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Differentially Private Graph Neural Networks
for Whole-Graph Classification

Tamara T. Mueller , Johannes C. Paetzold, Chinmay Prabhakar, Dmitrii Usynin, Daniel Rueckert , Fellow, IEEE,
and Georgios Kaissis

Abstract—Graph Neural Networks (GNNs) have established
themselves as state-of-the-art for many machine learning appli-
cations such as the analysis of social and medical networks. Sev-
eral among these datasets contain privacy-sensitive data. Machine
learning with differential privacy is a promising technique to allow
deriving insight from sensitive data while offering formal guar-
antees of privacy protection. However, the differentially private
training of GNNs has so far remained under-explored due to the
challenges presented by the intrinsic structural connectivity of
graphs. In this work, we introduce a framework for differential pri-
vate graph-level classification. Our method is applicable to graph
deep learning on multi-graph datasets and relies on differentially
private stochastic gradient descent (DP-SGD). We show results on
a variety of datasets and evaluate the impact of different GNN
architectures and training hyperparameters on model performance
for differentially private graph classification, as well as the scala-
bility of the method on a large medical dataset. Our experiments
show that DP-SGD can be applied to graph classification tasks
with reasonable utility losses. Furthermore, we apply explainability
techniques to assess whether similar representations are learned in
the private and non-private settings. Our results can also function
as robust baselines for future work in this area.
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I. INTRODUCTION

THE introduction of geometric deep learning, and more
specifically Graph Neural Networks (GNNs) [1], [2], has

enabled training ML models on data in non-Euclidean spaces
with state-of-the-art performance in many applications. GNNs
are able to directly leverage the graph structure of the data and
propagate the information stored in nodes of the graph along the
edges connecting nodes with each other. Thus, the information
flow through the network respects the underlying topology of
the graph.

In general, GNNs have been employed in three types of
problem areas: node classification, edge prediction, and graph
classification. In this work, we focus on graph classification
tasks. In the setting of graph classification (also termed graph
property prediction), the dataset consists of multiple indepen-
dent graphs and a GNN is trained to predict one label for each
individual graph, predicting a specific property of the whole
graph. Application areas of geometric deep learning range from
social networks [3] to medical applications [4], [5], drug discov-
ery or molecule classification [6], spatial biological networks [7]
and shape analysis [8]. Drawing meaningful insights in many of
these application areas fundamentally relies upon the utilisation
of privacy-sensitive, often scarce, training data belonging to indi-
viduals. For example when using functional magnetic resonance
imaging (fMRI) for identifying disease-specific biomarkers of
brain connectivity like in [4] and [9], the graph data encodes
sensitive, patient-specific medical data.

The reliance on sensitive data in machine learning holds
potential for misuse and can therefore be associated with the
risks to individual participants’ privacy. Various machine learn-
ing contexts have been shown vulnerable to be exploited by
malicious actors, resulting in a leakage of private attributes [10],
of membership information [11] or even in full dataset recon-
struction [12], [13]. In graph machine learning, the data and the
models trained on that data are by design more vulnerable to
adversarial attacks targeting privacy of the data owners. This is
attributed to the fact that graphs incorporate additional informa-
tion that is absent from typical Euclidean training contexts, such
as the relational information about the nodes in the graph. This
auxiliary, highly descriptive information can be leveraged by
an adversary to assist them in sensitive information extraction,
which has been demonstrated in a number of prior works [14],
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Fig. 1. Overview of our differentially private training method for graph
classification on a fingerprint dataset. In step (1) the fingerprint images are
converted into graphs, which are then in step (2) passed to a GNN model, which
is trained with differentially private stochastic gradient descent (DP-SGD). The
individual gradients are clipped, then averaged and Gaussian noise is added.

[15], [16]. Such attacks can also be facilitated by the choice of
learning context in cases the model is trained collaboratively.
For instance, transductive collaborative learning renders attacks
aimed at disclosing the membership of individual training points
trivial [15]. Of note, such additional information embedded in
graphs is often essential for effective GNN training and is,
thus, non-trivial to privatise or remove, as it would be highly
detrimental to the performance of the model.

It is thus apparent that the implementation of privacy-
enhancing techniques is required to facilitate the training of
models of sensitive graph-structured data, but such techniques
must also respect the particularities of graph machine learn-
ing. Our work utilises a formal method of privacy preserva-
tion termed differential privacy (DP) [17] which, when applied
to machine learning training, is able to objectively quantify
the privacy loss for individual input data points. DP methods
have been successfully applied to numerous problems such as
medical image analysis [18], [19], natural language processing
(NLP) [20], reinforcement learning [21] or generative mod-
els [22] and have shown promising results. DP guarantees that
the information gain from observing the output of an algo-
rithm trained on datasets differing in one individual is (some-
times with high probability), bounded by a (typically small)
constant.

In this work, motivated by the above-mentioned requirements
for objective privacy guarantees in machine learning tasks in-
volving graph-structured data, we study the problem of efficient
differentially private graph neural network training for graph
classification tasks (Fig. 1). To the best of our knowledge, our
is the first work that demonstrates the application of differen-
tial privacy to whole graph classification tasks. We investigate
and evaluate privacy-utility trade-offs on several datasets and
compare the learned representations between DP and non-DP
trained models using explianability methods for GNNs. This
comparison can offer insights into differences regarding model
parameters, which are considered as important for the decision
making, under different training conditions. In our work, we

extend the utilisation of differentially private stochastic gradient
descent (DP-SGD) [23], a technique designed for the training of
regular neural networks. Due to its compatibility with existent
deep learning workflows, it can be seamlessly adapted to GNN
use cases and therefore offers high generalisability to new model
architectures and problem spaces. We demonstrate that DP-SGD
can be applied to graph learning and evaluate our results with
respect to privacy budgets and network performance on five
different datasets. Combined with our investigation of the ex-
plainability technique GNNExplainer to determine differences
between DP and non-DP models, this work can serve as a
baseline for future work in this area. Our contributions can be
summarised as follows:

1) We formally extend the application of DP-SGD to graph
classification tasks with GNNs;

2) To demonstrate its utility, we apply our method to com-
monly utilised graph neural networks on a number of
benchmark and real-world datasets and investigate the
effects of DP training on model utility and privacy
guarantees;

3) To assess how similar the representations between pri-
vately and non-privately trained models are, we apply
GNNExplainer, a state-of-the-art explainability technique
tailored to graph neural networks.

II. RELATED WORK

Specific facets of differentially private graph analysis have
been addressed in prior work: Since the introduction of differ-
entially private computation on graph data in 2007 by Nissim
et al. [24], node-level and edge-level DP have been established
as the two DP formalisms on graphs [25]. As discussed in the
Theory section below, the definition of DP relies on the notion
of adjacent datasets, that is, datasets differing in the data of
one individual. In the setting of tabular data for example, two
datasets are adjacent if they differ in one row. In node-level DP,
two graph datasets are interpreted as adjacent if one node and
its incident edges is inserted or removed. For edge-level DP,
on the other hand, two datasets are regarded as adjacent if they
differ in exactly one edge. As real-world graphs are prevalently
sparse, the removal of a single node can severely alter the graph’s
structure [26], whereas removal of an edge typically has a less
severe impact on the resulting graph structure.

Implementations of the aforementioned techniques have been
presented in the context of graph neural network training. For
instance, Igamberdiev et al. [27] explore the application of DP
on Graph Convolutional Networks (GCNs) [28] for node classi-
fication. They evaluate privacy guarantees for text classification
on benchmark datasets and achieve rigorous privacy guarantees
while maintaining high model performance. Daigavan et al. [29]
formalise the notion of node-level DP on one-layer GNNs with
an extension of privacy amplification by sampling to GNNs and
evaluate their method on several benchmark datasets in node
classification tasks. Different approaches to the here introduced
application of differential privacy have been explored in the
context of federated learning on graphs and locally private graph
neural network training. Zhou et al. [30], for example, introduce
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a vertically federated GNN for node classification tasks and
Sajadmanesh et al. [31] introduce a framework to train locally
private GNNs. These works stand in contrast to the notion of
graph-level DP, which ensures data privacy of a graph as a whole.

DP is one of the most frequently used methods in deep
learning that offer privacy guarantees. Furthermore, it is the
only approach that gives formal guarantees for privacy as well
as a quantification of the guaranteed privacy. However, there
exist other empirical methods next to differential privacy that
allow to privatise sensitive data of individuals, which have also
been applied to GNN training in node classification and edge
prediction tasks. Liao et al. [32] introduce a method to filter spe-
cific node feature attributes using adversarial training of GNNs
and therefore achieve a strong defence against inference attacks.
Their method is in parallel to our work, since they do not ensure
differential privacy guarantees for each graph as a whole, but
instead address an information obfuscation problem where the
goal of an adversary is to infer specific node attributes in a graph.
Other works like the privacy-preserving network embedding
introduced by Han et al. [33] and the privacy-preserving GCN
model by Hu et al. [34] also do not give differential privacy
guarantees. They show other methods for protecting private links
in graph-structured data [33] and user-specific sensitive node
features [34], respectively.

However, to our knowledge, the application of DP algorithms
specifically to graph property prediction has neither been for-
malised nor evaluated.

III. THEORETICAL PRELIMINARIES

In this section, we introduce and formalise the theory to train
graph neural networks for graph property prediction using the
concept of differentially private stochastic gradient descent (DP-
SGD).

A. GNNs for Graph Property Prediction

The objective of graph classification (also known as graph
property prediction) is to predict a specific property of interest
for an entire graph G. In our examples, G represents an un-
weighted and undirected graph with G = (V, E), where V is a
set of nodes and E is a set of edges. The nodes V are represented
by a vector or a matrix of node features. Graph classification
aims to predict a property for each graph Gi, i ∈ [1, . . . , N ] in
a multi-graph dataset D = {G1,G2, . . . ,GN} with N graphs.
A GNN used for graph property prediction needs to map the
embedded node features into a unified representation of the
whole graph using a readout layer (e.g. global max pooling).
This single unified embedded graph representation allows to
learn a prediction for the whole graph.

B. Differential Privacy

Differential Privacy (DP) [17] is a theoretical framework and
collection of techniques aimed at enabling analysts to draw
conclusions from datasets while safeguarding individual pri-
vacy. Intuitively, an algorithm preserves DP if its outputs are
approximately invariant to the inclusion or exclusion of a single

individual in the dataset over which the algorithm is executed.
The DP guarantee is given in terms of probability mass/density
of the algorithm’s outputs.

In the current study, we assume that an analyst A is entrusted
with a multi-graph database D of cardinality N containing
privacy-sensitive graphs Gi ∈ D, i ∈ [1, . . . , N ] by a group of
individuals. We assume that each individual’s graph is only
present in the database once. From D, an adjacent database D′

of cardinalityN ± 1 can be constructed by adding or removing a
single individual’s graph. We denote adjacency by D � D′. The
set (universe) of all adjacent databases forms a metric space X
with associated metric dX , in our case, the Hamming metric.

We additionally assume that A executes a query function f
over an element ofX . In our study, the application off represents
a sequential composition of the forward pass, loss calculation
and gradient computation of a graph neural network for each
individual input (training example) to f . We then define the
global L2-sensitivity of f as follows:

Definition III.1 (Global L2-sensitivity of f ). Let f,X and dX
be defined as above. Additionally, let Y be the metric space of
f ’s outputs with associated metric dY . When Y is the Euclidean
space and dY theL2 metric, we define the (global)L2-sensitivity
Δ of f as:

Δ := max
D,D′∈X,D�D′

dY (f(D), f(D′))
dX(D,D′)

. (1)

We remark that the maximum is taken over all adjacent database
pairs in X . Moreover, Δ describes a Lipschitz condition on f ,
implying that Δ ≡ Kf , where Kf is the Lipschitz constant of
f . This in turn implies that Δ = sup ‖∇f‖2. In our case, the
L2-sensitivity of the loss function therefore corresponds to the
upper bound on its gradient.

We can now define the Gaussian Mechanism on f :
Definition III.2 (Gaussian Mechanism). Let f,Δ be defined

as above. The Gaussian mechanism M operates on the outputs
of f , y = f(x), where y ∈ R

n as follows:

M(y) = y + ξ, (2)

where ξ ∼ N (0, σIn), σ is calibrated to Δ, and I
n is the identity

matrix with n diagonal elements.
When σ is appropriately calibrated to Δ, M preserves (ε, δ)-

DP:
Definition III.3 ((ε, δ)-DP). M preserves (ε, δ)-DP if, ∀S ⊆

Range(M) and all adjacent databases D,D′ in X:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ. (3)

We remark that the definition is symmetric.

C. DP-SGD

Abadi et al. [23] introduced an extension to stochastic gradient
descent (SGD), termed DP-SGD to enable the differentially
private training of neural networks. Here, at each training step,
the Gaussian Mechanism is used to privatise the individual
gradients of each training example before the model parameters
are updated. However, since the sensitivity of the loss function in
deep neural networks is – in general – unbounded, the gradient
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L2-norm of each individual training example is clipped, that
is, projected to an L2-ball of a pre-defined radius to artificially
induce a bounded sensitivity condition before noise is applied.
Tracking the privacy expenditure over the course of training (pri-
vacy accounting) is enabled through the composition property
of DP, stating that repeated application of DP algorithms over
the same data predictably degrades the privacy guarantees. In
our study, a relaxation of DP termed Rényi DP (RDP) [35] is
used for privacy accounting, due to its favourable compositional
properties. RDP guarantees can be converted to (ε, δ)-DP.

DP-SGD is widely regarded as the gold-standard for privacy
preserving deep learning, as it is generically applicable to all
types of gradient-based optimisation and protects both features
and labels. It can be easily adapted to e.g. regression or genera-
tive modelling workflows. Other DP methods are substantially
less flexible [23]. Private aggregation of teacher ensembles
(PATE) [36] for example, is only usable for classification tasks
and requires large public datasets, which, especially in the
medical field, cannot be procured in many cases.

D. DP Notions on Graph-Structured Datasets

There exist three major tasks in the context of GNN training:
node classification/regression, edge prediction, and graph clas-
sification/regression. Similar to the existence of multiple tasks
in graph deep learning, there also exist different notions of DP
on graph-structured datasets, that specifically relate to different
notions of adjacent datasets. For node-level DP, two datasets
are interpreted as adjacent, if they vary in one node and all its
adjacent edges [25]. If the notion of adjacent datasets is based on
the inclusion or exclusion of one edge, this notion of DP is called
edge-level DP [37]. Node-level DP is a strictly stronger privacy
guarantee in comparison to edge-level DP [26]. As real-world
graphs are prevalently sparse, the removal of a single node can
severely alter the graph’s structure [26], whereas removal of an
edge typically has a less severe impact on the resulting graph
structure. However, in case of multi-graph datasets, a third notion
of DP can come into play. Here, two datasets can be defined to be
adjacent if they differ in one graph. The resulting DP-guarantee
is then graph-level DP [38], which we utilise in this work. For
more details we refer to [38].

IV. EXPERIMENTS

A. Datasets

We evaluate the application of DP-SGD in the context of
graph property prediction tasks on five datasets. We rely on three
publicly available benchmark datasets, a dataset from the U.K.
Biobank [39], and a synthetic dataset, generated to provide a
reproducible and easy to control proof-of-concept. The three
benchmark datasets tackle the problems of molecule classifi-
cation (Molbace), fingerprint classification, and Left Bundle
Branch Block (LBBB) detection on electrocardiogram (ECG)
data. Table I provides an overview of the datasets and their
characteristics and more detailed information about the datasets
can be found in the Appendix, (available online).

TABLE I
OVERVIEW OF THE UTILISED DATASETS AND THEIR CHARACTERISTICS

Synthetic Dataset: In order to derive a proof-of-concept
of the novel application of DP-SGD on graph classification
tasks, we construct a synthetic dataset, in which parameters can
be manually controlled to create an easily controllable dataset
where high accuracy can be achieved in a non-private setting and
we can evaluate how DP-SGD training at different strengths of
privacy guarantee impacts utility. We generate 1,000 individual
Erdős-Rényi graphs, equally distributed to two classes. Each
graph consists of twenty nodes which contain nine features each.
The node features are sampled from a normal distribution with
different mean values and the same standard deviation, corre-
sponding to the label class of the graph. The edge connection
probabilities vary slightly between the two classes.

Fingerprints Dataset: Fingerprint classification aims to sep-
arate images of fingerprints into the different classes - arch,
left, right, and whorl - from the Galton-Henry classification
system [40], [41]. A large within-class variability and a small
separation between classes makes fingerprint classification a
challenging task [42]. We rely on the dataset introduced by
Riesen et al. [43] and provided by TU Datasets [44] to per-
form differentially private graph classification on fingerprints.
The graphs are extracted from the images based on directional
variance and the task follows the Galton-Henry classification
scheme of five classes. We merge the five classes into four classes
following the approach described in [43]. Differentially private
ML naturally befits this task, as it allows one to privatise the
utilisation of the uniquely identifying fingerprint data for e.g.
training machine learning models in tasks such as automated
authentication.

Molbace Dataset: To perform molecule classification in a
binary graph classification setting, we use the benchmark dataset
Molbace from the OGB database [45], where the Molbace
dataset is adapted from MoleculeNet [46]. It consists of 1,513
graphs, where each graph represents a molecule. Edges represent
molecular bonds and nodes correspond to the atoms in the
molecule. Each node contains 9 node features and the average
number of nodes per graph is 34. We split the dataset into 1,210
training graphs, 152 test graphs and 151 validation graphs. Node
features contain atom features; for example the atomic number,
chirality, formal charge, or whether the atom is in a ring or
not. The prediction task of this dataset is to correctly classify
whether the molecule inhibits HIV virus replication [45]. Such
a task is representative of federated learning workflows with
per-site (local) DP application, in which e.g. several pharma-
ceutical companies wish to jointly train a model for molecule
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Fig. 2. Graph visualisation of ECG data. We connected the different signal
channels based on the medical location of the leads as well as prior knowledge.
Leads I, II, III, aVF, aVL, and aVR are located on the extremities and the
remaining leads on the chest.

property prediction, while wishing to limit the disclosure of their
(possibly proprietary) molecule structures from third parties.

ECG Dataset: For the task of electrocardiogram (ECG)
classification, we use the publicly available ECG dataset from
the China Physiological Signal Challenge (CPSC) 2018 chal-
lenge dataset [47]. We formulate a classification task between
ECGs showing signs of a Left Bundle Branch Block and normal
ECGs showing a sinus rhythm. The ECG data consists of twelve
ECG signal channels (leads), recorded at different locations on
the human torso and extremities. Leads affixed to the extrem-
ities constitute signal channels I, II, II, aVR, aVF and aVL.
Leads affixed to the chest are used to derive signal channels
V1 through V6. To construct a graph dataset from the ECG
data, we utilise this medical motivation and divide the ECG
extremity signal channels from the chest signal channels by
fully connecting the extremity and chest subgraphs. In addition,
we utilise prior knowledge about the leads which are typically
used by physicians to delineate LBBB from sinus rhythm and
thus connected channels I, aVR, V5, and V6. The structure of
those graphs is visualised in Fig. 2. The dataset we use contains
ECG data of 1,125 subjects. As ECG signals are periodic, we
sub-sample the signals by only retaining the first 512 signal
points of each channel, leading to 512 node features in the
graphs. The binary classification dataset is highly imbalanced
with 207 subjects showing signs of LBBB and 918 having
normal ECG curves. Evidently, ECG data, like all medical data
is highly sensitive, and thus requires formal methods of privacy
protection.

Organ Meshes Dataset: To investigate the scalability of
our method to large sensitive medical datasets, we perform
an organ mesh classification task on 151,910 organ surface
meshes extracted from 30,382 subjects from the U.K. Biobank
database [39]. As a first step, the five organs liver, spleen,
left and right kidney, and pancreas were segmented using the
segmentation pipeline of [48]. Secondly, the organ meshes were
extracted from those segmentations using the marching cubes
algorithm [49] implementation by [50]. Fig. 3 shows an example
visualisation of the surface meshes of one subject. Each organ is
represented as an individual graph in the dataset and the task is
to classify which of the five organs is represented by the surface
mesh. Node features contain the three dimensional coordinates

Fig. 3. Organ meshes extracted from segmenations of U.K. Biobank data [39].
The organs shown in this figure are the liver (coral), the spleen (purple), the left
and right kidneys (blue) and the pancreas (yellow).

of the organs with respect to the original magnetic resonance
imaging (MRI) scan of the subject.

B. GNN Models for Graph Classification and DP-SGD
Training

Since the adoption of deep learning techniques to graph
learning, most state-of-the-art methods for graph classification
rely on a variant of message passing to aggregate information
across the nodes [51], [52], [53], [54], [55].

For our experiments, we implement a variety of GNN models
to compare performance and evaluate the impact of DP on
different graph learning techniques. We use GraphSAGE [56],
Graph Attention Networks (GATs) [57], Graph Convolutional
Networks (GCNs) [28], and chebyshev spectral graph convolu-
tions (Cheb) [58]. For each dataset, we perform hyperparameter
searches, leading to different models for each application. The
depth of the GNNs varies from two to three layers with/without
Instance Normalisation layers and with/without dropout, de-
pending on the problem space. We do not use Batch Normal-
isation because of its incompatibility with differentially private
training; Batch Normalisation, by taking averages across the
batch during the forward pass, leaks information over samples in
a batch and precludes the computation of per-sample gradients
necessary for DP-SGD. More details about the model archi-
tectures can be found in the supplementary material, available
online.

When training graph classification models with DP-SGD, we
follow the standard procedure of DP-SGD training. Firstly, a
privacy budget is set in terms of ε, then the model is trained with
a specific noise multiplier that defines the amount of Gaussian
noise added to the gradients of the model and a L2-sensitivity
bound. The model can then be trained a certain number of
iterations, until the privacy budget ε is reached. We then report
the scores of the best-performing model out of the ones trained
before the privacy budget is exhausted. For all differentially
private training runs, we set δ = 1

N , where N is the cardinality
of the dataset and monitor the performance of the algorithm with
different privacy budgets ε. Across all experiments, we utilise the
same model architectures for DP-SGD and SGD training with
the removal of potential dropout layers for DP-SGD training. In
Table II we report the mean performance as well as the standard
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TABLE II
SUMMARY OF OUR EXPERIMENTAL EVALUATION ON FOUR DATASETS: SYNTHETIC, FINGERPRINTS, ECG, MOLBACE, AND ORGAN MESHES WITH

DIFFERENT NETWORK TYPES
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deviation of five independent runs for each experiment. We
evaluate different scores for each model: ROC AUC, Accuracy,
Sensitivity, Specificity and F1 Score. Hereby sensitivity reports
the rate between the true positives and the sum of the true
positives and false negatives. Specificity is the rate between
the true negatives and the sum of the true negatives and false
positives. The ROC AUC score is the Compute Area Under the
Receiver Operating Characteristic Curve with a micro average
for multi-class datasets. Accuracy is the rate between the true
positives and all samples and the F1 Score reports the harmonic
mean of the precision and recall, also using a micro averaging
strategy for multi-class datasets.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our results, compare DP-SGD
training with standard SGD training and show the impact of
different privacy budgets on model performances. The results
achieved on the four datasets are summarised in Table II.

Summary of Results: For all datasets, we observe similar
behaviour, namely a correlation between stronger privacy bud-
gets and diminished model performance. Although this phe-
nomenon is – in general – an unavoidable, information-theoretic
consequence of the trade-off between privacy and utility, the
individual models exhibit different behaviour with regards to
their individual tolerances towards the amount of Gaussian noise
added for DP-SGD, as well as the tolerances towards gradient
clipping. For instance, for the synthetic dataset, an ε value of 5
does not lead to accuracy loss, whereas for the Molbace dataset,
a privacy budget of ε = 10 already results in diminished model
accuracy. Interestingly, the performance of DP-SGD training is
overall not substantially influenced by the choice of GNN archi-
tecture (GCN, GAT, GraphSAGE, or ChebNet). We observe high
performance and similar convergence rates for all architectures,
indicating the robust performance of DP-SGD training. For a
comparison of the training behaviours please see our Figure in
the supplementary material, available online.

For all models, we observe an increased inter-run variability
with stronger privacy guarantees. This behaviour is reflected
in the higher standard deviations reported in Table II, and we
attribute this phenomenon to the increased randomness injected
by the DP mechanism.

Exemplarily, we visualise the impact of a stronger privacy
guarantee on the performance on the ECG dataset in Fig. 4.
Given that the dataset is highly imbalanced, a constant prediction
(marked by the lower dashed green line in Fig. 4) would result
in an approximate test accuracy of 81.6%. We examine the
dependency of the results on the choice of ε and report the
different performances. With a very strong privacy guarantee
(corresponding to a low ε value), the performance of the network
is barely better than a constant prediction. The looser the privacy
guarantee (larger ε value) the better the performance; for a very
loose ε the results reach non-DP performance. Interestingly,
for some models we observe identical performance between
DP-SGD and normal training, e.g. Fingerprint-GCN, where
the DP-SGD model (privacy budget of ε = 5) reaches slightly
higher performance then the normal training, see Table II; this

Fig. 4. Impact of ε on test accuracy on ECG dataset. The performance
increases with larger ε values and looser privacy guarantees. The top dashed
line (blue) indicates the performance without DP, the lower dashed line (green)
a constant prediction and the solid line in the middle (orange) the model
performance with different ε values: ε ∈ {1, 2, . . . , 10, 15, 20}.

Fig. 5. Impact of graph size to performance under DP: Increasing graph sizes
result in better performance and faster convergence. The privacy guarantees are
set to ε = 2.3.

beneficial effect can be attributed to the regularising effects of
gradient norm bounding and noise injection, indicating that –
within certain constraints – DP training can go hand-in-hand
with excellent overall model performance and generalisability.

Scalability: In order to investigate the scalability of our
approach, we vary the size of the created Erdős-Rényi graphs in
the synthetic dataset between 10 and 500 nodes per graph. Fig.
5 shows the impact of the graph size on the performance under
DP using a three-layer GCN and ε = 2.3. We visualised the
performances of graph sizes between 10 and 50 nodes and find
that performance improves with increasing graph size in these
ranges. Beyond 50 nodes, the performance remains consistently
high, which is why these plots were not included in Fig. 5.
This behaviour indicates a strong performance of our model
across varying graph sizes, i.e. robust scalability. Furthermore,
with the utilisation of the large organ mesh dataset, we could
show that our method also performs excellently for graphs with
a large number of nodes and edges as well as large datasets
with more than 100,000 graphs. In this dataset, we observe
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Fig. 6. Visualisation of two GNNExplainer examples. The original graph (A)
is shown in blue, the resulting graph from the GNNExplainer and the model
trained with SGD in orange (B) and with DP-SGD in red (C). In the example
in the upper row (1) the two graphs (B) and (C) differ slightly, whereas in the
lower example (2) both GNNExplainer graphs (B) and (C) are equal, meaning
that the two models consider the same edges to be relevant. The privacy budget
for the models trained with DP-SGD was set to ε=5.

low utility loss in the range of 10−3 even in a very high pri-
vacy regime of ε = 0.5. In comparison, many deep learning
networks require a more loose privacy guarantee to achieve high
performance [59].

Explainability: The interpretability of GNNs is a chal-
lenging and frequently discussed task in research. Recently,
approaches like the GNNExplainer [60] formalised methods
which can be used to interpret the results of trained GNNs.
We make use of this method to interpret the differences in
learned representations between models trained with DP-SGD
and non-private SGD and visualise the results in Fig. 6. The
GNNExplainer is an approach for post-hoc interpretation of
predictions generated by a trained GNN. It is used to identify
which edges in the graph represent essential connections for a
prediction of the network, thus indicating nodes important for
the final prediction. GNNExplainer prunes the original graph to
only contain the nodes and edges with the highest impact on the
model prediction. We apply the GNNExplainer to our results on
the Fingerprints dataset, comparing a GCN model trained with
standard SGD and three GCN models trained with DP-SGD with
ε = 5, ε = 1 and ε = 0.5. We set the GNNExplainer threshold
for edge importance to 0.2. Qualitatively, we observe that the
GNNExplainer results of the DP models and the standard models
appear very similar, if not identical for some examples, see
Fig. 6 and supplementary material, available online. In these
Figures, (A) visualises an example of an original graph from
the Fingerprints dataset, containing all edges. Figures (B) and
(C) show the pruned graphs for SGD and DP-SGD training,

TABLE III
MEAN IOU SCORES OF TEN TEST SAMPLES FROM THE FINGERPRINT DATASET

FOR COMPARING EDGES BETWEEN (‖) THE ORIGINAL GRAPH, THE

GNNEXPLAINER GRAPH OF THE MODEL TRAINED WITH SGD, AND THE

GNNEXPLAINER GRAPH OF THE MODEL TRAINED WITH DP-SGD. THE IOU
BETWEEN THE ORIGINAL GRAPH AND THE NON-DP GRAPH IS 0.739

respectively. In the lower example (2) in Fig. 6, both GNNEx-
plainer graphs are identical (almost identical in the upper row),
showing that in both models the same edges and nodes have
a high impact on the models’ predictions. This indicates that
the feature importance is the same (or almost the same) between
both models and that the feature importance is not compromised
by the privacy guarantees achieved through DP training.

To provide a quantitative estimation of GNNExplainer sim-
ilarity of our results, we propose and use an Intersection over
Union (IoU) score, measuring the pair-wise overlap of edges in
the three resulting graphs. The IoU score of two graphs A and
B is defined as follows:

|EA ∩ EB |
|EA ∪ EB | , (4)

where EX represents the set of all edges in Graph X and | · |
denotes the cardinality of a set. Table III summarises the results
of the mean IoU values between the original graph and the
GNNExplainer graph based on training with DP, and the two
resulting GNNExplainer graphs from DP-SGD and SGD train-
ing. The IoU score of the original graph and the GNNExplainer
graph of the model trained with standard SGD is 0.739 for all
graphs. We compare the overlap between the graphs with the
model performance, reported by the ROC AUC score. We find
a high IoU score for DP vs. non-DP models, which is in line
with the GNNExplainer plots we observe in Fig. 6. Moreover,
we observe that our GNNExplainer IoU score of the DP and
the non-DP models slightly decreases with a smaller ε and
smaller ROC AUC scores, see Table III. The increase in the
IoU score between the original model and the DP model with
ε = 0.5most likely only indicates that the DP trained model with
ε = 0.5 considers more edges as relevant than the model trained
with ε = 1.0. These qualitative and quantitative GNNExplainer
results indicate that our proposed DP graph classification models
exhibit strong and similar inductive biases compared to “normal”
GNNs while preserving privacy guarantees.

VI. DISCUSSION, CONCLUSION, AND FUTURE WORK

Our work introduces and evaluates differentially private graph
classification, a formal method to offer quantifiable privacy
guarantees in applications where sensitive data of individuals
is represented as a whole graph. Such contexts include medical
data (as shown in our ECG classification example), where DP
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can enable training of machine learning models while main-
taining both regulatory compliance and adherence to ethical
standards mandating the protection of health-related data.

GNN Training is Possible With Strong Privacy Guaran-
tees and Excellent Utility: Our experiments on benchmark and
real-world datasets demonstrate that the training of GNNs for
graph classification is viable with high utility and tight pri-
vacy guarantees. Especially the large scale mesh classification
dataset achieved almost perfect accuracy even with very tight
privacy bounds of ε = 0.5. Expectedly, we observe a privacy-
performance trade-off for all datasets, whereby a decrease in the
value of ε results in a decline in the accuracy of the model, as
demonstrated in Fig. 4. The amount of performance loss is task
and dataset dependent.

GNNs Learn Similar Features in the Private and Non-
Private Scenarios: Additionally, we investigate the utilisation of
explainability techniques to compare the representations learned
by models trained with SGD and DP-SGD. The application of
the GNNExplainer indicates that models trained with DP-SGD
learn similar relevant representations to the non-privately trained
models. To quantitatively demonstrate the results of the GNNEx-
plainer, we calculated an IoU score on the edges considered
important by the technique between the resulting graphs. We
observe an overall high IoU with a slight decline in overlap
with tighter privacy guarantees, indicating that – as expected
– the high levels of noise required to achieve such guarantees
eventually become detrimental to learning.

Private GNN Training Can Help Alleviate Social Impacts of
Machine Learning: We strongly believe that the implementa-
tion of formal techniques for privacy preservation like DP in
the setting of GNN training will mitigate the risks of using
sensitive data in ML tasks. In the case of medical data (as in
the ECG dataset example), we believe the utilisation of privacy
preserving methods to also hold positive effects in terms of
encouraging data owners (such as patients) to make their data
accessible for research purposes. Evidently, such implementa-
tions must go hand in hand with educating potential stakeholders
in the correct application of DP mechanisms, including the
appropriate choice of parameters like ε. In this work, we rely
exclusively on public datasets collected with informed con-
sent or with approval of institutional review boards wherever
applicable.

Limitations: Inherent to the concept of differential privacy
in machine learning is a performance-to-privacy trade-off. While
our experiments visually illustrate the implications of the trade-
off and provide insight into its practical importance in the context
of machine learning on graphs, the actual relationship between
privacy and accuracy is highly task- and user-specific [61], [62].
Therefore, we note that one can interpret the value of ε as
an additional design-parameter that needs to be optimised for
in order to minimise the adverse effects that DP can have on
performance in the context of graph classification (or most other
learning tasks in general).

Future Work: In our experiments we utilise a limited set of
standard model architectures (GCN, GraphSAGE, GAT, Cheb-
Net). Evidently, more sophisticated architectures have been

designed and deployed to real world problems. As our pro-
posed approach is general, we assume that an extension to such
advanced graph learning models is natural and should exhibit
similar behaviour, and we intend to expand our purview to such
models in future investigations.

While the GNNExplainer concept can provide initial clues to
interpret and explain GNN training and the intrinsic differences
between models trained with SGD and DP-SGD, it is only an
initial step towards full explainability and interpretability. We
consider this to be a highly relevant and an interesting direction
for future research. In particular, we aim to investigate the
effects of differentially private GNN learning on adversarial
robustness of the model. We hypothesise that – similarly to
Euclidean settings – [63], [64] DP should have a mitigating effect
against attacks that diminish the utility of the trained model in
the context of machine learning on graphs. Furthermore, we
believe that a comparison of different explainability techniques
like [65], [66], [67], [68] will provide even more insight into
the differences between DP and non-DP training, which we also
intend to investigate in future work.
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