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Fourier-Based and Rational Graph Filters
for Spectral Processing

Giuseppe Patané

Abstract—Data are represented as graphs in a wide range of applications, such as Computer Vision (e.g., images) and Graphics
(e.g., 3D meshes), network analysis (e.g., social networks), and bio-informatics (e.g., molecules). In this context, our overall goal is the
definition of novel Fourier-based and graph filters induced by rational polynomials for graph processing, which generalise polynomial
filters and the Fourier transform to non-euclidean domains. For the efficient evaluation of discrete spectral Fourier-based and wavelet
operators, we introduce a spectrum-free approach, which requires the solution of a small set of sparse, symmetric, well-conditioned
linear systems and is oblivious of the evaluation of the Laplacian or kernel spectrum. Approximating arbitrary graph filters with rational
polynomials provides a more accurate and numerically stable alternative with respect to polynomials. To achieve these goals, we also
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study the link between spectral operators, wavelets, and filtered convolution with integral operators induced by spectral kernels.
According to our tests, main advantages of the proposed approach are (i) its generality with respect to the input data (e.g., graphs,
3D shapes), applications (e.g., signal reconstruction and smoothing, shape correspondence), and filters (e.g., polynomial, rational
polynomial), and (ii) a spectrum-free computation with a generally low computational cost and storage overhead.

Index Terms—Chebyshev rational polynomials, frequency filtering, graph Fourier transform, graphs, heat kernel, kernels, Laplacian spectrum,

spectral graph processing

1 INTRODUCTION

DATA are represented as graphs in a wide range of appli-
cations, such as Computer Vision (e.g., images) and
Graphics (e.g., 3D meshes), network analysis (e.g., social
networks), and bio-informatics (e.g., molecules). Spectral
graph processing represents the input signal on a graph in
terms of the eigenvectors of a graph operator (e.g., the graph
Laplacian, a kernel matrix) in order to define its Fourier
transform and convolution with another signal. According
to this simple approach, whose discrete counterpart is based
mainly on numerical linear algebra, spectral graph process-
ing has been successfully applied to the characterisation of
geometric and topological properties of graphs and to
dimensionality reduction [1], through the projection of the
input data on low-dimensional subspaces generated by a
small set of Laplacian [2] or kernel [3] eigenfunctions.

Signal processing on graphs [4], [5], [6] also supports
smooth signal interpolation [7], [8] and the definition of dif-
fusion wavelets [2], [9], [10], [11]. Main applications of spec-
tral processing are graph embedding through frequency
analysis [12], the definition of uncertainty principles [13]
and random walks [14], data representation [15] and classi-
fication [16]. Furthermore, the modelling and training of
convolutional neural networks [17], and the design of fast
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localised convolutional filters in high-dimensional irregular
domains (e.g., graphs) [18] have been recently addressed in
the spectral domain. Finally, we recall the generalisation of
spectral graph theory to 3D data through geometric deep
learning [19] on non-euclidean domains.

In this context, our overall goal is the definition of novel
Fourier-based and rational graph filters for graph process-
ing. First (Section 2), we show that the convolution of signals
on a non-euclidean space is uniquely determined by the lin-
earity and commutativity of the translation operator with
respect to convolution. Indeed, the definition of the convo-
lution operator, which is commonly used in the context of
spectral graph processing, is unique.

Through spectral filtering, we define spectral operators
that map 1D filter functions to signals defined on an arbi-
trary domain. The spectral operator induces a special class
of Fourier-based spectral operators, which generalise the notion
of Fourier transform to non-euclidean domains. In particu-
lar, we show that the main properties of the 1D Fourier
transform, such as dilation, translation, scaling, derivation,
localisation, and Parseval’s equality, still apply to a signal
defined on an arbitrary domain. Combining the spectral
operator with convolution, we introduce the filtered convolu-
tion operator, which is used to show the link between spec-
tral operators, wavelets, and filtered convolution with
integral operators induced by spectral kernels (Section 3).
The filtered convolution operator reduces to well-known
Laplacian spectral operators (e.g., harmonic, bi-harmonic,
diffusion, wave operators) for specific filters.

To efficiently compute spectral operators, it is necessary to
apply fast polynomial approximations that are oblivious of
the evaluation of the Laplacian spectrum, which is computa-
tionally expensive and numerically unstable. Main examples
include polynomials [11] (e.g., Chebyshev polynomials) and
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algebraic [20] filters, which are evaluated through recursive
relations and without diagonalising the Laplacian matrix
associated with the input data. To overcome the time-con-
suming computation of the filter coefficients in terms of the
Chebyshev polynomials through the evaluation of integrals,
we approximate the £?(R) scalar product with a discrete sca-
lar product defined in terms of the Chebyshev nodes. In this
way, we guarantee a high approximation accuracy and a lin-
ear computational cost for the evaluation of the Chebyshev
coefficients of the input filter.

Generalising these results, we propose a novel class of
Laplacian spectral wavelets induced by rational polynomial
filters, whose evaluation is recursively expressed in terms of
Chebyshev rational polynomials and requires the solution
of a set of Laplace equations (Section 4). Rational polyno-
mials are then applied to approximate arbitrary filters
within a given tolerance, thus providing a more accurate
and numerically stable alternative with respect to polyno-
mials. In fact, rational polynomials are a reacher class of
functions with respect to polynomials, improve the approxi-
mation accuracy of polynomials, are more stable with
respect to oscillations, as the errors in the numerator and
denominator compensate each others [21], [22]. Further-
more, rational polynomials have been computed analyti-
cally for filters (e.g., sin/cos, exponential, logarithm)
commonly used in spectral graph processing.

The definition of the spectral, filtered convolution, and
Fourier-based wavelets through the filtering of the Lapla-
cian spectrum faces a high computational cost for the evalu-
ation of the spectrum in case of large graphs and numerical
instabilities, which are associated with multiple or close
eigenvalues for spectral graph processing. Even though
multiple or close eigenvalues are quite common in real
applications, the evaluation of the characteristic polynomial
in these situations has deserved a little attention in spectral
graph theory. For instance, close eigenvalues are associated
with symmetries or perturbations of the input graph, or
with a low accuracy of the eigensolver with respect to the
spectral gap among eigenvalues. To address the aforemen-
tioned numerical instabilities associated with the evaluation
of the spectrum (Section 5), we discuss the definition of the
pseudo-spectrum with respect to a given threshold and intro-
duce the approximation of the characteristic polynomial
with spectral densities, which are efficiently computed
through the evaluation of the trace of the Chebyshev poly-
nomials of the input matrix. In particular, spectral densities
allow us to apply the Caley-Hamilton theorem for the
reduction of the degree of polynomial filters and to extract
properties of the underlying graph.

Analogously to the continuous case, we introduce a dis-
crete spectrum-free approach for the efficient evaluation of
(discrete) spectral Fourier-based, and wavelet operators,
which requires the solution of a small set of sparse, symmet-
ric, and well-conditioned linear systems and is oblivious of
the evaluation of the Laplacian or kernel spectrum. To fur-
ther investigate these aspects, we evaluate the numerical sta-
bility of the linear systems associated with the spectrum-free
approximation, which confirms that the coefficient matrices
involved in the computation are well-conditioned. In this
setting (Section 7), we show the generality of the proposed
approach with respect to the input data (e.g., graphs, 3D
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shapes, etc) and to different applications, such as signal
reconstruction and smoothing, and shape correspondence. We
also discuss the higher computational stability and accuracy
of the rational approximation of spectral wavelets with
respect to spectral approximations (e.g., low pass filters).
Finally, rational filters, and in particular rational Cheby-
shev polynomials, are particularly useful to enlarge the
class of learning networks, as a generalisation of networks
based on polynomial filters (e.g., PolyNet [23], ChebNet [24],
CayleyNet [25]) in order to improve the discriminative
capabilities of networks for 3D geometric deep learning.

2 SPECTRAL AND FOURIER-BASED OPERATORS

For the definition of spectral operators, we introduce the
Laplace-Beltrami operator and its spectrum, which provide
a generalisation of the Fourier basis to non-euclidean
domains. Let M be an input domain (e.g., a manifold, a
graph) and F (M) the space of signals defined on M (e.g.,
the space £?(M) of square integrable functions or the space
C°(M) of continuous functions) equipped with the inner
product (f,g), := [,, fgdu and the corresponding norm || -
lo- The Laplace-Beltrami operator A is self-adjoint, positive
semi-definite, and admits the Laplacian orthonormal eigensys-
tem (A, d,)12%, Ay, = Autp, Ao = 0, Ay < Ny, in L2(M).

We show that the convolution of signals defined on a non-
euclidean space is uniquely determined by the linearity and
commutativity of the translation operator with respect to
convolution (Section 2.1). Then, we define a spectral operator
that extend 1D filter functions to signals through the filtering
of the spectrum and generalises well-known Laplacian spec-
tral operators, such as the harmonic, bi-harmonic, and diffu-
sion operators (Section 2.2). Considering the continuous
Fourier transform of 1D filters, the spectral operator induces
a special class of Fourier-based spectral operators that extend
the notion of Fourier transform to non-euclidean domains
(Section 2.3). Finally, we show that the main properties of the
1D Fourier transform, such as dilation, translation, scaling,
Fourier transform, derivation, localisation, and Parseval’s
equality, still apply to the Fourier-based operator.

2.1 Convolution Operator

Applying the linearity and commutativity with respect to
convolution, we show that the spectral representation of the
convolution operator, which is commonly used in the con-
text of spectral graph processing, is unique. According to
the continuous definition of the convolution operator

(f*9)(p) == (/;Tpg)a ey

in terms of the £?(M) scalar product and of the translation
operator 7, the convolution operator is uniquely defined
by the translation operator. Indeed, it is enough to derive
the spectral representation of the translation operator from
its properties (i.e., linearity, commutativity). Noting that 7

is commutative with respect to convolution (e,
Tpfxg= f*Tpg), and applying Eq. (1), we get that
<Tpf7 qu>2 = <f7 Tqug>27 vpvq € M (2)

Considering the spectral representations of the functions
f = ::[3)<f7 ¢n>2¢n/ and Tpf = Z::0<Tpf> ¢n>2¢n/ and
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equivalent to
. Choosing f =g

qu = Z:ﬁ% <qu> ¢7L>2¢n/ Eq (2) iS
<Tpf7 ¢n>2 <quv ¢n>2 = <f7 ¢n>2 <TqTng ¢n>2

= ¢,,,, the previous relation reduces to

<TP¢m7 ¢n>2 <Tq¢ma ¢n>2 = 87ﬂr7l<TqTP¢m7 ¢n>2'

The resulting identity (7 p¢,,,#,), = 0, m # n, implies that
Tp¢, = an(p)¢,. Applying this last relation to the spectral
representation of f, we get that

+00
Tpf = Z<f7 ¢n>2TP¢n Zaﬂ

n=0 n=0

fa ¢n 2¢'m (3)

i.e., the general spectral representation of the translation opera-
tor. Assuming the commutativity of the translation operator
with respect to the é-function (i.e., 7pdq = 7 8p, for any
p.q € M), we have that «,(p)¢#,(q) = a.(q)¢,(p), for any
p.q € M, ie, a, = ¢,. Indeed, the translation operator in
Eq. (3) becomes

p.f Z 'f’ ¢" ¢7l Z f ¢71(P)¢m 4)
n=0 n=0
with ]?(n) = (f,¢,), n-th Fourier coefficient of f. Applying

the spectral representation (4) of the translation operator to
Eqg. (1), we obtain the identity

. Tog = Fm)in)n(p) )

n=0

(fx9)(p) =

2.2 Spectral and Filtered Convolution Operators
First, we introduce the definition and main properties of the
spectral operator (Section 2.2.1), which is applied to inter-
pret filtered operators as convolution operators (Sec-
tion 2.2.2) and to extend the Fourier transform of 1D
functions to signals defined on non-euclidean domains
(Section 2.3).

2.2.1 Spectral Operator

Let H := £*(R) N C°(R) be the filter spaceand ¢ : R — R be a
positive, continuous, and square integrable filter in . Then,
we define the spectral operator

+00
9 Byi=> o\, (6)

n=0

D :H— F(M),

where ®, is the spectral function induced by ¢. The spectral
operator is linear and continuous, according to the following
upper bound

+00
H%HrZIw )P </[J lo(s)ds = ligll5- ()

The Contmulty of the filter function allows us to evaluate its
values (¢()\,)), % at the eigenvalues and the £*(R)-integra-
bility of the f11ter ensures the well-posedness of the spectral
operator. The properties of the spectral operator depends
only on the behaviour of the filter in the spectral domain and
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on the Laplacian/kernel spectrum; increasing or decreasing
the filter decay to zero encodes global or local properties of
the input graph, respectively.

Scalar product and norm of spectral operators The L*(M)
scalar product between the spectral functions ®,, ®,,
reduces to the ¢, scalar product of the filtered eigenvalues
and is bounded by the £*(R) scalar product of the corre-
sponding filters ¢, ¢,, i.e.,

<ﬂ17 <ﬂ> 2= Z‘pl 7)o (A n = <((P1()\n))n((ﬂz()\n))n>2

+00
< / or()0a5)ds < (010, (01,62 > 0).
The £*(M)-distance of the spectral functions is bounded
by £*(R)-distance of the corresponding filter functions, i.e.,

[y, — Dy, [l = Hq)mfwnz =Ba. o o1 = @alls- ®

Indeed, the approximation of @, reduces to the approxima-
tion of the 1D filter ¢; this remark will be applied to the
spectrum-free computation of spectral and wavelet opera-
tors with rational polynomials (Section 4).

2.2.2 Filtered Convolution Operator

We now show the link between spectral and filtered convo-
lution operators with filtered Laplacian operators and inte-
gral operators induced by the spectral kernels. Introducing
the filtered convolution operator ¥,, : F(M) — F(M)

f P *f Z@ f7¢n>2¢n: 901:\1,«)1.]07

9
with ¢, = (pf, the convolution between the spectral
function ®, and a function f is induced by the pointwise
product go]? between the filter ¢ and the Fourier transform

of f.

functions @, , ®,, is induced by their pointwise product

In particular, the convolution of the spectral

010y, ie, Oy x Dy, = D, 4. Assuming that the input filter

Lo,

w0 oA,
which is equal to the filtered convolution operator ¥, =
p(4); p(A)f = Zn 0 @A) bn)o®n =Eq. ) Yo f

Deﬁning K‘P(p’ q) = q’wap - Zn:(] (p(>\77)¢'71(p)¢n(q)7 as
spectral kernel and noting that

admits the power-series representation ¢(s) :=
we define the filtered Laplacian operator ¢(A) :=

in fact,

\ow(P) = (Kw(Pv ')7 f>27 (10)

the filtered convolution operator is equal to the integral opera-
tor induced by the spectral kernel, i.e., ¥, f = (K,, f),. Fig. 1
shows different spectral kernels centred at a seed point on a
3D surface represented as a triangle mesh. Indeed, the input
graph is arbitrary and the nodes have a 3D embedding, i.e.,
the coordinates of the mesh vertices. The spectral kernel well
encodes the local geometry, as confirmed by the shape and
distribution of the level-sets at all scales.
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Fig. 1. Level sets of spectral kernels |nduced by the fllter o(s) ==
(1-9); (4s+ 1) with (a) s :=r, (b) s := 72, and (c) s := r* centred at
a seed point (yellow dot). A larger value of s corresponds to a faster
decay of ¢, thus providing a smaller support of the corresponding kernel.
(c) Reducing s, the filter becomes constant and the corresponding ker-
nels resembles the behaviour of the geodesic distance in a neighbour of
the seed point.

Approximation of filtered convolution operators The norm of
the filtered convolution operator W, is bounded in terms of
the £*(R) and £*(R) norm of the input filter function as
1Woll < @l k= 2,00. In fact, we have that

+00
1o fI1P =" len) P 8o < 113 lell3. a1
n=0

Choosing the signal f:= )" ¢,, we get ||V, f|l, = l|l¢l,, ie.,
¥yl = [|l¢ll,. From the equality (11), it follows that

+00
[P I < llellse D10 dudal” = 12110l (12)
n=0

Choosing the signal f:=

ol e, [Woll = llell
distance, k = 2, 0o,

||(pHoo Zn‘pn’ we get ||\If¢f||2 =
. Analogously to Eq. (8), the L;

W, = Wopll = 1Wy, 3 | <Eas. coan 101 = @2llis (13)
between two filtered convolution operators is bounded by

the £(R) distance of the corresponding filters (Fig. 2).

2.3 Fourier-Based Spectral Operator

Given a filter ¢ : R — R, we consider the filter ¢ : R — R
induced by its continuous Fourier transform (t) :=
f ¢(s)exp(—ist)ds, and the Fourier-based spectral function (c.f.,
Eq. (6)) &5 = S B\, with real ®p.(p) and imagery
(I)lm((p) components induced by the real and imagery parts
of ¢. The spectral operator generalises the Fourier trans-
forms of 1D filters on R to signals defined on M, thus intro-
ducing a further flexibility in the design of spectral
functions on arbitrary data that resembles the 1D case, as
shown by the following properties.

Dilatation & Translation: the Fourier-based spectral func-
tion of the filter @(s) := exp(isap)p(s — so) is F(p) = 3,2
exp(=iAns0)9(An — @), (p)-

Scaling: the Fourier-based spectral function of the filter
B(s) = plas) is F(p) = Y2075 lel 9 (A, /o), (p):

Fourier transform: the Fourier-based spectral function of

the filter ¢(s) := §(s) is F(p) = 32,5 ¢(=)¢,,(p)-
Derivation: the Fourler—based spectral function of the fil-

ter §(s) := ¢"(s) is F(p) = 32,7 (27iA) D(An)$, (p)-
Filter locality: the Fourier—based spectral function of the

filter ¢(s) := 8., ¢(s) is F(p) = ¢(s0) _n20 exp(—iXns0) ¢y (P)-
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Fig. 2. Input filters ¢ (red), real (green) and imagery (blue) parts of its
Fourier transform ¢ computed with the Fast Fourier Transform. Level-
sets of the spectral operator induced by ¢, Im(9), and Real(9): (first row)
¢(s) == 572, (second row) ¢(s) := s°.

Exponential filter: the Fourier-based spectral function of the
filter ¢(s) := exp(iats) is F'(p) =21\ _o ®n(P)-

According to Eq. (7), we have the Parseval’s equality
||<IDA||2 = ||@ll, = ll¢lly; in particular, the integrability of ¢
ensures the well-posedness of ®, and ®~. Under the previ-
ous assumption and recalling the results in Section 2.2, CI>$ is
a linear and continuous operator and Eq. (8) still holds by
replacing @ (n) := (£,,) $(n) = (9.9,)y with @, >
@2(An), respectively. Applying the relation &> = &~ = @,
and assuming that input filter is even, the Fouf’ier—based
spectral operator induced by ¢ is equal to the spectral opera-
tor induced by the input filter, i.e., &5 = ®,. As we work
with positive semi-definite operators and kernels, we
always deal with filter functions defined on the positive real
semi-axis. Indeed, we consider an even filter or redefine the
filter on the negative semi-axis by symmetry in such a way
that the resulting filter is even on R.

3 SPECTRAL WAVELETS & INTEGRAL OPERATORS

We derive equivalent representations of the spectral wave-
let operator (Section 3.1), and its link with the spectral and
filtered convolution operators and with existing kernels
(Section 3.2).

3.1 Continuous Spectral Wavelet
We define the continuous spectral wavelet ¥, : M — R cen-
tred at p and associated with the filter ¢ : R — R as [11]

+00
Wyp =Wy = Z¢(>\n)¢ (P)¢ (14)

n=0

Indeed, the filtered convolution operator (9) generalises the
spectral wavelet (14); in fact, the spectral convolution
operator ¥, is achieved as the action of the spectral operator
on the §-function at p. Applying the identity (¥, f)(p) =
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(@)t =1073 (b)t=10"3 (0)t=10"2

d)t=10"2 (e t=05

Fig. 3. At small scales (t = 1073, t = 10~2), the distribution of the level-
sets of the diffusion kernel have a local and multi-scale behaviour at the
same seed points (a,b), (c,d). (e,f) At large scales (t = 1072, t = 0.5,
t = 1), the diffusion kernels are no more centred at the seed points and
have an analogous global behaviour (e,f). The kernel has been approxi-
mated with a rational polynomial of the exp filter of degree (r,r), r:=7
(c.f. Eq (20)).

Ht=1

(Wyp, [y and Eq. (10), the spectral convolution operator is
also interpreted as the integral operator induced by the con-
tinuous spectral wavelet. Finally, the spectral wavelet (14) is
continuous and its £?-energy is bounded by the £*(R) norm
of the filter, i.e.,

)I* < llolls. (15)

H\I’<PP||2 - ka |¢n

n=>0

Comparing wavelets induced by the same filterThe £*(M) scalar

product of the continuous wavelets induced by ¢ and cen-

tred at p, q is bounded by the £*(R)-norm of ¢, i.e.,
’(Wwp7q'wq>2| = (q)dpdq

W S
~Y e 5 loOWP < ol

Oc o ( /M ¢,,,<p>dp) <3

Comparing wavelets induced by different filtersThe variation of
the spectral wavelets induced by the filters ¢;, ¢, and cen-
tred at p is bounded as

Worp(q) —

‘<Z|‘P1

n=>0

COEAIIRACY

1/2

where we have applied the Cauchy-Scwartz inequality in
the last relation. Indeed, the maximum variation of the spec-
tral wavelets ¥, ,, ¥,,, is bounded by the maximum
variation C of the corresponding filters and by the values
of the function C(-) at the center p and at the evaluation
point q. Finally, the L?(M)-distance between the
wavelets ¥, , and ¥, , is bounded as

WZP

+00
<Cx Cp Ccp Coo = |loy — (/JQHooy Cp = |:Z . (P)

n=0
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Fig. 4. Level-sets of bi-harmonic functions centred at 3 seed points on
flat (spine) and rounded (harm, leg) surface regions.

()"”) ‘2 |¢'n (P)|2

W, p||2 = Z lo1(An)

+00

S Czc Z ‘¢'7L(P)|27

n=0

Py, p

and its integral over M

+00
/M Wrp = Wopl2dp = 3 g1(\) — 020

n=0 (16)

<ller - ¢2H§

is bounded by the £*(R)-distance of the corresponding fil-
ters. Indeed, the distance of the filters determines the maxi-
mum distance of the corresponding spectral wavelets, and
close filters generally correspond to close spectral wavelets.
Finally, we notice the analogy of Eq. (16) with the upper
bounds related to the approximation of the spectral (8) and
filtered convolution (13) operators.

3.2 Examples of Spectral Wavelet Operators
We report main examples of spectral wavelets (14), defined
by properly selecting the filter function, thus showing their
link with filtered convolution and spectral kernels.

Commute-time wavelet/kernel induced by the spectral oper-
ator ¥, =A" and the filter ¢(s):=s"', ie, V,,(q) =

( ) Zr-:—ool )‘nld)n )¢7z( ) (Flg 3)

Bi- harmomc wavelet/kernel Vop(q) = 202 A 20, (p)bn(q)
induced by ¥, := (A")? and ¢(s) := s? (Fig. 4).

Diffusion wavelet/kernel induced by the spectral operator
\Ifw = exp(— tA) and the filter ¢(s) := exp(—st) (Fig. 3), i.e.

( ) Zn leXp(_/\7lt)¢n(p)¢n (Cl)

The commute-time and bi-harmonic wavelets, or equiva-
lently kernels, are globally-supported. Increasing or reduc-
ing the time scale ¢ of the exponential filter, we easily define
globally-supported and locally-supported diffusion wave-
lets. In fact, as ¢t becomes smaller the support of the corre-
sponding diffusion wavelet centred at a seed point reduces
until it degenerates to the seed itself.

The previous definitions and properties of the spectral
kernels/wavelets apply to any signal on a discrete domain,
where we can discretise the Laplace-Beltrami operator. To
show this generality of the proposed approach, we compute
the spectral kernels on graphs (Fig. 5) and visualise their
behaviour with density maps. Finally, through the rational
polynomial basis we also approximate the spectral distance

?(p,q) = X% @*(M)l,(p) — ¢,(q)°, induced by arbi-
trary filers (Fig. 6).
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Diffusion kernel

Spectral kernel

i ¥

t=0.1

0 t=0.001 ¢=0.01

Fig. 5. Input graph, colour-map, and level-sets of spectral kernels
induced by (a) an analytic and (b-d) diffusion filters. (b-d) At small scales
(t = 1073, t = 1072), the distribution of the level-sets of the diffusion ker-
nels have a local and multi-scale behaviour at the same seeds. At large
scales (t = 107"), diffusion kernels are no more centred at seeds and
have an analogous global behaviour.

4 RATIONAL GRAPH FILTERS

First, we propose a fast computation of polynomial filters,
which is based on a discrete scalar product induced by Che-
byshev nodes (Section 4.1). Then, we introduce the class of
rational filters (Section 4.2), which generalise the polynomial
filters and are efficiently evaluated through recursive rela-
tions, in analogy to Chebyshev polynomials. As main bene-
fits with respect to polynomial filters, we mention a higher
approximation accuracy and stability, as they are not
affected by undulations that typically affect polynomial
approximations as the degree increases. According to these
properties, we introduce a spectrum-free computation of
spectral operators induced by arbitrary filters through their
approximation with with rational polynomials.

4.1 Fast Computation of Polynomial
Approximations

The Chebyshev polynomials of the first kind (T,);™ are defined
by the identity cos (n) = T,(cos0), e.g., To(z) =1, T1(z) =
z, Ty(z) = 22* — 1, etc.. Equivalently, these polynomials are
defined through the recursive relation

To(z) =1, Ti(z)==z, Thi(z)=22T,(z)—Th-1(x). (17)
The Chebyshev polynomials of the first kind are orthogonal
with respect to the weighted £*(R) scalar product induced
by (1 — 22)~"/? on the interval [~1,1]. Indeed, a function f :
[-1,1] — R is represented in terms of the Chebyshev poly-

nomlals as f(z) = ff% a, T, (z), whose coefficients are ay =
_1<fa >u;/ ap

= (27) (£, T}y # 0.

The computation of the coefficients of the Chebyshev
representation is generally time-consuming, as it requires to
evaluate several integrals for an arbitrary filter. To over-
come this limitation, we propose to approximate the
weighted scalar product through the Chebyshev nodes in
order to accurately compute the Chebyshev coefficients in
linear time. Indicating with = := cos(7%%l), k=
0,...,N —1, the N Chebyshev nodes, the Chebyshev poly-
nomials are orthogonal with respect to the discrete scalar
product

N-1 0 n#m;
<ﬂzyﬂn>d = Tn(xk)Tm(xk) = N n=m= 0;
k=0 N/2 n=m#0.
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Fig. 6. Level sets of the spectral distances from a source point (white dot)
induced by the filter ¢ and evaluated with the Padé-Chebyshev approxi-
mation (r = 5).

According to the relations

N-1 0 k # 4
<f7T;>dN ak<Tk,ﬂ>d: NaO k=1 :O,
= Na;/2 k#i#0;

the coefficients are evaluated in linear time as

1 V-1 o N-
ap=— > flzp), -~ ()T ().
i3 O

4.2 Rational Spectrum-Free Computation

Noting that [|¥, —¥,|3 < |l¢ — p|l, (c.f, Eq. (15), the
approximation of ¥, is reduced to the computation of a
function p : R — R that well approximates the filter ¢ with
respect to the £(R)-norm, i.e., thus solving 1D approxima-
tion problem. The representation of p must guarantee
that W, can be efficiently computed through numerically
robust algorithms, e.g., direct/iterative solvers of sparse,
symmetric, and well-conditioned linear systems.

Rational Approximation. According to the Weierstrass
approximation theorem, polynomial and rational polyno-
mial approximations allow us to approximate any continu-
ous function on an interval within an arbitrary tolerance.
Even though polynomials are easily evaluated at arbitrary
values through the Horner’s method, and support an easy
computation of derivatives and integrals, polynomial
approximations tend to be oscillatory as their degree
increases. Since rational polynomials are a reacher class of
functions with respect to polynomials, as novel contribu-
tion, we propose to apply rational filters, which generally
improve the approximation accuracy of arbitrary filters
with respect to polynomials and are more stable with
respect to oscillations. To approximate the input filter with
a polynomials, we consider a rational polynomial approxi-
mation R(s) := P,(s)/Qu(s), where P,, Q,, are polynomials
of degree n and m, respectively. In particular, we consider
rational polynomials R(s) of the form

(S) Z? 1 Pis s'
Qm(s) 1+ Zz 148

of degree N :=n+m.If ¢ =0,4=1,...,m, then the ratio-
nal polynomial R reduces to a polynomial P, of degree n.
The rational approximation is a generalisation of the poly-
nomial expansion (i.e., @,, := 1), and more generally, of the
Taylor series. As rational polynomials generate polyno-
mials, we expect that rational approximations of degree

R(s) = (18)
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(n,m) are as good as polynomial approximations of degree
(m +n).

Pade Approximant. The Pade approximant is the best
approximation of a function with a rational polynomial
such that the power series of the rational polynomial is the
Taylor polynomial of the input function. Indeed, the Pade
approximation R(s) of order (n,m) of ¢ : R — R in a neigh-
bour of 0 is such that R*¥(0) = ¢*(0), k=0,...,m +n. In
particular, ¢(s) — R¥(s) = O(s™*"*!), s — 0. The Pade
approximant is uniquely defined if the constant term at the
denominator has been set equal to 1 (c.f., Eq. (18)); other-
wise, the approximant is defined up to a multiplication by a
constant. For the computation of the coefficients of the
polynomials P,, Q,,, we can apply the Wylm's epsilon algo-
rithm or the extended Euclidean algorithm [26], and the
sequence transformation [27]. According [21], [22], a ratio-
nal approximation is more stable than a polynomial approx-
imation, as the errors in the numerator and denominator of
a rational polynomial compensate each other. Furthermore,
rational polynomial approximations have been computed
analytically for commonly used filters (e.g., sin/cos, expo-
nential, logarithm). For the approximation and evaluation
of the rational polynomial, we consider (i) the canonical poly-
nomial basis and the Chebyshev polynomial basis, applied to P,
and Q,, (Section 4.2.1) and (ii) the Chebyshev rational polyno-
mials of the first kind, applied to R (Section 4.2.2). Among
these options, the recursive representation of the Chebyshev
rational polynomials of the first kind allows us to reduce the
computation cost for the evaluation of the approximation
and resembles the polynomial case. Finally, we discuss the
accuracy and convergence of the corresponding rational
approximation (Section 4.2.3).

4.2.1 Rational Approximation With Polynomial Basis

Approximation through the canonical polynomial basis applied
to P, and @,, We discuss the computation of the coefficients
of the rational polynomial in terms of the Taylor coefficients

= ¢ (0)/k! of the 1nput filter. Considering the power
series ¢(s) := Y20 a,s", we have that

@(5)Qm(s) — Pu(s)
Qm(s)

:r:og a;s’ Zj\:o q;8’ —
Qm (5)

Defining the vectors (p;)~,, a1 =0, (q,)l —pnt1 = 0, the prev1—
ous relation is equivalent to Z 5 aigistt = Zl oDis, j=
0,...,N. Introducmg the index k := ¢ + j, this last relatlon is
rewrltten as Zl 0GiGk—i —Pr =0, k=0,...,N. Recalling
that go = 1, we get ap = py and the remaining unknowns are
computed as the solution to the linear system

— R(s) =

Zfio pis’

ay a ... ... 0 Q1 p1 ay
ag a a ... 0 7)) D2 ag
ay aN—-1 ... ... Qg qN PN an

Approximation through the Chebyshev polynomial basis
applied to P, and @, Instead of expanding numerator and
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denominator in terms of the monomial basis, we use the
Chebyshev polynomials T}, through the representation

R.— Zk Ukak
Zk 0 Qka

Expanding the input filter ¢ = > a,7}, in a series of Che-
byshev polynomials, we get the relation

Zn Oa”T Zk quTk
Zk:o @Iy,

The coefficients (p;);,, (¢:);-, are chosen i in such a way that
the numerator has zero coefficient for (T;)F_,, i.e.,

N=n+m, ¢ =1 (19)

> ko PT

p—R=

m +oo

@ — R Z anTn Z (]ka - Zkak Z )/Tk

n=0 k=N+1

To this end, we apply the following relations

2o

k> 1,

T,T; = 5 3 Livj — Thiyl, a0 = 1/2 ds,

=2 [ [ ds,
whose evaluation is generally faster than monomial basis
functions.

Computation Once the rational approximation P, /Q,, of ¢
has been computed with one of the two previous
approaches, any signal ¢(A) f is computed as the solution to
the problem @,,(A)g = P,(A)f. In case of the canonical basis
(18), we evaluate the right- and left-side terms of

> adg=> pds.
k=0 k=0

In case of the Chebyshev polynomials (19), we evaluate the
right- and left-side term of

(20)

Z o Tr(A)g = Zkak 1)
k=0
through the recursive relations (17).
4.2.2 Rational Approximation With Rational Basis
The Chebyshev rational polynomials are defined as
z—1 z—1
Rn(ﬂ?) =T, (m——i—l) = 2mRn71 (x) - R, (22)

on the interval [0,+00). These rational polynomials are
orthogonal with respect to the weighted scalar product
induced by w(x) := 2~ /%(1 4 x)~", according to the relation

Ry @) Ra)
o PP+

n # m;
m = 0;
7/2 n=m=0.

<R'n7 Rm>w - xTr = b n=

For an arbitrary function f € £*(R), the orthogonality of the
Chebyshev rational polynomials allows us to apply the rela-
tion f(z) = 3% F, R, (), F, := (f, R,),- In Fig. 7, we show
the level-sets of rational graph filters Rj(A)8, (c.f., Eq. (22))
centred at a seed point p (black dot) induced by Chebyshev
rational polynomials with increasing degree.
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Fig. 7. Level-sets of rational graph filters centred at a seed point p (black
dot on the elbow) induced by the Chebyshev rational basis R;.(A)8, with
an increasing degree.

Computation Through the recursive relation (22), the
rational graph filter is efficiently evaluated as

fn, = RTL(A)f = 2(A + ld)il(A - id)fn—l - fn—2

(23)
= 297171 - fn727

where g, is the solution to (A + id)g,—1 = (A — id) f,,—1. We
notice that g,,_; is uniquely defined, as the operator (A + id)
is positive-definite.

4.2.3 Approximation Accuracy and Convergence

Approximating the input filter with a rational polynomial p(")
of degree (n,m) (e.g., m =n =r), the sequence (¥ NS,
Vo f = S o (N (f, 0)e®,, induced by the rational

polynomial approximation p") of g, converges to ¥, f; in fact,

+oo
[, = o] < 160 — 0l2 D 105008 = 1

n=0

where o, ~ O(s™*"*1), s — 0, is the approximation error
between ¢ and p(").

5 NUMERICAL COMPUTATION

Even though a central element in spectral graph processing
is the evaluation of the spectrum, or equivalently, of the
characteristic polynomial of the graph Laplacian, the fast
computation of the characteristic polynomial and numerical
instabilities associated with multiple or close eigenvalues
has not been addressed in detail by previous work. As novel
contributions, we focus on the fast approximation of the
characteristic polynomial and on the definition of the
pseudo-spectrum, which allows us to identify a subset of
the eigenvalues that is robust with respect to data perturba-
tion. To this end, we introduce the discrete spectral wavelets
and kernels (Section 5.1); then, we define the pseudo-spec-
trum and spectral density for the approximation of the char-
acteristic polynomial (Section 5.2). Finally, we discuss the
evaluation of the rational basis, the numerical stability and
computational cost of the proposed approach (Section 5.3).

5.1 Discrete Spectral wavelets/kernels

Graph Laplacian. For the discretisation of the spectral opera-
tors, wavelets, and filtered convolution operators, let us
consider a graph M and a signal f : M — R identified with
the vector f:= (f(p,))i_; of f-values at the nodes of the
input graph. The graph Laplacian is defined as L :=D™'L,
where L := W —D. Here, W is the weight matrix whose
entry (4, j) is the weight associated with the corresponding
edge, and D is the diagonal matrix whose entries are the
sum of the rows of L. Alternatively, we can consider the
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normalised graph Laplacian L := D™Y/>LD~'/2. We notice that
the graph Laplacian is D-adjoint, i.e., (Lf,g)p, = (f,Lg)p. In
our discussion, we focus on the graph Laplacian; analogous
considerations can be derived for the normalised graph
Laplacian. For the graph Laplacian, the spectral decomposi-
tion is LX = DXA, X'DX = I, where X := [xi,...,x,] is the
eigenvectors’” matrix and A is the diagonal matrix of the
eigenvalues (\;)!;.

Discrete  Spectral Wavelets and Kernels. Noting that
(9(A\n), d,) is the eigensystem of W, the spectral repre-
sentation of the data-driven kernel is K, such that

(X)) = (W, b)), =X K, Dx;, Vi=1,...,n.

Indeed, K, = X¢(A)X "D is the spectral kernel, which is a fil-
tered version of the Laplacian matrix and D-adjoint.
According to (13), the approximation of K, with a new
kernel K, reduces to the approximation of the correspond-
ing filters. The approximation ¢ of p is computed on the
interval [0, )\m.dx(l:)], where the maximum Laplacian eigen-
value is evaluated by the Arnoldi method [21], or is set
equal to the upper bound [28], [29]

Amex(L) < min{max{D 7 L(i, )}, max{}_ L(i,5)}H}-

In the discrete setting, we proceed as done for the approxi-
mation and computation of ®, in Section 4.2, by replacing
the Laplace-Beltrami operator with the Laplacian matrix.

5.2 Polynomial Filters: Pseudo-Spectrum
and Density

In spectral graph processing, the numerical stability of the
spectrum and the evaluation of the characteristic polynomial
of matrices associated with large graphs are two important
aspects not addressed in detail by previous work. Indeed,
we discuss the sensitivity of the computation of the spectrum
with respect to the presence of multiple or close eigenvalues,
the computation of the characteristic polynomials in case of
multiple eigenvalues (Section 5.2.1), and the definition of the
pseudo-spectrum as a way to compute a stable subset of the
eigenvalues (Section 5.2.2). Then, we address the approxima-
tion of the characteristic polynomial of a large matrix
through spectral densities, which reduces to the computa-
tion of the trace of Chebyshev polynomial matrices. This
approximation of the characteristic polynomial is necessary
to apply the Cayley-Hamilton theorem for the reduction of
the degree of polynomial filters (Section 5.2.3).

5.2.1 Characteristic Polynomials: Multiple Eigenvalues

One of the main issues with spectral graph processing is the
presence of multiple or close Laplacian eigenvalues, which
makes the computation of the spectrum and the evaluation
of the spectral filters numerically unstable. Even though
these situations are quite common in applications (e.g., for
symmetric graph), previous work has paid a little attention
to this problem that we address by discussing the computa-
tion of the characteristic polynomial in case of multiple
eigenvalues.

Given an arbitrary square matrix A € R"*" (e.g., the Lap-
lacian matrix, a kernel matrix go(I:)), or a kernel matrix), we
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consider its characteristic polynomial P(s) := det(A — sI).
Indicating the eigenvalues of A as (\;)._;, previous work
computes the coefficient of the characteristic polynomial
P(s) =" ,a;s' by imposing the interpolating conditions
P(\;) =0, Vi, ie., solving the homogeneous linear system
Vo =0, where V is the Vandermonde matrix and o :=
()i, is the unknown vector. In case of close or repeated
eigenvalues, the Vandermonde coefficient matrix is singu-
lar, as it has multiple identical rows. In this case, for each
repeated eigenvalue A; of multiplicity m the first (m — 1)
derivatives of the characteristic polynomial vanishes at A;.
Combining the interpolating conditions f(A;) = R()\;) at all
the eigenvalues with the constraints 3, ¢()\;) = 3", R(\:), k =
1,...,m —1, on the derivatives at multiple eigenvalues, we
get a non-singular linear system whose solution uniquely
determines the coefficients of the remainder polynomial.

5.2.2 Stability of the Eigenpairs and Pseudo-Spectrum
Assuming that u:=p()\) is an eigenvalue of ¢(L) with
multiplicity m and rewriting the characteristic polynomial
of p(L) as P(s) = (s — n)"Q(s), where Q(-) is a polynomial
of degree (n —m) and ¢(u) # 0, we get that

P(s) _ 0()
Q) ~ Q)

ie,s~pu+ O(Sﬁ). Indeed, modifying the spectrum (i.e., the
underlying graph) in such a way that the filtered eigenval-
ues are perturbed by § := 107" corresponds to a change of
order 0.1 in p (e, s~pn+0.1) and this amplification
becomes larger as the multiplicity of the eigenvalue
increases.

Pseudo-spectrum To handle numerical instabilities associ-
ated with multiple or close eigenvalues (e.g., for symmetric
graphs) of the Laplacian or spectral kernel matrix, we intro-
duce the pseudo-spectrum, which defines the eigenvalues of a
matrix with respect to a threshold. Let A be a n x n symmet-
ric matrix (or, more generally, a D-adjoint matrix as ¢(L))
and A\ (A) :={z€R: ||(z1 - A)"'||, > 1/} the pseudo-spec-
trum of A, i.e., the set of disks of radius e centred around the
eigenvalues of A. Indeed, z is a pseudo-eigenvalues of A if
and only if (2I — A) is sufficiently close to be singular (i.e.,
with respect to the threshold ¢). In fact,

(s —w)" = 8 —0,as P(s) =0, s = u,

1 _ _ _
. < (eI - 1”2 = [Amax((2I — A) 1)| = |Amin (21 — A)] 17

i.e., Apin(2I — A) < e. The pseudo-spectrum of A generalises
the spectrum (i.e., \o(A) = A(A)) and z € A (A) if and only

if z€ M(A+E) and ||E||, < e. If e; > €, then A, (A) C A, (A).

5.2.3 Approximated Spectral Densities

Given a matrix A with eigenvalues (\;)]_,, its pointwise and
smooth spectral densities [30] in an interval [a, b] are defined
as the functions

/(2837

1=

1 &

The pointwise spectral density measures the percentage of
eigenvalues belonging to the selected interval, and the

7071

smooth density is defined by replacing the é-function with a
smooth hat function, such as the Gaussian function h,(t) :=
(276?) "?exp(—t2/o2). Here, larger values of the width o
provide smoother curves while reducing the interpolation
of the eigenvalues. Assuming that the input matrix has been
normalised in such a way that its eigevalues belong to the
interval [—1, 1], we express the normalised spectral density
5 (t)=01- t2)1/ ?5(t) in terms of the Chebyshev polynomials
as 8 = > 11, T,,. Then,

= (8,Th) o =~ Z/ s — \)Ti(s)ds
2370

Indeed, each coefficient reduces to the evaluation of the
trace of the matrix achieved by evaluating the correspond-
ing Chebyshev polynomial on the input matrix. For more
details on the approximation of the spectral densities of
large matrices with polynomial methods and spectroscopic
approaches, we refer the reader to [22].

)= ETrace(Tk(A))-

5.3 Numerical Stability and Computational Cost
Rational Spectrum-Free Computation. According to Eq. (23),
the vector R, (L)f is recursively computed as

fo1 =Ry (Lf=2L+1) " (L-Df, — £, =2g, —f

n—1,

(24)

where the vector g, is the solution to the sparse, symmetric,
and positive definite linear system (L + I)g, = (L — I)f,, or
equivalently (L +D)g, = (L —D)f,. Since the coefficient
matrix (L + D) is independent of the iteration and positive-
definite, it can be pre-factorised and its pre-factorisation is
used for the computation of a, in linear time at each itera-
tion. In an analogous way, we derive the discrete counter-
parts of Egs. (20), (21). In Fig. 3, the diffusion kernel has
been computed through the spectrum-free approximation
with Chebyshev rational polynomials and the recursive
relation in Eq. (24). The shape and distribution of the level-
sets confirm the high accuracy of this approximation at
small and large scales.

Conditioning of the Spectral Wavelet/Kernel If ¢ is an
increasing function (i.e., ¢ is a low pass filter), then the con-
ditioning number of the spectral kernel is bounded as

maX;—j,..., n{(p( )}: ”goHoo
min;— Loy n{@( )} ¢(0)7

and it is ill-conditioned when ¢(0) is close to zero or ¢ is
unbounded. If p is bounded and ¢(0) is not too close to 0,
then the spectral kernel is well-conditioned. If ¢(0) is null,
then we consider the smallest and not null filtered Laplacian
eigenvalue at the denominator of the previous relation.
Computational Cost. The computational cost of the trun-
cated spectral approximation of the kernel/wavelet
depends on the sparsity degree of the Laplacian matrix and
takes from O(kn logn) to O(kn?) time, where k is the num-
ber of selected eigenpairs. Choosing a rational approxima-
tion of the input filter of degree (r,!), the evaluation of the
spectral kernel/wavelet is reduced to r linear systems

K2(Ky) = Ka(p(L)) =
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P-C. approx. r := 7
t = 0.001

Trunc. approx. (100 eigs)
t =0.01 t = 0.001

t=0.01

Fig. 8. Colormap and level-sets of the diffusion wavelet at a source point
computed with the P-C. approximation and the trucated approximation
with 100 eigenfunctions, which is affected by undulations far from the
source point and at small scales.

whose coefficient matrix is L. Through iterative solvers, the
computational cost is O(rz(n)), where t(n) is the cost for the
solution of a sparse linear system, which varies from O(n)
to O(n?), according to the sparsity of the coefficient matrix,
and it is O(n logn) in the average case. Indeed, the polyno-
mial and rational polynomial approximations have the
same order of computational complexity.

Evaluating the spectral kernel/wavelet at one scale with
the rational approximation is generally more efficient and
accurate than the truncated spectral approximation, espe-
cially at small scales (Fig. 8). In the average case, the cost is
O(rn logn) versus O(kn logn), with r < < k, e.g., r:=5,7
and k = 50, 100. In case of multiple scales, the eigensystem
is computed only once and applied for the evaluation of
spectral wavelets at all scales in linear time, while the linear
systems associated with the rational approximation is
solved for each scale. Assuming s scales, the computational
cost of the rational approximation is competitive with
respect to the truncated spectral approximation if sr < k,
i.e., the number of scales is lower than the ration k/r
between the number k of selected eigenpairs and the
degree r of the rational polynomial.

6 APPLICATIONS

Through Fourier-based and graph filters, we define the spec-
tral kernels/functions ®(8,) = K,(p,-) centred at a point p as
the action of the spectral operator on 8. In this setting, we
discuss applications of spectral kernels to signal reconstric-
tion and smoothing and shape correspondence.

Signal Reconstruction and Smoothing. In Fig. 9, we report
the /. approximation error of the reconstruction of the
geometry (z, y, z coordinates) of different 3D shapes with
respect to an increasing number k (y-axis) of regularised
harmonic, Laplacian, and diffusion basis functions. The har-
monic and diffusion basis functions are centred at k and k/4
points, sampled with the geodesic farthest point method,
and the diffusion basis are computed at 4 scales. The recon-
struction error with different classes of spectral functions
has an analogous behaviour, thus confirming their mean-
ingfulness for signal approximation. Indeed, harmonic and
diffusion functions are a valid alternative to the Laplacian
eigenfunctions and have additional properties; in fact, they
can be centred at any seed point and diffusion functions
have a multi-scale local behaviour.

Signal Smoothing. For spectral smoothing, we consider a
noisy signal f = f+ 6 (e.g., the z, y, and z coordinates of
the pints on a surface), where § is a Gaussian noise, and a
set B of diffusion functions centred at k:= 100 samples,
evaluated with the farthest point sampling from a seed
point, and at s := 6 scales. Then, we compute a smoothed
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Fig. 9. ¢,-approximation error (y-axis) of the reconstruction of the geom-
etry of 3D shapes with respect to an increasing number (z-axis) of Lapla-
cian eigenfunctions (red curve), harmonic (blue curve), and diffusion
(green curve) kernels. Indeed, harmonic and diffusion kernels are a valid
alternative to the eigenfunctions, with additional properties; in fact, they
can be centred at any seed point and diffusion kernels have a multi-scale
local behaviour.

signal g as the least-squares projection of f on B and evalu-
ate the corresponding approximation error as |f—
9lloo/l1flls- The smoothness order and the approximation
accuracy (Fig. 10, y-axis) increase as the number of functions
at any selected scale. Best results are achieved by selecting
diffusion wavelets at small scales in order to accurately
recover the local and global details of the signal.

Shape Correspondences. We now apply specific classes of
the spectral kernels to high-level tasks, such as shape corre-
spondence through the functional map framework [35]. To
this end, we select a low number £ of ground-truth land-
marks, which are used to initialise the functional, and con-

o) f (©

@) (f,9)

—Scale t:=1
—Scale t:=0.5
Scale t:=0.25
—Scale :=0.125
Scale t:=0.0625

—Scale t:=1
—Scale t:=0.5
Scale t:=0.25
—Scale :=0.125
—Scale :=0.0625

—Scale t:=1
Scale t:=0.5
Scale t:=0.25
—Scale t:=0.125
Scale 1:=0.0625

Fig. 10. Level-sets and colour-map of (a,right) a noisy function g := f +§
achieved by adding a Gaussian noise § to the function f in (a,left); (b)
smoothed scalar function f achieved with 100 diffusion functions. (c)
Approximation error (y-axis) and number of diffusion functions (z-axis)
at 5 different scales.
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Fig. 11. Mean correspondence error (y-axis) on 15 couples (z-axis) of
non-isometric SHREC’10 shapes [31] computed with the same number
(i.e., k = 60) of diffusion functions and Laplacian eigenfunctions. The dif-
fusion functions generally provide a lower correspondence error before/
after the correspondence optimisation through the Interior Closest Point
(ICP) method and improve the quality of the correspondences, e.g., on
the plane wings, the table legs, the legs and the harms, the tail and the
legs.

sider a set of local and multi-scaled filtered spectral kernels,
which generate the sub-space on which the shape descrip-
tors will be projected to define the functional map. First, we
compare the quality of the correspondence map computed
on the function space generated by (i) k=60 Laplacian
eigenfunctions and (ii) the diffusion functions (i.e., 15 seed
points, 4 scales) 5 couples of shapes belonging to 5 classes of
the SHREC’10 data set. Indeed, we consider the same num-
ber of functions but with different properties in terms of
locality and information encoding. For the rigid and articu-
lated shapes (Fig. 11), the computed correspondences cor-
rectly map local and global features on the source and
target shape.

To this end, we have selected 7 ground-truth landmarks,
5 uniformly sampled seed points and 4 scales on 15 shapes.
The functional map induced by the corresponding 48 diffu-
sion functions has been compared with the one induced by
60 Laplacian eigenfunctions. According to the variation of
the mean correspondence error and the examples of corre-
spondences, the diffusion basis functions generally provide
a lower correspondence error before and after the optimisa-
tion based on the Iterative Closed Point (ICP, for short) [40].
Furthermore, the diffusion functions improve the quality of
the correspondences with respect to the Laplacian eigenba-
sis, e.g., between the legs of the giraffe and the tail of the
cow, the legs of the giraffe and the horns of the goat, the
legs of the dog and the horns of the cow.

Partial Shape Correspondences. For comparison with previ-
ous work, we focus on partial shape correspondence. As
descriptor, we select the spectral kernel K,(p,-) := L,8p,
which is induced by spectral convolution operator W, :=
exp(—tA)A and the filter ¢(s) := exp(—ts)s. Indeed, the spec-
tral kernel K,(p,-) is achieved by applying the diffusion

. 5 01 . 015 02 025
Geodesic error Geodesic error

Fig. 12. Quantitative comparison on the SHREC’16 partial cut bench-
mark [32] (similar connectivity) and on the FARM partial data set [33]
(different connectivity): PFM (Partial functional maps) [34], [35], PFM
sparse (PFM initialised with the same sparse correspondence), RF
(Random Forest) [36], IM (Scale-invariant isometric matching) [37], EN
(Elastic Net) [38], GT (Game-theoretic matching) [39], our spectral
wavelet induced by ¢(s) := exp(—st)s. On the z-axis, we report the
mean geodesic distance to the ground truth.

operator exp(—tA) to the smooth approximation A8, of 8,
which can be interpreted as a Mexican hat function. Then, the
spectral operator is computed through the rational approxi-
mation ¢(s) =~ (sP,(s))/Q.(s), which P,/Q, (r,r) Pade-Che-
byshev approximation of thee exponential function. In
Fig. 12, the spectral wavelet induced by the filter ¢ has been
(i) applied to shape correspondence on partial 3D shapes
with a similar (cut data set from SHREC’16 [32]) and irregular
(FARM partial data set [33]) connectivity, and (ii) compared
with state-of-the-art methods discussed in [32]. The results
achieved with the spectral wavelet are comparable with the
best current method [34] for partial functional maps (PFM)
on 3D shape with similar connectivity (Fig. 12a); contrary to
PFM, our results remain reliable when matching shapes with
a highly different connectivity (Fig. 12a). For more details, we
refer the reader to our recent work presented in [41].

7 CONCLUSION AND FUTURE WORK

This paper has discussed the definition of novel Fourier-
based and rational spectral operators for graph processing,
which generalise the notion of polynomial spectral filters
and Fourier transform to non-euclidean domains. As future
work, we plan to investigate the usefulness of rational filters
for the definition of a family of spectral bases for data analy-
sis. In fact, several signal processing techniques generally
represent the data in terms of a given basis in order to high-
light a given class of underlying properties or features, e.g.,
localising content in both space and frequency through
wavelet basis. Rational filters, and in particular rational
Chebyshev polynomials, are particularly useful to enlarge
the class of learning networks, as a generalisation of net-
works based on polynomial filters, such as PolyNet [23],
ChebNet [24], CayleyNet [25], in order to improve the dis-
criminative capabilities of networks in the context of 3D
geometric deep learning.
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