si in the partition are singleton sets and hence
Hf

S(k) = 0. �
Proof. of Lemma 5. Similar to the proof of Lemma 4. �
Proof. of Lemma 6. Similar to proof in Lemma 3. �
Proof. of Lemma 7. Similar to the proof of Lemma 4. �

C. Computing the Number of Clusters

To determine the number K of clusters in data S we compare
a cluster structure function used on S with the same cluster
function on reference set of |S| data distributed uniformly. We
do this comparison as the logarithm of the ratio. Using the cluster
function Hf

S on the data set S the number K of clusters in S is
the k where the log-ratio Df (k) is greatest. Formally

Df (k) = logHf
N (k)− logHf

S(k)

K = argmax
k

Df (k),

with the reference placement is the uniform distribution of |S|
data samples over the range spanned by S. For example if S is a
set of numbers than its range is the interval I = [minS,maxS].
Note that every set S is represented in a computer memory as a
finite set of finite strings of 0’s and 1’s and that therefore minS
and maxS are well defined. Divide I in n equal parts I1, . . . , In
with

⋃n
i=1 Ii = I and Ii

⋂
Ij = ∅ for 1 ≤ i �= j ≤ n. Item i ∈

N is positioned in the middle of subinterval Ii (1 ≤ i ≤ n).
To deal with the incomputability of the functionK we approx-

imate K from above by a good compressor Z. If x is a string
then Z(x) is the length of the by Z compressed version of x.
The function Z is by construction a computable function, even a
feasibly computable one (for example Z is bzip2 or some other

compressor). BecauseK is incomputable there are stringsx such
that K(x) � Z(x) and the difference Z(x)−K(x) is incom-
putable. However for natural data we assume that they encode no
universal computer or problematic mathematical constants like
the ratio of the circumference of a circle to its diameter 3.14 . . . .
We assume that for the natural data we encounter the compres-
sion by Z has a length which is close to its prefix Kolmogorov
complexity. The same holds for a multisetA of strings. We repre-
sent A = {x1, . . . , xn} as a string s(A) = 1|x1|0x1 . . . 1

|xn|0xn

with |s(A)| = |x1 . . . xn|+O(log |x1|+ · · ·+ log |xn|).
For a partition π ∈ Πk of S (|S| = n) we compute the

δ(Si, x)’s by computing Z(Si) (1 ≤ i ≤ k) and Z(x) for all
x ∈ S. To do so we require at most k + n compressions. We
write “at most” since a member of a multiset S can occur more
than once.

III. PROBABILITIES AMONG MEMBERS OF CLUSTERS

By Lemma 1 a part A, with more than two members, of a
witness partition of S can not be a sufficient statistic for all of
its elements. In clusters the members of a cluster typically share
some characteristics but not all characteristics. It turns out that
in an appropriate sense the members of a cluster are nonetheless
probabilistically close.

We define a conditional probability of n-bit strings follow-
ing [22]. We start with the unconditional probability. Let a
finite set A of n-bit strings be chosen randomly with proba-
bility m(A) = 2−K(A), and subsequently x ∈ A is chosen with
uniform probability from A, that is, x is chosen with probability
m(A)/|A|. (Since K(x) is a length of a prefix code we have
by Kraft’s inequality [8] that

∑
x 2

−K(x) ≤ 1. Hence m is a
semiprobability. A semiprobability is just like a probability but
may sum to less than 1. The particular semiprobability m is
called universal since it is the largest lower semicomputable
semiprobability [19]. In absence of any information about A we
can assign m(A) as its probability. Properties are discussed in
the text [21]).

Definition 5. For each y ∈ A we define the conditional prob-
ability p(y|x) by

p(y|x) =
∑

A�x,y m(A)/|A|∑
A�x m(A)/|A|

We show below that all pairs of strings in a part of a witness
partition of multiset S of n strings have an expectation of the
conditional p-probability with respect to each other which is at
least 2−Hf

S (k) for some k ≤ n. Hence the smaller Hf
S(k) is the

more all strings in a part of a witness partition of Hf
S(k) have

a large conditional probability with respect to each other: they
form a cluster.

Theorem 1. Let S ⊆ {0, 1}n (consider only n-length strings)
and a witness k-partition of S for Hf

S(k) that divides S into
parts S1, . . . , Sk. The expectation taken over a random variable
p(y|x) for pairs x, y ∈ Si for some i (1 ≤ i ≤ k) isE[p(y|x)] ≥
2−Hf

S(k)−O(logn) and E[p(y|x)] becomes at least (1/n)O(1) for
k → n.

Proof. The parts of a witness to Hf
S(k) form clusters because

intuitively if the conditional probabilities in Definition 5 of



COHEN AND VITÁNYI: CLUSTER STRUCTURE FUNCTION 11313

different strings in a part of the witness partition are small then
the conditional Kolmogorov complexities are small:

Claim 1.

p(x|y) = Θ(m(x, y))

Θ(m(x))
= 2−K(x|y)−O(logn).

Proof. Start from Definition 5. The first equality holds by
the following reasoning: since

∑
A�x m(A)/|A| = Θ(m(x))

because the lefthand side of the equation is a lower semicom-
putable function of x and hence it is O(m(x)); moreover if
A = {x} then the lefthand side equals m(x). The same argu-
ment can be used for the pair {x, y}. The second equality uses the
coding theorem [19] which states m(x) = 2K(x)+O(1) and the
symmetry of information law [10] which shows both the trivial
K(x, y) ≤ K(x) +K(y|x) and K(x, y) ≥ K(x) +K(y|x)−
O(logK(x, y)) = K(x) +K(y|x)−O(log n). TheΘ order of
magnitude is an O(1) term in the exponent and absorbed in the
O(log n) term. �

The conditional probabilities of pairs of strings in a part
of a k-partition of S which is a witness to Hf

S(k) satisfy the
following. By [22, Theorem 5] if x, y ∈ Si for a particular i
(1 ≤ i ≤ k) and δ(Si, x) ≤ d then p(y|x) ≥ 2−d−O(logn), while
if p(y|x) ≥ 2−d then δ(Si, x) ≤ d+O(log n). Hence p(y|x) =
2−δ(Si,x)±O(logn). The expectation of p(y|x) over Si is given by

E[p(y|x)] = 1/|Si|
∑
x∈Si

2−δ(Si,x)±O(logn)

≥ 2−
∑

x∈Si
(δ(Si,x)±O(logn))/|Si|

= 2−μSi
±O(logn),

using in the second line the inequality of arithmetic and geomet-
ric means. This implies that if x, y ∈ Si for some i (1 ≤ i ≤ k)
then the expectation of p(y|x) over all Si in a witness partition
of S is given by

E[p(y|x)] = (1/k)
k∑

i=1

2−μSi
±O(logn)

≥ 2−(1/k)
∑k

i=1(μSi
±O(logn))

≥ 2−HS(k)±O(logn),

using in the second line again the inequality of arithmetic
and geometric means and in the third line that HS(k) ≥
(1/k)

∑k
i=1 μSi

by Definition 3. Since HS(n) = 0 we have
E[p(y|x)] is at least (1/n)O(1) for k → n. �

Remark 4. Roughly, the smaller HS becomes the larger the
conditional probabilities of the elements in a part of the witness
partition become. ♦

IV. RELATED LITERATURE

This paper extends previous work in the field of algorithmic
statistics [11], [29], [31]. The applications build particularly on
the field of semi-supervised spectral learning [6], [15], [23].
Most previous approaches to estimating the number of clusters
in a dataset utilize probabilistic statistical modeling of the data.
The Bayesian and Akaike information criteria both formulate

the question w.r.t. underlying distributions estimated either
parametrically or empirically [26], [36], [37], [38]. Bayesian
methods are well suited when the likelihood function and prior
probabilities are known. In comparison, the algorithmic statistics
approach proposed here works with the particular dataset rather
than probabilities across a hypothesized population. Recently,
alternative approaches based on characteristics of the specific
data set in question, rather than a population-level model, have
been considered [39], [40]. These include particularly the widely
used Gap statistic [27] that is very similar in spirit to the
implementation described here. The connection between the
gap statistic and the field of algorithmic statistics was one of
the key motivators for this work [5]. The gap statistic compares
the spatial characteristics of the data being clustered to that of
a randomly generated reference distribution. Our approach is
similar in both theory and practice to the gap statistic. Many
of the advantages of the two approaches are shared. Both are
effective when K=1, that is there are no meaningful clusters
among the data. Both are reasonably efficient to compute. DB-
Scan combines the clustering and K estimation into a single
task, and provides parameters for fine tune control [9]. In theory
the cluster structure function might be used in an automated
parameter search with such an algorithm.

In the computational biological microscopy image analy-
sis area we build on previous work for optimally partition-
ing connected components of foreground pixels into elliptical
regions [35]. A key advantage of the cluster structure func-
tion compared to all other approaches is the very broad and
powerful theoretical structure of Kolmogorov complexity and
Algorithmic Statistics. The techniques are generally parameter
free, beyond the selection of a suitable compression algorithm.
In theory it will be possible to automatically identify the opti-
mal compression by considering ensembles of algorithms and
choosing the best results among them via the structure function.

V. EXAMPLE APPLICATIONS

A. How Many Different Digits are in a MNIST Digit Set?

Here we apply the optimality deficiency to estimating the
number of different digits in a set of digits sampled from the
MNIST handwritten digits dataset. Classification of the MNIST
digits using supervised learning techniques is well studied but
there has been little application of unsupervised learning to
this problem. One key challenge is establishing a ground truth
number of different classes. Different styles of handwriting were
taught at different times in different locations. These differences
are likely reflected in the underlying data as distinct categories,
even within digits of the same class label. Another challenge
is the difficulty in unsupervised classification of digits even
when the correct number of classes is known. While supervised
solutions for the MNIST digit classification are extremely accu-
rate, unsupervised clustering of MNIST digits is still a difficult
problem. The MNIST data has been normalized to 28x28 8-bit
grayscale (0,..,255) images. The MNIST database contains a
total of 70,000 handwritten digits consisting of 60,000 training
examples and 10,000 test examples. Originally the input looks
as Fig. 1.
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TABLE I
CONFUSION MATRIX FOR SPECTRAL CLUSTERING SETS OF RANDOM DIGITS. EACH DIGIT SET CONTAINS 5 OF EACH DIGIT [0,9]. THE DIGIT SETS ARE

CLUSTERED INTO 10 CLUSTERS. FOR EVALUATION, EACH CLUSTER IS LABELED WITH THE MODE (MOST COMMON ELEMENT) OF THE TRUE DIGIT VALUES IN

THAT CLUSTER. THIS WAS REPEATED TEN THOUSAND TIMES. OVERALL ACCURACY OF CLUSTERING THE TEN DIGIT CLASSES IS 46%

Fig. 1. Example MNIST handwritten digits.

We apply the cluster structure function to the question of
estimating how many different MNIST digits are represented
in a large set. Configure a sampler to choose a set of 100 digits
at a time randomly given a fixed K value. In each digit set,
the cardinality of each digit is given by 
 100

K �. For K = 3 there
would be 33 of each digit [0,1,2]. For K = 10, there would be
10 of each digit [0,9]. Spectral clustering [23] is used to cluster
MNIST digit sets [7]. The spectral clustering approach starts
with the matrix of pairwise normalized compression distances
(NCD) as in [4] among all pairs of digits. We used the free
lossless image format (FLIF) compressor [25] for the MNIST
digits, and found it to significantly outperform the previously
used BZIP and JPEG2000 compressors. After computing the
NCD matrix between digit pairs, the classic spectral clustering
algorithm [23] is applied. Table I shows the results of spectral
clustering for all ten digits. Clustering accuracy for all ten
digit types [0..9] was 46% with 95% confidence intervals of
[.4622,.4657] obtained via bootstrapping [26].

To compute the CSF function following Section II-C we
proceed as follows. For each digit set S, we generate Cluster
Structure Function (CSF) curves. The digit set S is clustered

at different values of K. Random samples of the data forming
subset S̃ ⊆ S are chosen iteratively. Statistics of the pointwise
CSF curves are formed from the random samples S̃. The results
here were generated using 1000 random samples of each digit set
as follows. For each digit setS compute the pairwise NCD matrix
D between all elements ofS using the FLIF image compression.
For each K on [1, . . . ,Kmax] use spectral clustering to partition
the elements of S into K groups. Each cluster (partition) is
labeled Ap = {x1, x2, . . ., x|Ap|} and |Ap| is the number of
points in cluster Ap. After the points have been clustered for
a particular value of K, pick subsets at random from S to form
S̃, |S̃| = 5 ∗K. Using the cluster assignments for each of the
randomly selected points, compute the optimality deficiency for
each random sample across each of the K clusters Ap

δ(Ap, xi) =

{
0 |Ap| < 2
Z(Ap)− Z(xi) + log |Ap| |Ap| ≥ 2,

(4)

where Z(Ap) is the size in bytes of the FLIF compressed
image formed by concatenating all of the digit images in S̃
belonging to cluster Ap and Z(xi) is the size in bytes of
the compressed image corresponding to digit xi. We write
δ(Ap) = {δ(Ap, x1), δ(Ap, x2), . . .δ(Ap, x|Ap|)} to denote the
set of optimality deficiencies for each xi ∈ Ap. After computing
δ(Ap) for each cluster from the digit set subsample S̃, the results
of (4) are combined to compute the related cluster structure
function:

HS̃(K) =

∑Kmax

p=1 log2(max(δ(Ap))−min(δ(Ap)) + 1)

Kmax
.

(5)
The final cluster structure function (CSF) curve is then gener-

ated using the mean and standard deviation of HS̃(K) across all
random subsamples S̃ andK values. The optimal value ofK for
such a CSF curve is chosen using the technique proposed in [27],
as the first value of K where the CSF curve decreases more
than one standard deviation from the previous value. A robust
estimator for standard deviation may be useful in identifying
the minimum value of the cluster structure function for some
applications. Fig. 2 shows two example CSF curves. In the left
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Fig. 2. Curves showing mean and standard deviation of the cluster structure function (CSF) for two different digit sets. Subsets are chosen repeatedly from each
digit set, and clustered into K groups. The value of K is chosen as the first K that is one standard deviation smaller than the previous value. The left curve selects
the value K = Ktrue, correctly identifying the value of K corresponding to the number of different digits in the set. The right curve incorrectly selects K = 5.

TABLE II
UNSUPERVISED CLUSTER STRUCTURE FUNCTION (CSF) (LEFT) AND GAP STATISTIC (RIGHT) ESTIMATES OF THE NUMBER OF UNIQUE DIGITS K IN A MNIST

DIGIT SET. BOTH CSF AND GAP STATISTIC PREDICTIONS Kpred ARE CORRELATED WITH Ktrue EXCEPT IN CASE K = 1 (WHERE BOTH EXHIBIT MUCH HIGHER

STANDARD DEVIATION). OMITTING Ktrue = 1, THE CSF CORRELATION IS 0.93 (p = 3e− 4) AND THE GAP STATISTIC CORRELATION IS −0.84 (p = 5e− 3)

panel, the correct value is obtained at Kpred = Ktrue. In the
right pane of Fig. 2, the selected value is obtained at Kpred = 5
and does not match the Ktrue = 9 correct value, although there
is a minor decrease at nine for that example.

The minimum of the empirical CSF curve is not in itself
significant since the ideal theoretic CSF curve is monotonic
non-decreasing and the minimum is always at 0 (Lemma 2).
What makes the minimum possibly a little meaningful is when
the minimum occurs just after a sharp decrease in the CSF curve.
The empirical CSF curves of Fig. 2 seem in contradiction with
Lemma 2. The curves in the figure roughly follow Lemma 2,
but they are the results of several heuristics so they may
not be perfectly monotonic non-decreasing. The heuristics are
among others: approximation from above of the non-computable

Kolmogorov complexity, the spectral heuristic of finding the
number of clusters rather than inspecting all the subsets of
the data, and repeated random sampling of a subset S̃ ⊆ S
computing the CSF curve of each S̃ and taking the average. To
identify the number of clusters in the data one takes the number
following the sharp decrease of the CSF curve. Here the criterion
to select the clusters is optimally satisfied.

Table II shows the average and standard deviations from sub-
sampling digit sets of varyingKtrue. Digits sets withKtrue = 1
have a higherKpred value, and a much higher standard deviation
compared to digits sets with other values of Ktrue. Omitting
digit sets with Ktrue = 1 significantly increases the correlation
between the selected point on the CSF curve and Ktrue. For the
CSF, the correlation r between Ktrue and Kpred for Ktrue > 1
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TABLE III
SUPERVISED CLUSTER STRUCTURE FUNCTION (CSF) (LEFT) AND GAP STATISTIC (RIGHT) ESTIMATES OF THE NUMBER OF UNIQUE DIGITS K IN A NIST DIGIT

SET. EACH DIGIT SET CONTAINS 100 DIGITS, SPLIT EQUALLY AMONG THE K DIGIT CLASSES. THE ALGORITHM IS GIVEN A DIGIT SET SAMPLER THAT CAN PULL

REPEATEDLY FROM THE SAME DISTRIBUTION (K VALUE) WITH THE GOAL OF ESTIMATING K. THE RESULTS HERE WERE GENERATED BY CLASSIFYING ONE

HUNDRED EACH OF DIGIT SETS WITH Ktrue ∈ [1..10]. A 20-ELEMENT VECTOR CONSISTING OF MEAN AND STANDARD DEVIATIONS OF THE CSF AND THE GAP

STATISTIC WAS THE INPUT TO A SHALLOW FEED-FORWARD NEURAL NETWORK. OVERALL ACCURACY FOR THE CSF WAS 86% [0.84,0.88] AND 54% FOR THE

GAP STATISTIC [0.51,0.57]

is r = 0.93, with a p-value p = 3e− 4. For the Gap Statistic,
r = −0.84 (p = 5e− 3). Based on that observation, a shallow
feedforward neural network was used to map the CSF curves to
a predicted value Kpred.

The approach is now to use the 20 element vector composed of
the mean and standard deviations of the CSF curves evaluated
at the numbers of clusters K = [1..10] as a feature vector to
identify the optimal value of K. We use one thousand examples
each of digit sets fromK = [1..10] as training data (ten thousand
total digit sets). Using the MATLAB patternet() classifier with
all default parameters, a shallow feed forward neural network
with 20 input layer nodes, 10 hidden layer nodes and 10 output
layer nodes is trained using ten thousand digit sets, one thousand
examples each fromK ∈ [1..10]. We classify 100 unknown digit
sets. When the classification confidence is low, we repeat the
sampling, selecting a new S up to 10 times and average the
results to form the prediction. Table III shows the resulting
predictions. The vertical axis of the table represents Ktrue,
the horizontal axis represents Kpred. Elements on the diagonal
represent correct classifications. Overall accuracy, measured as
the percentage of non-zero results that fall on the diagonal of
the confusion matrix is 86% with a 95% confidence interval
[0.84,0.88] established by bootstrapping. We used the same
procedure on the mean and standard deviation values obtained
from the Gap Statistic (as in Table II) and obtained an accuracy
of 54% [0.51,0.57].

B. Cell Segmentation

Cell segmentation is the identification of individual cells in
microscopy images. The identification of cell nuclei in mi-
croscopy images is an important question. Human stem cells
(HSCs) are particularly challenging to segment as the cells are
highly adherent, forming in naturally densely packed colonies.

HSC colonies, or groups of touching cells, consist of dividing
and differentiating cells that present a wide variety of sizes and
shapes. The large morphological variation arises from both the
presence of cells in developmental states and the mechanical
interaction among adjacent cells deforming their shape, texture,
and behavior [32], [33]. Timelapse microscopy of living cells
further complicates the problem, requiring reduced imaging
energy to lessen phototoxicity, and also introducing temporal
variations due to imaging as well as cell and colony appear-
ance variability. It is much easier to segment cells that all
have a similar appearance, for example shape and size. Here
we present a technique for combining multiple simultaneous
segmentations of the same image, each with varying under-
lying segmentation parameters. We refer to the collective set
of segmentation results as an ensemble. The segmentations in
the ensemble are combined by using optimality deficiency to
select among overlapping segmentations. We use a previously
described unsupervised underlying segmentation [32], [33], [34]
that takes a single parameter of cell size in μm. The method
works as follows. The segmentations are run across a range of
expected radius values. The results are combined, with cells that
overlap each other placed in common “buckets”. The question
is then to choose the optimal number of cells K in each bucket.
Every segmentation is given a score based on its appearance and
how well it captures the underlying pixels. Here we apply the
approach to the question of identifying elliptical cells or nuclei.
Rather than using compression-based similarity, the score is built
on an appearance model.

The segmentation model expects cells that are convex,
brighter in the interior compared to the exterior, and to contain
a well defined boundary between a bright interior and dark
exterior. Given a particular cell segmentation C, the score is a
combined measure of convex efficiency, background efficiency
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Fig. 3. The ensemble segmentation combines results from different segmentation algorithms using the optimality deficiency to select the best results for overlapping
segmentations. Frame segmentations are run at each of a range of different parameter values. The resulting segmentations are each treated as a possible clustering
of the underlying pixels into objects. An example is shown here for a single image frame taken from a 1200 frame movie showing the development of live human
stem cells (HSCs). The top row shows a raw image (a), the final segmentation results (b) and the overlapping ensemble regions (c). The bottom two rows show
different possible combinations of segmentation results from the region shown in the rectangle in (a) and (c). The segmentation results are scored from worst
(lowest score) to best (highest score). The optimal set of segmentation results are selected using a greedy optimization to maximize the scores in each overlapping
region. Segmentation scores are generated from the convexity, boundary, and background efficiencies.

and boundary efficiency. The term efficiency describes a normal-
ized measure capturing how close to the model the data achieves.
The convex efficiency is defined as

econvex(C) =
|C|

|Cconvex| ,

where |C| is the area (volume) of segmentation C and |Cconvex|
is the area of the convex hull of C. The boundary efficiency
is computed from the normalized ([0,1]) image pixel values,
defined as

eboundary(C) = 1−mean(R(β(C))− T (β(C))),
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TABLE IV
ENSEMBLE SEGMENTATION COMBINES RESULTS FROM SEGMENTATION ALGORITHMS RUN AT DIFFERENT PARAMETER SETTINGS ON 2-D AND 3-D IMAGE DATA.
OPTIMALITY DEFICIENCY ESTIMATES THE NUMBER OF CELLS K IN EACH REGION OF OVERLAPPING SEGMENTATIONS. THE APPROACH HERE IS OPTIMIZING THE

DETECTION (DET) METRIC FOR THE CELL TRACKING CHALLENGE DATASETS. THE FIRST ROW IN EACH GROUP SHOWS THE ENSEMBLE RESULTS AND RADIUS

PARAMETER SETTINGS, THE SUBSEQUENT TWO ROWS SHOW THE BEST AND WORST PERFORMING SINGLE SEGMENTATIONS. THE ENSEMBLE SEGMENTATION

SIGNIFICANTLY OUTPERFORMS THE BEST INDIVIDUAL SEGMENTATIONS (p = 5e− 4)

Fig. 4. Estimating the number of clusters in data generated from K = 3
normal distributions, all withΣ = [1, 0; 0, 1]. The distributions are located along
the X axis at multiples [0, 1, 2].∗ Cluster Spacing. The cluster structure function
(CSF) significantly outperforms the Akaike Information Criteria (AIC). Error
bars show 95% confidence intervals from bootstrapping.

where R(β(C)) is the maximal intensity in the region sur-
rounding the boundary voxels β(C), and T (β(C)) is the mean
adaptive threshold value for voxels along the boundary. The
background efficiency is defined as

ebackground(C) =
mean(I(C)− T (C))

mean(I(Ĉ)− T (Ĉ))
,

where I(C) is the source image, T (C) is the adaptive threshold
image of segmentation C, and Ĉ represents the image back-
ground. The final segmentation score is the sum of the three
scores,

eC = econvex(C) + eboundary(C) + ebackground(C). (6)

After each cell has been scored, the goal is to select the set of non-
overlapping segmentations from the ensemble that maximize the
sum of the individual segmentation scores. This is equivalent
to selecting the HS(k) from (2) where the δ(A, x) in (1) are
approximated by the individual cell segmentation scores. Fig. 3
demonstrates the ensemble segmentation for a colony of HSCs
imaged using a fluorescent nuclear marker (H2B).

Quantitative validation for the ensemble segmentation ap-
proach was done using ground truth data from the cell tracking
challenge [28] reference datasets. Twelve time-lapse datasets in
2-D and 3-D of live cells were processed using the ensemble
segmentation with an empirically selected range of radius pa-
rameters. Ground truth scores were obtained for each radius
parameter setting run separately and also for the ensemble
segmentation. We consider the detection (DET) score here, as
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our concern is not primarily the accuracy of pixel assigned to
each segmentation, but rather that we detect the correct number
of cells in each frame. We use the training movies for validation
because our method is unsupervised and training is not required.
Our results are competitive on these movies with the supervised
algorithms evaluated on the testing challenge datasets. In each
of the 12 movies, the ensemble segmentation outperformed
the best result selected from segmentations run separately. The
results for the optimality deficiency based ensemble segmen-
tation were statistically significantly better compared to the
best score obtained from the single radius segmentation data
for both the detection (DET) (p = 5e− 4, Wilcoxon paired
sign-rank test) and tracking (TRA) scores (p = 2e− 3). This
is significant because the best radius result varied even within
pairs of movies from the same application type, showing the
value of the ensemble segmentation approach. Table IV shows
the results for the ensemble classification as well as the best
and worst performing individual segmentation for each of the
datasets processed here.

C. Synthetic Dataset

We evaluate the performance of the cluster structure function
using synthetic data generated as random points fromK = 3 dif-
ferent 2-D standard normal distributions, each with covariance
Σ = [1, 0; 0, 1]. Position the K = 3 clusters along the x-axis
at x = [0, r, 2 ∗ r] with cluster spacing r = [0.5 : 0.25 : 1.5]. In
each of the 100 trials, generate 1e4 points from each of theK = 3
distributions. Supplementary Fig. 1 shows a histogram of an ex-
ample synthetic dataset with cluster spacing = 1.0. To evaluate
the cluster structure function, approximate K(A)−K(x), as
in (1) using the euclidean distance between point x and the
centroid of cluster A. As in the examples above, we include
only the points that fall within one standard deviation of the
centroid for each cluster and then average this result across each
cluster. We estimate the value of K using the cluster structure
function and compare to results from the Gap statistic, the
Akaike Information Criteria (AIC) and the Bayesian Information
Criteria (BIC) [26]. The CSF performed significantly better
compared to all three alternatives, with the AIC the next closest.
The AIC was the only alternative that was competitive with the
CSF for this application. Fig. 4 shows results for the CSF and
AIC. The good performance of the cluster structure function
here follows from the optimality of euclidean distance used to
estimate K(A)−K(x) as in (1).

VI. SOURCE CODE AVAILABILITY

All of the source code used to generate results in this paper
is available open source from https://git-bioimage.coe.drexel.
edu/opensource/ncd. This includes MATLAB implementations
of the NCD and clustering algorithms. There is also limited
support for a Python implementation, with ongoing development
on that task. The ensemble segmentation algorithms are available
at https://leverjs.net/git.
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