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Abstract—Neural networks (NNs) have been widely applied in
tomographic imaging through data-driven training and image pro-
cessing. One of the main challenges in using NNs in real medical
imaging is the requirement of massive amounts of training data —
which are not always available in clinical practice. In this article, we
demonstrate that, on the contrary, one can directly execute image
reconstruction using NNs without training data. The key idea is to
bring in the recently introduced deep image prior (DIP) and merge
it with electrical impedance tomography (EIT) reconstruction. DIP
provides a novel approach to the regularization of EIT reconstruc-
tion problems by compelling the recovered image to be synthe-
sized from a given NN architecture. Then, by relying on the NN’s
built-in back-propagation and the finite element solver, the con-
ductivity distribution is optimized. Quantitative results based on
simulation and experimental data show that the proposed method
is an effective unsupervised approach capable of outperforming
state-of-the-art alternatives.

Index Terms—Deep image prior, electrical impedance tomog-
raphy, image reconstruction, neural network, unsupervised
learning.

1. INTRODUCTION

MAGE reconstruction is one of the most challenging aspects
Iof medical imaging [1], [2], since the problem is often
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ill-posed. Traditionally, regularization schemes, e.g., Tikhonov,
total variation, and smoothness prompting prior approaches, are
usually used to address this issue. Recently, however, deep learn-
ing methods have shifted the attention in the field towards new
imaging formulations [3]. For example, supervised networks
learn how to execute image reconstruction based on labeled
training data, and then optimize the image (under reconstruction)
through training procedures [4]. Being task specific, these net-
works rely heavily on large amounts of training data. However,
the range of problems they are able to handle can be constrained
by their reliance on training data, which is often difficult or
expensive to obtain, especially in medical applications.

Apart from using training sets to perform supervised learning,
unsupervised learning [5] has the ability to learn via the NN
itself, thus extracting information resembling/corresponding to
the input context. For example, untrained convolutional neural
networks (CNNs) have proven to be highly effective tools for
tackling inverse problems by simply fitting a NN model to
the input context (e.g., measurements from an image domain)
without any extra training data [6], [7], [8], [9]. The advantage
of untrained CNNs was first noted in the deep image prior (DIP)
article [6].

Rather than taking a supervised avenue, as many earlier
methods have, DIP permits the deep network itself to implicitly
handle the regularization task in inverse problems without train-
ing data. More specifically, DIP naturally regularizes the recon-
struction problem and optimizes the network’s parameters for
it to synthesize the measurements. DIP has been demonstrated
to be effective on several inverse problems, and has achieved
remarkable performance on a number of reconstruction tasks in
medical imaging modalities, e.g., positron emission tomogra-
phy [10], computed tomography [11] and magnetic resonance
imaging [12].

Inspired by the preceding works, we apply the DIP framework
to the field of electrical impedance tomography (EIT). This is,
to the best of our knowledge, the first contribution of DIP to
image reconstruction in soft-field tomographies. The proposed
method discussed here is, however, not limited to EIT. The
proposed framework handles the task of recovering images and
may consequentially be used for other applications requiring
image reconstruction, e.g., diffuse optical tomography [13] and
electrical capacitance tomography [14].

EIT, being a functional imaging modality, may help with
the management and monitoring of COVID-19 patients [15].
The spatial resolution of EIT is still limited by the intrinsic
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ill-posed nature. Improving EIT image resolution is critical for
a variety of applications, such as lung monitoring [16], [17]
and brain imaging [18]. For the past decades, various efforts'
are devoted to exploiting NNs to improve EIT image quality.
For example, the article in [19] proposed a CNN based Deep
D-bar method for image post-processing and improving the
EIT image quality. Meanwhile, CNN was applied to the D-bar
reconstruction algorithm for obtaining boundary-enhanced EIT
reconstruction [20]. The authors of [21] also employed a CNN,
but they trained and learned the mapping between ground-truth
conductivity and the conductivity which is obtained from the
dominant part of induced contrast current, thereby allowing
image quality improvements. A data-driven approach for pre-
dicting the conductivity distribution was proposed in [22], where
the CNN was used as the solver for EIT reconstruction. In [23],
a variational auto-encoder was used to produce a compact and
dense representation for lung EIT images with alow dimensional
latent space, and then the relationship between the EIT data
and the low dimensional latent data was learned. Conditional
generative adversarial networks were used in [24] to learn the
mapping between the initial image (obtained with the traditional
reconstruction methods) to the ground truth. A multi-layer auto-
encoder framework was proposed in [25] to learn the nonlinear
mapping between EIT measurements and conductivity distribu-
tions. Recently, a multi-scale feature cross fusion network [26]
was used to reconstruct the EIT image from EIT data and a
binary mask image. These approaches to solving EIT prob-
lems currently achieve state-of-the-art reconstruction quality.
However, they require large amounts of training data, i.e., pairs
of ground truths (conductivity distribution) and measurements,
and it is unclear how much data is required for achieving good
generalization. Practically, ground truth information is difficult
to obtain, since the conductivity distribution inside the human
body cannot be measured directly.

In this article, rather than using NNs as a training tool, we
propose to bring in the DIP architecture regularization effect
into the reconstruction problem and directly conduct image
reconstruction using NNs without training data. The key idea
is to convert the EIT image reconstruction problem into a NN
parameter optimization problem. Then, by relying on the NN’s
back-propagation and the finite element solver, the conductivity
distribution is determined. A side effect of reconstructing the
EIT image via optimizing NN’s parameters is that the frame-
work is afforded the ability to extract high resolution boundary
information at no additional cost. We demonstrate the efficacy
of our proposed approach by using numerical simulations and
water tank data. In this, we obtain better reconstructions than the
state-of-the-art methods in terms of perceptual and quantitative
metrics.

The structure of the article is organized as follows. In section
II, we briefly describe the EIT forward and inverse problems.
Section III presents the DIP framework based EIT reconstruc-
tion. Next, we provide the implementation details and results
in Sections IV and V, respectively. Section VI discusses the

'Given the objective of this article, the literature review is limited here to
recent works on using NNs for EIT.
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opportunities, challenges and robustness issues of the proposed
approach. Lastly, conclusions are presented in Section VII.

II. ELECTRICAL IMPEDANCE TOMOGRAPHY

Generally, the EIT reconstruction algorithm involves solu-
tions to forward and inverse problems. The forward problem
is to compute the boundary measurements V' from a given
conductivity o within the measurement domain €2. Since the
measurement V' is non-linearly dependent on the distribution o,
numerical methods, e.g., the finite element method, are often
used for finding solutions to the forward problem. In this work,
the non-linearity is numerically manifested via the finite-element
version of the complete electrode model [27]. For numerically
approximating the CEM using finite element analysis, the reader
is referred to [28]. If we write down the noiseless observation
model as follows

V ="U(o), ey

then, the EIT inverse problem is to determine o from the
measurement V' through the numerical forward model U. To
obtain a solution to the problem described in (1) we minimize
the following function

6 =argmin ||V — U(o)|?. 2)

Note that a diffusive physical nature makes the EIT problem
severely ill-posed. It is therefore common to regularize the
reconstruction task by constraining the solution using some
prior knowledge. In practice, an explicit regularizer R(c), con-
straining the solution to the desired conductivity properties, is
often added in the minimization problem (2). As a simple but
representative example, R(o) can be selected as total varia-
tion (TV) regularization, which encourages the solution to be
sparsity prompting [29]. However, in this article, we mainly
focus on developing the DIP based framework and exploring
its implicit regularization effect. As an instructive purpose, we
briefly analyze the DIP in combination with classical explicit
TV regularization in the discussion section.

III. DEEPEIT: DEEP IMAGE PRIOR BASED EIT

In this section, we begin by providing a brief introduction
to DIP framework. Following, we discuss how to utilize DIP
in combination with EIT reconstruction, i.e., applying DIP for
conducting EIT image reconstruction without training data.

A. DIP Framework

Recently, Ulyanov et al. [6] proposed a DIP framework,
where no training data was required for solving the classical
inverse problems, e.g., image denoising, inpainting and super-
resolution. To introduce DIP in a concise manner, we first
consider the most basic reconstruction problem: supposing x
is a noisy image, we want to find the unknown clean image =z,
which can be setup as the following optimization problem

= argmin{”xfxoﬂ2 +AR(x)} . 3)



LIU et al.: DEEPEIT: DEEP IMAGE PRIOR ENABLED ELECTRICAL IMPEDANCE TOMOGRAPHY

Here, R(x) is the regularization term, and the weighting param-
eter A > 0 controls the strength of regularization.

Rather than directly solving the optimization in (3) with
explicit regularization R(x), the DIP framework offers an alter-
native way to implicitly regularize the denoising problem and
to realize the estimation of & by using the optimized network
weights. More precisely, DIP ignores the explicit regularization
term R(z) in (3) and imposes the reparametrization x = fy(z)
as a constraint to the optimization problem (3). Here, f is a deep
generative network (e.g., U-Net), which takes random noise z as
input and randomly initialized € as weights. Then, the associated
optimization for DIP can be formulated as

é:arg;nin||f9(z)*I0H27 &= f4(2), “)

where 2 is the final denoised image. Since the network f is not
pre-trained from data in any aspects, such deep image prior, like
the classical total variation method, is effectively handcrafted.
Results in the original DIP article [6] and the recent articles [11],
[30], [31] demonstrated that the network architecture can func-
tion as an implicit optimized regularizer.

B. Proposed DeepEIT Framework

As we mentioned in Section II, the FEM is used for solving
the forward problem in this work. In this sense, the conductivity
distribution o is associated with the finite element discretization
of the measurement domain €2, i.e., 0 € RY, N is the number
of FE nodes. In practice, the domain 2 is usually not a square
or rectangular in shape, i.e., 0 cannot be reshaped as a square or
rectangular matrix directly. To deal with this issue, we define a
mapping P between the measurement domain 2 and the image
domain, which is always a rectangle/square. By applying the
mapping P and recalling the DIP framework discussed in the
previous subsection, we represent the conductivity distribution
o as

o= P(fo(2)). (5)

When substituting o with the NN in (5), the minimization
problem in (2) can be rewritten as

0= argmin [V~ UP(fo(D)*, &= P(54(). ©)

By relying on the FE solver, the optimization in (6) is similar to
training deep learning models and one can apply any standard
optimization algorithms, e.g., we use Adam optimizer [32] in
this study. Fig. 1 illustrates the flowchart of the proposed method
in this article.

Next, we present the gradient calculation for the measurement
data to perform Adam optimization. For easy description, we de-
fine the loss function as L = ||V — U(c)||. Then, the gradient
of the loss function L with respect to the NN parameters ¢ can
be obtained as

T
oL <8L> do 7

90 \oo) 00
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Fig. 1. Flowchart of the DIP based EIT reconstruction method.

Algorithm 1: DeepEIT: DIP-Based EIT Reconstruction
Method.

1: Initialization and input: NN input o;,, NN parameters
6, pre-setting auxiliary variables 8, = 0, learning rate
Ir, Lye = inf, threshold €, measured voltages V,
image mapping P and max-iterations.

2: repeat

3: Oout = NN (0in; 0)

4: U=U(P(oow))

5: Compute L = |V — U|?

6:  if (L — Lye)/L > € then > Loss Stabilization
Procedure (LSP)

7 Tin < Opre, 0 < Opre, repeat lines 3-5

8: end if

9: Compute % = 2(%)T(U -V)

10:  Compute 2& = ( 66;1 )T Ogau

11: Update 0pre < Oouts Lipre <= L and Oy < 0,

12: Update € using Adam optimizer
13: until max-iterations

The first term g—g can be derived from the loss function

oL auN"

— =2 = U-1V). 8

5 =2(50) w-v ®
Here, the so-called standard method [33], [34] is applied for
calculating the gradient term g—g. The second term g—‘; in (7)

can be computed automatically via back-propagation with the
built-in differentiation engine called forch.autograd in PyTorch,
since o is obtained by multiplying the mapping matrix (the linear
map P) with the NN output fy(2).

To describe the distinct steps of the proposed approach, in the
following subsection, we provide the Pseudo code related to the
implementation of the proposed approach.

C. Pseudo-Code

The pseudo-code of the proposed DeepEIT framework is
shown in Algorithm 1.
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Fig. 2.
and up-sampling layers.

IV. METHODS

In this section, we detail important components of the ex-
perimental investigation, where we study the efficacy of the
proposed method with numerical and experimental data. We
begin by describing the neural network used for solving the
image reconstruction problem. Following, we discuss the test
cases and finite element information used in evaluating the
proposed method. Lastly, we provide the evaluation criteria and
details relevant to implementing the proposed method.

A. Neural Network Architecture

In the original DIP work [6], several architectures were
considered for different applications, e.g., encoder—decoder for
image denoising. In this work, we employ the same encoder-
decoder architecture as in [6] with skip-connections, e.g., ny =
[0,0,0,4, 4] for each skip layer. Here, the non-zero element in
the vector ns denotes the channel number of the convolution
kernel in the skip connections, and the zero element of the
vector ng means that there is no skip connection in the particular
layer. Generally, skip connections are used to enable feature re-
usability and stabilize training and convergence [35]. Hence, the
encoder-decoder architecture may use the fine-grained features
learned in the encoder part to construct an image in the decoder
part. During the encoding process, common stride is used as the
down-sampling technique. Bi-linear up-sampling is chosen as
the up-sampling operation in the decoding process. The input is
a random noise image z, and the output image fy(z) is used to
represent the conductivity distribution. In other words, we use
neural network to parameterize the conductivity distribution,
and the final conductivity distribution is obtained by optimizing
the parameters of neural network instead of optimizing the
conductivity directly like the traditional iterative methods. The
neural network architecture is illustrated in Fig. 2.
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Neural network architecture. The architecture is based on the popular U-net with skip connections ns = [0, 0,0, 4, 4] between the down-sampling layers

LeakyReLU is used as the activation function in the hidden
layer. Considering that the conductivity is physically larger
than 0, we use the activation function (sigmoid) to convert the
NN output into conductivity values in the last layer. Since the
output of sigmoid functions varies between 0 and 1, to obtain
conductivity value bigger than 1, we multiply the activation
sigmoid function by a coefficient noy.n . Here, 77 is a user-defined
positive value, and opop € R is the best homogeneous estimate

Ohom = arg min {||V - U(o)||2} . )

Finally, the input noise image z is generated by the uniform
distribution z ~ U(0, 1), and its size is same as the output
size, which is 1 x W x H, where W and H are both set to
128 in this study. The convolution kernel size is set as 3 x 3
(1 x 1 for skip-connections). We adopt the Adam optimizer to
optimize the NN parameters with alearning rate [ = 0.001. Op-
timization terminates when the maximum number of iterations
reaches 5000 and 2000 for simulated data and water tank data,
respectively. In this study, all the experiments are implemented in
Windows PyTorch 1.10 using custom Python code? on a desktop
pc with an Intel i7-11700 CPU @ 3.60 GHz and 32 GB of RAM.

We remark that the skip connections n s and the learning rate [r
were fixed for all the experimental studies, except in the ablation
and robustness studies of the proposed approach with respect to
different hyperparameters (see details in Section VI).

B. Test Cases and Finite Element Information

In the numerical study, a disk with a 14 cm radius was used as
the measurement domain. Sixteen electrodes with width 2.5 cm
were set equidistantly on the boundary. Electric currents with

2To facilitate model reuse, the code that support the findings of this study are
available from the corresponding author upon reasonable request.
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TABLE I
PERFORMANCE METRICS OF SIMULATION AND EXPERIMENTAL STUDIES
Case 1 Case 2 Case 3 Case 4 Case 5
SSIM CC PSNR RE SSIM  CC PSNR RE SSIM  CC  PSNR RE SSIM  CC  PSNR RE SSIM CC PSNR RE
DIP 087 096 230 0016 090 085 206 0015 079 0.82 16.6 0039 081 084 17.0 0.029 069 0.73 135 0.082
NOSER 047  0.88 11.3 0241 082 062 16.1 0.041 065 059 13.0  0.091 067 061 127 0079 055 054 1.0  0.145
Lo 073 092 203 0.030 088 0.80 19.9 0017 074 079 169 0.037 074 078 159  0.038 062 073 142 0.070
TV 0.77 090 192 0038 087 08 206 0014 073 075 158  0.048 077 079 16.0  0.037 065 072 140  0.074

Fig. 3. Examples of target photographs and masks that are used to generate
the inclusion conductivity distribution for computing the performance metrics.

Ground truth Output 1.0 Opip 1.0

(A IN I\
®

e ‘ 0.0 ‘ 0.0

Ouostr 1.0 L 1.0 on 1.0

* 05 ’ ‘ 05 ' \ 05

0.0 . 0.0 0.0

Fig.4. Case 1: results of the simulated heart-and-lungs phantom. Initial input:
random noise image z; Output: fé(z); oprp: DeepEIT based reconstruction,
ie,oprp = P(f4(2)). onosERr: NOSER based reconstruction; oz, and
oy reference estimations using smoothness prior and total variation, respec-
tively.

an amplitude of 1 mA were injected into the measurement
domain. The current stimulation and voltage measurement are
based on adjacent patterns. The conductivities of the tissues
were respectively set as 0.25 mS/cm for the lungs, 1 mS/cm
for the background and 1.5 mS/cm for the heart. The simulated
measurements were computed with 2-D FE simulations using
a first order mesh with N,, = 3154 nodes and N, = 6130 ele-
ments. To avoid the so-called ‘inverse crime,” a first order mesh
with N,, = 484 nodes and N, = 902 elements was used as the
inverse mesh. To simulate real conditions, Gaussian noise of
SNR=60 dB was added to the simulated noiseless measure-
ments. Our numerical study, denoted as Case 1, deals with a
simulated heart-and-lungs phantom, as shown in Fig. 4.

The experimental data was collected with the KIT-4 measure-
ment system [36] using a saline tank phantom. The phantom
had a 14 cm radius and 7 cm height and was equipped with
16 equally distanced electrodes. The frequency of the injected
current was set to 10 kHz and the amplitude was 1 mA, and
adjacent measurement patterns were used in the measurements.
As shown in Fig. 3, four different targets denoted as Cases
2-5 were constructed by inserting non-conductive objects with

different shapes into the tank. During the reconstruction, the
same inverse mesh as in the simulation study was applied.

C. Implementation Details

To quantitatively test the reconstruction performances, as
shown in Table I, we computed the correlation coefficient (CC),
the peak signal-to-noise ratio (PSNR) and relative error (RE) of
the estimated conductivity. Meanwhile, we utilized the structural
similarity index (SSIM) for measuring the similarity between the
true conductivity and reconstructed images. An SSIM value of
1 refers to a perfect match between the reconstructed image and
the original one. Since the true conductivity for the experimental
test cases is not accessible, we artificially assigned a conductiv-
ity distribution based on the target photograph and the corre-
sponding mask, as shown in Fig. 3, for computing performance
metrics. It should be emphasized that this artificially assigned
conductivity and the mask are, fundamentally, not required for
implementing the proposed approach.

During the optimization process, destabilization is observed
as significant loss increase and degeneration in the generated
image f;(z). To avoid such destabilization, we simply imposed
a Loss Stabilization Procedure (LSP) to track the loss value and
return to the parameters corresponding to the previous iteration
if (Loss; — Loss;_1)/Loss; is higher than a certain threshold
€ = 0.01. The effect to the proposed method with and without
LSP will be studied in Section VI.

To facilitate ease of visual comparison, the results presented
in this work are scaled using Min-Max normalization to bring
all values into the range [0, 1]. Due to the fact that the ref-
erence NOSER is a difference imaging approach, it estimates
the conductivity change do. We simply added oo, to form the
conductivity oNosgr = 00 + Thom-

V. RESULTS

In this section, we show the results of the numerical and
experimental studies. To check the performance of the proposed
DeepEIT framework, we also computed conventional recon-
structions based on smoothness prior [37] and total variation
prior [38], as well as the NOSER based reconstruction [39].
Since DeepEIT is learned without data training, we omit the
reconstructions based on trained CNNs from our analysis. For
more recent and general expositions on applying trained CNNs
and shape-driven approaches in EIT with similar experimental
data, we refer the reader to [19], [21], [40], [41], [42].

A. Simulation Results

Fig. 4 depicts the results of the simulated heart-and-lungs
phantom. We observe that the image quality of the proposed
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Fig.5. High resolution boundary extraction by mapping the output f4(2) into
meshes M, ¢ > 1 is the mesh density level, the larger the level the finer the

mesh.

1.0 %o 1.0

QY
05 Q 0.5

. -
1.0 Iy 1.0

<,
. @ . 05
0.0 u 0.0 LJ 0.0

round truth Initial inut 01

0.0

-

Case 2: experimental study with a rectangle target. Otherwise as in

Fig. 6.
Fig. 4.

method is visibly superior to quality of the reference methods,
which is also confirmed by the evaluation criteria SSIM and CC,
as tabulated in Table I. Meanwhile, the proposed method leads to
an almost clean image with virtually no obvious artifacts, while
for the referenced methods significant artifacts remain visible
in the domain. Especially, the blurred/staircase effect induced
by reference methods makes it difficult to track a clear interface
between the target and the background.

In fact, obtaining high resolution boundaries is one of the
key challenges in EIT. Traditionally, this is often achieved
by employing shape-driven schemes [40], [43], [44], or by
incorporating the patient specific structure information (e.g.,
CT data) in the reconstruction process [45]. However, these
schemes require strong and precisely quantified prior knowledge
about the specific object, which may not be accessible in real
applications or expensive to obtain. In the proposed framework,
one can extract a high resolution boundary without additional
cost as follows. First, running the DeepEIT optimization with a
coarse mesh (denoted as M ); then the NN output fj;(z) can be
mapped into any fine mesh (denoted as M, ;~1, ¢ is the mesh
density level) for achieving the conductivity distribution at a fine
resolution, as illustrated in Fig. 5.

B. Experimental Results

In this subsection, we analyze the performance of the pro-
posed DeepEIT framework using water tank data. The recon-
structions are provided in Figs. 6-9. We first present the results
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round truth Initial input 01

Output

0.0

1.0 L

0.5

.,

Fig. 7. Case 3: experimental study with one rectangular target and one trian-
gular target. Otherwise as in Fig. 4.
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Fig. 8. Case 4: experimental study with one rectangular target and one cylin-
drical bar target. Otherwise as in Fig. 4.
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Ground truth

Initial input

e G
0j

of the experiment with one rectangular inclusion, as shown in
Fig. 6. It is apparent that location of the inclusion is reliably
recovered by all the studied methods. However, the proposed ap-
proach and TV based method outperform NOSER and L, norm
based method for recovering the shape of the rectangular-shaped
inclusion. Indeed, onoser and oy, provide deformed shape
reconstruction with blurred properties, which is caused by the
smoothness prompting regularization applied in both methods.

Visually, artifacts along the domain boundary presented in all
the reconstructions. This is mainly due to the following aspects:
1) the modeling uncertainties (e.g., modeling errors caused by
unknown contact impedance and position mismatch between
the real electrode and modeled one, and measurement noise)
accompanied in the reconstruction, which may propagate during
the reconstructions; 2) the observation model used in this study
is based on the context of absolute imaging, which is known to
be sensitive to such uncertainties, and 3) the hyper-parameters
for all the methods are empirically selected based on trial-and-
error method and kept the same for all the study cases, i.e., no
individual tuning was performed for each case. This may not be
optimal. Since we are focusing on studying the performance of
the proposed DeepEIT, we defer the possible solutions to address
these challenges in the future works.

Next, we present the reconstructions of the test (Cases 3&4)
considering two inclusions. Upon first visual inspection of
inclusions in Figs. 7 and 8, it is immediately apparent that,
for NOSER, the reconstructed inclusions are visually almost
indistinguishable. For TV, the undesirable staircase effect exists
and makes it difficult to track the boundary details. L, norm
based reconstruction introduces severe blurry artifacts which
lead to unwanted features (e.g., shape distortions) and less
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faithful results when compared to the original inclusions. On the
other hand, the proposed method is visibly superior to the quality
of the reference estimates, leading to the best criteria SSIM and
CC in both cases. Especially, the shape details are fairly well
recovered, e.g., the triangular shape of the inclusion in Case 3
of Fig. 7. In fact, recovering shape details (e.g., sharp corners in
the triangular-shaped inclusion) without structural information
is a notoriously challenging task in EIT.

Finally, we report the results of Case 5, conducted with
three inclusions, as shown in Fig. 9. Once again, visually, the
positions of the inclusions correspond to the real targets for
all the methods. The proposed method performs fairly well
in recovering major shape characteristics, achieving the best
SSIM and CC parameters among the reference methods. This is
consistent with the findings of the previous numerical simulation
and experimental studies.

As a whole, it can be concluded that the proposed DIP-based
approach results in dramatically improved estimations compared
to the (tested) traditional regularization based methods. The
difference is particularly remarkable for experimental cases
with triangular-shaped inclusions, where the proposed method
produces more informative inversions.

VI. DISCUSSION: OPPORTUNITIES, CHALLENGES AND
ROBUSTNESS

In this section, we will discuss the current challenges and
robustness issues related to applying DIP in EIT. Additionally,
potential opportunities are also identified in the context of these
challenges and problems.

A. Efficiency

Since our DeepEIT framework falls into the category of
model-driven learning approaches [46], iterations are essentially
required for optimizing the NN parameters. Also, the current
work is formulated in the context of absolute imaging frame-
work, i.e., it requires repeated solving of the forward problem,
which is known to be computationally expensive. Taking Case
1 as an example, the number of trainable parameters 6 in the
network is about 0.57 millions and 2.30 MB storage is required
for saving these parameters. The total computational time for
5000 iterations is 5172 seconds, i.e., the average computational
cost is about 1.03 seconds per iteration. For these reasons, the
current proposed approach results in lack of efficiency, which is
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a major obstacle to directly apply it in real-world applications.
Further work is required in order to improve this scheme:

e Formulating DeepEIT in context of difference imaging
through a linearization to the observation model, which is
known to speed up reconstruction and circumvent highly-
accurate modelling requirements [44];

e Integrating traditional methods when designing the net-
works, e.g., using a reference image as the input to speed
up convergence;

e Starting the training process by transferring the weights
from the pre-training models [47], [48], instead of training
from scratch, and

e Applying the so-called ADMM optimizer to decouple the
NN training step and conductivity updating step [10], as
computing the EIT forward problem is time consuming.
This concern is related to the fact that NN training needs
more steps than updating the conductivity.

B. Integration With Explicit Regularization or Prior
Information

Extending the DeepEIT framework by combining it with an
explicit regularization or prior information offers great potential
to enrich the overall regularization effect and to stabilize the
reconstruction [31]. For example, the traditional TV regulariza-
tion and structural prior information could be merged into the
optimization model in order to achieve better image recovery. In
addition to incorporating prior knowledge on the image domain,
i.e., the conductivity distribution, one may also consider to
integrate learned regularization techniques [49] to regularize
the NN parameters throughout the optimization process. A more
in-depth investigation should be focused on studying the implicit
regularization effect that DIP brings. Such a feature may help
in integrating a complementary explicit regularization via the
minimization problem (6), thereby getting a stronger effect and
better performance.

Inspired by the successful improvement of DIP framework
with explicit regularization [30], [31], [50], we further briefly
showcase the comparison study of the proposed DIP framework
with and without (isotropic) TV regularization [51]. Mathemat-
ically, an explicit term is added into the minimization problem
in (6) to form the framework of DIP+TYV, i.e.,

0 =argmin { |V~ U(P(o () + ATV(fo(=)}. (10

Here, the weighting parameter A is selected as 1 x 1072, and the
TV functional is of the form

TV“@::E:thﬂmj_"%ﬂ2+(mm+l_"%ﬂ2+5a
i

(1)
where 3 =1 x 10710 is a small parameter which ensures that
the TV functional is differentiable.

Fig. 10 depicts that DIP+TV outperforms original DIP and
leads to considerable performance gains on preserving the con-
ductivity profiles (e.g., sharpness) and eliminating the back-
ground artifacts, as evident from the performance metrics
marked below the Fig. 10. This is a reasonable result given
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Fig. 10. Comparison of the proposed DeepEIT framework with and without
explicit TV regularization.
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Fig.11. Robustness study of the proposed DeepEIT framework using different
learning rate.

that the phantom is piecewise constant. This behavior can be
explained by the fact that TV induces additional ability of
sparsity prompting to the DIP framework, which is consistent
to the previous study [50] in traditional restoration tasks such
as image denoising and deblurring. It is worth remarking that
DIP+TV suffers from undesired staircase artifacts, which are
typical of TV reconstructions. To overcome this shortcoming,
one may consider updating the optimization model by combin-
ing with the total generalized variation [52] regularization for
preserving the fine detail and minimizing the staircase effect.
However, in this article, we mainly focus on developing the
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Fig. 12.  Loss curves of Case 1 with five different learning rates.
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Fig. 13.  Ablation study of the proposed DeepEIT framework by varying the
skip connections.

DIP framework for EIT and exploring its implicit regularization
effect, we defer analyzing the DIP in combination with other
explicit regularization to a future work.

C. Hyperparameter Optimization and Ablation Study

In this subsection, we begin by performing a robustness study
of the proposed approach with respect to different learning rates.
Following, an ablation study for checking the performance of the
NN is considered by removing or adding different skip connec-
tions. Lastly, we conduct a comparison study for investigating
the effect of Loss Stabilization Procedure and early stopping to
the DeepEIT framework.

1) Varying Learning Rate: To investigate the effects of the
learning rate on model’s performance and to build an intuition
about the dynamics of the learning rate on model’s behavior, we
performed a set of DIP reconstructions for Case 1 with learning
rate decreasing logarithmically from 0.1 to 1 x 10~°. From the
reconstructions shown in Fig. 11 and the corresponding loss
curves shown in Fig. 12, we can easily see the influence of
using five different learning rates with the Adam optimizer. The
learning rate of {r = 0.001 outperforms the other scenarios,
proving that for this case, it is the optimized value. In fact, a
learning rate (I = 0.1) thatis too large can cause instability and
hinder convergence, whereas a learning rate (Ir = 1 x 107°)
that is too small can cause the reconstruction process to get stuck.
It appears that a learning rate of around 0.01 to 0.0001 seems
to provide an appropriate selection for the DeepEIT framework.
Note that the learning rate is empirically chosen in this article,
there remains a crucial need to incorporate automatic techniques
for automatically picking such hyper-parameters. A potential
solution, which could be considered, is to apply the population



LIU et al.: DEEPEIT: DEEP IMAGE PRIOR ENABLED ELECTRICAL IMPEDANCE TOMOGRAPHY

—— With LSP
102 4 —— Without LSP
101 4
& 100 o
S

1071 4

10—2 o

10—3 B

0 2000 4000 6000 8000 10000
Iteration
24 A e
n b | R

22
20

« 181

&

a 16 4
14 4
12 4

—— With LSP
101 —— Without LSP
0 2000 4000 6000 8000 10000

Iteration

Fig. 14.  Curves of loss function and performance metrics over iterations.
based training algorithm developed by DeepMind [53] for find-
ing a flexible solution to the model architecture. We remark that,
optimizing the learning rate is out of the scope of this article,
hence it was left as a future research.

2) Varying Skip Connections: To check the importance of the
skip connections for the training of NN model fy and how the
proposed approach performs, NN with variant skip connections
ns are constructed and applied for recovering the conductivity
profile of Case 1. As depicted in Fig. 13, NN with skip connec-
tions ns = [0,0,0,4,4] provides the best reconstruction over
the other two cases, i.e., NN with ny = [0,0,0,0,0] and NN
with ng = [4, 4,4, 4, 4], leading the best evaluation metrics. We
remark that the benefit of adding such a sophisticated skip con-
nections (e.g.,ns = [0, 0,0, 4, 4]) is also significant for avoiding
the vanishing gradient problem [54], since skip connections al-
low the propagation of the gradient flow. It should be emphasized
that the skip connections used in the current encoder-decoder ar-
chitecture is restrictive, demanding the fusion of the same-scale
feature maps from the encoder and decoder. In fact, one may
also consider to replace the classical U-Net architecture with
nested and dense skip connections based U-Net++ [35] when
designing the NN, for obtaining better feature accumulation
across the network, both horizontally and vertically.

D. Effect of Loss Stabilization Procedure and Early Stopping

Fig. 14 depicts the loss function and performance metrics
during optimization of DIP-regularized reconstructions of Case
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1.3 We observe that the optimization process without LSP
suffers from numerical instability, e.g., it may diverge rapidly
while the loss increases significantly. This trend is also observed
in the original DIP article [6] and a recent work in the field
of diffraction tomography [55]. On the other hand, numerical
instability is much less observed in the LSP augmented DIP-
regularized reconstructions. This is mainly because LSP allows
to track the optimization loss at each iteration and counteracts
the undesired divergence in an automated fashion. The former
can be achieved by restoring the NN parameters to the previous
iteration if (Loss; — Loss;_1)/Loss; is higher than the threshold
€ = 0.01. This comparison study helps demonstrate the individ-
ual contributions of LSP to the NNs.

What remains to be discussed is how to reduce overfitting in
neural networks. As reported in [6], [56], DIP has a bias toward
the desired content, and learns it much faster than learning the
noise. This trend is also observed in our DIP-regularized recon-
struction without LSP. This result is expected, since estimating
parameters in NNs from a single image input poses a huge risk of
overfitting, such that the networks’ ability for accurate parameter
estimation is significantly influenced by early stopping. For
example, we found that the reconstruction quality reaches a
(local) peak and then induces potentially degradation due to
modeling error and noise. To remedy such an overfitting issue,
early stopping is usually required. However, how to select an

3To evaluate the trends of over-fitting and instability, we iterate the DIP-
regularized reconstruction for 10000 steps.



9636

optimal stopping point around the performance peak is still
an open question and full of challenges. Fortunately, with the
help of LSP, we did not have to employ early stopping to
avoid overfitting, since LSP robustifies the reconstruction from
the risk of overfitting to some extent. However, we need to
emphasize that the early stopping is relevant in LSP augmented
DIP reconstructions for saving computational time, since the
updates after a certain number of iterations become sufficiently
small and one may consider to stop before reaching the final
steps.

Lastly, we wish to mention that, from a Bayesian probabilistic
perspective [57], [58], the overfitting could also be prevented
by incorporating proper priors over the parameters and then
quantifying uncertainty with posterior distributions. Future work
can further investigate the possibility of fusing Bayesian learn-
ing [59], [60], [61] and DIP to better understand the regulariza-
tion implied by NNs and solve the EIT reconstruction problem.

VII. CONCLUSION

In this work, we presented a novel deep image prior based
framework (DeepEIT) for image reconstruction in EIT. DeepEIT
parameterizes the conductivity distribution under reconstruction
as the output of a convolutional network with random parameters
and a random input. In other words, instead of optimizing the
conductivity distribution in the image space, we now optimize it
in the space of the neural network’s parameters. We emphasize
that no training data is utilized in the optimizing neural network’s
parameters. Essentially, DIP is an appealing model-driven unsu-
pervised learning approach. This work offers a framework to fur-
ther extend its applications in the field of inverse problems. Our
solution relied on the fact that the implicit regularization induced
by learning algorithms [62], e.g., convolutional neural networks,
makes DIP particularly relevant for image reconstruction. As
demonstrated in this article, DeepEIT is a relatively effective
machine for handling the EIT reconstruction problem. There-
fore, we believe that DeepEIT provides a viable alternative to the
existing EIT image reconstructions. More in-depth experimental
works exploring the DeepEIT framework are required, and mul-
tidisciplinary research in addressing the challenges and opportu-
nities described in Sec. VI will form the basis of future research.
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