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Abstract—With the advent of Deep Learning (DL), Super-
Resolution (SR) has also become a thriving research area. However,
despite promising results, the field still faces challenges that require
further research, e.g., allowing flexible upsampling, more effective
loss functions, and better evaluation metrics. We review the domain
of SR in light of recent advances and examine state-of-the-art mod-
els such as diffusion (DDPM) and transformer-based SR models.
We critically discuss contemporary strategies used in SR and iden-
tify promising yet unexplored research directions. We complement
previous surveys by incorporating the latest developments in the
field, such as uncertainty-driven losses, wavelet networks, neural
architecture search, novel normalization methods, and the latest
evaluation techniques. We also include several visualizations for the
models and methods throughout each chapter to facilitate a global
understanding of the trends in the field. This review ultimately
aims at helping researchers to push the boundaries of DL applied
to SR.

Index Terms—Artificial intelligence, computer science, deep
learning, IEEE, super-resolution, survey, TPAMI.

I. INTRODUCTION

SUPER-RESOLUTION (SR) is the process of enhancing
Low-Resolution (LR) images to High-Resolution (HR).

The applications range from natural images [1], [2] to highly
advanced satellite [3], and medical imaging [4]. Despite its long
history [5], SR remains a challenging task in computer vision
because it is notoriously ill-posed: several HR images can be
valid for any given LR image due to many aspects like brightness
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and coloring [6], [7]. The fundamental uncertainties in the
relation between LR and HR images pose a complex research
task. Thanks to rapid advances in Deep Learning (DL), SR has
made significant progress in recent years. Unfortunately, entry
into this field is overwhelming because of the abundance of pub-
lications. It is knotty work to get an overview of the advantages
and disadvantages between publications. This work unwinds
some of the most representative advances in the crowded field
of SR.

Existing surveys have primarily focused on classical methods
[8], [9], whereas we, in contrast, concentrate exclusively on DL
methods given their proven superiority. The most similar survey
to this work is the one by Bashir et al. [4], which itself is a logical
continuation of Wang et al. [5]. However, our work focuses
on methods that have recently gained popularity: uncertainty-
driven loss, advances in image quality assessment methods,
new datasets, denoising diffusion probabilistic models, advances
in normalization techniques, and new architecture approaches.
This work also reviews pioneering work that combines neural ar-
chitecture search with SR, which automatically derives designs
instead of relying solely on human dexterity [10]. Finally, this
work aims to give a broader overview of the field and highlight
challenges as well as future trends.

Section 2 lays out definitions and introduces known met-
rics used by most SR publications. This section also intro-
duces datasets and data types found in SR research. Section 3
presents commonly used regression-based learning objectives
(pixel, uncertainty-driven, and content loss) as well as more
sophisticated objectives like adversarial loss and denoising dif-
fusion probabilistic models. Section 4 covers interpolation- and
learning-based upsampling. Section 5 goes over the basic mech-
anisms of attention used in SR. Section 6 explains additional
learning strategies, covering a variety of techniques that can
be applied for performance improvement. It discusses curricu-
lum learning, enhanced predictions, network fusion, multi-task
learning, and normalization. Section 7 introduces SR models.
It goes through different architecture types, such as simple,
residual, recurrent-based, lightweight, and wavelet transform-
based networks. Several graphical visualizations (also in sup-
plementary material, (available online)) accompany the chapter,
highlighting the difference between the proposed architectures.
Sections 8 and 9 introduce unsupervised SR and neural architec-
ture search combined with SR. Finally, this work summarizes
and points to future directions in Sections 10 and 11.
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II. SETTING AND TERMINOLOGY

This section focuses on four questions: (1) What is SR? (2)
How good is a stated SR solution? (3) What SR datasets are
available to test the solution? (4) How are images represented
in SR?

The first question introduces the fundamental definitions as
well as the terminology that is specific to SR. The second relates
to evaluation metrics that assess any proposed SR solution, such
as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM). The third question is linked to numerous datasets
that provide various data types, such as 8K resolution images
or video sequences. Last but not least, the fourth question
addresses different image representations (i.e., color spaces) that
SR models can use.

A. Problem Definition: Super-Resolution

Super-Resolution (SR) refers to methods that can develop
High-Resolution (HR) images from at least one Low-Resolution
(LR) image [5]. The SR field divides into Single Image Super-
Resolution (SISR) and Multi-Image Super-Resolution (MISR).
In SISR, one LR image leads to one HR image, whereas MISR
generates many HR images from many LR images. Regarding
popularity, most researchers focus on SISR because its tech-
niques are extendable to MISR.

1) Single Image Super-Resolution (SISR): The goal of Single
Image Super-Resolution (SISR) is to scale up a given Low-
Resolution (LR) image x ∈ Rw̄×h̄×c to a High-Resolution (HR)
image y ∈ Rw×h×c, with w̄ ≤ w and h̄ ≤ h. Throughout this
work, Nx = w · h · c defines the amount of pixels of an image
x ∈ Rw×h×c and Ωx the set of all valid positions in x:

Ωx = {(i, j, k) ∈ N3
1 |i ≤ h, j ≤ w, k ≤ c} (1)

Let s ∈ N1 be a scaling factor, it holds thath = s · h̄ andw = s ·
w̄. Furthermore, let D : Rw×h×c → Rw̄×h̄×c be a degradation
mapping that describes the inherent relationship between the
two entities LR (x) and HR (y):

x = D (y; δ) , (2)

in which δ are parameters of D that contain, for example, the
scaling factor s and other elements like blur type.

In practice, the degradation mapping is often unknown and
therefore modeled, e.g., with bicubic downsampling. The un-
derlying challenge of SISR is to perform the inverse mapping
of D. Unfortunately, this problem is ill-posed because one LR
image can lead to multiple nonidentical HR images. The goal is
to find a SR modelM : Rw̄×h̄×c → Rw×h×c, s.t.:

ŷ =M (x; θ) , (3)

where ŷ is the predicted HR approximation of the LR image x
and θ the parameters ofM.

For Deep Learning (DL), this translates into an optimization
objective that minimizes the difference between the estimation
ŷ and the ground-truth HR image y under a given loss function
L:

θ̂ = argmin
θ
L (ŷ,y) (4)

The setting is illustrated in the supplementary material, available
online.

2) Multi-Image Super-Resolution (MISR): Multi-Image
Super-Resolution (MISR) is the task of yielding one or more
HR images from many LR images [11]. An example is satellite
imagery [3], where many LR examples direct to a single HR
prediction, a so-called many-to-one approach. An alternative
is the many-to-many approach, where many LR images lead
to more than one HR image. It is usually employed for video
sequence enhancing [11]. The LR images are generally of
the same scene, e.g., multiple satellite images of the same
geographical location. Given a sequence x = (x1, . . . ,xT )
with T ∈ N1 and xt ∈ Rw̄×h̄×c, 0 < t ≤ T , the task is to
predict y = (y1, . . . ,yT ′) with T ′ ∈ N1 and yt′ ∈ Rw×h×c,
0 < t′ ≤ T ′. The most frequent case is T = T ′, where yt is
supposed to be the HR image of xt. Generally, MISR is an
extension of the SISR setting.

B. Evaluation: Image Quality Assessment (IQA)

Many properties are associated with excellent image quality,
such as sharpness, contrast, or the absence of noise. Thus, fair
evaluation of SR models is challenging. This section shows
different evaluation methods that fall under the umbrella term
Image Quality Assessment (IQA). Broadly speaking, IQA refers
to any metric based on perceptual assessments of human viewers,
i.e., how realistic the image appears after applying SR methods.
IQA can be subjective (e.g., human raters) or objective (e.g.,
formal metrics).

1) Mean Opinion Score (MOS): Digital images are ulti-
mately meant to be viewed by human beings. Thus, the most
appropriate way of assessing images is a subjective evaluation
[12], [13]. One commonly used subjective IQA method is the
Mean Opinion Score (MOS). Human viewers rate images with
quality scores, typically 1 (bad) to 5 (good). MOS is the arith-
metic mean of all ratings. Despite reliability, mobilizing human
resources is time-consuming and cumbersome, especially for
large datasets.

2) Peak Signal-to-Noise Ratio (PSNR): Objectively assess-
ing quality is of indisputable importance due to the massive
amount of images produced in recent years and the weaknesses
of subjective measurements. One popular objective quality mea-
surement is Peak Signal-to-Noise Ratio (PSNR). It is the ratio
between the maximum possible pixel-value L (255 for 8-bit
representations) and the Mean Squared Error (MSE) of reference
images. Given the approximation ŷ and the ground-truth y,
PSNR is a logarithmic quantity using the decibel scale [dB]:

PSNR (y, ŷ) = 10 · log10
L2

1
Ny

∑
p∈Ωy

[yp − ŷp]
2 (5)

Although it is widely used as an evaluation criterion for SR
models, it often leads to mediocre results in real scenarios. It
focuses on pixel-level differences instead of mammalian visual
perception, which is more attracted to structures [14]. Subse-
quently, it correlates poorly with subjectively perceived quality.
Slight changes in pixels (e.g., shifting) can lead to a significantly
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decreased PSNR, while humans barely recognize the difference.
Consequently, new metrics focus on more structural features
within an image.

3) Structural Similarity Index (SSIM): The Structural Sim-
ilarity Index (SSIM) depends on three relatively independent
entities: luminance, contrast, and structures [14]. It is widely
known and better meets the requirements of perceptual assess-
ment [5]. SSIM estimates for an image y the luminance μy as
the mean of the intensity, while it is estimating contrast σy as
its standard deviation:

μy =
1

Ny

∑
p∈Ωy

yp, (6)

σy =
1

Ny − 1

∑
p∈Ωy

[yp − μy]
2 (7)

In order to compare the entities, the authors of SSIM introduced
a similarity comparison function S:

S(x, y, c) =
2 · x · y + c

x2 + y2 + c
, (8)

where x and y are the compared scalar variables, and c =
(k · L)2, 0 < k � 1 is a constant to avoid instability. Given a
ground-truth image y and its approximation ŷ, the comparisons
on luminance (Cl) and contrast (Cc) are

Cl (y, ŷ) = S (μy, μŷ, c1) and Cc (y, ŷ) = S (σy, σŷ, c2)
(9)

where c1, c2 > 0. The empirical co-variance

σy,ŷ =
1

Ny − 1

∑
p∈Ωy

(yp − μy) · (ŷp − μŷ) , (10)

determines the structure comparison (Cs), expressed as the cor-
relation coefficient between y and ŷ:

Cs (y, ŷ) = σy,ŷ + c3
σy · σŷ + c3

, (11)

where c3 > 0. Finally, the SSIM is defined as:

SSIM (y, ŷ) = [Cl (y, ŷ)]α · [Cc (y, ŷ)]β · [Cs (y, ŷ)]γ (12)

whereα > 0, β > 0 andγ > 0 are adjustable control parameters
for weighting relative importance of all components.

4) Learning-Based Perceptual Quality (LPQ): Lately, re-
searchers have tried to mitigate some weak points of MOS by us-
ing DL, the so-called Learning-based Perceptual Quality (LPQ).
In essence, LPQ tries to approximate a variety of subjective
ratings by applying DL methods. One way is to use datasets that
contain subjective scores, such as TID2013 [15], and a neural
network to predict human rating scores, e.g., DeepQA [16] or
NIMA [17].

A significant drawback of LPQ is the limited availability
of annotated samples. One can augment a small-sized dataset
by applying noise and ranking. Adding minimal noise to an
image should lead to poorer quality, making the noisy image
and the original counterpart pairwise discriminable. These pairs
are called Quality-Discriminable Image Pairs (DIP) [18]. The
DIP Inferred Quality (dipIQ) index uses RankNet [19], which is

based on a pairwise learning-to-rank algorithm [20]. The authors
of dipIQ show higher accuracy and robustness in variation-rich
content than by training directly on IQA databases like TID2013
[15]. Another example is RankIQA [21], in which a Siamese
Network [22] is used to rank image quality by using artificial
distortions.

Another inventive way to calculate the similarity between
two images is to use DL to extract and compare features. One
well-known representative is Learned Perceptual Image Patch
Similarity (LPIPS) [23], which uses L feature maps generated
by an extractor ϕ, e.g., VGG [24]. Let Hl, Wl be the height
and width of the l-th feature map, respectively, and αl ∈ RCl a
scaling vector, then LPIPS is formulated as

LPIPS (y, ŷ) =

L∑
l=1

∑
h,w

∥∥∥αl �
(
ϕl (ŷ)h,w − ϕl (y)h,w

)∥∥∥2
2

HlWl

(13)
The authors showed that LPIPS aligns better with human judg-
ments than PSNR or SSIM. However, the quality depends on the
feature extractor underneath.

Another example is Deep Image Structure and Texture Sim-
ilarity (DISTS) [25], which combines spatial averages (texture)
with the correlations of feature maps (structure).

5) Task-Based Evaluation (TBE): Alternatively, one can fo-
cus on task-oriented features. For instance, one can measure
quality differences from DL models that solve other Computer
Vision (CV) tasks like image classification. Other CV tasks
can also benefit from including SR as a pre-processing step.
Measuring the performance on tasks, with and without SR, is yet
another ingenious way to measure the quality of an SR method.
HR images provide more details, which are highly desirable for
CV tasks like object recognition [3]. Nevertheless, it requires
extra training steps, which can be avoided by using predefined
features like those presented in the following section.

6) Evaluation With Defined Features: One example is the
Gradient Magnitude Similarity Deviation (GMSD) [26], which
uses the pixel-wise Gradient Magnitude Similarity (GMS).
Based on the variation of local quality, which arises from the
diversity of local image structures, GMS calculates the gradient
magnitudes with:

mx(p) =
√
(∇hx)

2
p + (∇vx)

2
p, p ∈ Ωx (14)

where ∇hx and ∇vx are the horizontal and vertical gradient
images of x, respectively. The GMS map, similar to (9), is given
by

GMS (y, ŷ)p = S (my(p),mŷ(p), c) (15)

where c is a positive constant. The final IQA score is given by
the average of the GMS map:

GMSD (y, ŷ) =
1

Ny

∑
p∈Ωy

GMS (y, ŷ)p (16)

An alternative is the Feature Similarity (FSIM) Index. It also
uses gradient magnitudes, but combines them with Phase Con-
gruency (PC), a local structure measurement, as feature points
[27]. The phase congruency model postulates a biologically
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plausible model of how human visual systems detect and identify
image features. These features are perceived where the Fourier
components are maximal in phase. An extension to FSIM is
the Haar wavelet-based Perceptual Similarity Index (HaarPSI),
which uses a Haar wavelet decomposition to assess local simi-
larities [28]. Its authors claim that it outperforms state-of-the-art
IQA methods like SSIM and FSIM in terms of execution time
and higher correlations with human opinion scores. They suggest
that a multi-scale complex-valued wavelet filterbank directly
influences the computation of FSIM in the computation of the
Fourier components. The approach is similar to FSIM but relies
on 2D discrete Haar wavelet transform.

7) Multi-Scale Evaluation: In practice, SR models usually
super-resolve to different scaling factors, known as Multi-
Scaling (MS). Thus, evaluating metrics should address this
scenario. The MS-Structural Similarity (MS-SSIM) index [29]
is a direct extension of SSIM that incorporates MS. Compared
to SSIM, it can be more robust to variations in viewing condi-
tions. It adds parameters that weight the relative importance
of different scales. MS-SSIM applies a low-pass filter and
downsamples the filtered image by a factor of 2 for every scale
level 1 ≤ i ≤ smax, where smax is the largest scale. By doing
so, it calculates the contrast and structure comparisons at each
scale and the luminance comparison for the largest scale smax.
MS-SSIM is formulated as

MS-SSIM (y, ŷ)=Cl (y, ŷ)α ·
smax∏
i=1

Cc,i (y, ŷ)βi · Cs,i (y, ŷ)γi ,

(17)
where α > 0, βi > 0 and γi > 0 are adjustable control parame-
ters. Similarly, the GMSD can be extended with

MS-GMSD (y, ŷ) =

√√√√smax∑
i=0

αi · (GMSDi (y, ŷ))
2, (18)

where αi are adjustable control parameters and GMSDi is the
GMSD score at ith scale [30].

C. Datasets and Challenges

For SR, more extensive datasets have been made available
over the past years. Various accessible datasets contain vast
amounts of images of different qualities and content, as shown in
Fig. 1. Some are created explicitly for SR in a supervised manner
with LR-HR pairs. Moreover, one can exploit datasets that do not
come with SR annotations by generating LR pairs and treating
original samples as the HR version. LR samples are typically
computed using bicubic interpolation, and anti-aliasing [34].
The supplementary material, available online, list commonly
used datasets. Some of them were published as part of a SR chal-
lenge. Two of the most famous challenges are the New Trends in
Image Restoration and Enhancement (NTIRE) challenge [35],
and the Perceptual Image Restoration and Manipulation (PIRM)
challenge [36].

Fig. 1. Example images from different SR datasets: Set5 [31], Set14 [1],
Manga109 [32], General100 [33], BSDS100 [2], and BSDS200 [2]. The ratio
of the size differences is preserved.

D. Color Spaces

Applications of SR can expand into other domains with addi-
tional modalities such as depth- or hyper-spectral SR. However
relevant, we restrict the scope of this review to the more prevalent
use case of color images (i.e., c=3). Data representation (i.e.,
color space) has played a crucial role in SR methods before DL.
Nowadays, most researchers use the RGB color space [37], [38].
Nonetheless, researchers have tried to combine the advantages
of other color spaces. The first DL-based SR model [39] used the
first channel of the YCbCr space. It is standard to capture only the
Y channel if YCbCr is employed [40] since focusing on structure
instead of color is preferred. Recent SR models use the RGB
color space, also because using something other than RGB color
spaces is ill-defined when comparing state-of-the-art results if
PSNR is used as evaluation metric [41], [42]. Exploring other
color spaces for DL-based SR methods is nearly nonexistent,
which presents an exciting research gap.

III. LEARNING OBJECTIVES

The ultimate goal of SR is to provide a model that maps an LR
image to an HR image. Therefore, the question naturally arises:
how to train a given SR model? The answer to this question is
given in the following sections.

A. Regression-Based Objectives

Regression-based objectives attempt to model the relation
between input and the desired output explicitly. The parameters
of the SR model are estimated directly from the data, often by
minimizing the L1 and L2 losses. While both loss functions are
easily applicable, the results tend to be blurry. We also discuss
one way to mitigate this shortcoming, namely by modeling
uncertainty into the loss function itself.

1) Pixel Loss: The pixel loss measures the pixel-wise dif-
ference, as illustrated in the supplementary material, available
online. There are two well-known pixel loss functions in litera-
ture. The first one is the Mean Absolute Error (MAE), orL1-loss:
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LL1 (y, ŷ) =
1

Ny

∑
p∈Ωy

|yp − ŷp| (19)

It takes the absolute differences between every pixel of both
images and returns the mean value. The second well-known
pixel loss function is the Mean Squared Error (MSE), or L2-
loss. It weights high-value differences higher than low-value
differences due to an additional square operation:

LL2 (y, ŷ) =
1

Ny

∑
p∈Ωy

|yp − ŷp|2 (20)

However, it is more common to see the L1-loss in literature
because L2 is very reactive to extraordinary values: too smooth
for low values and too variable for high values [38], [43]. There
are variants in the literature, depending on the task and other
specifications. A popular one is the Charbonnier-loss [44], which
is defined by

LCharbonnier (y, ŷ) =
1

Ny

∑
p∈Ωy

√
|yp − ŷp|2 + ε2, (21)

where 0 < ε� 1 is a small constant such that the inner term
is non-zero. Equation (19) can be seen as a special case of
Charbonnier with ε = 0.

Pixel loss functions favor a high PSNR because both formula-
tions use pixel differences. Also, PSNR does not correlate well
with subjectively perceived quality (see Section 2.2.2), which
makes pixel loss functions sub-optimal. Another observation is
that the resultant images tend to be blurry: sharp edges need to be
modeled better. One way to combat this is by adding uncertainty.

2) Uncertainty-Driven Loss: Modeling uncertainty in DL
improves the performance and robustness of deep networks [45].
Therefore, Ning et al. proposed an adaptive weighted loss for
SISR [46], which aims at prioritizing texture and edge pixels
that are visually more significant than pixels in smooth regions.
Thus, the adaptive weighted loss treats every pixel unequally.

Inspired by insights from Variational Autoencoders (VAE)
[47], they first model an estimated uncertainty. Let M be the
SR model with parameters θ, which learns two intermediate
results: μθ(x), the mean image, and σθ(x), the variance image
(uncertainty). Consequently, the approximated image ŷ is given
by

ŷ =M (x; θ) = μθ (x)︸ ︷︷ ︸
=ŷμ

+ε · σθ (x)︸ ︷︷ ︸
=ŷσ

, (22)

where ε ∼ N (0, I). Most DL-based SISR methods estimate
only the mean ŷμ. In contrast, Ning et al. proposed estimating
the uncertainty ŷσ simultaneously [46].

Based on the observation that the uncertainty is sparse for
SISR due to many smooth areas, Ning et al. present an Estimating
Sparse Uncertainty (ESU) loss:

LESU (y, ŷ) = exp (− ln ŷσ) · ‖y − ŷ‖1 + 2 · ln ŷσ (23)

However, they observed that LESU lowers the performance
and assumed that LESU is unsuitable for SISR. They also con-
cluded that prioritizing pixels with high uncertainty is necessary
to benefit from uncertainty estimation.

As a result, they proposed an adaptive weighted loss named
Uncertainty-Driven Loss (UDL) and used a monotonically in-
creasing function instead of exp(− ln ŷσ) in (23):

LUDL (y, ŷ) = [ln ŷσ −min (ln ŷσ)] · ‖y − ŷμ‖1 , (24)

where [ln ŷσ −min(ln ŷσ)] is a non-negative linear scaling
function. There are two variables that need to be learned: ŷμ

and ŷσ . Ning et al. propose to use LESU to learn ŷσ and then
to train a new network with LUDL to learn ŷμ, but with the
pre-trained ŷσ fixed [46]. The idea of using two train processes
is to prevent the variance image from degenerating into zeros.
With this setup, they achieve better results than L1 and L2 for a
wide range of network architectures [48], [49].

However, it requires a two-step training procedure, which
adds extra training time. To this day, we have yet to find any
techniques that circumvent such a two-step training process. The
supplementary material, available online, contains additional
visualizations.

3) Content Loss: Instead of using the difference between the
approximated and the ground-truth image, one can transform
both entities further into a more discriminant domain. Thus, the
resultant loss function utilizes feature maps from an external
feature extractor. Such an approach is similar to TBE (see Sec-
tion 2.2.5). In more detail, the feature extractor is pre-trained on
another task, i.e., image classification or segmentation. During
the training of the actual SR model on the difference of feature
maps, the parameters of the feature extractor remain fixed.
Thus, the goal of the SR model is not to generate pixel-perfect
estimations. Instead, it produces images whose features are close
to the features of the target.

More formally, let ϕ be a Convolutional Neural Network
(CNN) that extracts features like VGG [24] and let ϕl be the l-th
feature map. The content loss describes the difference of feature
maps generated from the HR imageϕl(y) and the approximation
of it, ϕl(ŷ), and is defined as

LContent (y, ŷ, l) =
∥∥ϕl (ŷ)− ϕl (y)

∥∥
2

(25)

The supplementary material, available online, provides a visu-
alization of this approach. The motivation is to incorporate image
features (content) instead of pixel-level details; a strategy that
has been frequently used for Generative Adversarial Networks
(GANs), e.g., SRGAN [13].

B. Generative Adversarial Networks

Since the early days of GANs [50], they have had a variety
of applications in CV tasks e.g., in text-to-image synthesis [51].
The core idea is to use two distinct networks: a generator G
and a discriminator D. The generator network learns to produce
samples close to a given dataset and to fool the discriminator.

In the case of SR, the generator is the SR model (G =M).
The discriminator tries to distinguish between samples coming
from the generator and samples from the actual dataset. The
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interaction between the generator and discriminator corresponds
to a minimax two-player game and is optimized using the
adversarial loss [12], [13]. Given the ground-truth HR image y
of the LR imagex and the approximated SR image ŷ = GθG(x),
the loss functions based on Cross-Entropy (CE) are:

LCE
G = − Ex∼PLR(x) logDθD [GθG (x)] (26)

LCE
D = − Ey∼PHR(y) [logDθD (y)]

− Ex∼PLR(x) [log (1−DθD [GθG (x)])] (27)

An alternative is to use the Least Square (LS) [52], [53], which
yields better quality and training stability:

LLS
G = Ex∼PLR(x) (DθD [GθG (x)]− 1)2 (28)

LLS
D = Ex∼PLR(x) (DθD [GθG (x)])2

+ Ey∼PHR(y) (DθD (y)− 1)2 (29)

Famously known for the GAN research field, but less explored
for SR [54], is the Wasserstein loss with Gradient Penalty
(WGAN-GP) [55], which is the extended version of the Wasser-
stein loss (WGAN). Despite variations, Lucic et al. have shown
that most adversarial losses can reach comparable scores with
enough hyper-parameter tuning and random restarts [56]. How-
ever, this statement remains unproven for SR and requires more
rigorous confirmation in the future.

A recent review by Singla et al. [57] examines GANs for
SR in more detail. Generally, SR models perform better if an
adversarial loss is incorporated. The primary disadvantage is that
sufficient training stability is hard to reach due to GAN-specific
issues like mode collapse [13]. One way to improve the training
stability is to introduce regularization terms.

1) Total Variation Loss: One way to regularize GANs is to
use a Total Variation (TV) denoising technique known from
image processing. First introduced by Rudin et al. [58], it filters
noise by reducing the TV of a given signal. The TV loss [59]
measures the difference of neighboring pixels in the vertical and
horizontal direction in one image. It is defined as

TV (y) =
1

Ny

∑
i,j,k

√
(yi+1,j,k−yi,j,k)

2︸ ︷︷ ︸
diff. first axis

+(yi,j+1,k−yi,j,k)
2︸ ︷︷ ︸

diff. second axis
(30)

and minimizing it results in images with smooth instead of sharp
edges. This term helps to stabilize the training of GANs [13],
[52]. However, it can hurt the overall image quality since sharp
edges are essential.

2) Texture Loss: Texture synthesis with parametric texture
models has a long history with the goal of transferring global
texture onto other images [60]. Due to the advent of DL, Gatys
et al. [61] proposed a style transfer method (e.g., painting
style) that utilized a pre-trained neural network ϕ. Based on
that, EnhanceNet [12] used the texture loss to enforce textural
similarity. It uses the Gram Matrix to capture correlations of
different channels between feature maps:

Gl(c1,c2) (y) =
∑

(i,j,.)∈Ωy

ϕl (y)(i,j,c1) · ϕl (y)(i,j,c2) (31)

Fig. 2. Principle of DDPMs. The Gaussian diffusion process adds noise
iteratively. The iterative refinement process reverts the process. The task of the
SR model is to predict the noise added between two iterations. The predicted
noise is then used to revert one iteration.

where ϕl is the l-th feature map. The texture loss is

LTEX (y, ŷ, l) =
∥∥Gl (ŷ)− Gl (y)∥∥2

2
(32)

C. Denoising Diffusion Probabilistic Models

Interestingly, DL methods are well suited for denoising Gaus-
sian noise. Denoising Diffusion Probabilistic Models (DDPMs)
[62] exploit this insight by formulating a Markov chain to alter
one image into a noise distribution gradually, and the other way
around. The idea of this approach is that estimating small per-
turbations is more tractable for neural networks than explicitly
describing the whole distribution with a single, non-analytically-
normalizable function.

First in SR was “Super-Resolution via Repeated Refinement”
(SR3) [63]. It adds noise to the LR image untilyT ∼ N (0, I) and
generates a target HR image y0 iteratively in T refinement steps.
While adding noise is straightforward, it uses a DL-based model
that transforms a standard normal distribution into an empirical
data distribution by reverting the noise-adding process as shown
in Fig. 2.

The diffusion process q adds Gaussian noise to a LR image
y = y0 over T iterations with

q (yt|y0) = N (yt|√γt · y0, (1− γt) · I), (33)

where γt =
∏T

i=1 αi and 0 < αt < 1 are hyper-parameters to
determine the variance of added noise per iteration.

Consequently, the noisy image ỹ can be expressed as

ỹ =
√
γ · y0︸ ︷︷ ︸
mean

+
√

1− γ · ε︸ ︷︷ ︸
variance

, ε ∼ N (0, I) (34)

Given γ and ỹ, one can derive y0 from ε and vice versa by
rearranging (34). Thus, a denoising model ϕθ with parameters
θ has to either predict y0 or ε.

SR3 applies the denoising model to predict the noise ε. The
model ϕθ(x, ỹ, γ) takes as input the LR image x, the variance
of the noise γ, and the noisy target image ỹ and is optimized by
the following loss function

LSR3 (x,y0)=Eε,γ

∥∥∥∥∥∥∥ϕθ

⎛⎜⎝x,
√
γ · y0+

√
1− γ · ε︸ ︷︷ ︸

=ỹ by Equation 34

, γ

⎞⎟⎠−ε
∥∥∥∥∥∥∥
d

d

,

(35)
where d ∈ {1, 2}. The alternative regression target y0 remains
open for future research.
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The refinement process p is the reverse direction of the dif-
fusion process. Given the prediction of εt by ϕθ, (34) can be
reformulated to approximate y0:

yt =
√
γt · ŷ0 +

√
1− γt · ϕθ (x,yt, γt)

⇐⇒ ŷ0 =
1√
γt
·
(
yt −

√
1− γt · ϕθ (x,yt, γt)

)
(36)

Substituting ŷ0 into the posterior distribution to parameterize
the mean of pθ(yt−1|yt,x), details shown in supplementary
material, available online, yields

μθ (x,yt, γt) =
1√
αt

[
yt − 1− αt√

1− γt
· ϕθ (x,yt, γt)

]
(37)

The authors of SR3 set the variance ofpθ(yt−1|yt,x) to (1− αt)
for the sake of simplicity. As a result, each refinement step with
εt ∼ N (0, I) is realized as

yt−1 ← 1√
αt

[
yt − 1− αt√

1− γt
· ϕθ (x,yt, γt)

]
+
√
1− αt · εt

(38)
And indeed, SR3 generates sharp images with more details

than its regression-based counterparts on natural and face im-
ages. The authors also strengthened the results by positively
testing the generated images with 50 human subjects. Thus, the
outcome of SR3 is a promising direction for future investiga-
tions. Nevertheless, SR3 seems prone to bias, e.g., applied to a
facial dataset; the images result in too smooth skin texture by
dropping moles, pimples, and piercings. More extensive ablation
studies could help in establishing the practicality for real-world
SR applications.

IV. UPSAMPLING

A critical aspect is how to increase the spatial size of a given
feature map. This section gives an overview of upsampling
methods, either interpolation-based (nearest-neighbor, bilinear,
and bicubic interpolation) or learning-based (transposed convo-
lution, sub-pixel layer, and meta-upscale). Various visualizations
can be found in the supplementary material, available online.

A. Interpolation-Based Upsampling

Many DL-based SR models use image interpolation meth-
ods because of their simplicity. The most known methods are
nearest-neighbor, bilinear, and bicubic interpolation.

Nearest-neighbor interpolation is the most straightforward
algorithm because the interpolated value is based on its nearest
pixel values. Nearest-neighbor is swift since no calculations
are needed, which is why it is favorable for SR models [12].
However, there are no interpolated transitions, which results in
blocky artifacts.

In contrast, bilinear interpolation bypasses blocky artifacts by
producing smoother transitions with linear interpolation on both
axes. It needs a receptive field of 2× 2, making it relatively fast
and easily applicable [64].

However, SR methods typically do not use it because bicubic
interpolation delivers much smoother results. But it demands
much more computation time due to a receptive field size

of 4× 4 and makes it the slowest approach among all three
methods. Nonetheless, it is generally used by SR models if
an interpolation-based upsampling is applied [39], [44], [65]
since the overall time consumption is unessential for GPU-based
models, which are common in SR research.

B. Learning-Based Upsampling

Learning-based upsampling introduces modules that upsam-
ple a given feature map within a learnable setup. The most
standard learning-based upsampling methods are the trans-
posed convolution and sub-pixel layer. Promising alternatives
are meta-upscaling, decomposed upsampling, attention-based
upsampling, and upsampling via Look-Up Tables, which are the
last discussed methods in this section.

1) Transposed Convolution: Transposed convolution ex-
pands the spatial size of a given feature map and subsequently
applies a convolution operation. In general, the expansion is
realized by adding zeros between given values. However, some
approaches differ by first applying nearest-neighbor interpola-
tion and then applying zero-padding, e.g., FSRCNN [33]. The
receptive field of the transposed convolution layer can be arbi-
trary (often set to 3× 3). The added values depend on the kernel
size of the subsequent convolution operation. This procedure
is widely known in literature and is also called deconvolution
layer, although it does not apply deconvolution [39], [40],
[43]. In practice, transposed convolution layers tend to produce
crosshatch artifacts due to zero-padding (further discussed in the
supplementary material, available online). Also, the upsampled
feature values are fixed and redundant. The sub-pixel layer was
proposed to circumvent this problem.

2) Sub-Pixel Layer: Introduced with ESPCN [66], it uses a
convolution layer to extract a deep feature map and rearranges it
to return an upsampled output. Thus, the expansion is carried out
in the channel dimension, which can be more efficient for smaller
kernel sizes than transposed convolution. However, assume zero
values are used instead of nearest-neighbor interpolation in the
transposed convolution. In that case, a transposed convolution
can be simplified to a sub-pixel layer [67]. Given a scaling
factor s and input channel size c, it produces a feature map
with s2 · c channels. Next, a convolution operation with zero
padding is applied, such that the spatial size of the input and
the resulting feature map remains the same. Finally, it reshapes
the feature map to produce a spatially upsampled output. The
receptive field of the convolutional layer can be arbitrary but
is often 1× 1 or 3× 3. This procedure is widely known in the
literature as pixel shuffle layer [38], [53], [63]. In practice, the
sub-pixel layer produces repeating artifacts that can be difficult
to unlearn for deeper layers, which is also further explained in
the supplementary material, available online.

3) Decomposed Upsampling: An extension to the above ap-
proaches is decomposed transposed convolution [68]. Using 1D
convolutions instead of 2D convolutions reduces the number
of operations and parameters for the component k2 to 2 · k.
Note that the applied decomposition is not exclusively bound to
transposed convolution and can also be used in sub-pixel layers.
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4) Attention-Based Upsampling: Another alternative to
transposed convolution is attention-based upsampling [69]. It
follows the definition of attention-based convolution (or scaled
dot product attention) and replaces the 1x1 convolutions with
upsampling methods. In more detail, it replaces the convolution
for the query matrix with bilinear interpolation and the convolu-
tion for the key and value matrix with zero-padding upsampling
similar to transposed convolution. It needs fewer parameters
than transposed convolution but a slightly higher number of
operations. Also, it trains considerably slower: a shared issue
across attention mechanisms.

5) Upsampling With Look-Up Tables: A recently proposed
alternative is to use a Look-Up Table (LUT) to upsample [70].
Before generating the LUT, a small-scale SR model is trained
to upscale small patches of a LR image to target HR patches.
Subsequently, the LUT is created by saving the results of the
trained SR model applied on a uniformly distributed input
space. It reduces the upsampling runtime to the time necessary
for memory access while achieving better quality than bicubic
interpolation. On the other hand, it requires additional training
to create the LUT. Also, the size of the small patches is crucial
since the size of the LUT increases exponentially. However, it
is an exciting approach that is worth further exploration.

6) Flexible Upsampling: Most existing SR methods only
consider fixed, integer scale factors s ∈ N. However, most
real-world scenarios require flexible zooming, which demands
SR methods that can be applied with arbitrary scale factors
s ∈ R+. It raises a significant problem for models that use those
learning-based upsampling methods: one has to train and save
various models for different scales, which limits the use of such
methods for real-world scenarios [37], [66]. In order to overcome
this limitation, a meta-upscale module was proposed [41]. It
predicts a set of filters for each position in a feature map that
is later applied to a location in a lower-resolution feature map.
A visualization of the upscale module and the aforementioned
steps can be found in the supplementary material, available
online. This approach is exciting for tasks that require arbitrary
magnification levels, e.g., zooming. Nevertheless, its downsides
unfold if huge scaling factors are required because it has to pre-
dict the filter weights W (i, j) independently for each position.
There are only a few works [71] that involve this approach in the
literature. Besides existing SR methods, one can treat each image
as a continuous function and generate patches at a fixed pixel
resolution around a center like AnyRes-GAN (2022) [72], which
could be an interesting path to follow for future SR research.

V. ATTENTION MECHANISMS FOR SR

Attention revolutionized Natural Language Processing (NLP)
and plays an essential role for DL in several applications [73].
This section presents how SR methods employ attention. There
are two categories: Channel and spatial attention, which can be
applied simultaneously.

A. Channel-Attention

Feature maps generated by CNNs are not equally important.
Therefore, essential channels should be weighted higher than

Fig. 3. Channel-attention mechanism [74]. It reduces a feature map in the
spatial dimensions and extracts weighting values by using several FC layers that
are element-wise multiplied to the initial feature map.

Fig. 4. Spatial-attention mechanism [76]. It extracts informations by in-
specting the relationship between two positions (first matrix multiplication)
and returns the importance of each position as a feature map (second matrix
multiplication). MM denotes the matrix multiplication.

counterpart channels, which is the goal of channel attention. It
focuses on “which” (channels) carry crucial details. Hu et al.
[74] introduced the channel-attention mechanism for CV as an
add-on module for any CNN architecture. Fig. 3 illustrates the
principle. Upon this, the Residual Channel Attention Network
(RCAN) [37] first applied the channel-attention to SR. They
used a second-order feature metric to reduce the spatial size
and applied two fully connected layers to extract the importance
weighting. Because of its simple add-on installation, it is still in
use for current research [75]. One interesting future direction of
channel-attention would be to combine it with pruning in order
to not only amplify quality but also to save computation time.

B. Spatial-Attention

In contrast to channel attention, spatial attention focuses on
“where” the input feature maps carry important details, which
requires extracting global information from the input. There-
fore, Wang et al. [76] proposed non-local attention, similar to
self-attention for NLP, following the idea of Query-Key-Value-
paradigm known from transformers [73].

The principle is shown in Fig. 4. Intuitively, the resulting
feature map contains each position’s weighted sum of features.
It captures spatially separated information by a long range in the
feature map. In SR, the Residual Non-local Attention Network
(RNAN) [77] was the first architecture using non-local spatial
attention to improve performance.

A known architecture is SwinIR [78], which reaches state-
of-the-art performance and follows the idea of transformers
(i.e., multi-head self-attention [73]) more strictly by applying
a sequence of multiple swin transformer layers. SwinFIR [79]
develops this idea further with fast fourier convolutions. Since
transformers originate from NLP, their natural application is
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restricted to a sequence of patches, and therefore, it requires
a patch-wise formulation of an image. This is a significant
drawback of transformers applied to SR. SwinIR diminishes
the problem by shifting between attention blocks to transfer
knowledge between patches.

Exploring its full potential is an exciting topic for the future
[80], [81]. However, one major drawback is the difficulty of
measuring the importance at a global spatial scale since it often
requires vector multiplications (along rows and columns), which
is slow for large-scale images. Bottleneck tricks and patch-wise
applications are used to circumvent this problem but are also
sub-optimal for importance weighting. Future research should
further optimize computation speed without forfeiting global
information.

C. Mixed Attention

Since both attention types can be applied easily, merging
them into one framework is natural. Thus, the model focuses on
“which” (channel) is essential and “where” (spatially) to extract
the most valuable features. This combines the benefits of both
approaches and introduces an exciting field of research, espe-
cially in SR [82], [83]. One potential future direction would be
to introduce attention mechanisms incorporating both concerns
in one module.

A well-known architecture for mixed attention is the Holistic
Attention Network (HAN) [82], which uses hierarchical fea-
tures (from residual blocks) and obtains dependencies between
features of different depths while allocating attention weights
to them. Thus, it weighs the importance of depth layers in the
residual blocks instead of spatial locations within one feature
map. Finally, the network uses the layer attention weighted
feature map and combines it via addition with channel attention
before the final prediction.

VI. ADDITIONAL LEARNING STRATEGIES

Additional learning strategies are blueprints that can be used
in addition to regular training. This section presents the most
common methods used in SR, which can immensely impact an
SR model’s overall performance.

A. Curriculum Learning

Curriculum learning follows the idea of training a model
under easy conditions and gradually involving more complexity
[84], i.e., additional scaling sizes. For instance, a model trains
with a scale of two and gradually higher scaling factors, e.g.,
ProSR [53]. ADRSR [85] concatenates all previously computed
HR outputs. CARN [86] updates the HR image in sequential
order, where additional layers extend the network for four times
upsampling, which uses previously learned layers, but ignores
previously computed HR images [53]. Another way of using
curriculum learning is gradually increasing the noise in LR
images, e.g., in SRFBN [64]. Curriculum learning can shorten
the training time by reducing the difficulty of large scaling
factors.

B. Enhanced Predictions

Instead of enhancing simple input-output pairs, one can use
data augmentation techniques like rotation and flipping for final
prediction. More specifically, create a set of images via data
augmentation of one image, e.g., rotation. Next, let the SR
model reconstruct images of the set. Finally, inverse the data
augmentation via transformations and derive a final prediction,
i.e., the mean [40], or the median [87].

C. Learned Degradation

So far, this work assumed learning processes from LR to
HR. The Content Adaptive Resampler (CAR) [7] introduced
a resampler for downscaling. It predicts kernels to produce
downscaled images according to its HR input. Next, a SR model
takes the LR image and predicts the SR image. Thus, it simul-
taneously learns the degradation mapping and upsampling task.
The authors demonstrate that the CAR framework trained jointly
with SR networks improves state-of-the-art SR performance
furthermore.

D. Network Fusion

Another way of improving performance is to apply multiple
SR models. Network fusion uses the output of all additional
SR models and applies a fusion layer to the outputs. Finally,
it predicts the SR image used for the learning objective. For
instance, the Context-wise Network Fusion (CNF) [88] uses
this approach with SRCNN, a small SR model introduced in
the next chapter. This method adds a considerable amount of
computation and memory, depending on the complexity of the
SR models. However, it achieves a performance boost and is
recommended if computational resources are sufficiently avail-
able. A potential future direction would be to use network fusion
to determine critical computation paths and to merge multiple
networks into one by pruning or dropout mechanisms.

E. Multi-Task Learning

Multi-task learning is an exciting research area for SR with
the core idea to train a given model to perform various tasks [52],
[85]. E.g., one can assign a label to each image and use multiple
datasets for training. Next, a SR model can learn to reconstruct
the SR image and predict its category (e.g., natural or manga
image) [89]. Another idea is to use datasets that have access to
salient image boundaries or image segmentation and use features
extracted from the model to predict these [90]. Research on
self-learning is an interesting starting point to combine ideas
with SR.

F. Normalization Techniques

A slight change in the input distribution is a cause of many
issues because layers need to continuously adapt to new distri-
butions, which is known as covariate shift and can be alleviated
with BatchNorm [91]. While BatchNorm helps in tasks like
image classification, it is frequently used for SR [13], [52],
[92]. However, BatchNorm does not apply well in SR because it
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TABLE I
COMPARISON (PSNR/SSIM) OF SR APPROACHES DISCUSSED IN THIS WORK: SIMPLE, RESIDUAL, RECURRENT, ATTENTION-BASED, LIGHTWEIGHT AND WAVELET

NETWORKS, AS WELL AS NAS DERIVED NETWORKS AND UNSUPERVISED TRAINED MODELS. THE ORDERING REFLECTS ROUGHLY THE PERFORMANCE RANKING.
HOWEVER, SOME COMPARISONS ARE NOT FAIR DUE TO DIFFERENT SETTINGS, E.G., NAS VERSUS UNSUPERVISED RESULTS. ALSO, SOME PUBLICATIONS DO NOT

REPORT RESULTS ON THE COMMONLY USED DATASETS. THEREFORE, THEY ARE NOT LISTED (E.G., WESPE [128], DSN [133], CINCGAN [52])

removes network range flexibility by normalizing features [38].
The performance of a SR model can be increased substantially
without BatchNorm [93].

Recently, the authors of Adaptive Deviation Modulator
(AdaDM) [94] studied this phenomenon and were able to show
that the standard deviation of residual features shrinks a lot after
normalization layers (including BatchNorm, layer, instance, and
group normalization), which causes the performance degra-
dation in SR. The standard deviation resembles the amount
of variation of pixel values, which primarily affects edges in
images. They proposed a module within a feature extraction
block to address this problem and amplify the pixel deviation of
normalized features. It calculates a modulated output ỹ by

ỹ = y · eϕ[log(σ[x])], (39)

where x is the residually propagated input, σ[x] its standard
deviation along all three axes, and ϕ a learnable feature extrac-
tion module. The logarithmic scaling guarantees stable train-
ing. As a result, it is possible to apply normalization layers
to state-of-the-art SR models and to achieve substantial per-
formance improvements. One limitation is the additional GPU

memory during training, roughly two times the size. Therefore,
lightweight normalization techniques similar to AdaDM, but
with less GPU memory consumption are of high interest for
future research.

VII. SR MODELS

This section presents the most technical part: How to con-
struct an SR model? In the beginning, we introduce different
frameworks that all architectures need to apply, which is the
location of the upsampling itself. After that, it chronologically
examines different architecture types. Additional visualizations
can be found in the supplementary material, available online,
and an overview benchmark in Table I.

A. Upsampling Location

Besides the choice of the upsampling method, one crucial
decision in designing SR models is where to place the upsam-
pling in the architecture. There are four variants explored in SR
literature [4]: Pre-, post-, progressive, and iterative up-and-down
upsampling. They are shown in Fig. 5 and discussed next. An
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Fig. 5. Visualization of different upsampling locations within a neural net-
work: (upper left) post-upsampling, (bottom left) pre-upsampling, (upper right)
progressive upsampling, and (bottom right) iterative up-and-down upsampling.

additional overview table can be found in the supplementary
material, available online.

Pre-Upsampling. In a pre-upsampling framework, upsam-
pling is applied in the beginning. Hereafter, it uses a composition
of convolution layers to extract features. Since the feature maps
match the spatial size of the HR image early, the convolutional
layers focus on refining the upsampled input. Thus, it eases
learning difficulty but introduces blur and noise amplification
in the upsampled image, which impacts the final result. Also,
models trained with pre-upsampling have less performance or
application issues than other frameworks since they use DL to
refine independently of the scaling in the beginning. However,
it also comes with high memory and computational costs com-
pared to other frameworks like post-upsampling because of the
larger input for feature extraction.

Post-Upsampling. Post-upsampling lowers memory and com-
putation costs by upsampling at the end, which results in feature
extractions in lower dimensional space. Due to this advantage,
this framework decreases the complexity of SR models, e.g.,
FSRCNN [33]. However, the computational burden advances for
multi-scaling, where approximations at different scales are re-
quired. A step-wise upsampling during the feed-forward process
was proposed to alleviate this issue, the so-called progressive
upsampling.

Progressive Upsampling. Unlike pre- and post-upsampling,
progressive upsampling gradually increases the feature map size
within the architecture. Cascaded CNN-based modules typically
enhance to a single scaling factor. Its output is the input for
the next module, typically built similarly. Thus, it segregates
the upscaling problem into small tasks, which is a perfect fit
for multi-scale SR tasks. Also, it reduces the learning difficulty
for convolutional layers. However, the benefit is limited to the
highest set scale, and higher scaling factors also require deeper
architectures.

Iterative Up-and-Down Upsampling. Learning the mapping
from HR to LR helps to understand the relation from LR to HR
[95]. Iterative up-and-down upsampling uses this insight by also

Fig. 6. Architecture designs of SRCNN [39], FSRCNN [33], ESPCN [66] and
LapSRN/MS-LapSRN [44]. They are grouped together in this work as simple
network designs, because they use only convolutional operations and upsampling
methods.

downsampling within the architecture. It is found mainly within
recurrent-based network designs [96], [97] and demonstrated
significant improvement compared to the previous upsampling
techniques. However, the proper use requires further explo-
ration. It can be applied with other frameworks, an interesting
avenue for future research.

B. Simple Networks

Simple networks are architectures that mainly apply a chain
of convolutions. They are easy to understand and typically use a
bare minimum of computational resources due to their size. Most
of these architectures can be found in the early days of DL-based
SR because their performances are below state-of-the-art. Also,
the “the deeper, the better” paradigm of DL does not apply well
for simple networks because of vanishing/exploding gradients
[98]. Fig. 6 shows the different simple network designs. The first
CNN introduced for SR datasets was SRCNN (2014) by Dong
et al. [39]. It uses bicubic pre-upsampling to match the ground-
truth spatial size (see Section 7.1). Subsequently, it consists of
three convolution layers, which followed a popular strategy in
image restoration: patch extraction, non-linear mapping, and
reconstruction. The authors of SRCNN claimed that applying
more layers hurts the performance, which contradicts the DL
paradigm “the deeper, the better” [99]. As seen in the following,
this observation was false and required more advanced building
blocks to work correctly, e.g., residual connections like in VDSR
[98].

In their follow-up paper, the authors explored various ways
to speed up SRCNN, resulting in FSRCNN (2016) [33] that
utilized three major tricks: First, they reduced the kernel size of
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Fig. 7. Architecture design of VDSR [98]. It applies a deep convolutional
network as feature extractor but also uses a residual from the input to the final pre-
diction. Therefore, the feature extractor can concentrate to add high-frequency
details onto the interpolated image.

convolution layers. Second, they used a 1x1 convolution layer
to enhance and reduce the channel dimension before and after
a feature processing with 3x3 convolutions. Third, they applied
post-upsampling with transposed convolution, which is the main
reason for the speed up (see Section 7.1). Surprisingly, they
outperformed SRCNN while obtaining faster computation.

A year later, LapSRN (2017) [44] was proposed with a key
contribution of a Laplacian pyramid structure [100] that en-
ables progressive upsampling (see Section 7.1). It takes coarse-
resolution feature maps as input and predicts high-frequency
residuals that progressively refine the SR reconstruction at each
pyramid level. To this end, predicting multi-scale images in
one feed-forward pass is feasible, thereby facilitating resource-
aware applications.

Simple network architecture designs are found primarily in
the early days of DL-based SR because of their limited ca-
pacity to learn complex structures due to their size. Recently,
researchers focused on networks with more depth, either with
residual networks or synthetic depth with recurrent-based net-
works. The following sections introduce both possibilities.

C. Residual Networks

Residual networks use skip connections to jump over layers.
The primary reason behind adding skip connections is two-
fold: To avoid vanishing gradients and mitigate the accuracy
saturation problem [99]. For SR, introducing skip connections
unlocked the world of deep-constructed models. The main ad-
vantage is that deep architectures substitute convolutions with
large receptive fields, which are crucial for capturing important
features. The authors of SRCNN stated that the “the deeper, the
better” paradigm does not hold to SR. In contrast, Kim et al.
refuted this statement with VDSR (2015) [98] and showed that
very deep networks could significantly improve SR, visualized
in Fig. 7.

They used two insights from other DL approaches: First,
they applied a famous architecture VGG-19 [24] as a feature
extraction block. Second, they used a residual connection from
the interpolation layer to the last layer. As a result, the VGG-
19 feature extraction block adds high-frequency details to the
interpolation, resulting in a target distribution that is normal
and reduces the learning difficulty immensely, as shown in
Fig. 8. Also, it diminishes vanishing/exploding gradients due
to the sparse representation of the high-frequency added to the

Fig. 8. Pixel value distribution of an example image from BSDS100 [2]. It
can be observed that the distribution of the LR and HR image are skewed. In
contrary, the distribution of the difference between LR and HR looks normally
distributed, which is easier learned by an SR model.

interpolation. This merit emitted a trend for following residual
networks that enhance the number of residuals used.

One example is RED-Net (2016) [101], which adapts the
U-Net [102] architecture to SR. It incorporates a downsampling
encoder and an upsampling decoder network, which downsam-
ples the given output to extract features and then upsamples
the feature maps to a target spatial size. During this process,
RED-Net extends the upsample operation with residual infor-
mation acquired throughout the downsample procedure, which
reduces vanishing gradients. As a result, it outperforms SRCNN
for several scaling factors.

Another example adapted ResNet [103], which consists of
multiple residual units, and DenseNet [104], which sends resid-
ual information to all later appearing convolution operations, in
the publication of SRGAN (2016) [13]. Moreover, the authors
compared these architectures applied with pixel and adversarial
loss (see Section 3). SRResNet consists of multiple stacked
residual units that allow high-level feature extractions to access
low-level feature information through numerous summation
operations. Therefore, it eases optimization by providing an
easy back-propagation path to early layers. Like SRResNet,
SRDenseNet [40] applies dense residual blocks, which utilize
even more residual connections to allow direct paths to earlier
layers. In comparison, SRResNet outperforms SRCNN, DRCN,
and ESPCN by a large margin. An extension to SRDenseNet
is the Residual Dense Network [42], proposed in 2018, which
incorporates an additional residual connection upon the dense
block.

The Densely Residual Laplacian Network (DRLN) [6] is
an extension of SRDenseNet and a post-upsampling, channel
attention-based residual network and achieves competitive re-
sults regarding state-of-the-art. Each dense block is followed
by a module based on Laplacian pyramid attention, which
learns inter and intra-level dependencies between feature maps.
It weights sub-band features progressively in each DRLM,



9874 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

Fig. 9. Recurrent-based architecture designs of DRCN [105] (upper left),
DRRN [65] (upper right), and MemNet [92] (bottom). The DRCN applies
the same convolutional layer multiple times. The DRNN extends this idea to
recursive application of a residual block. The MemNet introduces a gate unit
to distill most important features from all intermediate convolution results in a
recursive manner.

similar to HAN (concatenating various feature maps of different
depths).

Another variant of residual blocks is the Information Distil-
lation Network (IDN) [43]. It employs residual connections to
accumulate a portion of a feature map to later layers. Given
six convolution layers, it divides the feature map into two parts
in the middle. Then, one part is processed further by the last
three layers and added to the concatenation of the input and
the other part. In brief, networks that utilize residual connec-
tions are state-of-the-art. Their ability to efficiently propagate
information helps fight vanishing/exploding gradients, resulting
in excellent performances. Sometimes, residual block usage
is combined with other architectures, such as recurrent-based
networks.

D. Recurrent-Based Networks

Artificial depth can be accomplished with recurrence, where
the receptive field, crucial for capturing important information,
is enlarged by repeating the same operation. Also, recurrence
reduces the number of parameters, which helps to combat
overfitting and memory consumption for small devices. It is
achieved by applying a convolution layer multiple times without
introducing new parameters.

The first recurrent-based network for SR was introduced with
DRCN (2015) by Kim et al. [105]. It uses the same convolution
layer up to 16 times, and a subsequent reconstruction layer
considers all recursive outputs for final estimation. However,
they observed that their deeply-recursive network is hard to train
but eased it with skip connections and recursive supervision,
essentially auxiliary training. Fig. 9 visualizes DRCN.

Combining the core ideas of DRCN [105] and VDSR [98],
DRRN (2017) [65] utilizes several stacked residual units in a
recursive block structure. In addition, it uses 6x and 14x fewer

parameters than VDSR and DRCN, respectively, while obtain-
ing better results. Contrary to DRCN, DRRN shares weight
sets among residual units instead of one shared weight for
all recursively-applied convolution layers. DRNN trains more
stable and with deeper recursions than DRCN (52 in total) by
emphasizing multi-path.

Inspired by DRCN, Tai et al. introduced MemNet (2017) [92].
The main contribution is a memory block consisting of recursive
and gate units to mine persistent memory. The recursive unit
is applied multiple times, similar to DRCN. The outputs are
concatenated and sent to a gate unit, which is a simple 1x1
convolution layer. The adaptive gate unit controls the amount of
prior information and the current state reserved. Fig. 9 visualizes
MemNet. The effect of introducing gates was groundbreaking
for sequence-to-sequence tasks (e.g., LSTM [106]) but deeply
understanding its effect on SR tasks marks an open research
question.

Inspired by DRRN, the authors of DSRN (2018) [97] explored
a dual-state design with a multi-path network. It introduces two
states, one operating in HR and one in LR space, which jointly
exploits both LR and HR signals. The signals are exchanged
recurrently between both spaces, LR-to-HR and HR-to-LR, via
delayed feedback [107]. From LR-to-HR, it uses a transposed
convolution layer to upsample. HR-to-LR is performed via
strided convolutions. The final approximation uses the average
of all estimations done in the HR space. Thus, it applies an
extended formulation of iterative up-and-down upsampling (see
Section 7.1). The two states use more parameters than DRRN,
but less than DRCN. However, exploiting the dual-state design
appropriately requires more exploration in the future.

The Super-Resolution Feedback Network (SRFBN, 2019)
[64] is also using feedback [108]. The essential contribution
is the feedback block (FB) as an actual recurrent cell. The FB
uses multiple iterative up-and-downsamplings with dense skip
connections to produce high-level discriminant features. The
SRFBN generates a SR image for each iteration, and the FB
block receives the previous iteration’s output. It tries to generate
the same SR image for single degradation tasks in each iteration.
For more complex cases, it trains to return better and better
quality images with each iteration via curriculum learning (see
Section 6.1). SRFBN has shown significant improvement over
the other frameworks but requires more research in the future.

Liu et al. proposed NLRN (2018) [109] that provides a non-
local module to produce feature correlation for self-similarity.
Each position in the image measures the feature correlation of
each location in its neighborhood. NRLN utilizes adjacent re-
current stages between the feature correlation messages. And in-
deed, NLRN achieved slightly better performances than DRCN,
DRCN, and MemNet.

Nevertheless, primary research on RNNs in SR is lately driven
for MISR, such as video SR [110] or meta-learning [111] related
tasks. In general, recurrent-based networks are interesting for
saving parameters, but the major drawback is their compu-
tational overhead by repeatedly applying the same operation.
Also, they are not parallelizable due to the time dependency.
Alternatives are lightweight architectures, which are introduced
next.
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Fig. 10. Architecture design of MDSR [38]. It utilizes multi-path learning to
select between multiple scaling factor paths (denoted by 2x, 3x, 4x on the bottom
right of the blue boxes). Also, all paths share an intermediate feature extraction
block to save parameters.

E. Lightweight Networks

So far, we have introduced models that increase the quality
of SR images and a few that try to do the same, but with less
computational effort. For instance, FSRCNN [33] was built to be
faster than SRCNN [39] by utilizing smaller kernel sizes, post-
upsampling, and 1x1 convolution layers for enhancing/reducing
the channel dimension (see Section 7.2). Another example in
this work was recurrent-based networks that reduce redundant
parameters as described in Section 7.4. The downside of those
lean recurrent networks is that parameter reduction comes at the
expense of increased operations and inference time, an essential
aspect of real-world scenarios. E.g., SR on mobile devices is
limited by battery capacity, which depends on the computation
power needed. Therefore, lightweight architectures explicitly fo-
cus on both execution speed and memory usage. Supplementary
materials, available online, include a parameter comparison, and
a fair comparison of execution speed is in welcome demand.

The MDSR (2017) [38] uses the multi-path approach to learn
multiple scaling factors with shared parameters. It has three
non-identical paths as pre-processing steps and three paths for
upsampling. For a given scaling factor s ∈ {2, 3, 4}, MDSR
is choosing deterministic between the three paths. The paths
for larger scales are built deeper than those for lower scaling
factors. Between the pre-processing and upsampling steps is
a shared module consisting of multiple residual blocks. This
feature extraction block is trained and commonly used for all
scaling factors, visualized in Fig. 10. The main advantage is
that one model is sufficient to train on multiple scales, which
saves parameters and memory. In contrast, other SR models
must be trained independently on different scales and saved
independently for multi-scale applications. Nevertheless, adding
a new scaling factor requires training from scratch.

Other lightweight architectures adapt this idea to enable
parameter-efficient multi-scale training, such as CARN/CARN-
M (2018) [112].

Fig. 11. Design of cascading blocks [112]. It is a densely connected block,
which consists of Residual-E blocks [112] and 1x1 convolutions that take as
input the Residual-E block’s output and the residual connections from the layers
before. The Residual-E block itself is built like a residual unit but performs
group convolution, which is efficient in inference time, depending on the group
size.

Fig. 12. Visualization of the RFDB block [114]. It uses a multi-path approach
to distill features with 1x1 convolutions and introduces a shallow representation
of the residual block, which consists of only one 3x3 convolution. In the end,
all intermediate results are combined with one 1x1 convolution layer and an
enhanced spatial attention [114] layer.

Moreover, it implements a cascading mechanism upon the
residual network [103]. CARN consists of multiple cascading
blocks (see Fig. 11) and 1x1 convolutions between them. The
output of the cascading blocks is sent to all subsequent 1x1
convolutions like in the cascading block itself. Thus, the local
cascading is almost identical to a global one. It allows multi-level
representations and stable training like for residual networks.
Ultimately, it chooses between three paths, which upsample the
feature map to 2x, 3x, or 4x scaling factors via efficient sub-pixel
layers similar to MDSR. Inspired by MobileNet [113], CARN
also uses grouped convolution in each residual block compo-
nent. This allows configuration of the model’s efficiency since
choosing different group sizes and the resulting performances
are in a trade-off relationship. The residual blocks with group
convolution can reduce the computation up to 14 times, depend-
ing on the group size. They tested a variant of CARN, which sets
the group size so that the computation reduction is maximized
and called it CARN-Mobile (CARN-M). Moreover, they further
reduced CARN-M’s parameters by enabling weight-sharing of
their residual blocks within each cascading block (reduction by
up to three times compared to non-shared).

Inspired by IDN and IMDB [115], the RFDN (2020) [114]
rethinks the IMDB architecture by using RFDB blocks as shown
in Fig. 12. RFDB blocks consist of feature distillation connec-
tions, which cascade 1x1 convolutions towards a final layer.
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Moreover, it uses shallow residual blocks (SRBs), consisting
of only one 3x3 convolution, to process a given input further.
The final layer is a 1x1 convolution layer that combines all
intermediate results. In the end, it applies the enhanced spatial
attention [114], designed specifically for lightweight models.
The RFDN architecture comprises subsequent RFDB blocks and
uses a post-upsampling framework with a final sub-pixel layer.

A very hardware-aware and quantization-friendly network is
XLSR (2021) [116]. It applies multi-paths to ease the burden
of the convolution operations and employs 1x1 convolution to
combine them pixel-wise. Each convolution layer has a small
filter size (8, 16, 27). After the combination, it splits the feature
map and applies multi-paths again. A core aspect of XLSR is
the end activation layer, which exploits quantization benefits.
Quantization is useful since it can save parameters by using more
miniature bit representations [117]. Unfortunately, many mobile
devices support 8-bit. Therefore, applying uint8 quantization on
SR models that performed well in float32 or float16 does not
work. Clipped ReLU (constrained to a max value of 1) as the
last activation layer instead of the typical ReLU can dimish this
issue. Nevertheless, the authors recommend searching for other
maximum values with further experiments.

Generally, there are plenty of ideas to make SR models
lightweight yet to be discovered. They include simplifications,
quantization, and pruning of existing architectures. Also, more
resource-constrained devices and applications utilizing SR are
a growing field of interest [118].

F. Wavelet Transform-Based Networks

Different representations of images can bring benefits, such
as computational speed up. The wavelet theory gives a stable
mathematical foundation to represent and store multi-resolution
images, depicting contextual and textural information [119].
Discrete Wavelet Transform (DWT) decomposes an image into
a sequence of wavelet coefficients. The most frequent wavelet
in SR is the Haar wavelet, computed via 2D Fast Wavelet Trans-
form. The wavelet coefficients are calculated by repeating the
decomposition to each output coefficient iteratively. It captures
image details in four sub-bands: average (LL), vertical (HL),
horizontal (LH), and diagonal (HH) information. One of the
first networks that worked with wavelet prediction was DWSR
(2017) [120]. It uses a simple network architecture to refine the
differences between the LR and HR image wavelet decompo-
sitions in a pre-upsampling framework. First, it calculates the
wavelet coefficients of the enlarged (with bicubic interpolation)
LR image. Then it processes the wavelet coefficients with con-
volution layers. Next, it adds the initially calculated wavelet
coefficients, which are beared with a residual connection. Thus,
the convolution layers learn additional details of the coefficients.
Finally, it applies the reverse process of 2D-DWT to obtain the
SR image, as depicted in Fig. 13.

Another approach was proposed with WIDN (2019) [121],
which uses stationary wavelet transform instead of DWT to per-
form better. A more sophisticated model was proposed around
the same time as DWSR with Wavelet-SRNet (2017) [122]. It
provides an embedding network, consisting of residual blocks, to

Fig. 13. Visualization of DWSR [120]. It calculates wavelet coefficients and
uses a CNN to calculate the difference in the average (DA), vertical (DV),
horizontal (DH), and diagonal (DD) sub-bands. Next, it adds the initially
calculated coefficients via residual connection to the difference to derive the
coefficients of the predicted SR image (SA, SV, SH, and SD), which is obtained
by using the reverse 2D-DWT.

generate feature maps from the LR image. Next, it applies DWT
several times and utilizes multiple wavelet prediction networks.
Finally, it applies the reverse process and uses a transposed
convolution for upsampling. The coefficients are employed to
a wavelet-based loss function, while the SR images are used
for a traditional texture and MSE loss function. As a result,
their network applies to different input resolutions with various
magnifications and shows robustness toward unknown Gaussian
blur, poses, and occlusions for MS-SR. The idea of multi-level
wavelet CNNS can also be found in later publications, i.e.,
MWCNN (2018) [123].

Following works apply a hybrid approach by mixing wavelet
transform with other well-known SR methods. I.e., Zhang et
al. proposed a wavelet-based SRGAN (2019) framework [124],
which merged the advantages of SRGAN and wavelet decom-
position. The generator uses an embedding network to process
the input into feature maps, similar to Wavelet-SRNet. Next,
it uses a wavelet prediction network to refine the coefficients,
similar to DWSR. In 2020, Xue et al. [125] combined wavelets
with residual attention blocks that contain channel attention and
spatial attention modules (mixed attention, see the following
Section 5) and called their network WRAN. Over the last several
years, the application of wavelets also found its way to Video
SR [126].

In general, wavelet transformations enable an efficient repre-
sentation of images. As a result, SR models using this strategy of-
ten reduce the overall model size and computational costs while
reaching similar performances to state-of-the-art architectures.
However, this research area needs more exploration. For exam-
ple, suitable normalization techniques since the distribution of
high-frequency sub-bands and low-frequency sub-bands differ
significantly or alternatives to convolution operations since they
might be inappropriate due to the sparse representation of the
high-frequency sub-bands.

VIII. UNSUPERVISED SUPER-RESOLUTION

The astonishing performance of supervised SR is imputed to
their ability to learn natural image mainly from many LR-HR
image pairs, mostly with known degradation mapping, which is
often unknown in practice. Thus, supervised trained SR models
are sometimes unreliable for practicable use-cases. For instance,
when the training dataset has LR images generated without
anti-aliasing (high-frequency is preserved), then the SR model
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trained on that dataset is not adequately suitable for real-world
LR images generated with anti-aliasing (smoothed images). In
addition, some specialized application areas lack LR-HR image
pair datasets. Therefore, there is a growing interest in unsu-
pervised SR. We examine briefly this field, for further reading
inclusive flow-based methods (density estimation of degradation
kernels) we refer to the survey of Liu et al. [127].

A. Weakly-Supervised

Weakly-supervised methods use unpaired LR and HR images
like WESPE (2018) [128]. WESPE consists of two generators
and two discriminators. The first generator takes a LR image and
super-resolves it. The output of the first generator constitutes
a SR image, but is also regularized with TV loss [59]. The
second generator takes the prediction of the first generator and
performs the inverse mapping. The result of the second generator
is optimized via content loss [12] with the original input, the
LR image. The two discriminators take the SR image of the
first generator and are trained to distinguish between predictions
and original HR images. The first discriminator classifies inputs
based on image colors into SR or HR images. The second
discriminator uses image textures [61] in order to classify.

A similar approach is a cycle-in-cycle SR framework called
CinCGAN (2018) [52], based on CycleGAN [129]. It uses a total
of four generators and two discriminators. The first generator
takes a noisy LR image and maps it to the clean version. The
first discriminator is trained to distinguish between clean LR
images from the dataset and the predicted clean images. The
second generator trains the inverse function. Thus, it generates
the noisy image from the predicted clean version, which closes
the first cycle of a CycleGan. The third generator is of particular
interest because it is the actual SR model which upsamples
the LR image to HR. The second discriminator is trained to
distinguish between the predicted and the dataset’s HR images.
The last generator maps the predicted HR image to the noisy
LR image, which closes the second cycle of a CycleGAN.
Besides its promising results and similar approaches [130],
it requires further research to decrease learning difficulty and
computational cost.

B. Zero-Shot

Zero-shot or one-shot learning is associated with training on
objects and testing on entirely different objects from a different
class that was never observed. Ideally, a classifier trained on
horses should recognize zebras if the knowledge “zebras look
like striped horses” is transferred [132]. The first publication on
Zero-Shot in SR is ZSSR (2017) [87]. The goal was to train
only on one image at hand, one of a kind. The degradation
mapping for ZSSR was chosen to be fixed, such as bicubic.
ZSSR downsamples the LR image and trains a CNN to reverse
the degradation mapping. The trained CNN is then finally used
directly on the LR image. Surprisingly, this method reached
better results than SRCNN and was close to VDSR.

Upon this, a Degradation Simulation Network (DSN, 2020)
[133] based on depth information [134] was proposed to avoid
a pre-defined degradation kernel. It uses bi-cycle training to

Fig. 14. Zero-Shot Super-Resolution (ZSSR) [87] and Deep Image Prior (DIP)
[131]. ZSSR uses the LR image and downsamples it and the SR model learns
to reverse the downsampling. For the final prediction of the SR image of the
LR image, it is applied to the LR image directly. DIP uses fixed noise as input
and predicts the SR image, which is downsampled to optimize the difference
between the downsampled image and a given LR image. The final prediction
uses the SR model to predict the SR image but skips the degradation mapping.

simultaneously learn the unknown degradation kernel and the
reconstruction of SR images. The MZSR [135] merged the
ZSSR setting with meta-learning and used an external dataset
to learn different blur kernels, which is called task distribution
in the field of meta-learning. The SR model is then trained on
the downsampled image similar to ZSSR with the blur kernel
returned from the meta-test phase. The profit of this approach is
that it conducts the SR model to learn specific information faster
and performs better than pure ZSSR. Zero-shot learning for SR
marks an exciting area for further research because it is highly
practical, especially for applications where application-specific
datasets are rare or non-existent.

C. Deep Image Prior

Ulyanov et al. [131] proposed Deep Image Prior (DIP), which
contradicts the conventional paradigm of training a CNN on
large datasets. It uses a CNN to predict the LR image when
downsampled, given some random noise instead of an actual
image. Therefore, it follows the strategy of ZSSR by using only
the LR image. However, it fixes the input to random noise
and applies a fixed downsampling method to the prediction.
Moreover, it optimizes the difference between the downsampled
prediction and the LR image. The CNN then produces the SR
image without using the fixed downsampling method. Thus, it
generates an SR image out of noise instead of transforming a raw
image. The difference between ZSSR and DIP is highlighted in
Fig. 14. Surprisingly, the results were close to LapSRN [136].
Unfortunately, it is a theoretical publication about image priors,
and the approach is too slow to be useful for most practical
applications, as the authors stated themselves. However, it does
not exclude future ideas that could enhance the practicability of
DIP concerning better image reconstruction quality and espe-
cially runtime.

IX. NEURAL ARCHITECTURE SEARCH

Recently, a new field called Neural Architecture Search (NAS)
has gained popularity, which aims to automatically derive de-
signs instead of hand-designed Neural Networks (NNs) created
by human artistry [10]. Fortunately, NAS can be applied to derive
parts of SR models.

MoreMNAS (2019) [10] investigated NAS for SR and
resource-aware mobile devices. The goal is to derive cell-based
designs similar to the idea of residual blocks. A SR model
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Fig. 15. Visualization of ESRN [137]. A controller derives an architecture by
selecting from a pre-set of various efficient residual blocks.

usually consists of feature extraction, non-linear mapping, and
reconstruction, like in SRCNN. Their search space is constrained
to non-linear mapping. They modified the NAS algorithm NS-
GANet [138] to SR, which is based on the evolution algorithm
NSGA-II with multi-objective evolution [139]. In the case of
MoreMNAS, multi-objective fitness is defined by high PSNR,
low FLOPS, and a few parameters. Furthermore, they combine it
with reinforcement learning, in which an LSTM [106] controller
returns design choices based on NSGA-II, and the evaluator
returns a MSE-based reward. The evaluator trains and evaluates
the design choices in a separate training phase. As a result,
MoreMNAS delivers rivaling models compared to methods (like
FSRCNN, VDSR, DRRN, CARN-M, and DRCN) with fewer
FLOPS. FALSR (2019) [140] is a similar approach, which
differs by using a hybrid controller and a cell-based elastic search
space that enables both macro (the connections among different
cell blocks) and micro search (cell blocks). A faster method with
comparable performance to FALSR was proposed with ESRN
(2019) [137]. They search locations of pooling and upsampling
operators and derive the architecture with the guidance of block
credits, which weighs the sampling probability of mutation to
favor admirable blocks. Moreover, they constrain the search
space to efficient residual dense blocks from known lightweight
architectures, such as RFDB from RFDN (see Section 7.5). Fig.
15 shows the latter. DeCoNAS (2021) [141] is a similar ap-
proach, which uses ENAS [142] and densely connected network
blocks.

HNAS (2020) [143] introduces a hierarchical search space
that consists of a cell-level search space and a network-level
search space, similar to FALSR. The cell-level search space
identifies a series of blocks that increase model capacity. The
network-level search space determines the position of upsam-
pling layers. For cell-level search space, HNAS uses two LSTM
controllers: one derives normal cells consisting of convolutions,
and the other one the upsampling cells (bilinear interpolation,
sub-pixel layer, transposed convolution, and more). On top, a
network-level controller is used to select the positions of the
upsampling cells.

NAS-DIP (2020) [144] combines NAS with DIP [131] (see
Section 8.3 and supplementary material, available online, for
visualization). It consists of two phases: First, they apply rein-
forcement learning with a RNN controller (PSNR as a reward) to
generate a network structure. The second phase uses the network
structure and optimizes the mapping from random noise to a
degenerated image (as in DIP [131]). Next, it repeats the phases
with the reward gained after the second phase. Their search

space is designed for two components. The first component is
the upsampling cell (e.g., bilinear, bicubic, nearest-neighbor).
The second component is feature extraction (e.g., convolution,
depth-wise convolution, and others). Moreover, they extend their
search space to learn cross-level connection patterns across
various feature levels in an autoencoder network close to the
U-Net of DIP.

Another way of combining NAS with frameworks that worked
well in SR was proposed by Lee et al. (2020) [145]. They com-
bined NAS with GANs and defined search spaces for generators
and discriminators. The GAN framework is then used to train
the generator in the manner of SRGAN. However, they faced
substantial stability problems during their work, which needs
further research.

One major drawback of reinforcement learning based NAS
is that they need additional training to evaluate design choices.
It imposes a significant time overhead on the search process.
Another problem is that reinforcement learning based NAS
approaches rely on discrete choices performed and exploited
by a controller. One way to omit that is by using a gradient-
based search like DARTS [146]. HiNAS (2021) [147] adopts
gradient-based search and builds a flexible hierarchical search
space. The search space is similar to HNAS, which refers to
micro and macro search. During cell search (micro), HiNAS
considers all combinations of operations as a weighted sum.
The highest weights derive the final cell design. The macro
search follows the same idea as micro search and conducts
several supercells with different settings and derives the final
architecture gradient-based. Wu et al. (2021) [148] proposed
something similar. They adopt gradient-based search but extend
the search space into three levels. The first level describes the
network level, which defines all candidate network paths. The
second level determines possible candidate operations. Lastly,
the kernel-level is a subset of convolution kernel dimensions.

The main streams of NAS in SR are dominated by evolution-
ary algorithms paired with reinforcement learning. They imply
a significant search time, which is inevitable due to the repeti-
tive action and reward processes. Most recently, gradient-based
methods were applied to facilitate the search time. Moreover,
they enable continuous search by relaxing the search space,
transforming discrete choices into a weighted sum of possi-
ble paths. The trend points to various hierarchies within the
search process, meaning that more aspects of determining a
network design for SR are incorporated into NAS. A well-
designed architecture is critical for success on SR tasks. NAS
approaches have yet to outperform hand-crafted state-of-the-art
architectures. More elaborate methods must be introduced to
produce better-performing architectures concerning quality and
inference speed.

X. DISCUSSION AND FUTURE DIRECTIONS

This section gives a short overview of the topics discussed in
this paper and shows potential future directions.

IQA Evaluating quality of generated images is difficult and
still an open problem. PSNR and SSIM are valuable metrics
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because of fast calculation, but do not always match subjec-
tively perceived quality. Developing a metric that overcomes
this problem is of high interest. Future research should focus on
such a metric since it would also be interesting besides SR, e.g.,
Text-to-Image Synthesis [51].

Learning Objectives. The selection of learning objectives
strongly depends on the data domain. A learning objective that
fits all SR domains is not given and remains open for research.
Most SR papers use simple formulations, e.g., regression-based
or combinations of them. Exploring various probable loss func-
tions is highly demanded. Recent developments in uncertainty-
driven loss functions can be a promising direction for new loss
functions.

Upsampling. One problem with the most commonly used up-
sampling layers is that they produce artifacts. Also, the scale fac-
tor must be predefined. Therefore, using them in an application
like zooming is not feasible. An alternative is meta-upscaling,
which enables arbitrary scaling but comes with computational
overhead and stability issues. Thus, new lightweight layers for
arbitrary upscaling are highly interesting and should be focused
on in the following years. Moreover, bilateral upsampling and
guided upsampling play a crucial role in nowadays applications,
which should be explored more in the future concerning deep
learning.

Unsupervised Super-Resolution. Data-rich datasets inher-
ently dictate the overall performance of any SR method. How-
ever, LR-HR image pairs are not always given. In such a case,
unsupervised SR methods are interesting. It marks an exciting
area for further research because it is highly practical, espe-
cially for applications where datasets are rare or non-existent.
Zero-shot learning and DIP are good starting points, but the
execution speed and practicability is not enough for real-world
applications. New ideas are required to enhance practicability
regarding better image reconstruction quality and especially
execution time.

Neural Network Architectures. Concerning the statement of
DIP, a well-designed architecture is critical for success on SR
tasks. Recently, many architectures were proposed to investi-
gate certain aspects, such as SRResNet [124] (handling vanish-
ing/exploding gradients), DSRN [97] (exploring recurrence for
SR), XLSR [116] (hardware-aware architecture) and SRGAN
[124] (exploring GANS for SR). Future work has to investigate
which modules (like residual blocks or attention mechanisms)
contribute the most regarding certain aspects to formulate a
guideline for engineers on constructing a suitable architec-
ture for a given problem: high quality versus computational
efficiency.

XI. CONCLUSION

With the advent of DL, Super-Resolution (SR) has recently
become a rapidly moving research area. However, despite
promising results, the field continues to face challenges that
call for more research, e.g., flexible upsampling. We reviewed
the area of SR with recent advances and examined state-of-
the-art models, such as transformer-based SR, and other ar-
chitecture designs proposed lately (e.g., denoising diffusion
probabilistic models). We critically examined current strategies

and identified new research areas. We complemented previous
surveys by incorporating the latest developments and ideas,
such as uncertainty-driven loss functions, new normalization
techniques, wavelet networks, or neural architecture search.
Also, we added various visualizations of models and methods in
the chapters and the supplementary material, available online,
to make navigation through this domain more accessible. We
hope this review helps researchers to push the boundaries of DL
applied to SR further.

REFERENCES

[1] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Proc. Int. Conf. Curves Surf., Springer, 2010,
pp. 711–730.

[2] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. IEEE 8th Int.
Conf. Comput. Vis., 2001, pp. 416–423.

[3] D. Valsesia and E. Magli, “Permutation invariance and uncertainty in
multitemporal image super-resolution,” 2021, arXiv:2105.12409.

[4] S. M. A. Bashir, Y. Wang, M. Khan, and Y. Niu, “A comprehensive review
of deep learning-based single image super-resolution,” PeerJ Comput.
Sci., vol. 7, 2021, Art. no. e621.

[5] Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image super-
resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43,
no. 10, pp. 3365–3387, Oct. 2021.

[6] S. Anwar and N. Barnes, “Densely residual Laplacian super-resolution,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 3, pp. 1192–1204,
Mar. 2022.

[7] W. Sun and Z. Chen, “Learned image downscaling for upscaling us-
ing content adaptive resampler,” IEEE Trans. Image Process., vol. 29,
pp. 4027–4040, 2020.

[8] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A
benchmark,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 372–386.

[9] D. Thapa, K. Raahemifar, W. R. Bobier, and V. Lakshminarayanan, “A
performance comparison among different super-resolution techniques,”
Comput. Elect. Eng., vol. 54, pp. 313–329, 2016.

[10] X. Chu, B. Zhang, and R. Xu, “Multi-objective reinforced evolution in
mobile neural architecture search,” in Proc. Eur. Conf. Comput. Vis.,
Springer, 2020, pp. 99–113.

[11] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-
resolution with convolutional neural networks,” IEEE Trans. Comput.
Imag., vol. 2, no. 2, pp. 109–122, Jun. 2016.

[12] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “EnhanceNet: Single image
super-resolution through automated texture synthesis,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 4491–4500.

[13] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4681–4690.

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[15] N. Ponomarenko et al., “Image database TID2013: Peculiarities, results
and perspectives,” Signal Process.: Image Commun., vol. 30, pp. 57–77,
2015.

[16] J. Kim and S. Lee, “Deep learning of human visual sensitivity in image
quality assessment framework,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017, pp. 1676–1684.

[17] H. Talebi and P. Milanfar, “NIMA: Neural image assessment,” IEEE
Trans. Image Process., vol. 27, no. 8, pp. 3998–4011, Aug. 2018.

[18] K. Ma, W. Liu, T. Liu, Z. Wang, and D. Tao, “dipIQ: Blind image quality
assessment by learning-to-rank discriminable image pairs,” IEEE Trans.
Image Process., vol. 26, no. 8, pp. 3951–3964, Aug. 2017.

[19] C. Burges et al., “Learning to rank using gradient descent,” in Proc. 22nd
Int. Conf. Mach. Learn., 2005, pp. 89–96.

[20] T.-Y. Liu, “Learning to rank for information retrieval,” 2011.
[21] X. Liu, J. Van De Weijer, and A. D. Bagdanov, “RankIQA: Learning from

rankings for no-reference image quality assessment,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 1040–1049.

[22] G. Koch et al., “Siamese neural networks for one-shot image recognition,”
in Proc. ICML Deep Learn. Workshop, Lille, 2015.



9880 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

[23] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 586–595.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[25] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assess-
ment: Unifying structure and texture similarity,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 5, pp. 2567–2581, May 2022.

[26] W. Xue, L. Zhang, X. Mou, and A. C. Bovik, “Gradient magnitude
similarity deviation: A highly efficient perceptual image quality index,”
IEEE Trans. Image Process., vol. 23, no. 2, pp. 684–695, Feb. 2014.

[27] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process., vol. 20,
no. 8, pp. 2378–2386, Aug. 2011.

[28] R. Reisenhofer, S. Bosse, G. Kutyniok, and T. Wiegand, “A haar wavelet-
based perceptual similarity index for image quality assessment,” Signal
Process.: Image Commun., vol. 61, pp. 33–43, 2018.

[29] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. IEEE 37th Asilomar
Conf. Signals Syst. Comput., 2003, pp. 1398–1402.

[30] B. Zhang, P. V. Sander, and A. Bermak, “Gradient magnitude similarity
deviation on multiple scales for color image quality assessment,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2017, pp. 1253–1257.

[31] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, “Low-
complexity single-image super-resolution based on nonnegative neighbor
embedding,” 2012.

[32] Y. Matsui et al., “Sketch-based manga retrieval using manga109 dataset,”
Multimedia Tools Appl., vol. 76, no. 20, pp. 21 811–21 838, 2017.

[33] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in Proc. Eur. Conf. Comput. Vis., Springer,
2016, pp. 391–407.

[34] MATLAB version 9.3.0.713579 (R2017b), The Mathworks, Inc., Natick,
MA, USA, 2017.

[35] A. Lugmayr, M. Danelljan, and R. Timofte, “NTIRE 2020 challenge
on real-world image super-resolution: Methods and results,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops, 2020,
pp. 494–495.

[36] Y. Blau, R. Mechrez, R. Timofte, T. Michaeli, and L. Zelnik-Manor,
“The 2018 PIRM challenge on perceptual image super-resolution,” in
Proc. Eur. Conf. Comput. Vis. Workshops, 2018, pp. 334–355.

[37] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 286–301.

[38] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2017, pp. 136–144.

[39] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[40] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using
dense skip connections,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 4799–4807.

[41] X. Hu, H. Mu, X. Zhang, Z. Wang, T. Tan, and J. Sun,
“Meta-SR: A magnification-arbitrary network for super-resolution,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 1575–1584.

[42] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network
for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 2472–2481.

[43] Z. Hui, X. Wang, and X. Gao, “Fast and accurate single image super-
resolution via information distillation network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 723–731.

[44] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 624–632.

[45] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?,” 2017, arXiv: 1703.04977.

[46] Q. Ning, W. Dong, X. Li, J. Wu, and G. Shi, “Uncertainty-driven loss
for single image super-resolution,” Proc. Int. Conf. Neural Inf. Process.
Syst., 2021, pp. 16398–16409.

[47] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
2013, arXiv:1312.6114.

[48] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2017, pp. 1132–1140.

[49] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu, “Denoising prior
driven deep neural network for image restoration,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 10, pp. 2305–2318, Oct. 2019.

[50] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[51] S. Frolov, T. Hinz, F. Raue, J. Hees, and A. Dengel, “Adversarial text-
to-image synthesis: A review,” 2021, arXiv:2101.09983.

[52] Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin, “Unsupervised
image super-resolution using cycle-in-cycle generative adversarial net-
works,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
2018, pp. 701–710.

[53] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-
Hornung, and C. Schroers, “A fully progressive approach to single-image
super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 864–873.

[54] L. Yu, X. Long, and C. Tong, “Single image super-resolution based on
improved WGAN,” in Proc. Int. Conf. Adv. Control Automat. Artif. Intell.,
Shenzhen, China, 2018, pp. 21–22.

[55] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of Wasserstein GANs,” 2017, arXiv:1704.00028.

[56] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are
GANs created equal? A large-scale study,” 2017, arXiv:1711.10337.

[57] K. Singla, R. Pandey, and U. Ghanekar, “A review on single image
super resolution techniques using generative adversarial network,” Optik,
vol. 266, 2022, Art. no. 169607.

[58] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, 1992.

[59] M. Vella and J. F. Mota, “Single image super-resolution via CNN archi-
tectures and TV-TV minimization,” 2019, arXiv:1907.05380.

[60] J. Portilla and E. P. Simoncelli, “A parametric texture model based on joint
statistics of complex wavelet coefficients,” Int. J. Comput. Vis., vol. 40,
no. 1, pp. 49–70, 2000.

[61] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convo-
lutional neural networks,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2015, pp. 262–270.

[62] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
2020, arXiv:2006.11239.

[63] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Im-
age super-resolution via iterative refinement,” 2021, arXiv:2104.07636.

[64] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network
for image super-resolution,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 3867–3876.

[65] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 3147–3155.

[66] W. Shi et al., “Real-time single image and video super-resolution using
an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.

[67] W. Shi et al., “Is the deconvolution layer the same as a convolutional
layer?,” 2016, arXiv:1609.07009.

[68] Z. Wojna et al., “The devil is in the decoder: Classification, regression
and GANs,” Int. J. Comput. Vis., vol. 127, no. 11, pp. 1694–1706, 2019.

[69] S. Kundu, H. Mostafa, S. N. Sridhar, and S. Sundaresan, “Attention-based
image upsampling,” 2020, arXiv:2012.09904.

[70] Y. Jo and S. J. Kim, “Practical single-image super-resolution using look-
up table,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 691–700.

[71] C. Peng, W.-A. Lin, H. Liao, R. Chellappa, and S. K. Zhou, “SAINT:
Spatially aware interpolation network for medical slice synthesis,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 7750–
7759.

[72] L. Chai, M. Gharbi, E. Shechtman, P. Isola, and R. Zhang,
“Any-resolution training for high-resolution image synthesis,”
2022, arXiv:2204.07156.

[73] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[74] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.

[75] Y. Yang and Y. Qi, “Image super-resolution via channel attention and
spatial graph convolutional network,” Pattern Recognit., vol. 112, 2021,
Art. no. 107798.

[76] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7794–
7803.



MOSER et al.: HITCHHIKER’S GUIDE TO SUPER-RESOLUTION: INTRODUCTION AND RECENT ADVANCES 9881

[77] Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, “Residual non-local attention
networks for image restoration,” 2019, arXiv:1903.10082.

[78] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “SwinIR:
Image restoration using swin transformer,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 1833–1844.

[79] D. Zhang, F. Huang, S. Liu, X. Wang, and Z. Jin, “SwinFIR: Revisiting
the SwinIR with fast Fourier convolution and improved training for image
super-resolution,” 2022, arXiv:2208.11247.

[80] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, “Second-order attention
network for single image super-resolution,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 11 065–11 074.

[81] H. Zhao, X. Kong, J. He, Y. Qiao, and C. Dong, “Efficient image
super-resolution using pixel attention,” in Proc. Eur. Conf. Comput. Vis.,
Springer, 2020, pp. 56–72.

[82] B. Niu et al., “Single image super-resolution via a holistic attention
network,” in Proc. Eur. Conf. Comput. Vis., Springer, 2020, pp. 191–207.

[83] F. Wang, H. Hu, and C. Shen, “BAM: A lightweight and efficient
balanced attention mechanism for single image super resolution,”
2021, arXiv:2104.07566.

[84] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[85] Y. Bei, A. Damian, S. Hu, S. Menon, N. Ravi, and C. Rudin, “New tech-
niques for preserving global structure and denoising with low information
loss in single-image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2018, pp. 874–881.

[86] N. Ahn, B. Kang, and K.-A. Sohn, “Image super-resolution via pro-
gressive cascading residual network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. Workshops, 2018, pp. 791–799.

[87] A. Shocher, N. Cohen, and M. Irani, ““Zero-shot” super-resolution
using deep internal learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 3118–3126.

[88] H. Ren, M. El-Khamy, and J. Lee, “Image super resolution based on fus-
ing multiple convolution neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops, 2017, pp. 54–61.

[89] K. Urazoe, N. Kuroki, Y. Kato, S. Ohtani, T. Hirose, and M. Numa,
“Multi-category image super-resolution with convolutional neural net-
work and multi-task learning,” IEICE Trans. Inf. Syst., vol. 104, no. 1,
pp. 183–193, 2021.

[90] Y. Shi, K. Wang, C. Chen, L. Xu, and L. Lin, “Structure-preserving image
super-resolution via contextualized multitask learning,” IEEE Trans.
Multimedia, vol. 19, no. 12, pp. 2804–2815, Dec. 2017.

[91] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., PMLR, 2015, pp. 448–456.

[92] Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory
network for image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.,
2017, pp. 4539–4547.

[93] S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 3883–3891.

[94] J. Liu, J. Tang, and G. Wu, “Adadm: Enabling normalization for image
super-resolution,” 2021, arXiv:2111.13905.

[95] M. Irani and S. Peleg, “Improving resolution by image registration,”
CVGIP: Graphical Models Image Process., vol. 53, no. 3, pp. 231–239,
1991.

[96] C. Tan, L. Wang, and S. Cheng, “Image super-resolution via dual-level
recurrent residual networks,” Sensors, vol. 22, no. 8, 2022, Art. no. 3058.

[97] W. Han, S. Chang, D. Liu, M. Yu, M. Witbrock, and T. S. Huang, “Image
super-resolution via dual-state recurrent networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 1654–1663.

[98] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 1646–1654.

[99] K. He and J. Sun, “Convolutional neural networks at constrained
time cost,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 5353–5360.

[100] G. Ghiasi and C. C. Fowlkes, “Laplacian pyramid reconstruction and
refinement for semantic segmentation,” in Proc. Eur. Conf. Comput. Vis.,
Springer, 2016, pp. 519–534.

[101] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very deep con-
volutional encoder-decoder networks with symmetric skip connections,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 2802–2810.

[102] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., Springer, 2015, pp. 234–241.

[103] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[104] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2017, pp. 4700–4708.

[105] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 1637–1645.

[106] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[107] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated feedback recur-
rent neural networks,” in Proc. Int. Conf. Mach. Learn., PMLR, 2015,
pp. 2067–2075.

[108] A. R. Zamir et al., “Feedback networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1308–1317.

[109] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recurrent
network for image restoration,” 2018, arXiv:1806.02919.

[110] T. Isobe, X. Jia, S. Gu, S. Li, S. Wang, and Q. Tian, “Video super-
resolution with recurrent structure-detail network,” in Proc. Eur. Conf.
Comput. Vis., Springer, 2020, pp. 645–660.

[111] S. Park, J. Yoo, D. Cho, J. Kim, and T. H. Kim, “Fast adaptation to
super-resolution networks via meta-learning,” in Proc. 16th Eur. Conf.
Comput. Vis., Springer, 2020, pp. 754–769.

[112] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-
resolution with cascading residual network,” in Proc. Eur. Conf. Comput.
Vis., 2018, pp. 252–268.

[113] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[114] J. Liu, J. Tang, and G. Wu, “Residual feature distillation network for
lightweight image super-resolution,” in Proc. Eur. Conf. Comput. Vis.,
Springer, 2020, pp. 41–55.

[115] Z. Hui, X. Gao, Y. Yang, and X. Wang, “Lightweight image super-
resolution with information multi-distillation network,” in Proc. 27th
ACM Int. Conf. Multimedia, 2019, pp. 2024–2032.

[116] M. Ayazoglu, “Extremely lightweight quantization robust real-
time single-image super resolution for mobile devices,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 2472–2479.

[117] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[118] I. H. Sarker, “Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,” SN Comput. Sci., vol. 2,
no. 6, pp. 1–20, 2021.

[119] M. Stephane, “A wavelet tour of signal processing,” 1999.
[120] T. Guo, H. S. Mousavi, T. H. Vu, and V. Monga, “Deep wavelet prediction

for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2017, pp. 104–113.

[121] F. Sahito, P. Zhiwen, J. Ahmed, and R. A. Memon, “Wavelet-integrated
deep networks for single image super-resolution,” Electronics, vol. 8,
no. 5, 2019, Art. no. 553.

[122] H. Huang, R. He, Z. Sun, and T. Tan, “Wavelet-SRNet: A wavelet-based
CNN for multi-scale face super resolution,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 1689–1697.

[123] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-
CNN for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2018, pp. 773–782.

[124] Q. Zhang et al., “Super-resolution reconstruction algorithms based on
fusion of deep learning mechanism and wavelet,” in Proc. 2nd Int. Conf.
Artif. Intell. Pattern Recognit., 2019, pp. 102–107.

[125] S. Xue, W. Qiu, F. Liu, and X. Jin, “Wavelet-based residual attention
network for image super-resolution,” Neurocomputing, vol. 382, pp. 116–
126, 2020.

[126] X. Zhu, Z. Li, J. Lou, and Q. Shen, “Video super-resolution based on a
spatio-temporal matching network,” Pattern Recognit., vol. 110, 2021,
Art. no. 107619.

[127] A. Liu, Y. Liu, J. Gu, Y. Qiao, and C. Dong, “Blind image super-
resolution: A survey and beyond,” IEEE Trans. Pattern Anal. Mach.
Intell., early access, Aug. 30, 2022, doi: 10.1109/TPAMI.2022.3203009.

[128] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van Gool,
“WESPE: Weakly supervised photo enhancer for digital cameras,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, 2018,
pp. 691–700.

https://dx.doi.org/10.1109/TPAMI.2022.3203009


9882 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 8, AUGUST 2023

[129] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 2223–2232.

[130] A. Bulat, J. Yang, and G. Tzimiropoulos, “To learn image super-
resolution, use a GAN to learn how to do image degradation first,” in
Proc. Eur. Conf. Comput. Vis., 2018, pp. 185–200.

[131] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9446–9454.

[132] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—A
comprehensive evaluation of the good, the bad and the ugly,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 9, pp. 2251–2265, Sep. 2019.

[133] X. Cheng, Z. Fu, and J. Yang, “Zero-shot image super-resolution with
depth guided internal degradation learning,” in Proc. Eur. Conf. Comput.
Vis., Springer, 2020, pp. 265–280.

[134] C. Godard, O. M. Aodha, M. Firman, and G. J. Brostow, “Digging into
self-supervised monocular depth estimation,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2019, pp. 3828–3838.

[135] J. W. Soh, S. Cho, and N. I. Cho, “Meta-transfer learning for zero-shot
super-resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 3516–3525.

[136] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Fast and accurate
image super-resolution with deep Laplacian pyramid networks,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2599–2613,
Nov. 2019.

[137] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, and Y. Wang, “Efficient residual
dense block search for image super-resolution,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 12 007–12 014.

[138] Z. Lu et al., “NSGA-Net: Neural architecture search using multi-objective
genetic algorithm,” in Proc. Genet. Evol. Computation Conf., 2019,
pp. 419–427.

[139] P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto multi objective
optimization,” in Proc. 13th Int. Conf. Intell. Syst. Appl. Power Syst.,
2005, pp. 84–91.

[140] X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, accurate and
lightweight super-resolution with neural architecture search,” in Proc.
IEEE 25th Int. Conf. Pattern Recognit., 2021, pp. 59–64.

[141] J. Y. Ahn and N. I. Cho, “Neural architecture search for image super-
resolution using densely constructed search space: DeCoNAS,” in Proc.
IEEE 25th Int. Conf. Pattern Recognit., 2021, pp. 4829–4836.

[142] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2018, pp. 4095–4104.

[143] Y. Guo, Y. Luo, Z. He, J. Huang, and J. Chen, “Hierarchical neural archi-
tecture search for single image super-resolution,” IEEE Signal Process.
Lett., vol. 27, pp. 1255–1259, 2020.

[144] Y.-C. Chen, C. Gao, E. Robb, and J.-B. Huang, “NAS-DIP: Learning
deep image prior with neural architecture search,” in Proc. 16th Eur.
Conf. Comput. Vis., Springer, 2020, pp. 442–459.

[145] R. Lee et al., “Journey towards tiny perceptual super-resolution,” in Proc.
Eur. Conf. Comput. Vis., Springer, 2020, pp. 85–102.

[146] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture
search,” 2018, arXiv:1806.09055.

[147] H. Zhang, Y. Li, C. Gong, H. Chen, Z. Bai, and C. Shen, “Memory-
efficient hierarchical neural architecture search for image restoration,”
2020, arXiv:2012.13212.

[148] Y. Wu, Z. Huang, S. Kumar, R. S. Sukthanker, R. Timofte, and L. Van
Gool, “Trilevel neural architecture search for efficient single image super-
resolution,” 2021, arXiv:2101.06658.

[149] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10 012–10 022.

Brian B. Moser received the MSc degree in computer
science from the TU Kaiserslautern, in 2021. He is
currently working toward the PhD degree with the
TU Kaiserslautern and research assistant with the
German Research Center for Artificial Intelligence
(DFKI) in Kaiserslautern. His research interests in-
clude image super-resolution and deep learning.

Federico Raue received the MSc degree in artificial
intelligence from Katholieke Universiteit Leuven, in
2005, and the PhD degree from TU Kaiserslautern,
in 2018. He is a senior researcher with the German
Research Center for Artificial Intelligence (DFKI) in
Kaiserslautern. His research interests include meta-
learning and multimodal machine learning.

Stanislav Frolov received the MSc degree in elec-
trical engineering from the Karlsruhe Institute of
Technology, in 2017. He is currently working toward
the PhD degree with the TU Kaiserslautern and re-
search assistant with the German Research Center for
Artificial Intelligence (DFKI) in Kaiserslautern. His
research interests include generative models and deep
learning.

Sebastian Palacio is a researcher in machine learn-
ing and head of the Multimedia Analysis and Data
Mining Group, German Research Center for Artifi-
cial Intelligence (DFKI). His PhD topic was about
explainable AI with applications in computer vision.
Other research interests include adversarial attacks,
multi-task, curriculum, and self-supervised learning.

Jörn Hees received the PhD degree from the TU
Kaiserslautern, in 2018 on the topic of simulating
human associations with linked data. He is a profes-
sor for data science with the University of Applied
Sciences Bonn-Rhein-Sieg. His research interests in-
clude machine learning, knowledge graphs, and mul-
timedia analysis.

Andreas Dengel is a professor with the Department
of Computer Science, TU Kaiserslautern and execu-
tive director of the German Research Center for Artifi-
cial Intelligence (DFKI) in Kaiserslautern, head of the
Smart Data and Knowledge Services Research Area
at DFKI and of the DFKI Deep Learning Competence
Center. His research focuses on machine learning,
pattern recognition, quantified learning, data mining,
semantic technologies, and document analysis.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


