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Adversarially-Regularized Mixed Effects Deep
Learning (ARMED) Models Improve Interpretability,

Performance, and Generalization on
Clustered (non-iid) Data

Kevin P. Nguyen , Alex H. Treacher, and Albert A. Montillo

Abstract—Natural science datasets frequently violate assump-
tions of independence. Samples may be clustered (e.g., by study
site, subject, or experimental batch), leading to spurious as-
sociations, poor model fitting, and confounded analyses. While
largely unaddressed in deep learning, this problem has been han-
dled in the statistics community through mixed effects models,
which separate cluster-invariant fixed effects from cluster-specific
random effects. We propose a general-purpose framework for
Adversarially-Regularized Mixed Effects Deep learning (ARMED)
models through non-intrusive additions to existing neural net-
works: 1) an adversarial classifier constraining the original model
to learn only cluster-invariant features, 2) a random effects sub-
network capturing cluster-specific features, and 3) an approach
to apply random effects to clusters unseen during training. We
apply ARMED to dense, convolutional, and autoencoder neural
networks on 4 datasets including simulated nonlinear data, demen-
tia prognosis and diagnosis, and live-cell image analysis. Compared
to prior techniques, ARMED models better distinguish confounded
from true associations in simulations and learn more biologically
plausible features in clinical applications. They can also quantify
inter-cluster variance and visualize cluster effects in data. Finally,
ARMED matches or improves performance on data from clusters
seen during training (5-28% relative improvement) and gener-
alization to unseen clusters (2-9% relative improvement) versus
conventional models.

Index Terms—Generalization, interpretability, mixed effects
model, multilevel model, biomedical imaging, clinical data.

I. INTRODUCTION

IN predictive modeling, one often assumes that data is inde-
pendent and identically distributed (iid), such that no samples
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are correlated or interdependent. However, this assumption is
frequently violated in the natural sciences when samples are
clustered. For example, many multi-site neurological studies
acquire cognitive scores using a different human rater at each
site, which are subject to inter-rater differences [1], [2], [3]. As
a result, these measurements have inherent intra-site correlation
and inter-site variability. Another example is medical imaging,
such as magnetic resonance imaging (MRI), where differences
in imaging protocol and scanner hardware lead to substantial
site effects in multi-site studies [4], [5]. Clustering also occurs
in biological data, such as when measurements are collected
across different experimental batches [6] or tissue samples [7],
and in environmental data collected across locations [8].

If not properly handled in analysis, the cluster effects of
non-iid data can lead to erroneous conclusions. The so-called
Simpson’s paradox occurs when an association between two
variables appears, disappears, or even reverses when analy-
sis is performed at the population level versus when analysis
is stratified by cluster, indicating a confounding effect. This
situation can lead to Type I (false positive) or Type II (false
negative) findings in many situations, including clinical studies
[9], proteomics [7], and economics [10].

Despite these consequences, the machine learning community
has generally ignored the problems underlying non-iid data.
Meanwhile, the traditional statistics community has addressed
clustered data with mixed effects models, which learn a combina-
tion of fixed and random effects. The most common of these is the
linear mixed effects (LME) model, which builds upon the basic
linear regression model. Suppose that we have data X ∈ Rn×p

with n samples and p independent variables (features), originat-
ing from c clusters, and a dependent variable (target) y ∈ Rn×1.
We can define the following LME regression model; for a sample
i = 1, 2, ..., n originating from cluster j = 1, 2, ..., c we have:

ŷi = β0 + xi,1β1 + ...+ xi,pβp

+ uj,0 + xi,1uj,1 + ...+ xi,puj,p + εi

= β0 + x�
i β + uj,0 + x�

i uj + εi (1)

where ŷi is the predicted target, x�
i = [xi,1, ..., xi,p] is the

p-dimensional feature vector of the ith sample from X , and
εi is the residual. The model contains two types of weights.
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The fixed effect intercept β0 and slopes β� = [β1, ..., βp] are
cluster-invariant and apply globally to all samples. The random
effects weights include the intercept uj,0 and slopes u�

j =
[uj,1, ..., uj,p], whose values are specific to each cluster j. The
random effect weight values are assumed to follow a random
distribution, most often a multivariate normal distribution with
mean 0, i.e. u ∼ N(0, σ). Consequently, the random effect
weights u can be interpreted as cluster-specific offsets from the
fixed effect weights β. The LME model separates the variance
explained by global associations from the inter-cluster variance,
controls for correlated samples, and improves weight estimates
[8], [11]. Unfortunately, proper handling of mixed effects in deep
learning, delivering all of these gains, has gone unanswered.
In this work, we describe how appropriate handling of mixed
effects can address the inadequacies of deep learning models
when applied to clustered data.

A. Related Work

Previous deep learning approaches for clustered data have
key limitations. A naive but prevalent strategy is to insert cluster
information as an additional, one-hot encoded covariate [12].
This increases data dimensionality, which may cause overfitting
with a high number of clusters c [12], [13], and it entangles the
cluster-invariant and cluster-specific features within the model
weights, hampering model interpretation. Domain adaptation
techniques train a model on a source domain (i.e., cluster),
then adapt it in a subsequent training step to a target domain
[14]. This yields an adapted model for each target domain
but not a single unified model. It also does not scale easily
to many domains or separate domain-invariant from domain-
specific features, which also limits interpretability. Domain
generalization techniques address some of these weaknesses
by producing a single generalized model agnostic to domain
differences. Earlier approaches used gradient reversal layers,
which modify backpropagation to maximize domain invariance
[15], [16]. Other methods use meta-learning to guide gradient
descent in a direction that reduces the loss for all domains [17],
[18]. However, these involve second-order optimization which
vastly increase computational cost. A third category of domain
generalization methods uses an adversarial classifier [19], [20].
The adversarial classifier learns to classify domains from the
latent features of the main model, while the main model learns
features that maximize domain classification error. The common
limitation of all domain generalization techniques is that they
produce a model that has only learned the domain-invariant fea-
tures (fixed effects), while domain-specific information (random
effects), are discarded. Our proposed framework captures this
ignored information in a separate random effects subnetwork,
while an adversarially-regularized subnetwork captures global
fixed effects. We show that this adds predictive value and al-
lows users to understand more about cluster variance in their
data.

To date, there have been three prior approaches to incorporate
mixed effects into deep learning. Xiong et al. proposed MeNet,
a mixed effects convolutional neural network (CNN), for a gaze
estimation dataset containing repeated images per subject [21].

While improving accuracy, the method requires an expensive
expectation-maximization algorithm with inversion of large co-
variance matrices (nj × nj where nj is the number of samples
within each cluster). MeNet also only models random slopes
and not intercepts. Next, Tran et al. proposed DeepGLMM,
a mixed effects approach for dense feedforward neural net-
works (DFNNs) using Bayesian deep learning and variational
inference for more efficient training [22]. Though theoretically
capable of modeling both random slopes and intercepts, their
applications only used models with random intercepts. Their
experiments also lacked comparisons with other deep learn-
ing methods. Finally, Simchoni et al. proposed LMMNN, a
mixed effects approach for both DFNNs and CNNs, and demon-
strated a performance benefit across multiple applications. How-
ever, LMMNN is trained using expensive covariance matrix
inversions, and their real-world applications use only random
intercepts [13].

There are several common limitations across the MeNet,
DeepGLMM, and LMMNN approaches. These methods priori-
tize the improvement of predictive performance and ignore the
additional interpretability afforded by mixed effects, such as
quantification and visualization of inter-cluster variance. They
also lack explicit guidance of the fixed effects to be cluster-
invariant, so their resilience to confounded associations is un-
clear. Additionally, none of these works demonstrate models
with both random slopes and intercepts or unsupervised learning
models, such as autoencoders. Lastly, there are no specific
recommendations for applying these models to new data that
does not originate from the same clusters seen during training,
which limits real-world utility where data from new clusters is
frequently encountered.

B. Contributions

We propose an Adversarially-Regularized Mixed Effects
Deep learning (ARMED) framework that generalizes across
model archetypes and alleviates the shortcomings of the previous
approaches. This framework contains three components that
can be readily added to a conventional deep learning model
with minimal modification of the existing architecture. First,
inspired by domain generalization, we employ an adversarial
classifier to regularize the model to learn cluster-invariant fixed
effects. We show through simulations that this improves the
separation of cluster-specific, potentially confounded features
from cluster-invariant features. Second, we introduce a Bayesian
random effects subnetwork to learn the cluster-specific features,
and we demonstrate how it can quantify and visualize the
variance across clusters. Third, we add another classifier which
infers random effects for so-called “unseen cluster” data, where
samples originate outside the clusters seen during training. We
demonstrate the advantages of our framework across 4 test cases
using DFNNs, CNNs, and convolutional autoencoders, includ-
ing simulations and three biomedical examples. In each case, we
achieve not only the separation and identification of fixed and
random effects, but also better predictive performance on data
from seen clusters and better generalization to unseen clusters.
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Fig. 1. The ARMED framework for a generic neural network. The conven-
tional model (blue area) predicts ŷF from the data samplex. Cluster membership
of the sample is one-hot encoded into z. The fixed effects subnetwork (blue
+ gray areas) is constructed by adding an adversarial classifier (gray area) to
predict cluster membership ẑ. The original model is penalized through the gen-
eralization loss for learning features that allow cluster membership prediction.
The random effects subnetwork (orange area) uses Bayesian layers to learn
cluster-specific weights, dependent on z, that follow zero-mean multivariate
normal distributions. These weights can be formulated as nonlinear slopes
multiplied by the fixed effects latent representation hF (X;β), linear slopes
multiplied by X , and/or intercepts. The fixed and random effects are combined
with a mixing function m(...). For prediction on data from clusters unseen
during training, z is inferred with a classifier (Z-predictor) trained on data from
seen clusters.

II. METHODS

In general, a conventional feed-forward neural network
computes a nonlinear transformation of the data X through
its layers (Fig. 1, blue area). We denote the output of the
penultimate layer as h(X,β) ∈ Rn×q , where β contains all
learned weights up to and including this layer and q is the
number of neurons. For a typical regression or classification
task, a final linear or softmax output layer o then transforms
h(X,β) into the final prediction output ŷ:

ŷ = o(h(X,β))

During training, the model finds the weights, β, which minimize
a given loss function quantifying the error for the predictive
task, Le(y, ŷ).

To encode cluster membership information for a dataset with
n samples and c clusters, we introduce a one-hot encoded design
matrix Z ∈ Rn×c, where Zi,j = 1 if sample i belongs to cluster
j and Zi,j = 0 otherwise. The following sections present a
description of the ARMED framework components, agnostic to
model architecture. These components include the fixed effects
subnetwork hF , including a conventional neural network and

an adversarial classifier a that together learn cluster-invariant
features, the random effects subnetwork hR for learning Z-
dependent cluster-specific features, the mixing function m that
combines the fixed and random effects for prediction, and the
Z-predictor used to apply random effects to new clusters.

A. Fixed Effects Subnetwork

First, we add an adversarial classifier (Fig. 1, gray area)
to the conventional model (Fig. 1, blue area) to enforce the
learning of cluster-invariant fixed effects, creating the Fixed
effects subnetwork hF (X;β). This is based on the adversarial
learning technique for domain generalization [19], [20]. For a
neural network with L layers, let

HF (X;βF ) = [hF,1(X;βF,1), ..., hF,L(X;βF,L)]

represent the collected outputs of each layer, whereβF,l contains
the weights up to the lth layer. We define an adversarial classifier
a which predicts a sample’s cluster membership from these
layer outputs, Ẑ = a(HF (X;βF );βA), where βA contains the
weights for this adversary. The adversary is trained to minimize
the categorical cross-entropy loss:

LCCE(Z, Ẑ)

=− 1

n

n∑
i=1

c∑
j=1

Zi,j log(Ẑi,j) + (1− Zi,j) log(1− Ẑi,j)

Meanwhile, the main model is penalized for learning features
that allow the adversary to predict cluster membership. It must
maximize this cross-entropy, which we call the cluster general-
ization loss. The resulting training objective of the fixed effects
subnetwork is

Le(y, ŷF )− λgLCCE(Z, Ẑ) (2)

where the hyperparameter λg controls the weight of the gener-
alization loss. We use ŷF to denote the prediction output of this
fixed effects subnetwork.

B. Random Effects Subnetwork

We next define a second subnetwork to learn the Random
effects, hR(X;U(Z)) with cluster-specific weights U(Z) (Fig.
1, orange area). The cluster-specific values for each individ-
ual weight u(Z) in U(Z) are assumed to follow a normal
distribution with mean 0, i.e. u(Z) ∼ N(0, σ) where σ rep-
resents the inter-cluster variance of each weight. Collectively,
Σ contains the inter-cluster variance for all weights in U(Z).
We implement these weights using a Bayesian formulation.
We specify a zero-mean normal prior distribution for each
weight p(U) ∼ N(0, σp) with the fixed prior variance σp as
a global hyperparameter. The posterior distribution p(U |X)
is then learned through variational inference, which reframes
Bayesian modeling as an optimization problem that can be
efficiently handled through gradient descent [23], [24]. The
objective of variational inference is to learn a surrogate posterior
q(U), here a multivariate normal distribution, which closely
approximates the true posterior p(U |X), where “closeness” is
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measured by the Kullback-Leibler (KL) divergence:

DKL(q(U)||p(U |X)) =

∫
q(U) log

q(U)

p(U |X)
dU

Minimizing DKL(q(U)||p(U |X)) directly is impossible be-
cause computing the posterior through Bayes Rule, p(U |X) =
p(X|U)p(U)

p(X) , involves the intractable marginalization p(X). In-
stead, variational inference maximizes the Evidence Lower
Bound (ELBO) which contains fully tractable and differentiable
quantities:

ELBO = Eq[log p(X|U)]−DKL(q(U)||p(U))

where the first right-hand term is the log-likelihood and the sec-
ond term is the KL divergence between the surrogate posterior
and the prior. For gradient descent, we minimize the negative
ELBO and let Le(y, ŷ) represent the first term, i.e. the negative
log-likelihood loss. This yields the following objective:

Le(y, ŷ) + λKDKL(q(U)||p(U)) (3)

with the hyperparameter λK controlling the strength of
the regularization to the prior and DKL(q(U)||p(U)) =∫
q(U) log q(U)

p(U)dU . Note that our method based on variational
inference does not require expensive inversions of covariance
matrices as in MeNet and LMMNN [13], [21].

The architecture of this subnetwork will depend on the types
of random effects to be modeled. Nonlinear random effects
slopes can be modeled as weights multiplied by the fixed effects
latent representation hF (X;β):

hR,nlin(xi;unlin(zi)) = hF (xi;β)
�unlin(zi) (4)

where zi and xi are the rows in Z and X for the ith sample and
unlin(zi) ∈ Rq×1 returns the slopes for cluster zi, q being the
number of output neurons of hF (xi;β). A random intercept is
modeled simply as a weight:

hR,int(u(zi)) = uint(zi) (5)

where uint(zi) is a scalar value. Additionally, for tabular data,
we can model linear random effects slopes multiplied directly
with X , which allows each slope to be interpreted directly with
respect to a corresponding input variable:

hR,lin(xi;ulin(zi)) = x�
i ulin(zi) (6)

where ulin(zi) ∈ Rp×1 returns the slopes for cluster zi. The
random effects subnetwork outputs the sum of these random
effects:

hR(xi;U(zi)) = hR,nlin(xi;unlin(zi))

+ hR,lin(xi;ulin(zi))

+ hR,int(uint(zi)) (7)

These three cases will apply to most models with a dense penulti-
mate layer producing a vector-form hF (X;β). For models such
as autoencoders, we describe in the Supplemental Materials,
(available online), how random effects can be readily applied
across multiple convolutional layers (Section 3.1.3, Fig. S5).

C. Combining Fixed and Random Effects

We construct the final ARMED model by combining the
outputs of the fixed effects and random effects subnetworks. In
the linear model of (1), random and fixed effects were combined
through addition. For greater flexibility here, we substitute the
addition in (1) with a more general mixing function m(...).

ŷM = m(hF (X;β), hR(X;U(Z))) (8)

For example, in the following binary classification applications,
we use a nonlinear analog of (1). We add hR(X;U(Z)) to the
logit of ŷF (equal to hF (xi;β)

�βL where βL are the weights
of the output layer), then apply the sigmoid activation function:

ŷM = sigmoid
(
hF (xi;β)

�βL + hR(xi;U(zi))
)

The objective function is obtained by combining (2) and (3):

Le(y, ŷM ) + λFLe(y, ŷF )

−λgLCCE(Z, Ẑ) + λKDKL(q(U)||p(U)) (9)

The second term ensures that the fixed effect subnetwork will
still be capable of prediction on its own so that the fixed effect
features will be meaningful in later analyses. The loss weight
λF < 1 balances the fixed effect error with the mixed effect error
Le(y, ŷM ).

ARMED includes these hyperparameters: the generalization
loss weight λg, the KL divergence weight λK , the fixed effect
prediction error weight λF , and the prior distribution variance
σp. Usage of linear versus nonlinear slopes must also be con-
sidered. In practice, we find that these can be easily tuned for
model performance using standard hyperparameter optimization
approaches, such as random search or Bayesian optimization,
and appropriate cross-validation.

D. Prediction on Unseen Clusters

The previous mixed effects deep learning approaches provide
no method for using the learned random effects when predicting
on data not from clusters seen during training, i.e. not included
in Z [13], [21], [22]. The authors of LMMNN propose to
use only the fixed effects of their model on unseen clusters
[13]. While the learned fixed effects, by definition, represent
population-average associations, new data is not necessarily free
of cluster effects and performance may be improved by fully
utilizing the learned random effects. We propose to infer Z for
unseen cluster data using a classifier we call the Z-predictor. We
train this classifier to predict Z from X on the data from seen
clusters, then use it to infer Z for data from unseen clusters. The
unthresholded softmax predictions from the classifier provide a
weighted combination of seen clusters that are most similar to
each unseen cluster sample. In our applications, the Z-predictor
uses the same architecture as the adversarial classifier.

E. Applications

1) Applications of ARMED to Dense Feedforward Neural
Networks: Our first architectural application of ARMED is to
a dense feedforward neural network (DFNN), which is suited
to tabular data such as clinical measurements or pre-engineered
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image features. We describe the specifics of the ARMED-DFNN
architecture in Fig. S1 and the Supplemental Materials 3.1.1,
available online.

Spiral Classification Simulations: First, we evaluated the
ARMED-DFNN on a simulated classification problem where
cluster effects can be controlled, model-learned information can
be compared to ground truth, and known confounded features
can be added. The simulations are built upon the well-known spi-
ral classification problem, where points must be classified into
one of two spirals based on their coordinates x1 and x2 [25]. We
simulated a nonlinear random effect by dividing the points into
10 clusters and randomly varied the spiral radius across clusters
(Fig. S2). There were 3 variations of this simulation: 1) spiral
radii varied across clusters, 2) spiral radii varied across clusters
and spiral labels were inverted in half of the clusters (a more
severe random effect), and 3) spiral radii varied across clusters
and 2 known confounded probe features x3 and x4 were added.
These probes created a spurious association between cluster
and label but were not associated with the underlying spiral
functions. Further details on these simulations can be found
in the Supplemental Materials 3.2, available online. Because
we have defined the random effects to be nonlinear, we used
an ARMED-DFNN architecture with nonlinear random slopes
((4)) and a random intercept ((5)).

To test the ability of the fixed effects subnetwork to correctly
downweight these confounded probes, we measured feature
importance by computing the gradient of the model output with
respect to the input features [26], [27]. Features with larger
gradient magnitudes are more important in forming the model
output. We compared the importance of each confounded probe
(x3 and x4) to that of the least important true feature (x1 or x2).

Mild Cognitive Impairment Conversion Prediction: For a
complementary real-world application, the ARMED-DFNN
was used to predict the future development of full Alzheimer’s
Disease (AD) in subjects with mild cognitive impairment (MCI).
MCI is an early stage of cognitive decline that may progress
to dementia. Our target was to distinguish progressive MCI
(pMCI), where a subject converts to AD within 24 months
of baseline observation, from stable MCI (sMCI), where the
subject does not convert within 24 months. We used data
from the Alzheimer’s Disease Neuroimaging Initiative, which
includes baseline demographic information, cognitive scores,
neuroimaging measurements, and biomarker measurements, as
well as longitudinal diagnoses for each participant, acquired
with informed consent and institutional review board approval
(Supplemental Materials 3.3.1, available online). The training
dataset came from the largest 20 study sites, and we used site
as the random effect cluster. Inter-site variance has been shown
to affect cognitive scores, which are sensitive to judgments by
human raters, and neuroimaging, which is sensitive to MRI scan-
ner parameters [1], [3], [28]. We held out the remaining 34 sites
to evaluate model performance on sites unseen during training.
Performance metrics included area under the receiver operating
characteristic curve (AUROC), balanced accuracy, sensitivity,
and specificity. For this application, we used an architecture
with linear random slopes ((6)) and a random intercept ((5)).

These were chosen to allow direct interpretation of the learned
random slopes and inter-site variance for each input feature.

As with the spiral simulations, we subsequently added sim-
ulated confounded probe features to test how well each model
could downweight known confounded features. We generated
5 confounded probes that were nonlinearly associated with site
and with the probability of being labeled pMCI but had no real
biological relevance (Supplemental Materials 3.3.1, available
online). We then compared how highly each model ranked the
probes based on feature importance (gradient magnitudes).

2) Application of ARMED to Convolutional Neural Net-
works: We next applied our approach to a convolutional neural
network (CNN), another important deep learning archetype,
creating an ARMED-CNN capable of learning nonlinear random
slopes and random intercepts. Architecture details are described
in Fig. S3 and Supplemental Materials 3.1.2, available online.

We applied the ARMED-CNN to the classification of AD
versus cognitively normal (CN) structural MRI, with study site
as the random effect cluster. We acquired T1-weighted MRI from
12 sites in the ADNI dataset (inclusion criteria and preprocessing
details are in Supplemental Materials 3.3.2, available online).
These 12 sites were selected to emphasize the confounding
site effect, where sites using General Electric MRI scanners
had a greater proportion of AD subjects compared to sites
using Philips or Siemens scanners (Table S1). The remaining
51 sites were held out to evaluate performance on sites un-
seen during training. We extracted a two-dimensional coronal
slice through the hippocampi from each image. Performance
metrics included AUROC, balanced accuracy, sensitivity, and
specificity.

3) Application of ARMED to Autoencoders: To demonstrate
our framework on unsupervised learning models, we developed
a mixed effects autoencoder. Our fourth application was the
melanoma live-cell image compression and phenotypic clas-
sification problem described in [6]. In this work, the authors
used a convolutional autoencoder to compress the images into
a vector latent representation, then trained a classifier to label
cells as having either high or low metastatic efficiency. They
revealed that batch effects are prominent in this dataset, due to
discrepancies between image batches acquired across different
days, and that the latent representations strongly segregated by
batch. The dataset is described further in Supplemental Materials
3.4, available online. The training data from the melanoma cell
image dataset contained images acquired over 13 days (batches),
and the remaining 11 days were held out as unseen batches.

We extended their autoencoder architecture by connecting
the metastatic efficiency classifier directly to the autoencoder
and training the autoencoder-classifier (AEC) end-to-end. We
then applied our ARMED framework to create an ARMED-
AEC, containing a fixed effects subnetwork that produces batch-
invariant latent representations and a random effects subnetwork
that learns how the batch effects alter image appearance (Fig.
S4). Our hypothesis was that the modeling of mixed effects
would improve classification performance over the base AEC.
This architecture is described in Supplemental Materials 3.1.3,
available online.
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TABLE I
SPIRAL SIMULATION RESULTS WITH 10-FOLD CROSS-VALIDATION

In addition to evaluating the reconstruction error (MSE) and
phenotype prediction performance (AUROC), we also measured
how strongly each model’s latent representations clustered by
batch. We computed the Davies-Bouldin (DB) score, where
lower values indicate stronger clustering [29], and the Calinksi-
Harabasz (CH) score, where higher values indicate stronger
clustering [30]. Consequently, we desire a higher DB score and
lower CH score to achieve batch-invariant latent representations.

F. Compared Methods and Ablation Tests

In each application, we compared the proposed mixed ef-
fects model with the following approaches. First, we tested
a conventional neural network where the cluster membership
Z is disregarded and data is assumed to be iid. Second, for
the DFNN and CNN, we tried the “cluster input” approach
of treating the one-hot cluster membership Z as a categorical
covariate, i.e. an additional model input. For the DFNN, Z
was concatenated to X . For the CNN, Z was concatenated to
flattened output of the last convolutional layer, before the dense
hidden layer. We also created a “cluster input+” CNN where Z
was expanded into a tensor and concatenated along the channel
dimension before every convolutional layer. When evaluating
on unseen clusters, we used the inferred Z from the Z-predictor.
Third, we also compared to meta-learning domain generalization
(MLDG) [17]. However, due to the high computational cost
of second-order gradients in MLDG (training took 10 times
longer than the conventional DFNN) and poor performance, we
dropped the MLDG comparison for the other applications, after
the spiral simulation application. Fourth, we tested a domain
adversarial (DA) neural network, i.e. the fixed effect subnetwork
by itself. Despite regularization to learn only fixed effects, it does
not model any cluster-specific random effects. Finally, for the
DFNN and CNN, we tested MeNet [21] and LMMNN [13].
For the autoencoder, only the proposed ARMED approach has
a suitable adaptation.

Additionally, we performed two ablation tests of the proposed
mixed effects approach. We first trained the ARMED models
without the adversarial classifier (“w/o Adv.”) to test the neces-
sity of the generalization loss to learn fixed effects. Additionally,

we evaluated the originally trained, complete ARMED model
on held-out data with randomly-assigned cluster memberships
(“randomized Z”). For data from seen clusters, this tested
whether the model truly learned cluster-specific effects. For
data from unseen clusters, this tested the impact of using the
Z-predictor to infer cluster membership.

III. RESULTS

A. Spiral Classification Simulations

The classification accuracy of each model, with 10-fold cross-
validation, is presented in Table I. In simulation 1 (random
cluster-specific radii distributed around 1), the ARMED-DFNN
outperformed all other models and had statistically signifi-
cantly higher accuracy than the second-best model, MeNet
(78.8% versus 77.4%, p = 0.003 in paired T-test). It was also
uniquely able to learn appropriate cluster-specific decision
boundaries that scaled in size with the cluster-specific spiral
radii (Fig. 2). For example, cluster 1 (left column) has the
smallest ground truth radius (green dashed line), and while
cluster 2 (middle column) has the largest true radius, and the
ARMED-DFNN uniquely learned this difference. In simulation
2 (greater inter-cluster variance, spiral labels inverted in half),
only the cluster input DFNN, MeNet, and ARMED-DFNN
achieved accuracy substantially higher than chance (50%), with
67.1%, 53.3%, and 65.0% respectively. The cluster input DFNN
and ARMED-DFNN statistically significantly outperformed
MeNet (p � 0.001), but did not differ significantly from each
other at p < 0.05. In simulation 3 (confounded probe features
added), the cluster input ranked first (76.4%), followed by the
ARMED-DFNN (74.5%) and MeNet (73.0%). However, the
ARMED-DFNN more effectively downweighted the 2 con-
founded features compared to the true features (T-statistic =
12.631 and 18.173) compared to the cluster input DFNN (T-
statistic = 5.346 and 5.042) and MeNet (T-statistic = 7.923 and
4.541) (Table II). The conventional and meta-learning models
placed greater importance on the confounded than the true
features.

In ablation tests, removing adversarial regularization non-
significantly improved the accuracy of the ARMED-DFNN in
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Fig. 2. Decision boundaries learned by each model in spiral simulation 1, where spiral radii varies across clusters as a random effect. Each row illustrates one
of 3 representative clusters from 10 total simulated clusters. Each column contains the decision boundaries (black solid line) learned by one model. The green
dashed line illustrates the true decision boundary, computed as the midpoint between the two spirals. Only the ARMED-DFNN was able to learn the appropriate
cluster-specific decision boundaries.

TABLE II
SENSITIVITY TO CONFOUNDED PROBE FEATURES IN SPIRAL SIMULATION 3

simulations 1 and 2, but decreased accuracy in simulation 3. It
also worsened the separation of confounded and true features in
simulation 3 (T = 1.390 and 0.343). Using randomly assigned
cluster memberships in Z uniformly decreased performance,
confirming that the ARMED-DFNN learned necessary cluster-
specific information.

B. MCI Conversion Prediction

The performance of each model in classifying pMCI ver-
sus sMCI, over 10×10 nested cross-validation folds, is com-
pared in Table III. On study sites seen during training, the
ARMED-DFNN outperformed all other models in AUROC,
accuracy, and specificity (Table III, top). The AUROC of the
ARMED-DFNN was statistically significantly higher than that
of the second-best model, the conventional DFNN (0.926 versus
0.884, p = 0.048). On held-out study sites unseen during train-
ing, the ARMED-DFNN again outperformed all other models
in AUROC, accuracy, and specificity (Table III, bottom). The

AUROC of the ARMED-DFNN was statistically significantly
higher than that of the second-best LMMNN (0.837 versus
0.811, p � 10−3). The DA-DFNN performed the poorest on
both seen and unseen sites, with AUROC of 0.811 and 0.723
respectively.

Removing the adversarial regularization of the ARMED-
DFNN reduced AUROC (0.926 to 0.919) and accuracy (81.9%
to 81.4%) on seen sites and accuracy (75.6% to 73.5%) and
sensitivity (72.4% to 65.4%) on unseen sites. On seen sites,
randomizing the site assignments reduced all metrics, including
AUROC from 0.926 to 0.889. On unseen sites, using random
instead of inferred site assignments also reduced all metrics
including sensitivity from 72.4% to 69.8%.

We examined the feature importance ranking, based on
the fixed effects subnetwork, and learned site-specific random
slopes, based on the random effects subnetwork, of the ARMED-
DFNN (Fig. 3). Demographic features including, race, ethnic-
ity, and marital status had especially low inter-site variance.
Cognitive scores such as the Clinical Dementia Rating Sum of
Boxes (CDR-SB) and and Mini Mental State Exam (MMSE)
had especially high inter-site variance. These results are further
discussed in Section IV-C1. Feature importance rankings for
all 6 DFNNs are presented in Fig. S6. We also examined the
site-specific random intercepts of the ARMED-DFNN and found
they correlated strongly with the percentage of pMCI subjects
at each site (Pearson’s r = 0.860, p < 10−5), indicating the
random intercepts captured the variability in class balance across
sites, a major source of confounding effect.

When simulated confounded probe features were added,
the ARMED-DFNN ranked these probes the lowest. The 10
highest ranked features for each model are shown in Fig. 4.
The conventional DFNN, cluster input DFNN, LMMNN, and
ARMED-DFNN without domain adversarial regularization all
included 3 of the 5 confounded probes within the top 10 features.
The DA-DFNN and MeNet included 1 confounded probe and
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TABLE III
PREDICTION OF STABLE VERSUS PROGRESSIVE MILD COGNITIVE IMPAIRMENT

Fig. 3. Feature importance and random slope variance for the ARMED-DFNN
predictor of stable versus progressive mild cognitive impairment. left) Features
are ranked by descending median feature importance (gradient magnitude)
across 10 cross-validation folds, measured from the fixed effects subnetwork.
right) The inter-site variance of each feature’s random slopes. See Supplemental
Section 3.3.1, available online for abbreviations.

the full ARMED-DFNN included none in the top 10 features.
Paired sign tests indicate that the ARMED-DFNN ranked the
confounded probes significantly lower than any other model,
e.g. p = 0.031 when compared to the second-best models, DA-
DFNN and MeNet.

Fig. 4. MCI conversion prediction with 5 added confounded probes (bolded
label, red bar). For each DFNN, the top 10 features are shown, ranked by median
feature importance (gradient magnitude) across 10 cross-validation folds.

C. AD Diagnosis

The cross-validated performance of each model in classifying
brain MRIs as CN versus AD is presented in Table IV. On
study sites seen during training, LMMNN showed the highest
AUROC, followed by MeNet, cluster input+, and the ARMED-
CNN (Table IV4, top). Neither LMMNN, MeNet, nor cluster
input+ significantly outperformed ARMED-CNN (paired T-test,
p = 0.064, 0.210, 0.255, respectively). On unseen sites (Table
IV, bottom), the ARMED-CNN performed second best after
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TABLE IV
ALZHEIMER’S DISEASE DIAGNOSIS FROM MRI

the DA-CNN in AUROC, accuracy, and sensitivity. MeNet,
LMMNN, and cluster input+ had the lowest AUROC on the
unseen sites, indicating poor generalization. Without adversarial
regularization, the performance of the ARMED-CNN increased
slightly on unseen sites (mean AUROC 0.645 to 0.655) but
decreased on seen sites (mean AUROC 0.900 to 0.816). Ran-
domizing the site membership for seen sites drastically reduced
all metrics, including mean AUROC from 0.900 to 0.585. On
unseen sites, randomizing instead of inferring site membership
reduced mean AUROC from 0.645 to 0.551.

Gradient-weighted Class Activation Mapping (Grad-CAM)
visualizations from each model revealed differences in the
features learned (Fig. 5) [31]. The conventional, cluster in-
put, MeNet, and LMMNN CNNs attributed more weight to
regions in the edges of each image, near the periphery of the
brain. However, the DA-CNN emphasized medial brain areas,
including the hippocampi and surrounding parahippocampal
gyri. For the ARMED-CNN, we produced Grad-CAMs us-
ing the fixed effects subnetwork, which contains the learned
cluster-invariant features. Like the DA-CNN, the ARMED-
CNN also emphasized medial brain areas but gave additional
weight to the superior regions including the lateral ventri-
cles. Furthermore, we created separate Grad-CAMs to visual-
ize the distinct site-specific features learned by the ARMED-
CNN random effects subnetwork (Fig. S7), which involved
the image periphery for some sites and more medial areas for
others.

D. Cell Image Compression and Classification

The performance of each AEC model in compressing and
classifying melanoma live-cell images is presented in Table
V. For computational efficiency, the pre-trained and frozen
DA-AEC was reused as the fixed effects subnetwork of the
ARMED-AEC. For the ablation test without adversarial reg-
ularization (“w/o Adv.”), the pre-trained conventional AEC was
reused as the fixed effects subnetwork. Confidence intervals
were computed using DeLong’s method [32]. On seen batches,
(Table V, first column group) the ARMED-AEC had the high-
est performance in classifying metastatic efficiency (AUROC
0.869), statistically significantly outperforming the second-best
model, the conventional AEC (p < 0.001), and it had the lowest
reconstruction error (MSE 0.0012). On unseen batches (Table
V, second column group), the ARMED-AEC again showed the
best classification performance (AUROC 0.789). This classifi-
cation performance was statistically significantly higher than
the second-best model, the conventional AEC (p < 0.001). All
models had similar reconstruction error (MSE 0.0024) on unseen
batches. Examining each AEC’s latent representations, the DA-
AEC and ARMED-AEC (using the DA-AEC as its fixed effects
subnetwork) exhibited much less batch effect contamination.
Compared to the conventional AEC, the DB score improved
from 8.885 to 43.009 (484% relative increase) and the CH score
improved from 545.9 to 20.4 (96% relative decrease).

In the ablation tests, removing the domain adversarial regu-
larization of the fixed effects subnetwork in the ARMED-AEC
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TABLE V
MELANOMA LIVE CELL IMAGE COMPRESSION AND CLASSIFICATION, AND BATCH EFFECT CONTAMINATION OF LATENT REPRESENTATIONS

Fig. 5. Grad-CAM visualizations indicating important image regions for
classifying Alzheimer’s Disease versus cognitively normal individuals. Each
row contains examples from one of three representative study sites.

(using the conventional AEC as the fixed effects subnetwork)
slightly increased classification AUROC on seen batches (0.876
versus 0.869) and on unseen batches (0.791 versus 0.789). How-
ever, this came at the expense of greater batch contamination
of the latent representations (DB score 8.885 and CH score
545.9). When cluster assignments were randomized instead of
using the true cluster assignments on seen batches, reconstruc-
tion MSE worsened from 0.0012 to 0.0018 and classification
AUROC decreased from 0.869 to 0.732. On unseen batches,
randomized instead of Z-predictor-inferred cluster assignments
reduced classification AUROC from 0.789 to 0.712.

To visualize the random effects learned by the ARMED-AEC,
we generated image reconstructions from the random effects

Fig. 6. Reconstructed melanoma cell images from the ARMED-AEC. The
first row contains the real image, the second row contains the fixed effects-based
reconstructions, and remaining rows show random effects-based reconstructions
using different learned random effects.

subnetwork with various learned batch-specific effects applied
(Fig. 6). These simulate the appearance of an image if it had
been acquired within different batches. We compared these with
the image reconstructions from the fixed effects subnetwork,
where batch effects have been removed. Some batches showed
stronger specular highlights (e.g., batches 2 and 5), while others
had greater contrast in the cell periphery (e.g., batches 1 and 3).

IV. DISCUSSION

A. General Observations

Our experiments across four applications illustrate the three
critical contributions of ARMED. First, we demonstrated that
the fixed effects subnetwork of ARMED models assigns feature
importance more appropriately than the compared models. In the
spiral simulations, the ARMED-DFNN most strongly separated
the true and confounded features by feature importance. The
conventional and MLDG models erroneously placed greater
importance on the confounded probes than the true features,
while the cluster input, DA-DFNN, MeNet, and LMMNN
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models downweighted the confounded probes to a lesser degree
than the ARMED-DFNN. In MCI conversion prediction with
simulated confounded probes, the ARMED-DFNN ranked the
probes statistically significantly lower than any other model,
including the DA-DFNN and MeNet. In contrast, the conven-
tional, cluster input, and LMMNN models were most sensitive
to the probes. In AD diagnosis, Grad-CAM visualizations
showed that the ARMED-CNN highlighted more biologically
plausible brain regions than the conventional, cluster input,
MeNet, and LMMNN CNN’s, which is further discussed
in Section IV-C2.

Second, we demonstrated the ability of ARMED to visualize
random effects learned by the random effects subnetwork. In
MCI conversion prediction, we quantified the learned inter-site
variance of the random slopes for each feature. This allowed us
to identify which features are most contaminated by site effects,
and we discuss these below (Section IV-C1). In AD diagnosis,
we visualized site-specific differences in Grad-CAMs. Finally,
in the cell imaging application, we generated image reconstruc-
tions showing the impact of learned batch effects.

Third, ARMED typically outperforms the compared
non-mixed effects methods and outperforms or matches the other
mixed effects methods. In the spiral simulations, the ARMED-
DFNN had either the best or second-best accuracy, while being
more discriminative between true and confounded features and
learning the most cluster-appropriate decision boundaries. In the
MCI conversion application, the ARMED-DFNN outperformed
all other methods on both data from seen and unseen sites. In AD
diagnosis, the ARMED-CNN performed similarly to MeNet
and LMMNN methods on seen sites and competed favorably
with the DA-CNN on unseen sites. Meanwhile, MeNet and
LMMNN generalized poorly to unseen sites. In the cell imaging
application, the ARMED-AEC had the best reconstruction
error on data from seen batches, the best metastatic efficiency
classification on both seen and unseen batches, and substantially
reduced batch effects in its latent representations compared
to the conventional AEC. In ablation tests, we found that
ARMED models without DA often performed similarly to or
non-significantly better than the full model with DA, but their
fixed effects subnetworks were more sensitive to confounded
probe features. Therefore, we recommend always using the full
ARMED model with DA, as any small performance increase
comes at the cost of confound susceptibility. We also found
that randomizing cluster assignment reduced performance on
seen clusters, confirming that the ARMED models had learned
cluster-specific information in the random effects subnetworks.
Similarly, performance on unseen clusters decreased when
using randomized cluster assignment instead of using the
Z-predictor to infer cluster membership. This indicates that the
Z-predictor is needed to fully exploit the learned random effects
when predicting on data from unseen clusters.

Though we have focused on biomedical data in this work, we
anticipate that our approach will be of use to any case where
data is non-iid and subject to random effects. Given its flexi-
ble and modular nature, the ARMED framework should apply
readily to other architecture types besides the three demonstrated
here.

B. Comparison to Prior Work

A common approach to handling clustered data is to include
the cluster membership, which is an unordered categorical vari-
able, as additional one-hot encoded covariates in X [12]. This
approach is unable to disentangle the cluster-specific random
effects and cluster-independent fixed effects, and we found it was
more sensitive to simulated confounded probes than ARMED
models. We also found inferior performance versus ARMED,
likely due to the high cardinality of the added features which can
lead to overfitting [13], [33]. For example, the MCI conversion
application had 20 sites and 37 input features, meaning that to
add cluster membership to X would increase the width of X by
35%. ARMED is better suited to handling this high-cardinality
information by modeling clustering as a random effect, which
imposes a normal distribution prior.

A more recent approach to handling differences across
clusters is domain adversarial learning. We showed that DA
does improve generalization to data from unseen clusters.
However, ARMED improves upon DA, adding a random effects
subnetwork to capture the cluster-specific information that
DA discards, which results in better performance on clusters
seen during training. Using the Z-predictor, this cluster-specific
information can also be used when predicting on data from
unseen clusters, allowing ARMED to outperform DA on unseen
clusters as well.

This work remedies key weaknesses in previous approaches to
incorporate mixed effects into deep learning. We described spe-
cific random effects architectures for random intercepts, linear
slopes, and/or nonlinear slopes. This allows greater flexibility
than DeepGLMM and LMMNN, which only learn random in-
tercepts, and MeNet, which only learns nonlinear random slopes
[13], [21], [22]. Another key improvement was adversarial regu-
larization of the fixed effects subnetwork to learn generalizable,
cluster-agnostic information. In our experiments with simulated
confounders, this allowed ARMED models to appropriately
upweight nonconfounded features and downweight confounded
features, while MeNet and LMMNN, lacking adversarial regu-
larization, were susceptible to the spurious confounded features.
Next, we demonstrated interpretation and visualization of the
learned random effects, which was not explored in these previous
works. Finally, we evaluated ARMED models on data from
clusters unseen during training and provided a method to infer
cluster membership and apply learned random effects on this
data. The previous works lacked such a method, meaning that
the learned random effects cannot be utilized on new data. This
is a major limitation for practical applications, where a deployed
model may need to be applied to data from a new cluster, such
as a new clinical site or patient.

C. Application-Specific Discussions

1) MCI Conversion Prediction: The ARMED-DFNN quan-
tifies the inter-site variance of the learned random slope for
each feature (Fig. 3). We found that demographic features such
as race and ethnicity had the lowest inter-site variance, which
in unsurprising as the association between these features and
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MCI conversion should not be sensitive to measurement differ-
ences across sites. Certain cognitive measurements, however,
had distinctly high inter-site variance. The CDR-SB score had
the highest variance, which concurs with a previous report that
CDR-SB has suboptimal inter-rater reliability in early dementia
patients, such as those with MCI [34]. MMSE had the second
highest variance in our ARMED-DFNN, again agreeing with
previous findings of low inter-rater reliability [35].

Though we intentionally held out a large portion of the ADNI
dataset to evaluate our models on unseen sites, our ARMED-
DFNN performed similarly to or better than several published
results on predicting 24-month MCI conversion in ADNI using
deep learning. Lee et al. achieved 80% accuracy compared to
the 81.9% of our ARMED-DFNN [36]. Shi et al. and Lian et al.
achieved AUROC of 0.816 and 0.793, respectively, compared
to our 0.926 [37], [38]. Note that neither of these studies held
out entire study sites for evaluation, and our AUROC on unseen
sites (0.837) still exceeded their results on seen sites.

2) AD Diagnosis: The Grad-CAMs of the DA-CNN and
ARMED-CNN appropriately emphasized the importance of me-
dial brain regions including the hippocampus and surrounding
medial temporal lobe, which are involved in AD-related brain at-
rophy (Fig. 5) [39], [40], [41]. The ARMED-CNN Grad-CAMs
also indicated the importance of the lateral ventricles, where en-
largement has been connected to AD [40], [42]. The incorpora-
tion of these additional structures likely contributed to the better
performance of the ARMED-CNN (AUROC 0.900) versus the
DA-CNN (AUROC 0.823). Meanwhile, the conventional, clus-
ter input, MeNet, and LMMNN models relied highly on likely
spurious features in the image periphery. Such features appear
to be related to site effects on imaging, since the random effects
of the ARMED-CNN affect similar peripheral areas (Fig. S7).

The performance of our ARMED-CNN compares favorably
to previous models using 2D MRI to diagnose AD in the ADNI
dataset. We achieved 88.7% accuracy, while Kang et al. report
90.4% and Ebrahimi et al. report 87.5% [43], [44]. However, we
trained on a fraction of the total ADNI data that these reports
used, holding out the rest for evaluation of models on unseen
sites. Consequently, our work focuses on comparisons across
architectures, not with previous studies.

3) Cell Image Compression and Classification: We compare
our ARMED-AEC results to the previous analysis published by
Zaritsky et al. [6]. While they discussed the batch effect present
in the latent representations produced by their autoencoder, their
methods did not explicitly suppress this batch effect. In contrast,
our proposed ARMED-AEC reduced the batch effect in the
latent representations by 484% based on the DB score, compared
to an unmodified AEC. We also improved classification AUROC
to 0.876 compared to their reported 0.723, though this may
be partially due to the direct incorporation of the phenotype
classifier into the autoencoder, while Zaritsky et al. trained their
classifier separately from their autoencoder.

D. Limitations

Mixed effects models generally require the presence of several
clusters to accurately estimate the random effect distributions;

with <4 clusters, LME models provide less of an advantage
over generalized linear regression [8], [11]. Consequently, we
suggest some caution when using our method for data with
fewer than 4 clusters. Additionally, our method applies to
datasets with a single level of random effects, but there are
often cases with multiple levels of random effects, such as when
multiple observations are collected per subject who are then
clustered by study site. We plan to extend our methodology
to such multi-level cases in future work. Finally, a practical
limitation of ARMED is the additional complexity, which may
increase training time by approximately 1.5-2x. However, we
note that other methods have even greater computation cost,
such as meta-learning domain generalization (MLDG) which
uses second-order optimization and MeNet and LMMNN which
involve expensive matrix inversions [13], [17], [21].

V. CONCLUSION

Our proposed approach uses mixed effects techniques from
traditional statistics to improve the interpretability, reliability,
and performance of deep learning models on non-iid data.
ARMED models separately learn random and fixed effects in
distinct subnetworks, with the fixed effects subnetwork more
appropriately assigning feature importance with resilience to
confounding effects, helping to avoid Type I and Type II errors.
In biomedical applications, this allows better hypothesis forma-
tion and prevents waste of resources in following up confounded
results. Meanwhile, the random effects subnetwork allows users
to understand the cluster effects in their data, which can inform
future research. For example, clinical study organizers could
prioritize measurements with less inter-site variance in future
studies. Besides these benefits, ARMED increases predictive
performance on clustered data, including better generalization to
clusters unseen during training. Given these advantages demon-
strated across multiple model architectures and applications, we
broadly recommend the ARMED framework to deep learning
practitioners dealing with non-iid data. We make our code avail-
able at tinyurl.com/ARMEDCode.
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