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Short Paper

Persistent Homology With Improved Locality Information
for More Effective Delineation

Doruk Oner , Adélie Garin, Mateusz Koziński , Kathryn Hess , and Pascal Fua , Fellow, IEEE

Abstract—Persistent Homology (PH) has been successfully used to train
networks to detect curvilinear structures and to improve the topological
quality of their results. However, existing methods are very global and
ignore the location of topological features. In this paper, we remedy this
by introducing a new filtration function that fuses two earlier approaches:
thresholding-based filtration, previously used to train deep networks to
segment medical images, and filtration with height functions, typically used
to compare 2D and 3D shapes. We experimentally demonstrate that deep
networks trained using our PH-based loss function yield reconstructions
of road networks and neuronal processes that reflect ground-truth connec-
tivity better than networks trained with existing loss functions based on
PH.

Index Terms—Aerial images, connectivity, map reconstruction, road
network reconstruction.

I. INTRODUCTION

In many image segmentation tasks, the topology of the resulting
mask is as important as, if not more than, its pixel-wise accuracy. For
example, a model of an aortic valve that does not form a ring is biolog-
ically implausible. Similarly, networks of curvilinear structures—-be
they roads in aerial images, blood vessels in Computer Tomography
(CT) scans, or dendrites and axons in Light Microscopy (LM) image
stacks—should not feature breaks that disrupt connectivity or false
connections between disjoint structures. Unfortunately, deep networks
trained by minimizing pixel-wise loss functions, such as the cross-
entropy or the mean square error, are subject to such mistakes. This
is in part because it often takes very few mislabeled pixels to alter the
topology significantly with little impact on the pixel-wise accuracy. In
other words, it is possible for a network trained in this manner to deliver
both a good pixel classification accuracy and an incorrect topology.

Specialized solutions to this problem have been proposed in the form
of loss functions that compare the topology of the prediction to that of
the annotation. They are effective for specific applications but do not
naturally generalize. For example, the perceptual loss of [1] penalizes
topological differences between the prediction and the ground truth,
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but cannot be guaranteed to detect them all. Similarly, minimizing the
MALIS loss for segmenting electron microscopy scans [2], [3] yields
better region boundaries but does not penalize interruptions in loopy
linear structures. This has been addressed by [4] for delineation of 2D
road networks but the proposed solution is not applicable to 3D image
stacks.

Persistent Homology (PH) [5], an elegant approach to describing and
comparing topological structure of data, offers the promise to address
the connectivity problem in a generic way, both for 2D and 3D images.
Homology is the study of topological features in an object, such as
its connected components (0-homology classes), loops (1-homology
classes), and closed surfaces (2-homology classes). Persistent homol-
ogy detects homology classes in objects filtered at different scales.
A homology class that appears at a particular scale and disappears at
a larger one is represented by a scale interval called the persistence
interval. The set of persistence intervals for all the homology classes
characterizes the overall topology of the structure. It can be represented
by a persistence diagram. The similarity of these diagrams across two
different structures can then be used to quantify their topological sim-
ilarity. This has been successfully exploited to train deep networks for
delineation [6], image segmentation [6], [7], [8] and crowd counting [9].

We show that these methods fail to unleash the full power of persis-
tent homology, because they discard too much information about the
structure of the prediction and the annotation when encoding them
in the form of persistence diagrams. As shown in Fig. 1, this can
result in networks that still fail to enforce the proper topology. To
remedy this, we introduce a new approach to computing persistence
diagrams that increases their descriptive power, as shown in Fig. 3.
Our main contribution is a novel filtration technique that combines
two approaches to filtration commonly used in topological data anal-
ysis (TDA): thresholding-based-filtration [6], [7], [8] and the height
function [10]. It yields a loss function that can be used for both 2D
and 3D images and significantly improves performance compared to
state-of-the-art topological methods, as we will demonstrate in our
experiments.

II. RELATED WORK

Training a deep network that produces topologically correct segmen-
tations has typically been done by designing loss functions that, when
minimized, favor plausible topology. In this section, we briefly review
first those that do not rely on Persistent Homology, and then those that
do.

A. Losses Designed to Enforce Topological Correctness

Several such losses have been proposed already to go beyond
pixel-wise classification accuracy by encoding more global properties.
In [11], the connectivity between neighboring pixel pairs is used as
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Fig. 1. 2D and 3D delineation. (a) Aerial image and slice of a microscopy stack. (b) A network trained using a standard homology-based loss yields road and
neurite interruptions. (c) One trained using our localized loss is more topologically accurate and produces predictions that closely resemble the ground truth (d).

an additional source of supervision. This approach has been shown
to improve connectivity, but since disconnections or false connections
are not penalized explicitly, there is no guarantee it captures all such
errors. The perceptual loss of [1] is based on the assumption that
a pre-trained neural network can capture differences of connectivity
between the prediction and the ground-truth. However, even though
it has been shown experimentally to improve the topology of masks
produced by a deep net, there is no guarantee that this assumption
holds in general. Making the Rand index of segmentations produced
by the network similar to that of ground truth ones [2], [3] helps
when modeling tree-like structures, both in 2D and in 3D, but cannot
prevent disconnections in loopy structures. This shortcoming has been
addressed by [4] by detecting disconnections of 2D loopy structures
as interconnections of background regions, but the proposed solution
does not generalize to 3D.

B. Losses That Rely on Persistent Homology

Persistent Homology (PH) [12], [13] is a well-established topolog-
ical data descriptor. One of its important applications is comparing
the topological structures of binary images, for example by enforcing
the correct Betti number on binary masks resulting from inference in
Markov Random Fields [14]. More recently, it has been shown that
persistence diagrams can also be computed for grayscale images and
differentiated with respect to the pixel values [6], [7], [15], [16], [17].
Hence, they can be incorporated into loss terms and used to train deep
networks. In this vein, a loss term that enforces a sequence of desired
Betti numbers on the predicted segmentation was introduced in [7]. This
approach was further extended to a loss function that tends to equalize
the Betti number of the prediction and the ground truth [8]. In a similar
vein, the loss term of [6] relies on comparing persistence diagrams of
the prediction and the ground truth, where the persistence diagrams are
obtained by thresholding. As discussed in the next section, for binary
ground truth this results in degenerate persistence diagrams that only
encode the Betti number. Thus, this approach can be interpreted as
equalizing the Betti numbers of the prediction and the ground truth,
as in [8]. This was improved upon in [18] by applying PH to distance
maps instead of binary annotations or class affinity maps. We show in
the next section that this makes the loss function better at detecting and
penalizing topological errors. Unfortunately, even this improved tech-
nique is susceptible to incorrectly matching the persistence diagrams

of the prediction and the ground truth because it throws away location
information. By incorporating such information into our diagrams, our
method makes them more informative and alleviates this problem.

It has also been proposed to detect disconnections in predicted
2D and 3D structures using Discrete Morse Theory [19]. Topological
features that are inconsistent with the ground truth are then penalized in
the loss function. However, when the annotations lack spatial precision,
which is often the case for neurite and road centerline annotation like
the ones studied here, ground-truth inaccuracies may confuse the net-
work. By contrast, our technique allows for considerable misalignment
between the prediction and the ground truth.

III. METHOD

We first introduce Persistent Homology and its application to charac-
terizing two-dimensional images and three-dimensional image stacks.
As PH provides global descriptors that ignore the location of topological
features, we then introduce our approach to accounting for it.

A. Persistent Homology

In the interest of simplicity, we introduce PH for binary images
and image stacks, where homology classes are limited to connected
components, loops, and closed surfaces. We refer the interested reader
to the review [12] for a more general treatment, applicable to non-image
and higher-dimensional data.

At the heart of PH is detecting homology classes—connected compo-
nents, loops, closed surfaces—at many different scales. The ones that
exist over a wide scale range are called persistent and deemed more
likely to represent true features, as opposed to sampling artifacts or
noise. Here, scale has a very specific meaning. It refers to the parameter
of a filtration function F that is applied to an image Y to produce
topological objects called cubical complexes. They arise when filtering
images and their properties are described in [20], [21] for instance.
A reader not familiar with algebraic topology can think of them as
binary masks. The masks obtained for different scales form a sequence
of inclusions, that is, for a pair of scale parameters s1 < s2, the mask
F (Y, s1) is entirely contained within the maskF (Y, s2). The simplest
example of a function for filtering grayscale images is thresholding,
where the threshold acts as the scale, as shown in Fig. 2.
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Fig. 2. Filtration. When the distance map shown on the left is filtered by thresholding, the loop h emerges at scale bh and is filled at scale dh. This gives rise to
the point (bh, dh) in the persistence diagram shown on the right. Here, thresholding means retaining all pixels whose value is lower than the threshold.

As the scale changes, homology classes in the filtered cubical
complex emerge and disappear. To capture this, the scale range is
sampled from small to large, the image is filtered at the selected scale
values, homology classes in the resulting binary masks are detected
algebraically [12], and correspondence is established between the ho-
mology classes found at consecutive scales. For each class, this yields
a pair (b, d), where b is the scale at which the homology class appears
and d the scale at which it disappears. We will refer to them as birth
and death times and to the interval [b, d] as the persistence interval of
the homology class. The set PY = {(bh, dh)}h∈HY

, where HY is the
set of all homology classes found in the filtered image Y, is called the
persistence diagram of Y, and was first introduced by [22]. In practice,
we use the Gudhi library [23] to compute persistence diagrams from
images. Fig. 2 depicts the birth and death of a specific homology class.

To compare images Y1 and Y2, one-to-one matching is performed
between their persistence diagrams, PY1

and PY2
, with the cost

of matching a homology g ∈ HY1
to a homology h ∈ HY2

set to
cg,h = (bh − bg)2 + (dh − dg)2 and the cost of leaving an interval
[b, d) unmatched is set to the distance between the point (b, d) and the
diagonal in R2. The optimal matching can be found using the Hun-
garian algorithm. Its cost that we denote as C(Y1,Y2) quantifies the
topological discrepancy between Y1 and Y2 by penalizing differences
between corresponding homology classes and ones that only appear in
either Y1 or Y2.

B. Training Deep Networks Using PH

Letf be a network that associates to an input imageX a segmentation
maskY = f(X) such that for all pixels or voxelsp ∈ Y,0 ≤ Y[p] ≤ 1
and let Ŷ be the corresponding ground-truth mask. A natural idea then
is to train f by minimizing

Ltot(Y, Ŷ) = L(Y, Ŷ) + αC(Y, Ŷ), (1)

where L is the standard loss function, either the Mean Square Error,
or the Cross Entropy, and α is a hyper-parameter, which we set to
0.01 in practice. This is possible because C is sub-differentiable with
respect to its inputs when filtration is achieved by thresholding, as
shown in [6], [7], [16]. However, when the ground truth Ŷ is binary, as
it often is, all structures emerge at scale zero and disappear at scale
one. Hence, as shown in Fig. 3(a) the persistence intervals all are
[0,1]. In other words, all points in a ground truth persistence diagram
are located in its upper-left corner, and the only difference between
diagrams obtained for annotations of different images is the number
of points they contain. Unlike in classical applications of PH [12],
where persistence diagrams serve as rich topological descriptors, such
diagrams only encode the Betti number of the annotation. An approach

to handling this difficulty is to replace the binary ground truth by
its distance transform that can be thresholded over a wide range of
threshold values to create different binary masks [18]. Unfortunately,
computing the persistence diagram of a ground truth distance transform
still yields persistence diagrams in which the topological features of
the original, binary ground truth are spread along the ‘death’ axis
but not along the ‘birth’ one: The distance value at the structures
themselves is zero and, as a result, all the loops of the ground truth
mask appear as soon as the scale value becomes positive. As shown
in Fig. 3(b), this may lead to erroneous matches between persis-
tence diagrams, which encourages the deep network to produce wrong
segmentations.

C. accounting for the Location of Topological Features
During Filtration

Our goal is therefore to prevent erroneous matches between topo-
logical features of the prediction and of the ground truth. To this end,
we want to use the features’ image location to characterize them.
However, re-defining the matching cost to include a position-dependent
term would be difficult, because topological features extend across the
scale-space, and because there is no natural notion of distance between
them. Hence, instead of modifying the matching cost, we propose a
new filtration function that distinguishes features at different positions.
We draw our inspiration from a filtration technique called the height
function [10]. It was originally designed for three-dimensional meshes
and can be applied to binary images by assigning to each pixel a height
value that is the coordinate of its projection along a selected straight line.
Filtration is carried out by forming binary masks made of pixels whose
height is smaller than the scale parameter [24]. As the scale is increased,
the binary image is revealed in scan-lines perpendicular to the height
axis, one scan-line at a time. The birth and death times are the heights
of pixels responsible for the emergence and disappearing of homology
classes. As a result, the persistence diagram contains partial information
about the location of topological features. Moreover, both birth and
death times of different homology classes are distributed across scales.
Additionally, it has been shown that a binary image can be reconstructed
from as few as four persistence diagrams obtained with height functions
with well-chosen directions [25]. A height function is only defined for
binary images, but the abovementioned result inspired us to extend its
definition by combining it with thresholding distance maps. Given a
scale s, the value of the filtered binary mask at coordinates p is taken
to be

F (Y, s)[p] = 1(Y[p] + ρ(p) < s), (2)
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Fig. 3. Comparing filtration functions on synthetic data. The binary ground truth road annotation (top-left in each table part) contains four loops, marked with
cyan dashed lines. We synthesized a predicted class affinity map (bottom-left in each part) by extending one road to the left and interrupting another. In consequence,
loop B and D from the ground truth are joined into B’ in the prediction, and A is split into A’ and E’. For each filtration method, we show binary masks resulting
from filtration at different scales, pairs of persistence diagrams, and their optimal matches.

where 1(·) evaluates to one if the condition in the bracket is satisfied
and to zero otherwise. In essence, this amounts to thresholding the sum
of the height function ρ and the pixel values. From the perspective of
TDA, such combination of two filtration functions can be seen as a line
in the fibered barcode defined by [26].

In its simplest form, ρ is a linear function of pixel coordinates, and
the region highlighted for any s extends along a line perpendicular to

the height axis, as shown in Fig. 3(c). But other forms of ρ are also
possible. We tested
� linear functions ρ(p) = wᵀp, where w is a two-vector hyper-

parameter encoding the orientation of the height axis and the slope
of the height function;

� a scaled distance to a point q in the image, ρ(p) = a‖p− q‖2,
where q and a are hyper-parameters;
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Fig. 4. Sensitivity of the topological loss term C to the number of injected errors (a) Ground truth distance maps of road networks. (b) Distance maps corrupted
by introducing false roads and interruptions. We randomly injected one error at a time, obtaining corrupt distance maps with 30 errors. We repeated this simulation
10 times. (c,d) The cumulative distribution function of change in the loss term in response to injecting one error. In (c), C is evaluated using the filtration by
thresholding distance maps, whereas in (d) we use our filtration. The probability of decreasing the existing loss term by injecting additional errors is around 0.4,
whereas for our loss term it drops to 0.2. We conclude that our loss term is more monotonic with respect to the error number.

� the square of the height function ρ(p) = pᵀWp, where W =
wᵀw, and w is the hyper parameter encoding the slope of the
function and the orientation of the height axis;

The function ρ introduces localization information of the topological
features into the persistence diagram. This is illustrated by Fig. 3 where
different values of the scale parameter make homology classes appear
in different parts of the image. But, because the scale parameter must
be a scalar, it can only pinpoint location of topological features in 2D or
3D images along one direction. This could be addressed by evaluating
the loss function many times for many different orientations of the
height axis, or more generally, for many different hyper-parameters
of ρ. This approach is legitimized by the theoretical result of [25]
that states that four well chosen filtration directions suffice to com-
pletely represent a binary image. The problem of combining a number
of different filtration functions is known in topological literature as
multipersistence [27]. But current multipersistence techniques are not
easily plugged into a deep learning framework for lack of results on their
differentiability. Moreover, filtering the data along multiple directions
would considerably slow down the training. Instead, we randomly draw
the hyper-parameters of the height function at each training iteration.
We show in the supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2023.3246921 that, in practice, the simple linear
function performs best.

IV. EXPERIMENTS

We first demonstrate that our loss function correlates with the number
of topological errors better than standard PH-based losses. We then
evaluate its performance in training deep networks to delineate road
networks and neuronal arborizations.

A. Correlation to the Number of Topological Errors

We motivated our filtration technique by the fact that it introduces
partial localization of topological features into the persistence diagrams

and better spreads the diagrams across the plane. Here, we validate this
on synthetic data to show that it correlates better with the number of
errors injected into a distance map than the baseline loss, which is based
solely on thresholding distance maps. To this end, we took two crops
of ground truth road graphs of the RTracer dataset [28] and generated
faulty synthetic distance maps by injecting thirty errors one at a time.
They were selected randomly and with equal probability between a road
disconnection and a false interconnection. After each error injection,
we evaluated the topological loss term C of (1) using either filtration
by thresholding distance maps or our combined filtration. Ideally, we
would expect C to increase every time an error is added. Hence,
we repeated the experiment ten times. For each crop, we plot the
distribution of the increment inC resulting from adding one error, when
using the baseline loss in Fig. 4(c) and ours in Fig. 4(d). The parts of the
distributions shown in green correspond to positive increments, which
are what we expect, and those in red denote the negative ones, which
are essentially erroneous. Note that the red parts are far smaller when
using our loss than the baseline one.

B. Performance in Training Deep Networks

Having shown that our loss function captures topological correctness
better than existing PH-based methods, we now compare the perfor-
mance of deep nets trained with our and existing losses.

1) Datasets: We experimented on three datasets.
� RTracer. A dataset of high-resolution satellite images covering

urban areas of forty cities in six countries [28]. The ground truth
was obtained from OpenStreetMap. Like [28], [29], [30], [31],
we used twenty five cities as the training set and the remaining
fifteen as the test set.

� Massachusetts. The Massachusetts dataset [32] features both
urban and rural neighborhoods, with many different kinds of roads
ranging from small paths to highways. For a fair comparison to [6],
we split the data into three equal folds and performed a three-way
cross validation.

� Neurons. The dataset is a part of a proprietary 3D, 2-photon
microscopy scan of a whole mouse brain. It contains 14 stacks

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2023.3246921
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2023.3246921
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TABLE I
VALIDATION RESULTS ON THE MASSACHUSETTS DATASET. OUR LOSS FUNCTION OUTPERFORMS ALL PH-BASED LOSS FUNCTIONS. WE REPORT MEANS AND

STANDARD DEVIATIONS OVER THREE INDEPENDENT TRAINING RUNS

TABLE II
OUR LOSS FUNCTION OUTPERFORMS ALL PH-BASED LOSS FUNCTIONS ON THE RTRACER DATASET. WE REPORT MEANS AND STANDARD DEVIATIONS OVER

CITIES FROM THE TEST SET

of size 250× 250× 200 voxels and a spatial resolution of
1.0× 0.3× 0.3 μm. We used ten stacks for training and the
remaining four for testing.

� Brain. The dataset contains two 3D images of neurons in a mouse
brain. The axons and dendrites have been outlined manually
while viewing the sample under a microscope and the image
has been captured later. The sample deformed in the meantime,
resulting in a misalignment between the annotation and the
image. To ensure that the test and training data comes from
the same distribution, we split the two scans into stacks of
150× 200× 200 voxels and a spatial resolution of 1 μm, and
randomly divided the resulting data set into a training set of
twelve stacks and a test set of ten scans.

2) Methods Tested: To test the impact of our proposed filtration
functions, we used the standard U-Net architecture [33], with four
blocks, each with two sequences of convolution-ReLU-batch normal-
ization. Max-pooling in 2× 2 windows followed each of the blocks.
The initial feature size was set to 32 and grew to 512 in the smallest
feature map in the network. We augmented the training data with
vertical and horizontal flips and random rotations, and used the ADAM
algorithm [34] with the learning rate set to 1e− 4. We then used
different version of theLtot of Eq. 1 we minimized to train the network.
We tested the following as baselines:
� UNet-CE. L is the Cross Entropy loss for pixel classification and

there is no topological discrepancy loss, that is, α = 0.0. Binary
masks are used as ground truth.

� UNet-MSE. L is the mean squared error of the truncated distance
to the closest foreground pixel, with no topological discrepancy
loss.

� Homo-Pre. L is the cross Entropy loss and we compute C by
thresholding pixel classification maps., as in [6], [7], [8].

� Homo-Reg. L is the mean squared error and we compute C by
thresholding the truncated distance maps, as in [18].

� Homo-Ours.L is the mean squared error and we computeC using
our proposed filtration function.

Based on the results of the ablation study on the Massachusetts
data set, presented in the supplementary material, available online, in
all our experiments with Homo-Pre, Homo-Reg, and Homo-Ours, we
set α = 0.01 and compute the loss in windows of size 64× 64 pixels.
Like [6], we limit the method to homology classes order 1, that is, loops.
This has two advantages. First, by convention, loops are created by the
borders of the window, making disconnections in dead-ending roads
or neurites detected as broken loops. Second, detection of homology
classes is computationally expensive, and the time grows cubically with
the number of pixels. In our current setup, computing the loss for a single
window takes 0.5 seconds. Similarly to [6], we did not observe any
performance gain due to using homology classes of order 0—connected
components—in addition to loops.

For completeness, we also compared our approach to recent
techniques not relying on persistent homology: Segmentation [28],
RoadTracer [28], Seg-Path [31], RCNNU-Net [30], DeepRoad [35],
PolyMapper [29], DMT [19], and ConnLoss [4]. Segmentation,
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TABLE III
COMPARATIVE RESULTS ON THE NEURONS DATASET. OUR LOSS OUTPERFORMS ALL THE BASELINES. WE REPORT MEANS AND STANDARD DEVIATIONS OVER

THREE INDEPENDENT TRAINING RUNS

TABLE IV
COMPARATIVE RESULTS ON THE BRAIN DATASET. OUR LOSS OUTPERFORMS ALL PH-BASED LOSSES. MEANS AND STANDARD DEVIATIONS OVER THREE

INDEPENDENT TRAINING RUNS AS PRESENTED

RoadTracer, RCNNU-Net, and PolyMapper do not explicitly enforce
topology constraints, while the others do and are discussed in the
related work section. The outputs of these methods were shared by the
authors directly with us or on the Internet, and we computed all the
performance metrics.

3) Performance Metrics: Comparing connectivity Of segmenta-
tion masks is difficult, because the reconstructions rarely overlap with
the ground truth, and often deviate from it significantly. There seems to
be no consensus concerning the best evaluation technique; we found five
connectivity-oriented metrics in concurrently published recent work. To
provide an exhaustive evaluation, we used all of them.
� APLS. Average Path Length Similarity aggregates relative length

differences of shortest paths between pairs of corresponding
points in the ground truth and predicted maps [36].

� TLTS is a statistics of lengths of shortest paths between corre-
sponding pairs of end points randomly selected in the predicted
and ground-truth networks [37]. We report the fraction of paths
with relative length difference within 5%.

� JCT. It is a junction score that considers the number of roads
intersecting at each junction [28]. It consists of road recall,
averaged over the intersections of the ground-truth and road
precision, averaged over the intersections of the prediction. We
report the corresponding F1 score.

� Betti. The Betti error [6] is an average absolute difference between
the number of topological structures seen in the ground truth and
predicted delineations. We take random patches sized 64× 64
from predictions, compute the number of 1-homology classes
(loops) and compare the numbers computed for the prediction
and the ground truth. We average this difference over 10 trials.
In practice, to compute the error we use the code made publicly
available by the authors.

� CCQ We complement the connectivity-oriented metrics with
the most popular metric that measures spatial co-occurrence
of annotated and predicted road pixels. The Correctness,
Completeness and Quality are equivalent to precision, recall and

intersection-over-union, with the definition of a true positive
relaxed from spatial coincidence of prediction and annotation to
co-occurrence within a distance of 5 pixels [38]. We report the
Quality as our single-number metric.

4) Comparative Results: We present validation results for the
Massachusetts data set in Table I, and test results for the RTracer data
set in Table II. Our method outperforms the other methods based on
Persistent Homology, which demonstrates that our approach to filtering
is truly effective. It also outperforms the other 2D tracing algorithms
targeted at handling aerial images, RoadTracer, Seg-Path, DeepRoad,
and PolyMapper, with the exception of ConnLoss that does marginally
better. This is presumably because ConnLoss explicitly penalizes each
disconnection of the prediction, whereas a persistence diagram is a
lossy topological descriptor that may fail to penalize some errors.
However, ConnLoss does not naturally extend to 3D data, whereas our
method does. On the 3D Neurons data set, it outperforms the competing
algorithms, as evidenced by the test results shown in Tables III and IV.
We provide qualitative results in the supplementary material, available
online.

V. CONCLUSION

We demonstrated a fault in the design of existing methods to employ
Persistent Homology to train deep networks in delineating curvilinear
structutres: by using inadequate filtration functions, they severely re-
duce the information content of the persistence diagrams, hampering
performance of the trained network. We proposed an improved ap-
proach, based on combining filtration by thresholding with the height
function, that increases the descriptive power of the diagrams, and gives
PH a place among the best-performing methods to train topologically
accurate deep networks.

The proposed approach is limited by the need to randomly se-
lect the parameters of the height function at each training iteration,
because some orientations of the height axis might result in a failure
to detect topological errors, or provoke erroneous matches between
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the persistence diagrams of the prediction and the ground truth. We
therefore plan to investigate the use of multipersistence [27] for less
random and more effective supervision. Another limitation stems from
the fact that our loss function has sparse gradients that only depend
on values at pixels that are critical for emergence and disappearance
of topological features. This limits robustness and our future work
will focus on developing topological descriptors with more smooth
gradients. While our loss function improves the topological correctness
of the segmentation masks, some bio-medical applications require full
confidence of correctness of anatomy models, which current methods
cannot guarantee. This also motivates us to investigate the use of
topological methods to highlight the regions of the segmentation masks
that require manual correction, thereby facilitating proof-reading of
segmentation results.
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