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Abstract—Existing deep clustering methods rely on either contrastive or non-contrastive representation learning for downstream

clustering task. Contrastive-based methods thanks to negative pairs learn uniform representations for clustering, in which negative

pairs, however, may inevitably lead to the class collision issue and consequently compromise the clustering performance. Non-

contrastive-based methods, on the other hand, avoid class collision issue, but the resulting non-uniform representations may cause the

collapse of clustering. To enjoy the strengths of both worlds, this paper presents a novel end-to-end deep clustering method with

prototype scattering and positive sampling, termed ProPos. Specifically, we first maximize the distance between prototypical

representations, named prototype scattering loss, which improves the uniformity of representations. Second, we align one augmented

view of instance with the sampled neighbors of another view—assumed to be truly positive pair in the embedding space—to improve

the within-cluster compactness, termed positive sampling alignment. The strengths of ProPos are avoidable class collision issue,

uniform representations, well-separated clusters, and within-cluster compactness. By optimizing ProPos in an end-to-end expectation-

maximization framework, extensive experimental results demonstrate that ProPos achieves competing performance on moderate-

scale clustering benchmark datasets and establishes new state-of-the-art performance on large-scale datasets. Source code is

available at https://github.com/Hzzone/ProPos.

Index Terms—Contrastive learning, deep clustering, representation learning, self-supervised learning, unsupervised learning
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1 INTRODUCTION

DEEP clustering is gaining considerable attention as it
aims to learn the representation of images and perform

clustering in an end-to-end fashion. The main thrust to
advance deep clustering is the self-supervised representa-
tion learning, including contrastive learning [1], [2] and
non-contrastive learning [3], [4].

Remarkably, existing deep clustering methods heavily
rely on contrastive representation learning, referred to as

contrastive-based methods [5], [6], [7], [8], [9], [10], [11].
Specifically, they are usually built upon MoCo [1] or
SimCLR [2], requiring specially designed losses [5], [7], [8],
[9], [10] or an extra pre-training stage for more discrimina-
tive representations [6], [11]. Although achieving promis-
ing clustering results, contrastive-based methods usually
require a large number of negative examples to learn uni-
form representations in an embedding space where all
instances are well-separated. The involved negative pairs
may inevitably lead to the class collision issue that different
instances from the same semantic class are regarded as neg-
ative pairs and are wrongly pushed away, which hampers
the downstream clustering. An alternative perspective on
this issue is to separate the typical contrastive loss into two
terms [12]: 1) alignment term to improve the closeness of
positive pairs, and 2) uniformity term to encourage instan-
ces to be uniformly distributed on a unit hypersphere by
pushing away the negative pairs. Apparently, the unifor-
mity term could introduce class collision issue [13] as the
constructed negative pairs may not be truly negative.

Different from contrastive learning, non-contrastive
learning only involves the alignment term using the repre-
sentations of one augmented view to predict another. The
non-contrastive learning can avoid the class collision issue
as there are no negative pairs. Lacking the uniformity term
in contrastive loss, it is not guaranteed to learn uniform rep-
resentations [12], [14], which may cause the collapse of
downstream clustering—most samples are assigned to few
clusters. This phenomenon would even worsen when learn-
ing in conjunction with extra clustering losses introduced
by current state-of-the-art deep clustering methods [7], [8];
see Section 5.4 and supplemental Fig. 1, available online.
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To enjoy the strengths of both worlds, we propose a
novel end-to-end deep clustering method, ProPos, with

two novel techniques: prototype scattering loss and posi-

tive sampling alignment. First, considering that different

prototypes/clusters are truly negative pairs, we propose

to perform contrastive learning over prototypical repre-

sentations, in which two augmented views of the same

prototypes are positive pairs and different prototypes

are negative pairs. This yields the proposed prototype

scattering loss or PSL, which maximizes the between-

cluster distance so as to learn uniform representations

towards well-separated clusters. Second, to improve the

within-cluster compactness, we further propose to align

one augmented view of the instance with the randomly

sampled neighbors of another view that are assumed to

be truly positive pairs in the embedding space, which we

refer to as positive sampling alignment or PSA. Com-

pared to conventional alignment between two aug-

mented views, the proposed PSA takes into account the

neighboring samples in the embedding space, improving

the within-cluster compactness. Moreover, we optimize

ProPos in an expectation-maximization (EM) framework,

in which we iteratively perform E-step as estimating the

instance pseudo-labels via spherical k-means and M-step

as minimizing the proposed losses.
The contributions are summarized as follows:

� We propose a novel end-to-end deep clustering
method, termed ProPos, which enjoys the advan-
tages of contrastive and non-contrastive representa-
tion learning: avoidable class collision issue, uniform
representations for improved clustering stability,
well-separated clusters, and improved within-cluster
compactness.

� We propose a novel prototype scattering loss or PSL,
which can align one augmented view of prototypes
with another view and maximize the between-clus-
ter scattering on the unit hypersphere, hence maxi-
mizing the inter-cluster distance for uniform
representations.

� We propose a positive sampling alignment or PSA to
extend instance alignment by taking into account
neighboring positive examples in the embedding
space, which can improve the within-cluster
compactness.

� By optimizing ProPos in an EM framework, exten-
sive experimental results on several benchmark
datasets demonstrate that ProPos outperforms the
existing state-of-the-art methods by a significant
margin, especially for large-scale datasets.

The remainder of this paper is organized as follows.A brief
review on the related work of self-supervised learning and
deep clustering is given in Section 2, followed by the
contrastive and non-contrastive representation learning
in Section 3. We present the proposed PSL and PSA as
well as our ProPos in Section 4. Experimental results are
reported and analyzed in Section 5, where Section 5.2
further justifies the motivation. Finally, Section 6 dis-
cusses the relations to previous works, followed by a
concluding summary in Section 7.

2 RELATED WORK

This section briefly surveys the development of self-super-
vised learning and deep clustering.

2.1 Self-Supervised Learning

Previous self-supervised learning (SSL)methods for represen-
tation learning attempt to capture the data distribution using
generative models [15], [16] or learn the representations
through some special designed pretext tasks [17], [18], [19],
[20]. In recent years, contrastive learning methods [1], [2], [21]
have shown promising results for both representation learn-
ing and downstream tasks. Contrastive representation learn-
ing requires a large number of negative examples to achieve
instance-wise discrimination in an embedding spacewhere all
instances are well-separated. The constructed negative pairs
usually require a large batch size [2], memory queue [1], or
memory bank [21], which not only bring extra computational
cost but also give rise to class collision issue [22] that the
semantic similar instances are pushed away since they could
be regarded as negative pairs. For example, MoCo [1] uses a
memory queue to store the consistent representations output
by a moving-averaged encoder. However, the class collision
issue remains unavoidable. Some attempts have beenmade to
address this issue [23], [24], [25].

On the contrary, the recent studies of SSL demonstrate
that the negative examples are not necessary, termed non-
contrastive methods [2], [3], [26]. Recently, mask image
modeling (MIM) such as MAE [27] arises a new trend for
self-supervised learning that leverages ViT [28] to directly
reconstruct mask images. However, MIM may not be ready
for deep clustering yet as ViT needs to be trained on large
datasets such as ImageNet-1k [29] and it does not learn dis-
criminative representations for deep clustering.

In summary, SSL methods mainly focus on inducing
transferable representations for the (supervised) down-
stream tasks instead of grouping the data into different
semantic classes for deep clustering.

2.2 Deep Clustering

Deep clustering [30], [31], [32], [33], [34], [35], [36], [37], [38]
has been significantly advanced by self-supervised repre-
sentation learning. Most of deep clustering methods are
based on contrastive learning by exploiting the discrimina-
tive representations, learned from contrastive learning, to
assist the downstream clustering tasks [6], [11], [38] or
simultaneously optimize representation learning and clus-
tering [7], [9], [10], [39], [40]. For example, SCAN [6] yields
the confident pseudo-labels by the pre-trained SimCLR
model, and IDFD [9] proposes to perform both instance dis-
crimination and feature decorrelation. Although GCC [41]
and WCL [42] select the neighbor samples from a graph as
pseudo-positive examples for contrastive loss, however,
they still suffer from the class collision issue as these
selected examples may not be truly positive. In a nutshell,
all of them are built upon the contrastive learning frame-
work, in which they require a large number of negative
examples to maintain uniform representations, inevitably
leading to class collision issue.

Although some attempts have been made to use non-
contrastive learning, such as BYOL [3], to avoid class
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collision issue [43], [44], they produce inferior results as
they suffer from the collapse of downstream clustering due
to the non-uniform representations.

Our work advances deep clustering via the two novel
techniques to address current drawbacks. First, the proposed
PSL maximizes the between-cluster distance, which leads to
uniform representations, hence alleviating the collapse of
downstream clustering. Second, the proposed positive sam-
pling alignment improves within-cluster compactness. As a
result, the proposed ProPos can enjoy the strengths of both
worlds: avoidable class collision issue, uniform representa-
tion for improved clustering stability, well-separated clus-
ters, and improved within-cluster compactness. In Section 6,
we discuss the differences from existing methods including
CC [8], GCC [41], WCL [42], PCL [7], and instance-
reweighted contrastive loss [45].

3 PRELIMINARY

Here, we briefly introduce representative contrastive learn-
ing and non-contrastive learning methods.

3.1 Contrastive Learning

Contrastive learning methods perform instance-wise dis-
crimination [21] using the InfoNCE loss [46]. Formally,
assume that we have one instance xxxxxxx, its augmented version
xxxxxxxþ by using randomdata augmentation, and a set ofM nega-
tive examples drawn from the dataset, fxxxxxxx�1 ; xxxxxxx�2 ; . . . ; xxxxxxx�Mg. The
contrastive learning aims to learn an embedding function
fð�Þ that maps xxxxxxx onto a unit hypersphere. The corresponding
InfoNCE loss for one instance is defined as follows:

� log
exp fðxxxxxxxÞ T fðxxxxxxxþÞ

t

� �
exp fðxxxxxxxÞ T fðxxxxxxxþÞ

t

� �
þPM

i¼1 exp
fðxxxxxxxÞ T fðxxxxxxx�

i
Þ

t

� � (1)

�� fðxxxxxxxÞ TfðxxxxxxxþÞ
t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

instance alignment

þ log
XM
i¼1

exp
fðxxxxxxxÞ T fðxxxxxxx�i Þ

t

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

instance uniformity

; (2)

where the representation fðxxxxxxxÞ is ‘2 normalized on a unit
hypersphere, and the temperature t controls the concentra-
tion level of representations.

Intuitively, the InfoNCE loss aims to pull together the
positive pair (xxxxxxx; xxxxxxxþ) from two different data augmentations
of the same instance, and push xxxxxxx away from M negative
examples of other instances. As discussed in [12], the
InfoNCE loss in Eq. (1) can be approximately decoupled
into two terms in Eq. (2): the first term refers to as instance
alignment, and the second term instance uniformity. Despite
the alignment term pulls together the positive pair, the key
to avoiding representation collapse is the uniformity term,
which makes the negative examples uniformly distributed
on the unit hypersphere. Although alleviating the collapse
of downstream clustering, the negative examples may inevi-
tably lead to the class collision issue [13], hurting the repre-
sentations for clustering.

3.2 Non-Contrastive Learning

Non-contrastive methods only optimize the alignment
term in Eq. (2) to match the representations between

two augmented views [3], [4]. Specifically, they often
leverage an online, a target, and a predictor network
to bridge the gap between these two views with stop
gradient operation to avoid representation collapse. In
particular, if t ¼ 0:5, the loss used in [3], [4] can be writ-
ten as:

�2g fðxxxxxxxÞð Þ Tf 0ðxxxxxxxþÞ¼ g fðxxxxxxxÞð Þ�f 0ðxxxxxxxþÞk k22�2; (3)

where gð�Þ, fð�Þ, and f 0ð�Þ are the predictor, online, and tar-
get networks, respectively; gðfðxxxxxxxÞÞ and f 0ðxxxxxxxþÞ are ‘2-nor-
malized. Without using negative pairs, non-contrastive
learning avoids the class collision issue. However, due to
the lack of uniformity, they tend to produce non-uniform
representations that usually result in the collapse of down-
stream clustering, making them unstable for deep cluster-
ing; see Section 5.2.

4 METHOD

The goal of deep clustering is to learn the representation of
images and perform the clustering task simultaneously.
Our ProPos advances deep clustering via two novel techni-
ques: prototype scattering loss (PSL) and positive sampling
alignment (PSA) detailed in Sections 4.1 and 4.2, respec-
tively. We then present the overview of ProPos and its EM
optimization process in Section 4.3.

4.1 Prototype Scattering Loss

A good clustering is supposed to have well-separated proto-
types/clusters. Assuming that the dataset has K clusters,
whereK is a predefined number and assumed to be known,
it naturally constructs a contrastive loss for these K proto-
types as for one prototype, the remaining K � 1 prototypes
are definitely negative examples. Therefore, we propose a
prototype scattering loss or PSL, which encourages the pro-
totypical alignment between two augmented views and the
prototypical uniformity, hence maximizing the inter-cluster
distance.

Specifically, assume we obtain K prototypes from one
view in the embedding space, fmmmmmmm1;mmmmmmm2; . . . ;mmmmmmmKg, and another
K prototypes from another view, fmmmmmmm01;mmmmmmm02; . . . ;mmmmmmm0Kg, our pro-
posed PSL, illustrated in Fig. 1a, is defined as follows:

Fig. 1. Illustration of the proposed two key techniques in ProPos. (a) The
proposed prototype scattering loss to encourage alignment and maxi-
mize the between-cluster distance. (b) The proposed positive sampling
alignment to encourage the alignment between sampled neighbors of
one view with another for better within-cluster compactness.
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Lpsl ¼ 1

K

XK
k¼1
�log

exp
mmmmmmm T

k
mmmmmmm0
k

t

� �
exp

mmmmmmm T

k
mmmmmmm0
k

t

� �
þPK

j¼1; j6¼k exp
mmmmmmm T

k
mmmmmmmj

t

� � (4)

� 1

K

XK
k¼1
�mmmmmmm T

k mmmmmmm
0
k

t|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
prototypical alignment

þ 1

K

XK
k¼1

log
XK

j¼1; j6¼k
exp

mmmmmmm T
k mmmmmmmj

t

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prototypical uniformity

: (5)

Here, the cluster centers mmmmmmmk and mmmmmmm0k are computed within a
mini-batch B as follows:

mmmmmmmk ¼
P

xxxxxxx2B pðkjxxxxxxxÞfðxxxxxxxÞ
kPxxxxxxx2B pðkjxxxxxxxÞfðxxxxxxxÞk2

; (6)

mmmmmmm0k ¼
P

xxxxxxx2B pðkjxxxxxxxÞf 0ðxxxxxxxÞ
kPxxxxxxx2B pðkjxxxxxxxÞf 0ðxxxxxxxÞk2

; (7)

where pðkjxxxxxxxÞ is the cluster assignment posterior probability.
When K > jBj, it is obvious that the mini-batch cannot
cover all clusters. To this end, we zero out the losses and
logits of empty clusters for each iteration. During training,
it is critical to estimate accurate pðkjxxxxxxxÞ to optimize the pro-
posed PSL, so we adopt an EM framework that alternately
uses a k-means clustering for every epoch at the E-step and
then minimizes Eq. (4) at the M-step, which will be detailed
later.

Intuitively, our PSL for prototypes is similar to conven-
tional contrastive loss in Eq. (1) for instances. The key differ-
ence is that PSL will not cause the class collision issue as the
prototypes are definitely negative examples for each other,
which is more suitable for deep clustering. However, the
cluster centers may not be as accurate as expected during
the early epochs of training. For an accurate initialization,
following [7], PSL will be involved in training after the fin-
ish of the learning rate warmup.

Similarly, PSL in Eq. (4) can be approximately divided
into Eq. (5): prototypical alignment and prototypical uniformity.
On one hand, the prototypical alignment is to align the pro-
totypes between two views, which can stabilize the update
of the prototypes. On the other hand, the prototypical uni-
formity is to encourage the prototypes to be uniformly dis-
tributed on a unit hypersphere, which can maximize the
inter-cluster distance. We note that there are two cluster-
level losses related to ours: ProtoNCE [7] to improve cluster
compactness and CC [8] to contrast cluster assignments; we
discuss the major differences in Section 6.

Uniform Representation and Well-Separated Clusters. In the
context of non-contrastive learning for deep clustering, the
lack of uniformity term in Eq. (3) fails to produce uniform
representations, which may cause severe collapse of down-
stream clustering. PSL overcomes this drawback by maxi-
mizing the inter-clusters distance between prototypical
representations, which yields uniform representations and
well-separated clusters.

4.2 Positive Sampling Alignment

Following previous discussion, the negative examples are
essential for contrastive-based deep clustering to learn uni-
form representations, at the cost of inevitable class collision
issue [22] that harms the within-cluster compactness. On
the other hand, non-contrastive learning can avoid the class

collision issue by only optimizing the instance alignment.
However, the conventional instance alignment in Eq. (3)
only encourages the representation of one augmented view
to be close to another view. In the context of clustering, such
compactness is instance-wise and neutral for deep cluster-
ing, since the semantic class information cannot be captured
at only instance level.

To improve within-cluster compactness for conventional
instance alignment while avoiding class collision issue, we
propose to optimize the opposite of the uniformity instead,
i.e. the compactness within clusters. We aim to encourage
the neighboring examples around one augmented view—
sampled from the embedding space and assumed to be truly
positive pairs—to be aligned with another view, as shown
in Fig. 1b. Our motivation is that although we cannot guar-
antee the negative pairs constructed from the dataset are
truly negative, we can certainly assume that the neighboring
samples around one view in the embedding space are truly
positive with respect to another view and belong to the same
class. Therefore, we propose a positive sampling alignment
to extend the instance alignment in Eq. (3) by taking into
account the neighboring samples towards improved
within-cluster compactness.

The key step of PSA is to sample the neighboring exam-
ples vvvvvvv. A natural way is modeling the representation of one
augmented view of an instance as a continuous distribution
in the embedding space. We thus introduce a Gaussian dis-
tribution thanks to its simplicity, which can be formulated
as follows:

vvvvvvv � N fðxxxxxxxÞ; s2IIIIIII
� �

; (8)

where IIIIIII represents the identity matrix and s is a positive
hyperparameter controlling how many samples around one
view can be treated as positive pairs with another view.
However, the sampled examples from Eq. (8) cannot allow
the error to be backpropagated through the network to
update the network parameters. By leveraging the repara-
metrization trick [47], the positive sampling can be imple-
mented as follows:

vvvvvvv ¼ fðxxxxxxxÞ þ s�������; where ������� � N 0; IIIIIIIð Þ: (9)

We then extend the instance alignment in Eq. (3) by taking
into account the neighboring samples. With only sampling
one example from the Gaussian distribution, the positive
sampling alignment (PSA) can be formally defined as:

Lpsa ¼ gðvvvvvvvÞ � f 0ðxxxxxxxþÞk k22
¼ g fðxxxxxxxÞ þ s�������ð Þ � f 0ðxxxxxxxþÞk k22: (10)

Here, when s ¼ 0, PSA reduces to Eq. (3).
Avoidable Class Collision Issue. In the context of non-con-

trastive learning without negative examples, our PSA can
guarantee that the positive examples around one instance,
sampled in the embedding space, are from the same cluster
and form truly positive pairs. Therefore, optimizing PSA loss
would not cause class collision issue that exists in contras-
tive-based deep clustering methods. We discuss the differ-
ence from [41], [42] that sample positive examples from the
dataset in Section 6.
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Improved Within-Cluster Compactness. Unlike conventional
instance alignment for non-contrastive learning, our PSA in
Eq. (10) encourages neighboring examples around one aug-
mented view—either different augmented examples of the
same instance or same/different augmented examples of
different instances within the same cluster—to be positive
pairs with another view. This helps to improve within-clus-
ter compactness.

4.3 Overview of ProPos and Its Optimization

We present the overview of our ProPos in Fig. 2 and opti-
mize it in an EM framework to facilitate the understanding
of the training procedure.

4.3.1 Overview

We build ProPos upon non-contrastive learning framework
similar to BYOL, which is comprised of three networks: an
online, a target, and a predictor. During training, the param-
eters of target network are momentum updated (a.k.a mov-
ing averaged) from the ones of online network, following

uuuuuuutarget ¼ muuuuuuutarget þ ð1�mÞuuuuuuuonline; (11)

wherem 2 ½0; 1Þ is the coefficient, and uuuuuuu� denotes the param-
eters. Two different random data augmentations from the
same inputs are fed into the network to optimize the pro-
posed losses in an EM framework. Specifically, k-means
clustering is performed in the E-step at the beginning of
each epoch to obtain the pðkjxxxxxxxÞ, which is fixed in the latter
training to optimize the proposed PSL. The mmmmmmmk and mmmmmmm0k are
computed from online and target networks using Eqs. (6)
and (7), respectively. Furthermore, PSA is applied to the
representations from online network, which are then passed
through predictor network for alignment.

4.3.2 EM Framework

The optimization of ProPos is done in an EM framework,
where E-step and M-step are detailed as follows; supple-
mental Section 1, available online, presents detailed
derivations.

E-step: This step aims to estimate pðkjxxxxxxxÞ for the proposed
PSL. We perform spherical k-means algorithm on the fea-
tures extracted from the target network since the target net-
work performs more stable and yields more consistent
clusters, similar to BYOL and MoCo. Although we need an
additional k-means clustering to obtain the cluster pseudo-
labels pðkjxxxxxxxÞ for every r epochs, we found that even with a
larger r > 1, our method can still produce consistent per-
formance improvement over the baseline methods. There-
fore, our method will not introduce much computation cost
and is robust to the cluster pseudo-labels; see detailed
results in Sections 5.5 and 5.6. Finally, with pðkjxxxxxxxÞ, we build
the prototypical representations within a mini-batch with-
out additional memory.

Algorithm 1. Training Algorithm

Input: Dataset D ¼ fxxxxxxxg;
Functions fð�Þ and f 0ð�Þ

Output: Clustering results fpðkjxxxxxxxÞg.
repeat
E-step: update fpðkjxxxxxxxÞg for each sample in D using
k-means clustering
M-step: repeat
Randomly sample a mini-batch B from D
for each xxxxxxxi in B do
Randomly augment xxxxxxx and xxxxxxxþ

Compute cluster centers using Eqs. (6) and (7)
Lpsl  Eq. (4)
Lpsa  Eq. (10)

end
L  Eq. (12)
Update f 0 with momentum moving average
Update f with SGD optimizer

until an epoch finished;
until reaching max epochs;

M-step: Combining PSL in Eq. (4) and the PSA in Eq. (10)
yields our objective function for M-step as follows:

L ¼ Lpsa þ �pslLpsl; (12)

Fig. 2. The overall framework of the proposed ProPos in an EM framework.
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where �psl controls the balance between two loss compo-
nents. Therefore, there are only two hyper-parameters in
the loss function, including: s in Lpsa and the loss weight
�psl; see the effects of hyper-parameters in Section 5.5.

The training procedure of the proposed ProPos is pre-
sented in Algorithm 4.3.2.

Relations Between PSL and PSA. A good clustering model
should have well-separated clusters and within-cluster
compactness. On the one hand, PSL encourages well-sepa-
rated clusters by maximizing inter-cluster distance, which,
however, cannot improve within-cluster compactness. On
the other hand, PSA can pull together the sampled neigh-
boring examples around one augmented view and another
view, which can further improve within-cluster compact-
ness. By combing these two losses in Eq. (12), we expect Pro-
Pos can improve deep clustering towards well-separated
clusters and within-cluster compactness.

5 EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets

We conducted experiments on seven benchmark datasets,
including CIFAR-10 [48], CIFAR-20 [48], STL-10 [49],
ImageNet-10 [31], ImageNet-Dogs [31],Tiny-ImageNet [50],
and ImageNet-1k [29], which are summarized in Table 1.We
note that CIFAR-20 contains 20 superclasses of CIFAR-100.
STL-10 includes extra unlabeled images. ImageNet-10,
ImageNet-Dogs, and Tiny-ImageNet are the widely-used
subsets of ImageNet-1k [29], containing 10, 15, 200 classes,
respectively. This paper follows the experimental settings
widely used in deep clustering work [9], [10], [31], [35], [36],
including the image size, backbone, and train-test split. For
image size, we use 32� 32 for CIFAR-10 and CIFAR-20, 96�
96 for STL-10, ImageNet-10, and ImageNet-Dogs, and 224�
224 for Tiny-ImageNet and ImageNet-1k. For train-test split,
we use the whole datasets including training and testing set
for CIFAR-10 and CIFAR-20 while both labeled and unla-
beled data are employed for STL-10.

5.1.2 Backbones

We use ResNet-34 [51] as the backbone for fair comparisons
to report the main results on moderate-scale benchmark
datasets. We use ResNet-18 [51] on Tiny-ImageNet and
ResNet-50 [51] on ImageNet-1k, following the literature.
Unless noted otherwise, we use ResNet-18 for the rest of the
experiments. Since the image sizes of CIFAR-10 and CIFAR-

20 are relatively small, following [2], we replace the first
convolution layer of kernel size 7� 7 and stride 2 with a
convolution layer of kernel size 3� 3 and stride 1, and
remove the first max-pooling layer for all experiments on
CIFAR-10 and CIFAR-20.

5.1.3 Implementation Details

We train all methods with 1,000 epochs, strictly following
the literature [9], [10], and adopt the stochastic gradient
descent (SGD) optimizer and the cosine decay learning
rate schedule with 50 epochs for learning rate warmup.
The base learning rate for MoCo v2 [52], BYOL [3], and
ProPos were 0.05, scaled linearly with the batch size (Lear-
ningRate = 0.05�BatchSize/256). Note that the learning
rates for predictor networks of BYOL and ProPos are 10�
as the learning rate of feature extractor. It is relatively
important to achieve satisfactory performance, as dis-
cussed in [3], [4].

For other hyperparameters of ProPos, the temperature t,
�psl for prototypical scattering loss, and s for positive sam-
pling were set as 0.5, 0.1, and 0.001, respectively. The mini-
batch size was 512 for MoCo and 256 for the remaining
methods. ProPos was trained on 4 NVIDIA V100 GPUs.

Regarding CC [8] and PCL [7], we tried our best to repro-
duce their results for fair comparisons. For CC, we used
their official code. For PCL, under the fair conditions of
MoCo, we set the loss weight of ProtoNCE to 0.01 and the
number of clusters to f250; 500; 1000g following the sugges-
tions of authors, which we found can achieve the best
results. We integrated CC and PCL into BYOL by adding
their losses without changing other settings.

5.1.4 Configurations of SSL Frameworks

We adopt the same data augmentations as SimCLR [2],
including ResizedCrop, ColorJitter, Grayscale, and Hori-
zontalFlip. We have removed GaussianBlur since we only
used a small image size for all datasets. We also strictly
follow the settings of BYOL [3]. Specifically, despite the
standard ResNet backbones, the projection and predictor
networks have the architectures of FC-BN-ReLU-FC,
where the projection dimension and hidden size were 256
and 4,096 for both two networks, respectively. For fair
comparisons, we have also set the projection dimension of
MoCo v2 as 256. We have used symmetric loss for all
methods, i.e., swapping two data augmentations to com-
pute twice loss. For the momentum hyperparameter m 2
½0; 1Þ, we set it to 0.996 for both BYOL and ProPos same
as [3] and 0.99 for MoCo v2. For MoCo v2, the queue size,
temperature for InfoNCE loss, weight decay were 4,096,
1.0, and 1:0� 10�4, respectively. We have not employed
SyncBN in ProPos. We note that SyncBN would introduce
much additional computation cost. Instead, we adopt the
shufflingBN in MoCo to avoid the trivial solution of non-
contrastive learning.

5.2 Empirical Justification

We provide an empirical justification on how the proposed
ProPos improves representation learning for deep cluster-
ing from the aspects of PSL and PSA.

TABLE 1
Summary of the Datasets

Dataset Split # Samples # Classes Image Size

CIFAR-10 Train+Test 60,000 10 32�32
CIFAR-20 Train+Test 60,000 20 32�32
STL-10 Train+Test 13,000 10 96�96
ImageNet-10 Train 13,000 10 96�96
ImageNet-Dogs Train 19,500 15 96�96
Tiny-ImageNet Train 100,000 200 224�224
ImageNet-1k Train 1,281,167 1,000 224�224
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5.2.1 The Role of PSL

The non-uniform representations produced by non-contras-
tive representation learning would lead to the collapse of
downstream clustering where most samples are assigned to
few clusters. We emphasize that it is desirable to avoid the
trivial solution for deep clustering. For example, CC [8] and
etc [41], [53] have usually employed an entropy term in loss
function to regularize the model equally assigning the
images into different clusters. This paper mainly investi-
gates this phenomenon of non-contrastive representation
learning for deep clustering, and the theoretical analysis can
be found in [14], [54].

Our ProPos can encourage cluster uniformity for repre-
sentations via PSL. Here, we use the representative non-

contrastive learning method, Bootstrap Your Own Latent

(BYOL), as the representation learning for deep clustering.

We performed spherical k-means on the learned representa-

tions for the clustering task with 10 different initializations.

Following [4], we use the standard deviation (STD) of

‘2-normalized representations to measure the uniformity.

Ideally, if the ‘2-normalized representations are uniformly

distributed on a unit hypersphere, we have STD½zzzzzzz0	 � 1=
ffiffiffi
d
p

,

where zzzzzzz0 and d are the ‘2-normalized version and the dimen-

sion of the feature representation zzzzzzz. To justify the effective-

ness of ProPos, we conducted the following experiments in

terms of the uniformity of the representations, the collapse

of clustering, and the clustering performance.
First, we visualize the uniformity of representations in

Fig. 3a. Taking a look at STDs during the training stage, Pro-
Pos produces higher STDs, while BYOL performs unstable
with the STDs gradually decreasing. Note that a higher
standard deviation close to 1=

ffiffiffi
d
p

indicates more uniform
representations. Our ProPos yields more uniform represen-
tations than BYOL. Most importantly, the uniformity of Pro-
Pos is rather stable during training.

Second, we further visualize the cluster imbalance to
measure the potential collapse during clustering. More spe-
cifically, we compute the cluster imbalance ratio between
the cluster with least samples and the cluster with most
samples,minðfNkgKk¼1Þ=maxðfNkgKk¼1Þ, whereNk is the num-
ber of samples in k-th cluster. A higher value indicates more
balanced clusters. In addition, we also show the cluster sta-
tistics or the sorted number of samples in each cluster for

the model at 1000-th epoch. The results of cluster imbalance
during training and the cluster statistics at the final epoch
are shown in Figs. 3b and 3c. Fig. 3b shows that the k-means
clustering process of ProPos produces more balanced clus-
ters with a higher cluster imbalance ratio. On the contrary,
the clusters of BYOL are highly imbalanced, which is consis-
tent with decreasing STDs. Moreover, Fig. 3c shows that the
cluster statistics for ProPos are approximately and equally
assigned to different clusters, compared to almost long-
tailed assignments of BYOL. The more balanced clusters
validate that ProPos can alleviate the collapse of k-means
clustering over BYOL.

Finally, Fig. 3d shows the clustering performance com-
parison between the proposed ProPos and BYOL, which is
measured by the normalized mutual information (NMI)
between clustering results and ground-truth labels. We can
see that ProPos produces higher and more stable NMIs than
BYOL. In line with the analysis above, we conclude that
directly applying BYOL to deep clustering, although avoid-
ing class collision issue, suffers from the collapse of k-means
clustering due to the non-uniform representations. In con-
trast, ProPos with PSL yields more uniform representations
and well-clustered samples.

5.2.2 The Role of PSA

PSA assumes that the sampled neighbors are truly positive
examples with respect to another view, i.e., they belong to the
same semantic classes. To validate this assumption,we investi-
gate the behavior of PSA during training by checking whether
the semantic classes of input examples have been changed.

First, we perform k-NN classification to predict the classes
of both inputs and their sampled neighbors from testing set,
and then use the proportion of sampled neighbors that have
preserved original classes as the preservation rate. We run
the experiments 10 times with different s for PSA. As shown
in Fig. 4a, even at the early training stage, the sampled neigh-
bors well preserve original classes for s < 0:005. The preser-
vation rate drops as expected for s ¼ 0:01 since PSA may
sample the instances from another cluster for large s.

Second, we showcase some randomly-selected input
images whose nearest neighbors have been changed during
the sampling procedure, Specifically, Fig. 4b visualizes the
input images, their nearest neighbors, and the sampled

Fig. 3. Detailed comparison between BYOL [3] and ProPos on CIFAR-10 in terms of (a) standard deviation (STD) of ‘2-normalized features to evalu-
ate the uniformity, (b) cluster imbalance ratio computed by minðfNkgKk¼1Þ=maxðfNkgKk¼1Þ to show how balanced the clusters are, (c) cluster statistics,
or the sorted number of samples in each cluster for the model at 1000-th epoch, and (d) normalized mutual information (NMI) between the clustering
results and ground-truth labels.
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neighbors. We note that we replaced the images of sampled
neighbors with their nearest neighbors since it is too hard to
reconstruct the image from embedding space. Obviously,
the sampled neighbors belong to the same class as the input
images even at the early stage of training (i.e. 100th epoch).

In summary, the results suggest that the sampled neigh-
bors could be truly positive examples both quantitatively
and qualitatively so that PSA can improve the within-clus-
ter compactness.

5.3 Main Results

In this section, we evaluate ProPos with previous state-of-
the-art clustering methods on various benchmark data-
sets. We divide these methods into 5 types, listed in
Table 2 from top to bottom: i) methods without using con-
trastive learning (IIC to PICA); ii) multi-stage methods
requiring step-by-step pretraining or finetuning (SCAN
and NMM); iii) methods directly outputting the cluster
assignments (CC to TCC); iv) methods learning general

representations (MoCo to BYOL); and v) methods improv-
ing representation learning for clustering (IDFD to Pro-
Pos). We strictly follow the experimental settings of
previous works [9], [10] for fair comparisons. We repro-
duced PCL [7], SimSiam [2], and BYOL [3] under the
same conditions, and directly use the their learned repre-
sentations for k-means clustering.

In terms of qualitative results of clustering, we visualize
the learned representations by t-SNE [57] for four different
training epochs throughout the training process in supple-
mental Fig. 2, available online, and the outlier points pro-
duced by the model at 1000-th epoch on CIFAR-10 in
supplemental Fig. 3, available online. For fair comparisons,
supplemental Table 1, available online, presents the results
excluding the testing set for CIFAR-10/20 and using a larger
image size for ImageNet-10/Dogs.

5.3.1 Results on Moderate-Scale Datasets

The comparisons on five moderate-scale datasets are
reported in Table 2. The results of MoCo are referred
from [10]. For fair comparison, we excluded SPICE [11] in
Table 2 since it requires multiple pre-training stages. ProPos
achieves significant performance improvement on all bench-
mark datasets, demonstrating the superiority of ProPos for
deep clustering to capture the semantic class information.

On the ImageNet-10, our ProPos achieves competitive
performance as compared to IDFD [9] since this dataset is rel-
atively small with only 13 k images, which cannot arise dis-
criminative differences for current state-of-the-art methods.
On the ImageNet-Dogs, a fine-grained dataset containing
different species of dogs from the ImageNet dataset, there
are almost 20% improvements over previous state-of-the-art
work. The contrastive-based methods cannot handle this
kind of dataset due to severe class collision issue that pushes
away the instances from the same class. Meanwhile, IDFD
can deal with this problem to some degree thanks to the

Fig. 4. Visualization of sampled neighbors for ProPos on CIFAR-10: (a)
The odds of sampled neighbors that have preserved their original
semantic classes under different s during training; and (b) The input
images, the 1-nearest-neighbors (1-NN) of input images, and three sam-
ple neighbors at 100th epoch.

TABLE 2
Clustering Results (%) of Various Methods on Five Benchmark Datasets

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs

NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

IIC [36] 51.3 61.7 41.1 - 25.7 - 43.1 49.9 29.5 - - - - - -
DCCM [35] 49.6 62.3 40.8 28.5 32.7 17.3 37.6 48.2 26.2 60.8 71.0 55.5 32.1 38.3 18.2
PICA [55] 56.1 64.5 46.7 29.6 32.2 15.9 - - - 78.2 85.0 73.3 33.6 32.4 17.9
SCAN [6] 79.7 88.3 77.2 48.6 50.7 33.3 69.8 80.9 64.6 - - - - - -
NMM [56] 74.8 84.3 70.9 48.4 47.7 31.6 69.4 80.8 65.0 - - - - - -
CC [8]1 70.5 79.0 63.7 43.1 42.9 26.6 76.4 85.0 72.6 85.9 89.3 82.2 44.5 42.9 27.4
MiCE [10] 73.7 83.5 69.8 43.6 44.0 28.0 63.5 75.2 57.5 - - - 42.3 43.9 28.6
GCC [41] 76.4 85.6 72.8 47.2 47.2 30.5 68.4 78.8 63.1 84.2 90.1 82.2 49.0 52.6 36.2
TCL [38]1 81.9 88.7 78.0 52.9 53.1 35.7 79.9 86.8 75.7 87.5 89.5 83.7 62.3 64.4 51.6
TCC [39] 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9 84.8 89.7 82.5 55.4 59.5 41.7
MoCo [1] 66.9 77.6 60.8 39.0 39.7 24.2 61.5 72.8 52.4 - - - 34.7 33.8 19.7
SimSiam [2] 78.6 85.6 73.6 52.2 48.5 32.7 65.9 71.6 57.2 83.1 92.1 83.3 58.3 67.4 50.1
BYOL [3] 81.7 89.4 79.0 55.9 56.9 39.3 71.3 82.5 65.7 86.6 93.9 87.2 63.5 69.4 54.8
IDFD [9] 71.1 81.5 66.3 42.6 42.5 26.4 64.3 75.6 57.5 89.8 95.4 90.1 54.6 59.1 41.3
PCL [7] 80.2 87.4 76.6 52.8 52.6 36.3 71.8 41.0 67.0 84.1 90.7 82.2 44.0 41.2 29.9
ProPos (ours) 88.6 94.3 88.4 60.6 61.4 45.1 75.8 86.7 73.7 89.6 95.6 90.6 69.2 74.5 62.7

1 CC and TCL use a large image size of 224� 224 for all datasets.
The best and second best results are shown in bold and underline, respectively. The works most related to our method are IDFD and PCL that improve the repre-
sentations for clustering.
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feature decorrelation along with the instance discrimination.
Furthermore, BYOL and SimSiam can achieve significant
improvements, which suggests a great potential for non-con-
trastive representation learning for deep clustering without
suffering class collision issue. However, our ProPos has
introduced further substantial improvements for deep clus-
tering by addressing existing issues. Although CC [8] and
TCL [38] achieve the better NMIs on STL-10, we highlight
that they use a large image size of 224� 224 for all datasets,
which is not fair to ours.

5.3.2 Results on Large-Scale Datasets

To validate the effectiveness of ourmethod on large-scale data-
setswith large number of classes,we evaluate it onTiny-Image-
Net and ImageNet-1k, which contains 200 and 1000 classes,
respectively. The results are reported in Tables 3 and 4. We
note that we exclude the methods that their authors did not
report results on the corresponding datasets from Tables 3
and 4. For ImageNet-1k, we strictly follow the settings in [7]
and employedAdjustedMutual Information (AMI) to evaluate
the performance, the results in Table 4 are referred from [7],
and we trained a ResNet-50 for 200 epochs same as [7]. The
results show the strong generalization ability of ProPos on com-
plex datasetswith a large number of clusters.

To further show the effectiveness of ProPos for down-
stream classification task, we conducted the linear evalua-
tion on ImageNet-1k dataset, and provide the comparisons
with the recent state-of-the-art methods in Table 5. Following
the same settings in [4], we have trained the linear classifier
for 90 epochs with a batch size of 4,096, an initial learning
rate of 1.6, cosine learning rate decay, and the SGD optimizer
of momentum 0.9 andweight decay 0. Under fair conditions,
ProPos outperforms other competitors by a clearmargin.

5.4 Ablation Study

Here, we perform detailed ablation studies with both quan-
titative and qualitative comparisons to provide more
insights into why ProPos performs well for deep clustering.

5.4.1 Quantitative Ablation Study

The quantitative results are shown in Table 6.
Ablation Study of PSL and PSA. ProPos w/o PSA improves

the baseline results by a large margin while ProPos w/o PSL
achieves marginal improvements, which indicates that PSL

is the key to boosting the clustering performance. However,
PSA plays an important role in two parts. First, simply
using the PSA can stable and further improve the perfor-
mance than the baseline BYOL (only instance alignment
loss), especially when the number of semantic classes
increases for CIFAR-20. Second, PSA can make ProPos bet-
ter for clustering when PSL is used in conjunction with the
PSA to pull together the neighbor examples. This is because
the well-seperated clusters by PSL can further ensure that
PSA samples the positive neighbors that are in the same
semantic classes than the one without PSL. On the other
hand, PSL only considers inter-cluster distance, and cannot
benefit within-cluster compactness. Therefore, the combina-
tion of the positive sampling and PSL achieves the best clus-
tering results, where PSL aligns the cluster centers between
two augmented views and maximizes the inter-cluster dis-
tance, and PSA improves the within-cluster compactness.

To further explore the effect of PSL, following Eq. (5) we
split PSL into alignment and uniformity terms denoted as
PSL-alignment and PSL-uniformity in Table 6. It is clear that
the performance gain from the alignment term is marginal
while the gain from the uniformity term is significant. For
only alignment term, we compute the loss after predictor

TABLE 3
Clustering Results (%) on Tiny-ImageNet

Method Tiny-ImageNet

NMI ACC ARI

DCCM [35] 22.4 10.8 3.8
PICA [55] 27.7 9.8 4.0
CC [8] 34.0 14.0 7.1
GCC [41] 34.7 13.8 7.5
MoCo [1] 34.2 16.0 8.0
PCL [7] 35.0 15.9 8.7
SimSiam [2] 35.1 20.3 9.4
BYOL [3] 36.5 19.9 10.0
ProPos (ours) 40.5 25.6 14.3

We trained ProPos using ResNet-18.

TABLE 4
Clustering Results (%) on ImageNet-1k

Using ResNet-50

Method AMI

DeepCluster [20] 28.1
MoCo [1] 28.5
PCL [7] 41.0
ProPos (ours) 52.5

TABLE 5
Linear Evaluation on ImageNet-1k Dataset

Method Backbone Pre-training ACC
Batch size Epochs

Jigsaw [18] AlexNet 256 - 34.6
Rotation [58] AlexNet 128 100 38.7
DeepCluster [20] AlexNet 256 500 41.0
InstDisc [21] ResNet-50 256 200 54.0
LocalAgg [59] ResNet-50 128 200 60.2
CMC [60] ResNet-50 - 200 66.2
SimCLR [2] ResNet-50 256 200 64.3
MoCo [1] ResNet-50 256 200 60.6
MoCo v2 [52] ResNet-50 256 200 67.5
PCL [7] ResNet-50 256 200 67.6
IFND [61] ResNet-50 256 200 69.7
BYOL [62] ResNet-50 4096 200 70.6
SimSiam [4] ResNet-50 256 200 70.0
ProPos (ours) ResNet-50 256 200 72.2
CPC [46] ResNet-101 512 - 48.7
SeLa [63] ResNet-50 1024 400 61.5
PIRL [64] ResNet-50 1024 800 63.6
SimCLR [2] ResNet-50 4096 1000 69.3
BYOL [62] ResNet-50 4096 1000 74.3
SwAV [26] ResNet-50 4096 800 75.3

We Report the Top-1 Classification Accuracy (%) by Training a Linear Classi-
fier; the Results are Adopted From Corresponding Papers. The Upper Group
Above CPC Uses More Fair Conditions, e.g., Backbone and Training Epoch.

HUANG ETAL.: LEARNING REPRESENTATION FOR CLUSTERING VIA PROTOTYPE SCATTERING AND POSITIVE SAMPLING 7517



network instead of feature extractor, otherwise, representa-
tion collapse will turn out. This indicates that uniformity is
more important than alignment which can scatter the proto-
types to encourage the uniform representations to address
the issues in Section 5.2. However, the alignment term is
essential to stabilize the training process, as demonstrated in
the results for CIFAR-20withmore clusters.

Ablation Study of Self-Supervised Learning Framework. To
alleviate the bias of self-supervised learning framework, we
conduct experiments in two folds. First, we integrate CC [8]

and PCL [7] into BYOL; the results in Table 6 show that

both of them compromise clustering performance and

become unstable. This is because CC contrasts the cluster

probability not helpful for representation learning, and PCL

would collapse without negative examples; see supplemen-

tal Fig. 1, available online, for detailed analysis. We empha-

size that BYOL has addressed the class collision issue.

Instead, this paper proposes the ProPos with PSL to scatter

the prototypes by maximizing inter-cluster distance and

positive sampling to improve within-cluster compactness.

Second, we replace the cluster head of CC with our PSL on

the representations while keeping other hyper-parameters

unchanged. Although class collision issue remains, the sig-

nificant improvements over CC on both datasets suggest

that 1) PSL over representation prototypes is better than the

one over cluster probabilities, and 2) PSL can be generalized
to other self-supervised learning frameworks.

5.4.2 Qualitative Ablation Study

Fig. 5 visualizes the distribution of representations learned
from BYOL, ProPos w/o PSL, ProPos w/o PSA, and our Pro-
Pos. ProPos w/o PSA leverages PSL to discriminate different
clusters bymaximizing the inter-cluster distance, and produ-
ces more uniform representations. Although ProPos w/o
PSL with only PSA achieves marginal improvements and
does not produce a significant difference than BYOL, the
positive sampling can further improve the within-cluster
compactness with only PSL via the sampling-based instance
alignment loss to pull together the neighbor samples.

5.4.3 Effect of Predefined Number of Clusters

In the above experiments, the number of clusters is prede-
fined as the number of ground-truth classes, which cannot
be identified in the practical scenarios. To this end, we con-
duct experiments on CIFAR-10 and CIFAR-20 with different
number of clusters, i.e., K 2 f5; 10; 20; 30; 40; 50g. We
reported NMIs following [20] in Fig. 6. We note that the pre-
defined K of ProPos during the training of ProPos is the
same as the K in k-means clustering process for evaluation.

TABLE 6
Ablation studies (NMI/ACC/ARI) for Different Self-Supervised Learning Frameworks, Positive Sampling Alignment (PSA), and Pro-

totype Scattering Loss (PSL) for ProPos

Method CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

CC [8] 66.1
0.3 74.6
0.3 58.3
0.4 46.4
0.3 45.0
0.1 29.5
0.2
CC + PSL 74.3
0.4 83.4
0.5 69.6
1.0 48.3
0.2 49.1
0.2 32.2
0.4
PCL [7] 77.6
0.1 85.5
0.1 73.4
0.0 50.0
0.3 48.6
0.7 32.7
0.4
BYOL [3] 79.4
1.7 87.8
1.7 76.6
2.8 55.5
0.6 53.9
1.6 37.6
0.9
BYOL + CC 76.6
3.1 86.3
2.7 73.8
4.7 51.0
2.0 48.9
3.0 33.3
2.9
BYOL + PCL 74.4
2.3 85.3
0.9 71.4
1.4 49.7
0.7 46.9
0.7 27.8
1.5
ProPos (ours) 85.1
0.5 91.6
0.4 83.5
0.7 58.2
0.3 57.8
0.2 42.3
0.3
ProPos w/o PSL 79.4
0.9 87.9
0.5 76.4
1.1 57.0
0.0 55.0
0.6 39.8
1.1
ProPos w/o PSA 83.4
1.2 90.3
0.9 81.1
1.7 56.6
0.4 55.1
0.5 40.7
1.0
ProPos w/o PSL-uniformity 79.6
0.7 87.8
1.5 76.5
2.1 56.7
0.3 56.6
1.4 39.7
1.1
ProPos w/o PSL-alignment 85.3
0.2 92.1
0.1 84.4
0.3 57.2
0.3 57.3
0.6 41.7
0.5
The best and second best results are shown in bold and underline, respectively.

Fig. 5. Visualization of feature representations learned by different representation learning frameworks and our proposed ProPos on CIFAR-10 with t-
SNE. Zoom in for better view.
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To further investigate the influences of K, we also reported
the results of vanilla BYOL during k-means clustering.

The results in Fig. 6 demonstrate that BYOL and ProPos
have the same behavior on these two datasets. For over-clus-
tering cases (K is larger than the true number of classes), the
trends on these two datasets are opposite. Specifically, over-
clustering leads to a performance drop for CIFAR-10, but it
leads to an increase for CIFAR-20. However, our ProPos can
still produce large improvements over BYOL with the same
predefined number of clusters. The opposite results are due
to the significant difference between these two datasets.
Although having the same number of samples, CIFAR-10
has 10 distinct classeswhile CIFAR-20 has, in fact, 100 classes
but uses 20 super-classes instead. Same trends are also con-
sistently reported in [20]. In other cases, if the representa-
tions are well aligned within the same semantic clusters, the

over-clustering would try to destroy the structures of the
clusters and push the semantically similar examples away,
which certainly compromises the clustering performance.
For under-clustering cases, the clustering performance has
been significantly harmed for both two datasets and two
methods. In supplemental Fig. 4, available online, we have
visualized the learned representations for under-clustering,
which shows that the examples from the same semantic clas-
ses can be still clustered together.

5.5 Hyperparameter Analysis

To investigate the effect of different hyperparameters, we
conduct extensive experiments on the CIFAR-10/20 data-
sets. For the projection dimension, backbone, and data aug-
mentation of SSL, we adopted the BYOL as the baseline
method. The results are reported in Fig. 7.

5.5.1 Frequency of Performing k-Means Clustering

ProPos performs k-means clustering for every r epochs.
Here, we study how different r influences the clustering
performance. The results in Fig. 7a demonstrate ProPos is
robust to large r and the cluster pseudo-labels, which means
it is not necessary to perform clustering for every epoch so
that the computation cost can be significantly reduced. In
summary, we suggest that r can be set to ½1; 8	 by consider-
ing the datasets and computation resources.

5.5.2 The Hyperparameter s in PSA

The hyperparameter s in PSA controls the degree of posi-
tive sampling. Taking a look at s � ½0; 10�3	 in Fig. 7b,
although introducing the positive sampling into BYOL
causes a slight drop on CIFAR-10, the clustering perfor-
mance becomes more stable as evidenced by the standard
deviation. This is because the neighbors of one sample are

Fig. 6. The effect of the predefined number of clusters K on CIFAR-10/
20 datasets.

Fig. 7. Effects of different hyperparameters in ProPos.

HUANG ETAL.: LEARNING REPRESENTATION FOR CLUSTERING VIA PROTOTYPE SCATTERING AND POSITIVE SAMPLING 7519



regarded as positive examples. Besides, the performance for
CIFAR-20 has increased over baseline with the standard
deviation reduced. These results indicate that positive sam-
pling can improve the stability of performance. However,
when s is too large, the performance becomes unstable and
drops a lot. It is not surprising since during positive sam-
pling with large s, the instances from other clusters could
be sampled and regarded as positive examples. Therefore,
we suggest setting s to a small value, saying ð0; 10�3	.

5.5.3 The Hyperparameter �psl for PSL

The hyperparameter �psl controls the importantance of PSL.
The results in Fig. 7c suggest that ProPos is robust to differ-
ent choices on CIFAR-20. However, the higher �psl leads to
instability on CIFAR-10. The possible reason is that CIFAR-
20 is more diverse and has more semantic classes than
CIFAR-10 (100 versus 10). Therefore, we suggest that �psl
can be set to ½0:01; 0:1	, which has demonstrated superior
performance on both two datasets.

5.5.4 Projection Dimension

The projection dimension describes the embedding space of
SSL. The results in Fig. 7d shows that ProPos achieves con-
sistent and significant performance improvement over base-
line regardless of different projection dimension.

5.5.5 ResNet Backbone

Fig. 7e shows that with the deeper ResNet networks, ProPos
achieves significant improvements with small standard
deviations for clustering, demonstrating its superior stabil-
ity and performance against the baseline method.

5.5.6 Data Augmentation

Data augmentation is important for self-supervised learn-
ing. Fig. 7f shows that the performance drops for both
BYOL and ProPos when removing some data augmenta-
tions. However, the results suggest that ProPos still per-
forms more stable and is robust to data augmentations.

5.6 Computational Cost

The main additional computational cost of ProPos is the
k-means clustering procedure. We have implemented the
k-means algorithm with k-means++ [65] initialization using
PyTorch to utilize the GPU and accelerate the clustering
process. We performed k-means clustering with 10 different
initialization in cosine distance. Table 7 summarizes the
training time of ProPos and BYOL on different datasets.
ProPos does not introduce much additional computational
cost. Besides, as suggested in the results of Fig. 7a, ProPos is
robust to the different r, so there is no need to perform
k-means for every epoch. Therefore, the training time can be
further reduced for ProPos. The computational cost of the
PSL is also small since we build the cluster centers within
mini-batch, saying that ProPos does not need additional
memory to store the cluster centers. Consequently, consid-
ering the promising performance improvements, the addi-
tional computational cost is relatively affordable.

5.7 Subsets of ImageNet

In addition, we also reported the clustering results on
ImageNet subsets like SCAN [6] in Table 8. We strictly fol-
low the settings in [6]: we have adopted the same 50, 100,
and 200 classes from ImageNet, clustered on the training
set, and tested on the validation set. We have used the same
experimental settings as the other benchmarked datasets
and trained ProPos with ResNet-50 for 300 epochs. We note
that SCAN has used the pre-trained model of MoCo trained
on the full ImageNet for 800 epochs. The results are directly
referred from their published paper including k-means with
pre-trained MoCo, SCAN after the clustering step, and
SCAN after the self-labeling step. With much fewer training
epochs and training data, ProPos still produces better per-
formance by a clear margin, demonstrating the superiority
of ProPos.

5.8 Long-Tail Dataset

We also conducted additional experiments in Table 9 to
demonstrate the ability of ProPos handling the long-tailed
datasets. We built the long-tailed version of CIFAR-10 and
CIFAR-20, termed CIFAR-10-LT and CIFAR-20-LT using
the codes of [66], which follows [67], [68]. Specifically, they

TABLE 7
The Training time (hours) in the Settings of 1,000 Epochs, 4 V100 GPUs, and ResNet-50

Method CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-dogs Tiny-ImageNet

BYOL [3] 9.0 9.0 14.7 1.7 2.6 13.0
ProPos (r ¼ 1) 10.9(+1.9) 11.0(+2.0) 15.8(+1.1) 2.7(+1.0) 3.7(+1.1) 15.7(+2.7)

TABLE 8
Clustering Results (%) on the Subsets of ImageNet

ImageNet 50 Classes 100 Classes 200 Classes

Method NMI ARI NMI ARI NMI ARI

k-means with pre-trained MoCo 77.5 57.9 76.1 50.8 75.5 43.2
SCAN [6] after clustering step 80.5 63.5 78.7 54.4 75.7 44.1
SCAN [6] after self-labeling step 82.2 66.1 80.8 57.6 77.2 47.0
ProPos (ours) 82.8 69.1 83.5 63.5 80.6 53.8
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were built upon the training datasets under the control of
data imbalance ratio minðfNkgKk¼1Þ=maxðfNkgKk¼1Þ ¼ 0:1.
Consequently, the samples in the long-tailed datasets are
almost all in the minority classes (head), versus few samples
in other classes (tail). MoCo v2 cannot handle this problem
well due to the class collision issue, as a result, the samples
in the head will be pushed away and the ones in the tail will
be mixed together. BYOL and ProPos do not need negative
examples so that they outperform MoCo v2 by a large mar-
gin. By introducing PSA and PSL, we can further boost the
clustering performance of BYOL.

5.9 Boosting Performance With Memory Queue

To better represent the prototype of one class, the mini-
batch should contain a sufficient number of samples. How-
ever, this would significantly increase the requirement of
GPU memory when one dataset has a large number of clus-
ters. Here, we highlight that although we use a mini-batch
size of 256, we find that ProPos generalizes well on the data-
sets such as Tiny-ImageNet with 200 classes (about 1 sample
per class in a mini-batch) and ImageNet-1k with 1,000 clas-
ses (about 0.25 sample per class in a mini-batch).

To compute class prototypes accurately with a small
mini-batch size, we propose to employ a memory queue for
updating prototypes. In the vanilla PSL, we use the repre-
sentations within mini-batch B to estimate the prototypes in
Eqs. (6) and (7). With a memory queue Q used in [1] to store
the representations from the momentum-updated encoder,
we can update the prototypes with samples in both mini-
batch and memory queue, B [Q.

To show the effectiveness of the memory queue, we con-
duct the experiments on Tiny-ImageNet as it is challenging
enough with 200 classes, and the corresponding results are
shown in Fig. 8; we trained the model with the same settings
as detailed in Section 5.1.3 except for 200 epochs. As shown
in Fig. 8, the performance can be further improved with
more samples used to compute the prototypes. However,
the performance could drop when the size of memory
queue becomes too large, saying 4,096 in Fig. 8. The reason
is that when the memory queue is too large, the representa-
tions enqueued at early iterations may be far away from the
true ones due to the longer update of the encoder [1]. More-
over, using the memory queue brings more computational
costs and introduces an additional hyperparameter—the
size of memory queue. Therefore, ProPos works well when
the mini-batch size is small compared to the number of clas-
ses, and its performance can be further improved with a
memory queue.

6 DISCUSSION

In this section, we discuss the differences between our
method and previous works.

6.1 Relation to CC

Although both PSL and CC [8] are class-level contrastive
loss, which perform contrastive learning at the cluster level,
they have the following difference.

� The class-level contrastive loss in CC implements the
contrastive loss on the cluster probabilities while ours
on the representation of cluster centers. Implementing
contrastive loss on the cluster probability in [8] would
lose the semantic information of the learned represen-
tations, which is not helpful for representation learn-
ing. Specifically, given the xxxxxxx 2 B, CC obtains the
cluster assignments PPPPPPPk ¼ ½pðkjxxxxxxxð1ÞÞ; . . . ; pðkjxxxxxxxðNÞÞ	
from one view and PPPPPPPk

0 from another view, and then
contrasts PPPPPPPk and PPPPPPPk

0 at the cluster level using the
InfoNCE loss. In contrast, PSL implements the con-
trastive loss on the representation of the cluster cen-
ters within a mini-batch using the pseudo-labels from
k-means clustering. As a result, PSL is able to sense
the semantic information of the latent space and
make the representations of clustersmore discrimina-
tive and suitable for the clustering task.

� The class-level contrastive loss in CC does not
encourage cluster uniformity while our PSL does.
CC still needs the instance-wise contrastive loss to

TABLE 9
Clustering Results (%) on Long-Tailed Datasets of Different Self-Supervised Learning Frameworks and Our Proposed ProPos

Method CIFAR-10-LT CIFAR-20-LT

NMI ACC ARI NMI ACC ARI

MoCo v2 [1] 46.7
0.1 33.4
0.3 27.7
0.0 31.2
0.3 28.2
0.2 16.1
0.3
BYOL [3] 51.6
1.0 41.3
0.4 30.8
0.4 41.9
0.4 34.6
0.5 22.3
1.0
ProPos w/o PSL 53.1
0.7 42.7
0.4 31.6
0.8 43.4
0.8 35.1
0.6 24.0
0.1
ProPos (ours) 55.3
0.4 43.9
0.1 36.3
0.3 44.6
0.2 39.0
0.7 27.3
0.2

Fig. 8. The performance of ProPos using a memory queue with different
sizes on Tiny-ImageNet. We repeated each run for 3 times and reported
the mean and std values.
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encourage instance uniformity, which inevitably
introduces the class collision issue.

In addition to these differences, experimentally, we also
compare the PSL and CC [8] in the same BYOL framework
and report the results in Table 6. The experimental results
show that compared to BYOL, BYOL+CC drops the perfor-
mance and makes the training unstable as CC fails to
encourage uniform representations. Under the same condi-
tions, ProPos achieves significant improvements over BYOL
+CC.

6.2 Relation to GCC and WCL

To alliterate the class collision issue, GCC [41] and
WCL [42] built a graph to label the neighbor samples as
pseudo-positive examples. Then, they enforce the two data
augmentations of one example to be close to its multiple
pseudo-positive examples using a supervised contrastive
loss. GCC adopted a moving-averaged memory bank for the
graph-based pseudo-labeling while WCL built the graph
within a mini-batch. GCC and WCL mainly focus on how to
effectively select positive examples from mini-batch/mem-
ory bank to alleviate the class collision issue. Here, we divide
the class collision issue into the following two cases:

� Negative class collision issue: negative examples
may not be truly negative, which is the case contras-
tive learning faces.

� Positive class collision issue: positive examples may
not be truly positive, which is a new case raised in
GCC andWCL.

Consequently, they still suffer from the positive class col-
lision issue as the selected pseudo-positive examples may
not be truly positive. In addition to this, they also suffer
from the negative class collision issue since they still need
negative examples for instance-wise contrastive learning.

We summarize the difference between our PSA and
theirs in the following four aspects.

� GCC and WCL select the examples that exist in the
dataset (mini-batch/memory bank) while ours sam-
ples examples from the latent space that may not
exist in the dataset.

� GCC and WCL select neighbor examples in a graph
as pseudo-positive examples that may not be truly
positive while ours samples examples around the
instance in the embedding space that can be
assumed to be truly positive.

� GCC and WCL still rely on instance-wise contrastive
loss that could lead to class collision issue while ours
can avoid class collision issue by using non-contras-
tive BYOL.

� GCC and WCL require additional computational
cost for graph construction while ours is rather
cheap in sampling one example in the embedding
space.

6.3 Relation to PCL

Here, we summarize the difference between our ProPos and
PCL [7] in terms of the losses and EM frameworks. First, we
summarize the difference between our PSL and ProtoNCE
loss used in PCL as follows.

� Our ProPos can avoid class collision issue while PCL
cannot. ProPos is based on BYOL that does not
require negative examples for representation learn-
ing while PCL is based on instance-wise contrastive
loss that requires a number of negative examples for
representation learning, inevitably leading to class
collision issue.

� The proposed PSL in ProPos is conceptually differ-
ent from the ProtoNCE in PCL. PSL is to maximize
the inter-cluster distance to form a uniformly distrib-
uted space while ProtoNCE is to minimize the
instance-to-cluster distance to improve the within-
cluster compactness. The within-cluster compactness
of ProPos is improved by the proposed positive sam-
pling alignment.

� Pure PSL can work well for deep clustering while
ProtoNCE requires another InfoNCE to form uni-
formly distributed space. This is a direct result of the
different designs of the losses. PSL can maximize the
inter-cluster distance to form a uniformly distributed
space while ProtoNCE suffers from collapse without
the help of another InfoNCE to form such a space.

Second, we summarize the difference between our Pro-
Pos and PCL in the EM framework. Formulating ProPos
into an EM framework can offer more insights about ProPos
and make it easy to understand. Although both in an EM
framework, the M-step in PCL is significantly different
from the one in our ProPos. More specifically, the M-step in
PCL is to optimize the ProtoNCE, which is an instance-to-
prototypes contrastive loss to improve the within-cluster com-
pactness while the M-step in our ProPos is to optimize the
proposed PSL, which is a prototypes-to-prototypes contrastive
loss to maximize the inter-cluster distance for better cluster-
ing performance. In addition, ProPos also proposes a posi-
tive sampling alignment by sampling positive examples
around each sample to improve within-cluster compactness.

6.4 Relation to Instance-Reweighted Contrastive
Loss

We provide a new perspective to understand the proposed
cluster-wise PSL from instance-reweighted contrastive
loss [45]. Here, we first focus on analyzing the alignment
term of PSL. By substituting mmmmmmmk and mmmmmmm0k into the prototypical
alignment term of PSL, we can rewrite the alignment term
as:

1

K

XK
k¼1
�mmmmmmm T

k mmmmmmm
0
k

t
(13)

¼ 1

K

XK
k¼1
� 1

t

P
xxxxxxx2B pðkjxxxxxxxÞfðxxxxxxxÞ T

ck

P
xxxxxxx2B pðkjxxxxxxxÞf 0ðxxxxxxxÞ

c0k
(14)

¼ 1

K

XK
k¼1
� 1

t

PN
i¼1

PN
j¼1 pðkjxxxxxxxiÞpðkjxxxxxxxjÞfðxxxxxxxiÞ T f 0ðxxxxxxxjÞ

ckck0 (15)

¼
XN
i¼1

XN
j¼1
� 1

K

XK
k¼1

pðkjxxxxxxxiÞpðkjxxxxxxxjÞ
ckc
0
k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wwwwwwwij

fðxxxxxxxiÞ Tf 0ðxxxxxxxjÞ
t

; (16)

where pðkjxxxxxxxÞ 2 f0; 1g, ck ¼ k
P

xxxxxxx2B pðkjxxxxxxxÞfðxxxxxxxÞ Tk2, c0k ¼
kPxxxxxxx2B pðkjxxxxxxxÞf 0ðxxxxxxxÞk2, and wwwwwww ¼ fwwwwwwwijgNi;j¼1 2 RN�N denotes
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the weights of each instance pair. Eq. (16) shows that the
alignment term in PSL can be formulated as an instance-
reweighted contrastive loss.

From Eq. (16), we have the following observation:

� When xxxxxxxi and xxxxxxxj belong to the same cluster, i.e.
pðkjxxxxxxxiÞ ¼ pðkjxxxxxxxjÞ ¼ 1, we have wwwwwwwij > 0.

� When xxxxxxxi and xxxxxxxj belong to the different clusters, we
have wwwwwwwij ¼ 0.

As a result, the alignment term inPSL only contains the sam-
ple pairs belonging to the same clusters, which is similar to
supervised contrastive loss [23]. Therefore, the alignment term
of PSL is a generalized case of instance-reweighted contrastive
loss that takes into account the pseudo-labels. Similarly, one
can observe that the uniformity term in PSL is to maximize the
distance between instances in different clusters (j 6¼ k).

Therefore, we can understand the proposed PSL from a
perspective of instance-reweighted contrastive loss with
cluster labels taken into account.

7 CONCLUSION

We introduced a novel deep clustering method ProPos,
which enjoys the strengths of both contrastive- and non-
contrastive-based methods. The proposed positive sam-
pling alignment and prototype scattering loss can lead to
within-cluster compactness and well-separated clusters.
The results empirically showed that the proposed ProPos
outperforms the state-of-the-art methods by a significant
margin. Current state-of-the-art methods are mostly benefi-
cial from the progress of self-supervised representation
learning while the new trends such as MAE [27] have pre-
sented more superior performance on downstream tasks,
which deserves studying as future work.
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