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Abstract—To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related

discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS)

eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model

interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to

jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition

while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to

decompose the mixed face features into two uncorrelated components—identity- and age-related features—in a spatially constrained

way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve

identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the

proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel

selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with

age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental

results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance than state-of-the-art methods

for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive

performance on face recognition in the wild. The source code and datasets are available at http://hzzone.github.io/MTLFace.

Index Terms—Face recognition, face aging, generative adversarial networks

Ç

1 INTRODUCTION

FACE recognition has been a hot research topic in com-
puter vision for many years. Recently, deep-learning-

based methods have achieved excellent performance, even
surpassing humans in several scenarios, by empowering
face recognition models with deep neural networks [1], [2],
[3]. The traditional wisdom is to train the face recognition

models to increase the intra-class compactness with a mas-
sive amount of data and margin-based metrics for improved
recognition performance [4], [5].

Despite the remarkable success of general face recogni-
tion (GFR), how to minimize the impact of age variation is a lin-
gering challenge for current face recognition systems in
correctly identifying faces in many practical applications
such as tracing long-missing children. Therefore, it is of
great significance to achieve face recognition without age
variation, i.e., age-invariant face recognition or AIFR. AIFR,
however, remains extremely challenging in the following
three aspects. First, when the age gap becomes large in
cross-age face recognition, age variation can dominate the
facial appearance, which then significantly compromises
the face recognition performance. Second, face age synthesis
(FAS) is a complex process involving face aging/rejuvena-
tion (a.k.a age progression/regression) since the facial
appearance changes dramatically over a long time and dif-
fers from person to person. Last, it is infeasible to obtain a
large-scale paired face dataset for training a model to render
faces with natural effects while preserving identities.

To address the issues mentioned above, current methods
for AIFR can be roughly summarized into two categories:
generative and discriminative models. Given a face image,
generative models [6], [7], [8] aim to transform faces of dif-
ferent age groups into the same age group in order to mini-
mize the impact of age variation on face recognition.
Recently, generative adversarial networks (GANs) [9] have
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been successfully used to enhance the image quality of syn-
thesized faces [10], [11], [12], [13], [14], which typically use
one-hot encoding to specify the target age group. However,
the one-hot encoding represents the age group-level face
transformation, ignoring identity-level personalized pat-
terns and leading to unexpected artifacts. As a result, the
performance of AIFR cannot be significantly improved due
to the unpleasing synthesized faces and unexpected change
in identity. On the other hand, discriminative models [15],
[16] focus on extracting age-invariant features by disentan-
gling the identity-related information from mixed face
information so that only the identity-related information is
used by the face recognition systems. Although these mod-
els achieve promising performance in AIFR, they cannot
provide users, for example policemen, with visual results
just as the generative methods do to further verify identities,
which can compromise model interpretability in the deci-
sion-making processes of many practical applications.

To further improve the image quality of generative mod-
els and provide model interpretability for discriminative
models, in this paper, we propose a unified, multi-task
learning framework to simultaneously achieve AIFR and
FAS, termed MTLFace, which can enjoy the best of both
worlds; i.e., learning age-invariant identity-related repre-
sentations while achieving pleasing face synthesis.
More specifically, we propose an attention-based feature
decomposition to decompose the mixed high-level features
into two uncorrelated components—identity- and age-
related features—in a spatially constrained way. We then
decorrelate these two components in a multi-task learning
framework, in which an age estimation task is to extract
age-related features while a face recognition task is to
extract identity-related features; in addition, a continuous
cross-age discriminator with a gradient reversal layer [17]
further encourages extracting identity-related age-invariant
features. Moreover, we propose an identity conditional
module to achieve identity-level transformation patterns for
FAS, with a weight-sharing strategy to improve the age
smoothness of the synthesized faces; i.e., the faces are aged
smoothly. Extensive experimental results demonstrate the
superior performance of the proposed MTLFace over exist-
ing state-of-the-art methods for AIFR and FAS, and compet-
itive performance for general face recognition in the wild.
Fig. 1 presents an example of age progression and regres-
sion of the same person by our MTLFace, showing that our
framework can synthesize photorealistic faces while pre-
serving identity.

The contributions of this paper are summarized as
follows.

1) We propose a unified, multi-task learning frame-
work to jointly handle AIFR and FAS, which can
learn age-invariant identity-related representations
while achieving pleasing face synthesis.

2) We propose an attention-based feature decomposi-
tion to separate the age- and identity-related features
on high-level feature maps, which can spatially con-
strain the decomposition process in contrast to the
previous unconstrained decomposition on feature
vectors. Age estimation and face recognition tasks
are incorporated to supervise the decomposition

process in conjunction with a continuous domain
adaptation.

3) We propose a novel identity conditional module to
achieve identity-level face transformation, which
leverages a weight-sharing strategy to improve the
age smoothness of the synthesized faces in contrast
to previous one-hot encoding that can only achieve
age group-level face transformation. We further
extend it into a multi-level architecture for improved
face age synthesis.

4) We propose a selective fine-tuning strategy to fur-
ther boost AIFR by automatically selecting those
high-quality synthesized faces from FAS for fine-
tuning.

5) We collect and release a large-scale cross-age dataset
of millions of faces with balanced age and gender
annotations, which can not only advance the devel-
opment of the AIFR and FAS but also be useful for
other face-related research tasks; e.g., pretraining for
face age estimation.

6) To promote the utility in tracing long-missing chil-
dren, we construct a new benchmark with paired
child and adult faces of the same person, which con-
tains the same identities as the Labeled Faces in the
Wild (LFW) and is thus orthogonal to the current lit-
erature for future evaluation of cross-age face
recognition.

7) Extensive experimental results demonstrate the
effectiveness of the proposed framework for AIFR
and FAS on five benchmark datasets, and competi-
tive performance on two popular GFR datasets.

We note that a preliminary version of this work was pub-
lished in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) 2021 [18]. In this paper, we fur-
ther extend our preliminary work with the following major

Fig. 1. Sample results of our MTLFace. First row: real faces of the same
person at different ages with estimated age labels underneath. Remain-
ing rows: synthesized faces where the input faces are given in the red
boxes.
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improvements. First, we propose a selective fine-tuning
strategy that selects the high-quality synthesized faces from
FAS through a two-component Gaussian mixture model
and then fine-tunes the model to further boost AIFR, bring-
ing consistent performance improvements on all benchmark
datasets. Second, we extend the model by incorporating
multi-level age conditional information with a StyleGAN-
based architecture, which, as a result, can synthesize more
photorealistic faces than previous model [18] and achieve
continuous face age synthesis. Third, we construct a new
benchmark testing set for the AIFR task with an emphasis
on tracing long-missing children, which contains a subset of
identities of LFW with manually annotated and paired
child-adult faces; extensive baselines including humans and
other deep-learning based face recognition models were
conducted to evaluate the new benchmark. Fourth, we fur-
ther conduct more experiments with more competitive
baselines to evaluate the face age synthesis task of our
model including the results on the new benchmark. Finally,
we evaluate the model through both quantitative and quali-
tative comparisons between aged/rejuvenated faces and
ground-truth faces to further validate the effectiveness of
the proposed method. We also visualize the training process
of MTLFace to show its training stability. Note that a
detailed comparison between the current and preliminary
versions of MTLFace can be found in supplementary Sec-
tion 1; our new model consistently improves the perfor-
mance of face recognition and the quality of synthesized
faces.

The remainder of this paper is organized as follows. A
brief review of the related work on age-invariant face recog-
nition and face age synthesis is given in Section 2. We pres-
ent the attention-based feature decomposition, identity
conditional module, and selective fine-tuning strategy as
well as the proposed MTLFace in Section 3. Comprehensive
experimental results on the age-invariant face recognition
and face age synthesis are reported and analyzed in Sec-
tion 4. Finally, this paper is discussed in Section 5, followed
by a concluding summary in Section 6.

2 RELATED WORK

This section briefly surveys developments in age-invariant
face recognition and face age synthesis.

2.1 Age-Invariant Face Recognition (AIFR)

Prior studies usually minimize the impacts of age variation
by disentangling age-invariant features from mixed fea-
tures. For example, Gong et al. adopted hidden factor analy-
sis (HFA) to factorize mixed features and then minimize the
age variation in identity-related features [19]. Later, Wen
et al. extended HFA to a deep learning framework with the
latent factor guided convolutional neural network (LF-
CNN) [20]. Zheng et al. introduced an age estimation task
to guide AIFR [21]. Most recently, CNNs-based discrimina-
tive methods have achieved promising results for AIFR. To
reduce the intra-class discrepancy caused by aging, Wang
et al. proposed an orthogonal embedding CNN for AIFR
[16], termed OE-CNN, which decomposes the facial embed-
dings into two orthogonal components, where the identity-
and age-related features are represented as the angular and

radial directions, respectively. Similarly, Wang et al. pro-
posed the decorrelated adversarial learning (DAL) to
achieve feature decomposition in an adversarial manner
under the assumption that the two components are uncorre-
lated [22]. Lee et al. proposed an inter-prototype loss to min-
imize the similarity between child faces [23]. Hou et al. [24]
and Xie et al. [25] proposed to minimize the mutual infor-
mation between the identity- and age-related components
of the face image from the same person to reduce the effect
of age variations.

The work related to ours is [26], in which a cGANs-based
model with cross-age domain adversarial training to extract
age-invariant representations, is adopted to perform the
two tasks simultaneously. However, it generates over-
smoothed faces with subtle changes. Different from [26],
our framework has the following advantages: 1) our feature
decomposition is performed on feature maps through an
attention mechanism; 2) a continuous domain adaptation
with a gradient reversal layer is used to learn age-invariant
identity-related representation; 3) the proposed identity
conditional module can achieve identity-level face synthesis
and improve the age smoothness of synthesized faces; and
4) the proposed FT-Sel can further boost the performance of
AIFR with the automatically selected high-quality synthe-
sized faces from FAS.

2.2 Face Age Synthesis (FAS)

Existing methods for FAS can be roughly divided into phys-
ical model-, prototype-, and deep generative model-based
methods.

Physical model-based methods [27], [28], [29] mechani-
cally model the changes in faces over time, but they are
computationally expensive and require massive paired
images of the same person over a long period of time. Proto-
type-based methods [30], [31] achieve face aging/rejuvena-
tion using the averaged faces in each age group, and
consequently, the identity cannot be well preserved.

In contrast to the above two categories, deep generative
model-based methods [32], [33] exploit a deep neural net-
work for this task. For example, Wang et al. proposed recur-
rent face aging (RFA), which uses a recurrent neural
network to model the intermediate transition states of age
progression/regression, traversing on which a smooth face
aging process can be achieved [33]. Inspired by the power-
ful capability of generative adversarial networks (GANs)
[9], especially conditional GANs (cGANs) [34], in generat-
ing high-quality images, many recent studies [12], [13], [14],
[35], [36], [37], [38], [39] resort to them to improve the visual
quality of synthesized faces and train models with unpaired
face images. For example, Zhang et al. used a conditional
adversarial autoencoder (CAAE) to achieve both age pro-
gression/regression by traversing on a low-dimensional
face manifold [14]. Wang et al. introduced the perceptual
loss to preserve identities during face aging/rejuvenation
[12]. Yang et al. designed a discriminator with a pyramid
architecture to enhance aging details [13], [40].

However, these methods mainly aim to improve the
visual quality of generated faces, and hardly improve the
performance of AIFR due to the artifacts resulting from
group-level face transformation, and the unexpected
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change in identity. Our method differs in the following
aspects: 1) the proposed MTLFace achieves AIFR and FAS
simultaneously to enhance the visual quality with iden-
tity-related information from AIFR; 2) the proposed iden-
tity conditional module (ICM) achieves an identity-level
face age synthesis in contrast to the previous group-level
face age synthesis; 3) a weight-sharing strategy in ICM can
improve the age smoothness of the synthesized faces; and
4) a well-designed generator with feature-pyramid and
StyleGAN architectures is employed for photorealistic and
continuous synthesis.

3 METHODOLOGY

Fig. 2 presents the architecture of the proposed MTLFace,
which is detailed in the following subsections.

3.1 Attention-Based Feature Decomposition

As the faces age over time, the critical problem of AIFR is
that the age variation usually increases intra-class distances.
As a result, it becomes challenging to correctly recognize
two face images of the same person with a large age gap,
since the mixed facial representations are severely
entangled with unrelated information such as facial shape
and texture changes. Recently, Wang et al. designed a linear
factorization module to decompose feature vectors into two
unrelated components [22]. Formally, the feature vector xxxxxxx 2
Rd, extracted from an input image IIIIIII 2 R3�H�W , can be
decomposed as [22]:

xxxxxxx ¼ xxxxxxxage þ xxxxxxxid; (1)

where xxxxxxxage and xxxxxxxid denote the age- and identity-related com-
ponents, respectively. This decomposition is implemented
through a residual mapping. However, it has the following

drawbacks: 1) this decomposition performs on one-dimen-
sional feature vector, and the resultant identity-related com-
ponent lacks spatial information of face, not suitable for
FAS; and 2) this decomposition is unconstrained, which
may lead to unstable training.

To address these drawbacks, we instead propose to
decompose the mixed feature-maps in a high-level semantic
space through an attention mechanism, termed attention-
based feature decomposition or AFD. The main reason is
that manipulating on the feature vectors is more compli-
cated than on the feature maps since the aging/rejuvenation
effects, such as beards and wrinkles, appear in the semantic
feature space but are lost in one-dimensional feature vec-
tors. Formally, we use a ResNet-like backbone as encoder E
to extract mixed feature maps XXXXXXX 2 RC�H0�W 0

from an input
image IIIIIII, i.e.XXXXXXX ¼ EðIIIIIIIÞ, the AFD can be expressed as:

XXXXXXX ¼ XXXXXXX � sðXXXXXXXÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
XXXXXXXage

þXXXXXXX � 1� sðXXXXXXXÞð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
XXXXXXXid

;
(2)

where � denotes element-wise multiplication and s repre-
sents an attention module. In doing so, the age-related
information in the feature maps can be separated through
the attention module supervised by an age estimation task,
and the residual part, regarded as the identity-related
information, can be supervised by a face recognition task.
Consequently, the attention mechanism constrains the
decomposition module, better at detecting the age-related
features in semantic feature maps. We note that XXXXXXX is
assumed to only contain the age and identity information
as driven by the two corresponding tasks, and the remain-
ing information such as background is important for FAS,
which is preserved by skip connections from encoder to
decoder. Fig. 2b details the proposed AFD.

Fig. 2. An overview of the proposed MTLFace including two tasks. AIFR: The encoder E first extracts the mixed feature maps from input faces, which
are then decomposed into two disjoint identity- and age-related feature maps by the multi-task training and continuous domain adaptation. FAS: The
decoderD produces synthesized faces from identity-level features under the control of multi-level age conditions from the output of the identity condi-
tional modules; the discriminatorDimg penalizes the framework to obtain better visual quality.
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In this paper, we adopt the average of channel attention
(CA) [41] and spatial attention (SA) [42] to highlight age-
related information at both channel and spatial levels. Note
that the outputs of these two attentions have different sizes;
we first stretch each of them to the original input size and
then average them. Different attention modules such as CA,
SA, and CBAM [42], are also investigated in Section 4.

3.2 Identity Conditional Module

The mainstream face aging studies [10], [11], [12], [13], [14]
usually split ages into several non-overlapping age groups,
since the changes over time are minor with a small age gap.
These methods typically use one-hot encoding to specify
the target age group to control the aging/rejuvenation pro-
cess [10], [12], [14] as illustrated in Fig. 3a. Consequently, a
group-level aging/rejuvenation pattern, such as having a
beard at age 30, is learned for each age group due to the use
of one-hot age conditions. This has two drawbacks: 1) the
one-hot encoding represents the age group-level aging/
rejuvenation pattern, ignoring identity-level personalized
patterns, particularly for different genders and races; and 2)
one-hot encoding may not ensure the age smoothness of
synthesized faces.

To address these issues raised by one-hot encoding, we
propose an identity conditional block (ICB) to achieve iden-
tity-level aging/rejuvenation pattern, with a weight-sharing
strategy to improve the age smoothness of synthesized
faces. Specifically, the proposed ICB takes the identity-
related feature from AFD as input to learn an identity-level
aging/rejuvenation pattern. Note that the input features for
ICB may be mixed up with the ages due to the use of
unpaired training data, which could harm the learning of
identity-level pattern. Instead, in our multi-task learning
framework, under the supervision from face classification
and domain adaptation loss, the identity features are invari-
ant to ages. As a result, the ages would not have an impact
on the training of ICB. Next, we propose a weights-sharing
strategy to improve the age smoothness of synthesized faces
so that some convolutional filters are shared across adjacent
age groups as shown in Fig. 3b. The rationale behind this
idea is that faces gradually change over time, and the shared
filters can learn some common aging/rejuvenation patterns
between adjacent age groups. Note that the number of chan-
nels of the input feature maps is reduced to 1=4 of the

original ones using 1� 1 convolutions to reduce the compu-
tational cost. In this paper, a hyper-parameter s is used con-
trol how many filters are shared for two adjacent age
groups, which is empirically set to 1=8; i.e., two adjacent age
groups share 16 filters. We stack ICBs to form an identity
conditional module (ICM), as shown in Fig. 2c.

3.3 Selective Fine-Tuning Strategy

In this section, we present a novel selective fine-tuning strat-
egy (FT-Sel), which can selectively include high-quality syn-
thesized faces into the training data to further boost the
performance of face recognition for AIFR task.

Our motivation comes from the observation that there
are a few child faces below 10 years old in the training data
since it is cumbersome to collect the paired child and adult
faces. Such imbalanced data (i.e. lacking child faces) would
significantly harm the face recognition performance on
child’s faces, affecting the practical application for tracking
long-missing children. As a result, the intra-class distances
between children are not discriminative, which has been
widely reported in long-tailed learning [43].

Benefiting from the proposed multi-task framework, we
address this problem by transforming the faces above 10
years old into 10- to obtain the paired child and adult faces.
This is similar to [44] that leverages style transfer [45] to aug-
ment the training data. If MTLFace disentangles the faces to
identity (i.e. content) and age (i.e. style), we are able to alter
the age styles at low-level visual imageswhile preserving the
semantic identities. As a result, the face recognition model
can be encouraged to learn style-invariant identity features
to further boost performance. However, only high-quality
synthesized faces should be considered, as the ones with
unexpected artifacts would harm the performance of face
recognition [46]. To this end, we propose a selective fine-tun-
ing strategy (FT-Sel), which can automatically select the
high-quality synthesized faces using the face quality scores.
Fig. 4 visualizes the face quality scores [5] of synthesized and
real faces, where a significant discrepancy between the two
kinds of faces can be observed. The synthesized faces with
the low face quality scores (e.g. [0, 0.2]) present strong arti-
facts.When the scores increase, the synthesized faces become

Fig. 3. Comparison between one-hot encoding and ICB. Fig. 4. Visualization of the normalized face quality scores of synthesized
and real faces, where the two vertical dotted lines denote the mean val-
ues of two components of the GMM, and a higher value indicates better
quality. We showcase some examples with their rejuvenated faces, and
the mean faces at corresponding scores.
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more photorealistic despite some occlusion (e.g. [0.6,1.0]).
The corresponding mean face reveals more details at the
same time. This implies that the face quality scores can mea-
sure the quality of synthesized faces. As a result, the synthe-
sized child faces of better face quality can be selected to
construct more balanced training data for further boosting
the performance of face recognition.

A natural question arises: how to select those high-quality
faces? A straightforward way is to set a threshold, where the
faces above this threshold can be considered as high-quality
samples. However, the introduced thresholding hyper-
parameter needs to be manually tuned for satisfied recogni-
tion performance. By visualizing the distributions of the
scores in Fig. 4, we propose to model the distribution of face
quality scores of synthesized and real faces by a two-com-
ponent Gaussian Mixture Model (GMM) for automatically
selecting high-quality faces, which is defined as follows:

pðsÞ ¼
X1
c¼0

pðs; cÞ ¼
X1
c¼0

pðcÞpðsjcÞ; (3)

where s denotes the face quality score, and c is a latent vari-
able: the cluster c ¼ 1 with a higher mean face-quality score
denotes the faces with higher quality while c ¼ 0 corre-
sponds to the faces with lower quality, as illustrated in
Fig. 4. Through the two-component GMM, we can infer the
posterior probability of one synthesized face being of high
quality, and obtain the photorealistic faces by pðc ¼ 1jsÞ >
pðc ¼ 0jsÞ from all synthesized faces.

After selecting the high-quality synthesized faces, we
then fine-tune the last linear layer for AIFR while keeping
the convolutional layers fixed. In long-tailed learning, reba-
lancing data distribution may lead to unstable training. We
highlight that FT-Sel would not change the data distribution
too much as there are only 10% synthesized faces in new
training data. If this problem indeed happens, one can turn
to the distribution alignment technique [47] in long-tailed
learning to stabilize the training. We also note that this step
would not influence FAS since the last linear layer was not
involved in the synthesizing process of our multi-task learn-
ing framework, which will be detailed in next section.

3.4 Multi-Task Learning Framework

This section presents our MTLFace including AIFR and
FAS.

3.4.1 Age-Invariant Face Recognition (AIFR) Task

To encourage AFD to robustly decompose features, we use
an age estimation task and a face recognition task to super-
vise the feature decomposition. Specifically, XXXXXXXage draws the
age variations through an age estimation task whileXXXXXXXid enc-
odes the identity-related information. First, as illustrated in
Fig. 2d we include an age estimation network A with two
linear layers of 512 and 101 neurons to achieve age regres-
sion similar to deep expectation (DEX) [48], [49], which
learns the age distribution by computing a softmax
expected value. Second, we append another linear layer
WWWWWWW 2 R101�ng on top of A for age classification, regularizing
the learned distribution, where ng denotes the number of
age groups. The loss function to optimize age estimation

can be defined as:

‘aeðXXXXXXXageÞ ¼ EIIIIIII ½‘mse DEXðAðXXXXXXXageÞÞ; yage
� �

þ ‘ce AðXXXXXXXageÞWWWWWWW; cage
� ��; (4)

where yage, cage, ‘mse, and ‘ce are the ground truth age,
ground truth age group, mean squared error (MSE) for age
regression, and cross-entropy (CE) loss for age group classi-
fication, respectively.

Next, we leverage one linear layer L of 512 neurons to
extract the feature vectors, and use the CosFace loss to
supervise the learning of XXXXXXXid for identity classification. We
also introduce a cross-age domain adversarial learning that
encourages XXXXXXXid to be age-invariant through a continuous
domain adaptation [50] with a gradient reversal layer (GRL)
[17]. Fig. 2e shows these two components. The final loss for
AIFR is formulated as:

Laifr ¼ ‘cosfaceðLðXXXXXXXidÞ; yidÞ
þ �aifr

age LaeðXXXXXXXageÞ þ �aifr
id LaeðGRLðXXXXXXXidÞÞ; (5)

where the first term is the CosFace loss; the second term is
the age estimation loss; the last term is the domain adapta-
tion loss; yid is the identity label; and �� controls the balance
of different loss terms. Note that the second and third terms
use the same network structure but have different inputs
and are trained independently. The activation functions
and batch normalizations are ignored for simplicity, and
our face recognition model is designed strictly following the
setting in [51] except the AFD.

3.4.2 Face Age Synthesis (FAS) Task

Figs. 2f and 2g demonstrate the FAS process of our pro-
posed method. In detail, the decoder D adopts the archi-
tecture of the StyleGAN-based generator [52], [53], which
receives the discriminative facial representations XXXXXXXid at a
coarse level. Then, the single-level identity-level age con-
dition is derived from the discriminative facial represen-
tations XXXXXXXid and the same level high-resolution features
extracted from the encoder E using two ResBlocks [1].
Similar to the feature pyramid network [54], the multi-
level identity-level age conditions are formed by stacking
multiple ICMs at different levels. Finally, the decoder D
reconstructs the progressed/regressed faces from XXXXXXXid

under the control of the multi-level learned identity-level
age conditions, using two StyleGAN block [52], [53] at
each level with AdaIN normalization layers [55]. For-
mally, the process of rendering the input face IIIIIII to the
synthesized face bIbIbIbIbIbIbIt that belongs to the target age group t
can be written as:

CCCCCCC1
t ¼ f1ðXXXXXXXid; EEEEEEE

1; tÞ; (6)

CCCCCCCl
t ¼ flðCCCCCCCl

t; EEEEEEE
l; tÞ; l 2 f2; 3g (7)

bIbIbIbIbIbIbIt ¼ DðXXXXXXXid; fCCCCCCCl
tg3l¼1Þ; (8)

where l denotes the index of different levels, and CCCCCCCl and fl
are the identity-level age condition and ICMs at the lth level,
respectively. We note that D employs several convolutional
layers at each level to map the age conditions into the style
latent space of StyleGAN. The rationale is that the coarse-
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level of XXXXXXXid corresponds to the shape of faces, i.e. identities,
while the fine-level of age conditions renders the faces with
detail aging/rejuvenation effects.

To facilitate the visual quality of the generated faces, the
FAS task is trained using GANs framework. In this paper,
we adopt a combination of PatchDiscriminator [56] and a
StyleGAN-based discriminator [52], [53] as our discrimina-
tor Dimg to emphasize the local-patches of generated and
real images. Furthermore, the least-squares GANs [57] are
employed to optimize the GANs framework for improved
quality of the generated images and stable training process,
which can be formulated as follows:

Lfas
adv ¼

1

2
EIIIIIII DimgðbIbIbIbIbIbIbIt; ctÞ � 1

h i2
; (9)

where ct is a scalar used in the traditional cGANs frame-
work to align with the age condition by specifying the
logits of tth target age group. To preserve the identities of
input faces and improve the age accuracy, we leverage
the encoder E, AFD, and the linear layer L to supervise
the FAS task. Consequently, we can achieve both face
aging and rejuvenation in a holistic, end-to-end manner,
as illustrated in Fig. 2. This process can be formulated as
follows:

XXXXXXXt
age; XXXXXXX

t
id ¼ AFD EðbIbIbIbIbIbIbItÞ

� �
; (10)

Lfas
age ¼ ‘ce AðXXXXXXXt

ageÞWWWWWWW; ctage

� �
; (11)

Lfas
id ¼ EXXXXXXXs XXXXXXXt

id �XXXXXXXid

�� ��2
F
�cosðLðXXXXXXXt

idÞ; LðXXXXXXXidÞÞ; (12)

where k � kF represents the Frobenius norm, and cosð�Þ
denotes cosine similarity. Another learned perceptual image
patch similarity (LPIPS) loss [58] is employed to further
maintain the perceptual consistency between input and syn-
thesized faces:

Lfas
lpips ¼ EIIIIIII LPIPSðIIIIIIIt; bIbIbIbIbIbIbItÞ

h i
: (13)

The final loss to optimize this task can be written as:

Lfas ¼ �fas
advLfas

adv þ �fas
id Lfas

id þ �fas
ageLfas

age þ �fas
lpipsLfas

lpips; (14)

where �fas
� controls the importance of different loss terms of

FAS task. The loss function to optimize the discriminator
Dimg in the context of least-squares GANs is defined as:

Lfas
Dimg

¼ 1

2
EIIIIIIIt Dimg IIIIIIIt; c

t
� �� 1

� 	2þ 1

2
EIIIIIII Dimg

bIbIbIbIbIbIbIt; ct
� �h i2

:

(15)

At the testing stage, the only difference from existing
FAS methods is that our method needs to specify the cor-
responding group of filters. Consequently, our method
enjoys the advantages similar to [59] that the computa-
tional cost can be significantly reduced by encoding input
faces only once, instead of the ng times needed in previ-
ous works [10], [11], [12], [13], [14], where ng is the num-
ber of age groups. In addition, MTLFace can also achieve
continuous face age synthesis similar to [40] thanks to the
StyleGAN-based decoder by interpolating in the style
latent space.

3.4.3 Optimization and Inference

The training algorithm of the proposed MTLFace is shown
in Algorithm 1 , which contains the following two stages.

In the first stage, the AIFR learns the discriminative facial
representations and age estimation while the FAS produces
the visual results that can boost the model interpretability
for AIFR. Therefore, both two tasks can be jointly accom-
plished through a GAN-like optimization; they mutually
leverage each other to boost themselves. In other words, the
AIFR encourages FAS to render faces to preserve identity
while FAS can facilitate the extraction of the identity-related
features and boost the model interpretability for AIFR. Con-
sequently, we alternately train these two tasks in a unified,
multi-task, end-to-end framework. In the second stage, the
well-trained model of previous stage is employed to synthe-
size paired faces, and those high-quality ones are selected
for further fine-tuning with the proposed FT-Sel as illus-
trated in Section 3.3.

Algorithm 1. Training Algorithm of MTLFace

Input: Dataset D ¼ fðIIIIIII; yyyyyyyage; yyyyyyyidÞg; trainable functions E, A,
W , L, fflg3l¼1,D andDimg

Output: The full trained model of MTLFace.
repeat
Training E, A,W and Lwith Laifr

TrainingDimg with Lfas
Dimg

Training fflg3l¼1 andDwith Lfas

until reaching max iteration
Fine-tuning Lwith FT-Sel

4 EXPERIMENTS

4.1 Data Collection

4.1.1 Large-Scale Cross-Age Face Dataset

Current research on AIFR lacks a large-scale face dataset of
millions of face images with large age gaps. To advance the
development of AIFR and FAS, we collect and release a new
large cross-age face dataset (LCAF) with 1.7M faces from
cross-age celebrities. The collection process for our dataset
is summarized in the following three steps. First, we use the
public Azure Facial API [60] to estimate the ages and gen-
ders of faces from the clean MS-Celeb-1M dataset provided
by [51]. Second, we randomly select faces from a total of 5M
faces to check whether the faces are correctly labeled, and
manually correct them as best we can if any apparent mis-
takes occur; we mainly focus on young ages, under 20 that
are often mislabeled by the API [60]. Finally, a large-scale
balanced age dataset is constructed by balancing both age
and gender.

We further build a subset of the cross-age face dataset
(SCAF) containing approximately 0.5M images from 12k
individuals following [16], [22] for fair comparisons. We
note that the training dataset, i.e. LCAF, and the testing
datasets summarized in Table 1 may have very few, or even
no identities overlapping as [51] already removed 500+
identities from their clean MS-Celeb-1M dataset by checking
the similarity of faces between the training and testing data.
Figs. 5a and 5b present example images and dataset statis-
tics of SCAF.
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Following the mainstream literature [10], [11], [13], [37],
[59] with the time span of 10 years for each age group, the
ages in this paper are divided into seven non-overlapping
groups; i.e., 10-, 11-20, 21-30, 31-40, 41-50, 51-60, and 61+.
Note that it is a much more challenging problem to perform
FAS on seven groups than on the four groups widely used
in previous work.

4.1.2 A New Benchmark

Compared to Labeled Faces in the Wild (LFW) [61] dataset
used in GFR, existing benchmark cross-age face datasets for
AIFR such as CALFW [62] and AgeDB [63], are designed to
challenge current face recognition models with cases of
large age gaps. However, these datasets overlook the fact
that the most challenging case of AIFR is to match faces
from children to adults, which is critical for practical appli-
cations such as tracing long-missing children.

Therefore, we build a new benchmark, termed Evaluation
of Cross-Age Face Recognition (ECAF) for AIFR, which par-
ticularly focuses on child and adult faces of the same person.
Specifically, by querying the names in LFWwith the keyword
“child”, we manually collect, annotate, and check the faces
with the source link to ensure that the child and adult faces
are from the same person. Then, we create two tasks based on
ECAF to evaluate the performance of face recognition. The

first task involves 6k image pairs for <Adult, Child > ,
where < Adult, Child > denotes face verification between
adult and child faces. These 6k pairs are split into 10 folds,
and each fold consists of 300 intra-class and 300 inter-class
pairs. The second task involves 4k pairs of < Child, Child >
, where the < Child, Child> pairs are obtained with a simi-
lar procedure. Both tasks follow the protocols of LFW. We
find that the second task is also challenging andworthy of fur-
ther study by the face recognition community.

Table 1 summarizes the testing sets used in this paper for
AIFR and Fig. 5c showcases some examples in ECAF. We
obtain the estimated ages in the same way as stated in Sec-
tion 4.1.1. ECAF has much larger age gaps than LFW [61],
CACD-VS [64], CALFW [62], and AgeDB [63], and has more
identities and faces than FG-NET [65]. In summary, there
are three important properties of ECAF: 1) clean labels, as
we manually check all faces and links in the dataset; 2)
larger age gaps, as ECAF focuses on face recognition
between children and adults; and 3) orthogonal to existing
research on face recognition, as ECAF contains the same
identities as LFW, which makes the results on ECAF reliable
since there are no overlapping identities in current widely-
used training datasets such as MS-Celeb-1M.

4.2 Implementation Details

Following [51], we adopt ResNet-50 as the encoder E. In the
decoderD, the identity age condition is bilinearly upsampled
and processed with multi-level high-resolution features
extracted from E by two ResBlocks [1], each of which is fol-
lowed by instance normalization [66] and leaky ReLU activa-
tion of 0.2 negative slope. There are four ICBs in ICM. The age
conditions are derived using several stride-2 convolutional
layers and one linear layer. The style dimension of the Style-
GAN-based decoder is 512. For the discriminator Dimg, we
build upon the StyleGAN architecture with 4 StyleBlocks, fol-
lowed by spectral normalization [67] and leaky ReLU activa-
tion except in the last block, yielding an 8� 8 confidencemap.
AIFR is optimized by stochastic gradient descent (SGD) with
an initial learning rate of 0.1 and a momentum of 0.9, while
the ICM, the decoder D, and Dimg are trained by Adam [68]

TABLE 1
Statistics of Testing Sets Used in This Paper for AIFR Task

Dataset Subjects Images Pairs Avg Age Gap of
Test Set (years)

LFW [61] 5,749 13,233 6k 11.9
CACD [64] 2,000 163,446 4k 11.7
CALFW [62] 5,749 12,174 6k 17.6
AgeDB [63] 568 16,488 6k 16.8
FG-NET [65] 82 1,002 only for identification

ECAF 613 5,265 6k 41.3

Due to the limited number of faces, FG-NET was mainly used for face identifi-
cation. Our new benchmark dataset ECAF has larger age gaps than the other
datasets from children to adults.

Fig. 5. a) Sample faces and b) dataset statistics on SCAF; and c) Sample faces on ECAF with celebrity names underneath.
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with a fixed learning rate of 1:0� 10�4, b1 of 0.9 and b2 of 0.99
for face age synthesis. We train all models with a mini-batch
size of 512 on 8 NVIDIA GTX 2080Ti GPUs, with 110k itera-
tions for LCAF and 36k iterations for SCAF. The learning rate
of AIFR iswarmed up linearly from 0 to 0.1, and then reduced
by a factor of 0.1, at iterations 5k, 70k, and 90k on LCAF and
1k, 20k, 23k on SCAF. The hyper-parameters in the loss func-
tions are empirically set as follows: �aifr

age is 0.001, �aifr
id is 0.002,

�fas
adv is 5.0,Lfas

lpips is 1.0, �
fas
id is 1.0, and �fas

age is 0.2. Themultiplica-
tive margin and scale factor of CosFace loss [69] are set to 0.35
and 64, respectively. All images are aligned to 112� 112, with
five facial landmarks detected by MTCNN [70], and linearly
normalized to ½�1; 1�. For FT-Sel, SCAF is employed to syn-
thesize the child faces, leading to a total of 60k high-quality
synthesized faces. Afterward, the model is fine-tuned with a
learning rate of 0.01, 10k iterations, andCosFace loss.

4.3 Evaluation on AIFR

Next, we evaluate MTLFace on several benchmark cross-age
datasets, including CACD-VS [64], CALFW [62], AgeDB
[63], FG-NET [65], and the proposed ECAF, to compare
with the state-of-the-art methods. Note that MORPH is
excluded since the version in [16], [22], [26] is prepared for
commercial use only.

4.3.1 Result on AgeDB Dataset

AgeDB [63] contains 16,488 face images of 568 distinct sub-
jects with manually annotated age labels, which has four
age-invariant face verification protocols under the different
age gaps of face pairs: 5, 10, 20, and 30 years. Similar to the
LFW [61], AgeDB is split into 10 folds for each protocol,
where each fold consists of 300 intra-class and 300 inter-
class pairs. We strictly follow the protocol of 30 years to per-
form 10-fold cross-validation since the protocol of 30 years
is the most challenging one. We use models trained on
SCAF to evaluate the performance on AgeDB for fair com-
parison. Table 2 shows the comparison results in terms of
verification accuracy, demonstrating the superior perfor-
mance of MTLFace over state-of-the-art methods.

4.3.2 Result on CALFW Dataset

Cross-age LFW (CALFW) dataset [62] is designed for
unconstrained face verification with large age gaps, which
contains 12,176 face images of 4,025 individuals collected
using the same identities in LFW. Similarly, we follow the
same protocol as the LFW, where each fold consists of 600

positive and negative pairs. We train the model on LCAF to
evaluate our method on this dataset, and the results are
shown in Table 3. Particularly, our method outperforms the
recent state-of-the-art AIFR methods, establishing a new
state-of-the-art on CALFW.

4.3.3 Result on CACD-VS Dataset

The cross-age celebrity dataset (CACD) contains 163,446
face images of 2,000 celebrities in the wild, with significant
variations in age, illumination, pose, and so on. Since col-
lected by search engine, CACD is noisy with mislabeled
and duplicate images. Therefore, a carefully annotated ver-
sion, the CACD verification subset or CACD-VS [64], is con-
structed for fair comparison, which also follows the
protocol of LFW. Table 4 presents the comparison of the
proposed method with other state-of-the-art methods on
CACD-VS. Our MTLFace surpasses the other state-of-the-
art methods by a large margin, making an improvement of
0.18 against the second best.

4.3.4 Result on FG-NET Dataset

FG-NET [65] is the most popular and challenging age dataset
for AIFR, which consists of 1,002 face images from 82 subjects
collected from thewildwith huge age variations ranging from
child to elder. We strictly follow the evaluation pipeline in
[16], [22]. Specifically, themodel is trained on SCAF and tested
under the protocols of leave-one-out and MegaFace challenge
1 (MF1). In the leave-one-out protocol, faces are used to match
the remaining faces, repeating 1,002 times. Table 5 reports the
rank-1 recognition rate. Our method outperforms prior work

TABLE 2
Verification Rate (%) on AgeDB-30 Data-

set for AIFR

Method Accuracy (%)

RJIVE [71] 55.20
VGG Face [72] 89.89
Center Loss [4] 93.72
SphereFace [73] 91.70
CosFace [69] 94.56
ArcFace [51] 95.15
DAAE [37] 95.30

MTLFace (ours) 96.45

TABLE 3
Verification Rate (%) on CALFW Dataset

for AIFR

Method Accuracy (%)

HUMAN-Individual 82.32
HUMAN-Fusion 86.50

Center Loss [4] 85.48
SphereFace [73] 90.30
VGGFace2 [74] 90.57
ArcFace [51] 95.45

MTLFace (ours) 95.98

TABLE 4
Verification Rate (%) on CACD-VS Data-

set for AIFR

Method Accuracy (%)

HFA [19] 84.40
CARC [64] 87.60
VGGFace [72] 96.00
Center Loss [4] 97.48
LF-CNN [20] 98.50
Marginal Loss [75] 98.95
OE-CNN [16] 99.20
AIM [26] 99.38
DAL [22] 99.40

MTLFace (ours) 99.58
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by a large margin. On the other hand, the MF1 contains an
additional 1M images as the distractors in the gallery set from
690k different individuals, where models are evaluated under
the large and small training set protocols. The small protocol
requires the training set to be less than 0.5M images; this is
strictly followed to evaluate our trained model on FG-NET,
and the experimental results are reported in Table 6. Our
method achieves competitive performance against other
methods since the distractors in MF1 contain a large number
ofmislabeled probe and gallery face images.

4.3.5 Result on ECAF Dataset

ECAF is the proposed cross-age benchmark for AIFR, which
contains 5,265 faces including paired child and adult faces
from 613 subjects. It follows the protocols of LFW and con-
tains subset identities of LFW, which aims to evaluate the
performance of face verification based on two tasks, i.e.
<Adult, Child > and < Child, Child> with 6k and 4k
pairs, respectively.

To establish baseline results on ECAF, we first evaluate
humans on the task of distinguishing two faces of child and
adult from the same person, following the procedures of
LFW [61] and CACD-VS [64]. Specifically, we ask the users
at Amazon Mechanical Turk (AMT) [81] to determine
whether a given pair of faces belongs to the same person,
and provide their confidence in the choices. To obtain more
confident results, the users must have at least 95% approval
rate at AMT, and each pair of faces has 10 results from dif-
ferent users. We report the human performance in Table 7.
The voting performance significantly surpasses the average
performance as the voting procedure ensembles the results
from multiple users.

We then reproduced several baseline face recognition
methods including Softmax, CosFace [69], ArcFace [51], and
CurricularFace [80], and report the results of our MTLFace.
Not surprisingly, MTLFace outperforms humans and other
baseline face recognition methods. It is interesting to
observe that the performance of humans on <Adult, Child
> and < Child, Child > has the opposite results to those
of CNN-based methods, i.e., the results of < Adult, Child
> are better than the ones of < Child, Child > . A possible
reason is that humans are not so confident in the choices of
negative pairs in < Child, Child > compared to < Adult,
Child> , as shown in Fig. 6. To obtain more insights into
the AIFR task on ECAF, in supplemental Fig. 4, we show-
case some example pairs with their cosine similarities on
ECAF for two sub-tasks.

4.3.6 Ablation Study

To investigate the efficacy of different modules in MTLFace,
we perform ablation studies based on four benchmark data-
sets for AIFR by considering the following variants of our
method. 1) Baseline: we remove all extra components other
than the CosFace loss to train the face recognition model. 2)
+Age: this variant is jointly trained under the supervision of
both CosFace and age estimation loss, similar to [21], [22]. 3)
+AFD (CA), +AFD (SA), +AFD (CBAM), +AFD: these four
variants utilize the proposed attention-based feature
decomposition to highlight the age-related information at
different levels with different attention modules: CA [41],
SA [42], CBAM [42], and the proposed one. 4) MTLFace w/
o FT: our proposed MTLFace is trained simultaneously by
the AFD and cross-age domain adaptation loss without
fine-tuning on the synthesized faces, which is the same as
our preliminary version in [18]. 5) MTLFace w/ FT-All:
directly using all the synthesized faces for fine-tuning. 6)

TABLE 7
Verification Rate (%) on ECAF Dataset for AIFR

Method <Adult, Child> <Child, Child>

Human, Average 73.34 68.62
Human, Voting 85.95 78.75

Softmax 85.03 88.25
CosFace [69] 85.72 90.75
ArcFace [51] 86.52 90.65
CurricularFace [80] 84.78 90.80

MTLFace (ours) 87.55 91.20

Fig. 6. Visualization of the confidence scores of humans regarding their
choices, where a higher value indicates greater confidence.

TABLE 5
Rank-1 Identification Rate (%) on FG-NET

(Leave-one-out) Dataset for AIFR

Method Rank-1 (%)

Park et al. [8] 37.40
Li et al. [76] 47.50
HFA [19] 69.00
MEFA [77] 76.20
CAN [78] 86.50
LF-CNN [20] 88.10
AIM [26] 93.20
DAL [22] 94.50

MTLFace (ours) 95.00

TABLE 6
Rank-1 Identification Rate (%) on FG-NET

(MF1) Dataset for AIFR

Method Rank-1 (%)

FUDAN-CS_SDS [79] 25.56
SphereFace [73] 47.55
TNVP [32] 47.72
OE-CNN [16] 52.67
DAL [22] 57.92

MTLFace (ours) 57.78
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MTLFace w/ FT-Sel: using FT-Sel to select high-quality syn-
thesized faces for fine-tuning.

Table 8 presents the experimental results. Note that the
verification rate of the baselinemodel on AgeDB-30 is higher
than those of ArcFace and DAAE since our training data are
age-balanced, which is an important feature of our collected
dataset. Even though the age estimation task is performed in
the face recognition model, it cannot introduce any improve-
ment in AIFR compared to the baseline model. On the other
hand, AFD achieves a remarkable performance improve-
ment on all cross-age datasets. Nevertheless, as AFD high-
lights the age-related information at both the channel and
spatial levels in parallel, our method achieves consistent per-
formance improvements, demonstrating its effectiveness
compared to the single level (CA and SA) or sequential level
(CBAM). Furthermore, the use of cross-age domain adver-
sarial training leads to an additional performance improve-
ment. At last, when all synthesized child faces are employed
as the additional training data (i.e. MTLFace w/ FT-All), the
performance drops as 1) the artifacts in low-quality synthe-
sized faces would degrade the AIFR model, which has also
been reported in [12]; and 2) using all synthesized children’
faces make the face recognition model focus more on chil-
dren, where there are most adult faces in the testing sets.
However, applying FT-Sel to AIFR (i.e. MTLFace w/ FT-Sel)
has consistently improved the performance on several
benchmark datasets. In supplemental Table 1, we show that
FT-Sel has significantly improved the performance on chil-
dren under 10 years old <Child, Child > , and across ages
< Adult, Child> on the ECAF over our preliminary version
[18] without synthesized faces.

4.4 Evaluation on GFR

To validate the generalization ability of our MTLFace for
GFR, we further conduct experiments on the LFW [61] and
MegaFace Challenge 1 Facescrub (MF1-Facescrub) [82] data-
sets. LFW [61] is the most popular public benchmark dataset
for GFR, which contains 13,233 face images from 5,749 sub-
jects. MF1-Facescrub [82] uses the Facescrub dataset [83] of
106,863 face images from 530 celebrities as a probe set. The
most challenging problem of MF1 is that it uses an addi-
tional 1M face images in the gallery set as distractors in face
matching. That is, the results on MF1 are not as reliable as
those on LFW due to the extremely noisy distractors in
MF1. We strictly follow the same procedure as [16], [22]; i.e.,
the training dataset contains 0.5M images (SCAF).

Table 9 reports the verification rate on LFW and the rank-
1 identification rate on MF1-Facescrub against the state-of-
the-art GFR methods. Our method achieves competitive
performance on both datasets, demonstrating the strong
generalization ability of our MTLFace. We highlight that
our MTLFace can provide photorealistic synthesized faces
to improve model interpretability, which is absent in other
methods [16], [22].

4.5 Evaluation on FAS

We further evaluate the model trained on SCAF for FAS.

4.5.1 Qualitative Results

Fig. 7 presents some sample results on the external datasets
includingMORPH and FG-NET. Our method is able to simu-
late the face age synthesis process between age groups with
high visual fidelity. Although variations exist in terms of race,
gender, expression, and occlusion, the synthesized faces are
still photorealistic, with natural details in the skin, muscles,
and wrinkles while consistently preserving identities, thus
confirming the generalization ability of the proposedmethod.

4.5.2 Comparisons With Prior Work

We also conduct qualitative comparisons with prior work
including CAAE [14], AIM [26], PAG-GAN [13], IPCGAN
[12], DAAE [37], and PFA-GAN [39] on MORPH, FG-NET,
and CACD datasets. Fig. 8 shows that both CAAE and AIM
produce oversmoothed faces due to their image reconstruc-
tion and other superiormethods age faceswithmore photore-
alistic aging effects but subtle changes. However, our
MTLFace can synthesize faces with facial shape changes and
stronger aging effects even though the age gaps are large (see
the comparisons with DAAE). In addition to the image qual-
ity, MTLFace has not been re-trained on these three bench-
mark datasets and owns finer age split (7 versus 4 age groups
in most previous literature), which demonstrates the strong
generalization ability of MTLFace against other competitors.
Note that the results of competitors are directly referred from
their own papers for a fair comparison, which is widely
adopted in the FAS literature such as [10], [11], [13], [37], [59]
to avoid any bias or error caused by self-implementation.

4.5.3 Quantitative Comparisons

We quantitatively evaluate MTLFace over previous compet-
itive methods including CAAE [14], IPCGAN [12], and
S2GAN [59], by the following three metrics:

1) age accuracy: we trained a ResNet-100 model on 80%
faces of LCAF using ‘ae as the loss function to predict
the ages of all synthesized faces, where the proportion

TABLE 8
Ablation Study on the Components of MTLFace for AIFR

Model AgeDB-30 CALFW CACD-VS FG-NET

Baseline 95.52 94.27 99.12 93.64
+Age 95.32 94.35 99.15 93.88
+AFD (CA) 95.63 94.50 99.32 94.05
+AFD (SA) 95.85 94.43 99.25 94.38
+AFD (CBAM) 96.08 94.32 99.18 94.36
+AFD 95.90 94.48 99.30 94.58

MTLFace w/o FT 96.23 94.72 99.38 94.78
MTLFace w/ FT-All 95.88 94.45 99.22 93.98

MTLFace w/ FT-Sel 96.45 94.97 99.45 95.00

TABLE 9
General Face Recognition on LFW and MF1-Facescrub Dataset

Method LFW MF1-Facescrub

SphereFace [73] 99.42 72.73
CosFace [69] 99.33 77.11
OE-CNN [16] 99.35 N/A
DAL [22] 99.47 77.58

MTLFace (ours) 99.55 77.33
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of the predicted ages falling into the target age groups
is the age accuracy;

2) mean absolute error (MAE): MAE between predicted
and ground-truth ages used in [49], [84], [85] is
adopted as one of evaluation metric. Here, the mean
ages of target age groups is the ground-truth age
label for synthesized faces; e.g., 5 years old for 10-
age group, similar to [86]; and

3) identity preservation: an external well-trained face
recognition model, the ResNet-100 network pre-

trained on the MS-Celeb-1M dataset from [51], is
used for fair comparisons to compute the cosine sim-
ilarity between the input and synthesized faces.

We reproduce CAAE, IPCGAN, and S2GAN on the
SCAF dataset for fair comparisons, and then directly apply
them to three external cross-age datasets: MORPH [87], FG-
NET [65], CACD [64], and the proposed ECAF. Table 10
presents the quantitative results of different face aging/
rejuvenation methods, including the competitive methods,
our proposed MTLFace and its two variants (w/o multi-

Fig. 7. Qualitative results by applying our MTLFace trained on the SCAF dataset to two external datasets : a) MORPH; and b) FG-NET. Red boxes
indicate input faces.

Fig. 8. Comparisons with prior work on FG-NET, MORPH, and CACD datasets. We show the test faces in the first row with the real age labels below
each image. The second row presents two sample results of prior work, with the target age below each image. The third row shows our results of the
same input faces for the same face aging and rejuvenation as in prior work. Zoom in for a better view of image details.

TABLE 10
Quantitative Comparisons Between our MTLFace and the State-of-the-art Face Aging/Rejuvenation Methods in the Form of a=b=c,
Where a, b, and c Represent the Mean Values of age Accuracy (%), Mean Absolute Error, and Identity Preservation (Cosine Similar-

ity) Computed Over all age Mappings, Respectively

Method MORPH FG-NET CACD ECAF

CAAE [14] 39.77/8.83/0.131	0.089 40.72/9.32/0.146	0.097 39.50/8.74/0.118	0.092 41.36/8.75/0.139	0.100
IPCGAN [12] 58.44/4.95/0.608	0.109 61.22/4.32/0.453	0.122 62.04/3.99/0.452	0.129 61.92/4.16/0.511	0.133
S2GAN [59] 53.85/5.47/0.369	0.105 60.26/4.37/0.293	0.111 60.19/4.31/0.270	0.110 62.35/3.98/0.297	0.117

MTLFace (ours) 67.07/2.98/0.652	0.091 71.33/3.10/0.648	0.094 71.94/2.55/0.630	0.096 72.14/2.28/0.620	0.096
w/o AIFR 51.79/5.49/0.219	0.095 48.60/7.68/0.235	0.093 50.69/6.50/0.197	0.095 52.31/6.14/0.217	0.103
w/o Multi-level ICMs 64.80/3.35/0.606	0.090 69.35/3.27/0.628	0.094 67.79/3.02/0.613	0.098 70.77/2.65/0.601	0.099
w/o ICM 62.60/3.86/0.605	0.072 65.46/3.65/0.612	0.080 62.55/3.87/0.591	0.099 67.34/3.16/0.584	0.088
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level ICMs and w/o ICM), in terms of three evaluation met-
rics. MTLFace outperforms other competitors by a clear
margin; this is a direct result of AIFR and ICM with multi-
level architecture. Without ICM, MTLFace reduces to a com-
mon cGANs-based method that uses one-hot encoding to
control face aging/rejuvenation at the group level. Remark-
ably, the MTLFace without ICM still outperforms these two
baseline methods, implying that our multi-learning frame-
work with attention-based feature decomposition is effec-
tive in improving the quantitative results. We also ablate
AIFR from MTLFace for FAS task; i.e., the encoder was
trained with FAS without the training signals of AIFR.
Without AIFR, FAS cannot produce faces with the same
identity at the target age group as expected, which shows
the essential importance of the AIFR task for FAS; see sup-
plemental Fig. 3 for qualitative comparisons between
MTLFace with and without AIFR.

4.5.4 Comparison With Ground-Truth Faces

ECAF provides pairs of child and adult faces from the same
person, which enables a comparison between the synthesized
faces and ground-truth faces. To this end, we also conduct
comparisons with the trained CAAE, IPCGAN, S2GAN, and
one of the current state-of-the-art methods LATS [38]. Note
that we use the public pre-trained model of LATS to produce
the synthesized faces, which are then aligned with MTCNN
[70] to avoid potential self-implementation bias.

Fig. 9 visualizes the aging/rejuvenation process for
MTLFace and LATSwith the reference of ground-truth faces.
Even though there are large age gaps from child to adult,
MTLFace can synthesize realistic faces with similar aging/
rejuvenation effects compared to ground-truth faces in terms
of identities. On the contrary, LATS produces faces with
severe artifacts for these low-quality input faces—low reso-
lution and extreme poses—which indicates that MTLFace
has a stronger generalization ability.

To further demonstrate the effects of face age synthesis,
we quantitatively evaluate the synthesized faces against
corresponding ground-truth adult/child faces in terms of
cosine similarity. First, the positive pairs from ECAF are
aged/rejuvenated to the same age groups as the ground-
truth faces. Then, the trained face recognition model of Cos-
Face is employed for fair comparisons to compute the cosine
similarity between the synthesized and ground-truth faces.

The results are reported in Table 11 in terms of face aging
and rejuvenation. Compared to the results of the ground-
truth, the face rejuvenation of MTLFace significantly
improves the discrimination of the face recognition model
(see increased cosine similarity). However, it drops slightly
for face aging. Similarly, this phenomenon turns out consis-
tently on other methods for face aging. We think the reason
is that face aging is much more difficult than face rejuvena-
tion, so the unexpected ghost artifacts harm the recognition
performance. Although face aging is largely influenced by
individuals, health conditions, personal habits, and so on,
MTLFace still performs better in preserving personal identi-
ties than other methods in terms of ground-truth, demon-
strating the effectiveness of AIFR task.

4.5.5 Continuous Face Age Synthesis

Thanks to the StyleGAN-based architecture used in the face
age synthesis task, MTLFace can interpolate the missing clas-
ses in the latent space between two adjacent age groups to
achieve continuous age progression and regression. Fig. 10
shows examples of continuous face age synthesis for
MTLFace. Compared to the synthesis only on discrete age
groups in previous works [10], [11], [13], [37], MTLFace can
directly interpolate in the latent space to synthesize realistic
faces with smooth aging sequences. Note that the continuous
synthesis is jointly achieved by the StyleGAN architecture
and the proposed ICM, whereas only StyleGAN cannot per-
form well on FAS. In supplementary Section 2, we clarify the
differences between StyleGANand ourMTLFace for continu-
ous synthesis, summarize the advantages of MTLFace, and
conduct extensive quantitative and qualitative comparisons.

4.5.6 Training Visualization

This section examines the training stability of MTLFace.
That is, when AIFR is not well trained at the early stage of
training, FAS may not preserve the identities of input faces,
which consequently harms the quality of synthesized faces.
However, we argue that the unstable training would not
arise in MTLFace due to the following reasons:

1) In addition to the identity preservation loss, another
learned perceptual image patch similarity (LPIPS) loss
[58] is employed to further encourage the perceptual
consistency between input and synthesized faces.
AlthoughAIFR cannot provide FASwith a good train-
ing signal at the early stage of training, the LPIPS loss
can still encourage FAS to reconstruct the input faces.

Fig. 9. Comparison with ground-truth images on ECAF. We synthesize
the faces by a) face aging and b) face rejuvenation to the same age
group.

TABLE 11
Cosine Similarity on Ground-Truth Face Pairs of ECAF for FAS

Method Aging Rejuvenation

Ground-Truth 0.182 	 0.111 0.182 	 0.111
CAAE [14] 0.030 	 0.077 0.078 	 0.088
IPCGAN [12] 0.137 	 0.099 0.193 	 0.098
S2GAN [59] 0.065 	 0.090 0.135 	 0.095
LATS [38] 0.103 	 0.090 0.172 	 0.106

MTLFace (ours) 0.164 	 0.106 0.210 	 0.112

The higher values, the better identity preservation in synthesized faces.
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2) AIFR can extract discriminative representations that
are good enough for training FAS at the beginning of
training.

To validate these two points, we visualize the training pro-
cess of both AIFR and FAS in Fig. 11. At the first 1k iterations,
AIFR can achieve a good performance on LFW verification
while FAS cannot reconstruct the same identities. The results
indicate that although AIFR has not reached its best perfor-
mance, it can still provide good enough training signals for
FAS. In terms of synthesized faces, FAS can still reconstruct
pleasing faces benefitting from the LPIPS loss, and become
better at preserving the identitieswith the training of AIFR.

5 DISCUSSION

Although the proposed MTLFace has achieved state-of-the-
art performance for the AIFR task and can produce pleasing
synthesized faces for the FAS task, we acknowledge some
limitations in this work. Specifically, although StyleGAN-
based decoder has significantly improved the image quality

of synthesized faces and achieved continuous face age syn-
thesis, we found that it cannot well preserve the back-
ground of input faces. Since face age synthesis mainly
focuses on facial changes, the background may be relatively
less important. This may be addressed by the following two
solutions. First solution is to use another pixel-wise loss
such as mean absolute loss, which may inevitably reduce
the aging/rejuvenation effects. Seond solution is to extract
the face area from the input images prior to being fed into
the synthesis network to reduce the influence of back-
ground like LATS [38], which may, however, introduce
extra computational cost for face segmentation.

6 CONCLUSION

In this paper, we proposed a multi-task learning framework,
termed MTLFace, to achieve AIFR and FAS simultaneously.
We proposed two novel modules: AFD to decompose the fea-
tures into age- and identity-related features, and ICM to
achieve identity-level FAS. We also proposed a novel selec-
tive fine-tune strategy to boost AIFR that selects and leverages
the high-quality synthesized faces. Extensive experiments on
both cross-age and general benchmark datasets for face recog-
nition demonstrate the superiority of our MTLFace. With
multi-level ICMs, MTLFace can be significantly better at pre-
serving the identities of input faces by multi-level skip con-
nections, and improve the age accuracy due to the multi-level
age conditions. The newly collected large-scale cross-age
training dataset and benchmark could further advance the
development of AIFR and FAS.
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