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Abstract—Minimum cut/maximum flow (min-cut/max-flow) algorithms solve a variety of problems in computer vision and thus
significant effort has been put into developing fast min-cut/max-flow algorithms. As a result, it is difficult to choose an ideal algorithm for
a given problem. Furthermore, parallel algorithms have not been thoroughly compared. In this paper, we evaluate the state-of-the-art
serial and parallel min-cut/max-flow algorithms on the largest set of computer vision problems yet. We focus on generic algorithms, i.e.,
for unstructured graphs, but also compare with the specialized GridCut implementation. When applicable, GridCut performs best.
Otherwise, the two pseudoflow algorithms, Hochbaum pseudoflow and excesses incremental breadth first search, achieves the overall
best performance. The most memory efficient implementation tested is the Boykov-Kolmogorov algorithm. Amongst generic parallel
algorithms, we find the bottom-up merging approach by Liu and Sun to be best, but no method is dominant. Of the generic parallel
methods, only the parallel preflow push-relabel algorithm is able to efficiently scale with many processors across problem sizes, and no
generic parallel method consistently outperforms serial algorithms. Finally, we provide and evaluate strategies for algorithm selection to
obtain good expected performance. We make our dataset and implementations publicly available for further research.

Index Terms—Algorithms, computer vision, graph algorithms, graph-theoretic methods, parallel algorithms, performance evaluation of algo-

rithms and systems

1 INTRODUCTION

IN-CUT/MAX-FLOW algorithms are ubiquitous in com-
Mputer vision, since a large variety of computer vision
problems can be formulated as min-cut/max-flow prob-
lems. Example applications include image segmentation [1],
[2], [3], [4], [5], [6], stereo matching [7], [8], surface recon-
struction [9], surface fitting [10], [11], [12], [13], [14], [15],
graph matching [16], and texture restoration [17]. In recent
years, min-cut/max-flow algorithms have also found use in
conjunction with deep learning methods — for example, to
quickly generate training labels [18] or in combination with
convolutional neural networks (CNNs) [19], [20], [21].

Greig et al. [22] were the first to use min-cut/max-flow
algorithms to solve maximum a posterior Markov random
field (MRF) problems in computer vision. Later, Boykov and
Jolly [23] showed how this could be generalized and Boykov
and Kolmogorov [1] proposed a fast min-cut/max-flow algo-
rithm for computer vision problems. Min-cut/max-flow
algorithms in computer vision are used to solve a large fam-
ily of energy minimization problems, and the most com-
monly used energy function is of the form

Ex) = Z&'(%‘)Jr Z Eij(xi, xj), (1)
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where P is a set of indices for the binary variables z; €
{0,1}, and N is a set of index pairs. A unary term ¢&; :
{0,1} — R is associated with variable z;, and a pairwise
term &;; : {0,1}* — R is associated with the pair of variables
xi,x;. As the inputs to the energy terms are binary, the
terms are often represented as lookup tables. In a typical
application, such as binary segmentation with MRFs [24], P
represents pixels in an image and z; represents the assign-
ment of pixel 7. However, variables can also describe more
abstract things [5], [10], [13], [14], [16], [25], e.g., candidate
positions for mesh vertices.

For energy functions which are submodular, meaning that
all pairwise energy terms satisfy the condition

&ij(0,0) + &;(1,1) < &;(0,1) + &E;(1,0), 2)

the minimization can be solved directly as a min-cut/max-
flow problem [26], [27]. Submodular energies favor neigh-
bors that have the same label, i.e., (z;, ;) having the labels
(0,0) or (1,1) rather than (0,1) or (1,0). Therefore, submodu-
larity imposes a local smoothness of the solution, which is
useful in many computer vision problems. However, some
important vision problems are not submodular. In such
cases, one can use either a submodular approximation or an
approach based on quadratic pseudo-Boolean optimization
(QPBO) as described in [17], [28], [29], [30].

Due to the wide applicability of min-cut/max-flow in
computer vision, several fast generic min-cut/max-flow
algorithms have been developed [1], [31], [32]. In addition,
more specialized algorithms have been created that exploit
the grid structure of images to reduce memory usage and
run time [33], [34], [35], [36], [37]. Furthermore, methods for
dynamic problems [31], [38], [39], where a series of similar
min-cut/max-flow problems are solved in succession, have
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been proposed. For such problems, the result of the first
solution can be reused to speed up computations of subse-
quent solutions. Finally, some papers [40], [41], [42], [43]
have explored methods that also allow for distributed com-
putation of min-cut/max-flow problems across several
computational nodes. This approach is primarily suited for
graphs too large to fit in physical memory.

In this paper, we focus on generic min-cut/max-flow
algorithms, which do not make assumptions about the graph
structure (e.g., requiring a grid structure). However, for com-
parison, we include the GridCut algorithm [35] in our evalu-
ation on grid-based graphs. Furthermore, we consider only
static problems where a solution is calculated once, without
access to a previous solution (as opposed to dynamic prob-
lems). Finally, for parallel algorithms, we do not consider
whether the algorithm works well in a distributed setting,
but focus on the shared memory case where the complete
graph can be loaded into the memory of one machine.

The goal is that our experimental results can help
researchers understand the strengths and weaknesses of the
current state-of-the-art min-cut/max-flow algorithms and
help practitioners when choosing a min-cut/max-flow algo-
rithm to use for a given problem.

1.1 Related Work

Serial Algorithms. Several papers [31], [44], [45], [46] provide
comparisons of different serial min-cut/max-flow algo-
rithms on a variety of standard benchmark problems. How-
ever, many of these benchmark problems are small w.r.t.
the scale of min-cut/max-flow problems that can be solved
today — especially when it comes to grid graphs. Also,
graphs in which nodes are not based on an image grid are
severely underrepresented. Furthermore, [44], [45], [46] do
not include all current state-of-the-art algorithms, while
other papers do not include initialization times for the min-
cut computation. As shown by Verma and Batra [46], it is
important for practical use to include the initialization time,
as algorithm implementations may spend as much time on
initialization as on the min-cut computation. Additionally,
existing papers only compare reference implementations
(i.e., the implementation released by the authors) of algo-
rithms — the exception being that an optimized version of
the BK algorithm is sometimes included, e.g., in [31]. How-
ever, as implementation details — i.e., choices that are left
unspecified by the algorithm description — can significantly
impact performance [46], a systematic investigation of their
effect is also important. Finally, existing comparisons focus
on determining the overall best algorithm, even though, as
we show in this work, the best algorithm depends on the fea-
tures of the given graph.

Parallel Algorithms. To our knowledge, parallel min-cut/
max-flow algorithms have not been systematically compared.
Papers introducing parallel algorithms only compare with
serial algorithms [42], [43], [47] or a single parallel algorithm
[48]. The most comprehensive comparison so far was made
by Shekhovtsov and Hlavac [41] who included a generic and
grid-based parallel algorithm. However, no paper compares
with the approach by Liu and Sun [47], as no public imple-
mentation is available, even though it is expected to be
the fastest [41], [42]. Additionally, all papers use the same
set of computer vision problems used to benchmark serial
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algorithms. This is not ideal, as the set lacks larger problems
which we expect to benefit the most from parallelization [49].
Therefore, how big the performance benefits of paralleliza-
tion are, and when to expect them, is still to be determined.

1.2 Contributions

We evaluate current state-of-the-art generic serial and paral-
lel min-cut/max-flow algorithms on the largest set of com-
puter vision problems so far. We compare the algorithms on
a wide range of graph problems including commonly used
benchmarks problems, as well as many new problem instan-
ces from recent papers — some of which are significantly
larger than previous problems and expose weaknesses in the
algorithms not seen with previous datasets. Since the perfor-
mance of the algorithms varies between problems, we also
provide concrete strategies on algorithm selection and evalu-
ate the expected performance of these.

For the serial algorithms, we evaluate the reference
implementations of the Hochbaum pseudoflow (HPF) [32],
[50], the preflow push-relabel (PPR) [51], and the GridCut
[34] algorithms. Moreover, to reduce the influence of imple-
mentation details, we evaluate different versions (including
our own) of the Excesses Incremental Breadth First Search
(EIBFS) [31] and the Boykov-Kolmogorov (BK) [1] algo-
rithm. We chose these for an extended evaluation, as EIBFS
is the most recent min-cut/max-flow algorithm and BK is
still widely used in the computer vision community.

For the parallel algorithms, we provide the first compre-
hensive comparison of all major approaches. This includes
our own implementation of the bottom-up merging algo-
rithm by Liu and Sun [47], our own version of the dual
decomposition algorithm by Strandmark and Kahl [42], the
reference implementation of the region discharge algorithm
by Shekhovtsov and Hlavac [41], an implementation of the
parallel preflow push-relabel algorithm by Baunstark et al.
[48], and the parallel implementation of GridCut (P-Grid-
Cut) [34]. In our comparison, we evaluate not just the run
time — including both the initialization time and the time
for the min-cut/max-flow computations — but also the
memory use of the implementations. Memory usage has not
received much attention in the literature, despite it often
being a limiting factor when working with large problems.
Finally, we show that the current parallel algorithm imple-
mentations have unpredictable performance and unfortu-
nately often perform worse than serial algorithms.

All tested C++ implementations (except GridCut [34]),
including our new implementations of several algorithms,
are available at https://github.com/patmjen/maxflow_
algorithms and are archived at DOI:10.5281/zenod0.4903945
[52]. We also provide Python wrapper packages for several of
the algorithms (including BK and HPF), which can be found
at https://github.com/skielex/shrdr. All of our benchmark
problems are available at DOI:10.11583/DTU.17091101.

2 MIN-CUT/MAX-FLOW ALGORITHMS FOR
COMPUTER VISION

To illustrate the use of min-cut/max-flow, we will sketch
how a vision problem, image segmentation, can be solved
using min-cut/max-flow. We start by introducing our nota-
tion and defining the min-cut/max-flow problem.
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Fig. 1. Graph basics and serial algorithms. (a) An example of the graph
and a feasible (non-maximal) flow. The flow and capacity for each arc is
written as f;;,c;;, and (to reduce clutter) zero-values of the flow are omit-
ted. The flow is 8, which is not maximal, so no s-t cut is evident. (b) The
min-cut/max-flow with a value of 18, which all min-cut/max-flow algo-
rithms will eventually arrive at. (c) Residual graph for the flow from (a).
(d) An intermediate flow while running the AP algorithm. In the first itera-
tion, 10 units are pushed along the path highlighted in orange and red,
saturating two terminal arcs (red). In the next iteration, flow is pushed
along the residual path highlighted in blue. (e) A preflow at an intermedi-
ate stage of a PPR algorithm. Nodes with excess are shown in red, and
a label in green is attached to every node. (f) A pseudoflow at an inter-
mediate stage of the HPF algorithm. Nodes with surplus/deficit are
shown in red/blue, a label is attached to every node, and arcs of the tree
structure are highlighted in green.

We define a directed graph G = (V, E) by a set of nodes,
V, and a set of directed arcs, E. We let n and m refer to the
number of nodes and arcs, respectively. Each arc (¢, j) € £
is assigned a non-negative capacity c;;. For min-cut/max-
flow problems, we define two special terminal nodes, s and t,
which are referred to as the source and sink, respectively.
The source has only outgoing arcs, while the sink has only
incoming arcs. Arcs to and from the terminal nodes are
known as terminal arcs.

A feasible flow in the graph G is an assignment of non-neg-
ative numbers (flows), f;;, to each arc (4, j) € E. A feasible
flow must satisfy the following two types of constraints:
capacity constraints, f;; < ¢;;, and conservation constraints,
ifiger fii = 2ngper fin for all nodes jeV\{s,t}.
Capacity constraints ensure that the flow along an arc does
not exceed its capacity. Conservation constraints ensure that
the flow going into a node equals the flow coming out. See
Fig. 1a for an example of the graph and a feasible flow. The
value of the flow is the total flow out of the source or, equiva-
lently, into the sink, and the maximum flow problem refers to
finding a feasible flow that maximizes the flow value.

An s-t cut is a partition of the nodes into two disjoint sets S
and T such that s € Sand ¢ € T. The sets S and T are referred
to as the source and sink set, respectively. The capacity of the
cut is the sum of capacities of the arcs going from S to 7. And
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Fig. 2. Some possibilities for associating graph nodes with entities used
for segmentation. Graph nodes (gray dots) associated with (a) image
pixels, (b) superpixels, (c) positions in the image, (d) mesh faces, and
(e) mesh vertices.

the minimum cut problem refers to finding a cut that mini-
mizes the cut capacity. Often, this partition of the nodes is all
that is needed for computer vision applications. Therefore,
some algorithms only compute the minimum cut, and an
additional step would be needed to extract the flow value for
every arc.

Finally, the max-flow min-cut theorem states that the
value of the maximum flow is exactly the capacity of the
minimum cut. Fig. 1b shows min-cut/max-flow on a small
graph. This can be shown by formulating both problems as
linear programs, which reveals that max-flow is the strong
dual of the min-cut.

2.1 Image Segmentation

When formulating segmentation as a min-cut/max-flow
problem, one modeling choice involves deciding which
structures to represent as graph nodes. Often, nodes of the
graph represent individual image pixels, but various other
entities may be associated with graph nodes, some of which
are illustrated in Fig. 2.

The energy formulation (1) is convenient when min-cut/
max-flow algorithms are used to optimize MRFs. Here, each
unary energy term is a likelihood energy (negative log like-
lihood) of a pixel being labeled 0 or 1. Likelihood terms are
typically computed directly from image data. The pairwise
terms are defined for pairs of pixels, so-called neighbors,
and for 2D images, the neighborhood structure is usually
given by a 4 or 8-connectivity.

The typical pairwise energy terms used in (1) are

8,](0, O)ZEU(L 1):0 and 81](0, 1)igw(1, 0):,31] . (3)
These terms penalize neighboring pixels having different
labels by a fixed amount, 8,;, thus encouraging smoothness of
the segmentation. In this case, the construction of the s-¢
graph which exactly represents the energy function is
straightforward: The node setis V' = P U {s, ¢}. For terminal
arc capacities, ¢;; and c;;, we use the unary terms &;(0) and
&i(1), respectively. Meanwhile, pairwise energy terms corre-
spond to non-terminal arc capacities, such that ¢;; = ¢;; = B;;.
Fig. 3a shows this construction for a 4-connected grid graph.
The binary segmentation of the image corresponds directly to
the binary labeling given by the minimum cut. Put in another
way, the sets S and 7" give the optimal labeling of the nodes,
and because we have a 1-to-1 mapping between non-terminal
nodes and pixels, the node labeling is the segmentation.
However, there are many more advanced ways to formulate
image segmentation using binary energy optimization and
s-t graphs, and ways to formulate other computer vision
problems as well [27].
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Fig. 3. Some typical segmentation models. Terminal arcs are shown only
for the first example. Arcs drawn in purple have infinite capacity. (a) A
classical MRF segmentation with 4-connected grid graph. (b) A multi-
column graph used for segmenting layered structures. (c) Two-object
segmentation with inclusion constraint. (d) Three-object segmentation
with mutual exclusion using QPBO.

An example closely related to image segmentation is sur-
face fitting, where [13] uses arcs of infinite capacity (i.e., infi-
nite pairwise energy terms) to impose a structure to the
optimal solution. In Fig. 3b, downward-pointing arcs ensure
that if a pixel is in a source set, the column of pixels below it
is also in the source set — so the optimal solution has to be a
layer. The slanted arcs impose the smoothness of this layer.

It is also possible to formulate multi-label/multi-object
segmentation problems that can be solved with a single s-t
cut [4], [5], [13], [33], or by iteratively changing and comput-
ing the cut [3], [53]. For the single-cut Ishikawa method [4], it
is common to duplicate the graph for each label, i.e., having a
sub-graph per label. For example, in Fig. 3, each pixel is repre-
sented by two nodes: one for object A and one for object B, so
a pixel may be segmented as belonging to A, B, both, or nei-
ther. The submodular interaction between the objects may be
achieved by adding arcs between the sub-graphs. Fig. 3c
shows submodular interaction, where arcs with infinite
capacity ensure that if a pixel belongs to object A, this pixel
and all its neighbors also belong to object B. This is known as
inclusion or containment with a minimum margin of one.

In the examples covered so far, the arcs between the graph
nodes correspond to submodular energy terms, which
means the energy is lower when the nodes belong to the
same set (S or T). Mutual exclusion, in the general case,
requires non-submodular energies which are not directly
translatable to arcs in the graphs shown so far. An alternative
is to use QPBO [30], as illustrated in Fig. 3d, which can han-
dle any energy function of the form in (1) — submodular or
not. When using QPBO, we construct two sub-graphs for
each object: one representing the object and another repre-
senting its complement. The exclusion of two objects, say A
and B, is then achieved by adding inclusion arcs from A to B
and from B to A. However, there is no guarantee that the
min-cut/max-flow solution yields a complete segmentation
of the object as the object and its complement may disagree
on the labeling of some nodes leaving them “unlabeled”. The
number of unlabeled nodes depends on the non-submodu-
larity of the system. Extensions to QPBO, such as QPBO-P
and QPBO-I [17], may be used to iteratively assign labels to
the nodes that QPBO failed to label.

3 SERIAL MIN-CUT/MAX-FLOW ALGORITHMS

All min-cut/max-flow algorithms find the solution by itera-
tively updating a flow that satisfies the capacity constraints.
Such a flow induces a residual graph with the set of residual
arcs, R, given by
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R= {(27.]) € VxV | (Za.]) € E7fij < Cjj Or

Each of the residual arcs has a residual capacity given by cj; =
cij — fij if (4,5) € E or ¢; = f; if (j,i) € E. In other words,
residual arcs tell us how much flow on the original arc we can
increase or decrease, see Fig. 1c. If the graph contains bidirec-
tional arcs, both conditions from (4) may be met, and the
residual capacity then equals the sum of two contributions.

Serial min-cut/max-flow algorithms can be divided into
three families: augmenting paths, preflow push-relabel, and
pseodoflow algorithms. In this section, we provide an over-
view of how algorithms from each family work.

3.1 Augmenting Paths

The augmenting paths (AP) family of min-cut/max-flow
algorithms is the oldest of the three families and was intro-
duced with the Ford-Fulkerson algorithm [54]. An algo-
rithm from the AP family always maintains a feasible flow.
It works by repeatedly finding so-called augmenting paths,
which are paths from s to ¢ in the residual graph. When an
augmenting path is found, a flow is pushed along the path.
Pushing flow means increasing flow for each forward arc
along the path, and decreasing flow for each reverse arc. To
maintain the capacity constraints, the flow that is pushed
equals the minimum residual capacity along the path. Con-
servation constrains are maintained as the algorithm only
updates complete paths from s to ¢. The algorithm termi-
nates when no augmenting paths can be found. Fig. 1d
shows an intermediate stage of an AP algorithm.

The primary difference between various AP algorithms
lies in how the augmenting paths are found. For computer
vision applications, the most popular AP algorithm is the
Boykov-Kolmogorov (BK) algorithm [1], which works by
building search trees from both the source and sink nodes
to find augmenting paths and uses a heuristic that favors
shorter augmenting paths. The BK algorithm performs well
on many computer vision problems, but its theoretical run
time bound is worse than other algorithms [46].

In terms of performance, the BK algorithm has been sur-
passed by the Incremetal Breadth First Search (IBFS) algo-
rithm by Goldberg et al. [55]. The main difference between
the two algorithms is that IBFS maintains the source and
sink search trees as breadth-first search trees, which results
in both better theoretical run time and better practical per-
formance [31], [55].

3.2 Preflow Push-Relabel

The second family of algorithms are the preflow push-rela-
bel (PPR) algorithms, which were introduced by Goldberg
and Tarjan [51]. These algorithms use a so-called preflow,
which satisfies capacity constraints but allows nodes to
have more incoming than outgoing flow, thus violating con-
servation constraints. The difference between the incoming
and outgoing flows for a node, i, is denoted as its excess,
€; > 0.

The PPR algorithms work by repeatedly pushing flow
along the individual arcs. To determine which arcs admit
flow, the algorithms maintain an integer labeling (so-called
height), d;, for every node. The labeling provides a lower
bound on the distance from the node to the sink and has a no
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steep drop property, meaning d(i) — d(j) < 1 for any residual
arc (4, 7).

An algorithm from the PPR family starts by saturating
the source arcs and raising the source to d(s) = n. The algo-
rithm then works by repeatedly selecting a node with excess
(after selection called a selected node) and applying one of
two actions [51], [56]: push or relabel. If there is an arc in the
residual graph leading from the selected node to a lower-
labeled node, push is performed. This pushes excess along
the arc, until all excess is pushed or the arc is saturated. If
no residual arc leads to a lower node, the relabel operation is
used to lift the selected node (increase its label) by one.
Fig. le shows an intermediate step of a PPR algorithm.

When there are no nodes with excess left, the preflow is
the maximum flow. It is possible to terminate the algorithm
earlier, when no nodes with excess have a label d; < n. At
this point, the minimum s-¢ cut can be extracted by inspect-
ing the node labels. If d; > n, then i € S, otherwise ¢ € T'.
Extracting the maximum flow requires an extra step of
pushing all excess back to the source. However, this work
generally only represents a small part of the run time [46]
and, for computer vision applications, we are typically only
interested in the minimum cut anyway.

The difference between various PPR algorithms lies in the
order in which the push and relabel operations are per-
formed. Early variants used simple heuristics, such as
always pushing flow from the node with the highest label or
using a first-in-first-out queue to keep track of nodes with
positive excess [44]. More recent versions [57], [58], [59] use
sophisticated heuristics and a mix of local and global opera-
tions to obtain significant performance improvements over
early PPR algorithms.

Unlike other serial algorithms, the algorithms from the
PPR family operate locally on nodes and arcs. This, as we
shall discuss later, has resulted in a whole family of parallel
PPR algorithms.

3.3 Pseudoflow

The most recent family of min-cut/max-flow algorithms is
the pseudoflow family, which was introduced with the
Hochbaum pseudoflow (HPF) algorithm [32], [50]. These
algorithms use a so-called pseudoflow, which satisfies capac-
ity constraints but not the conservation constraints, as it has
no constraints on the difference between incoming and out-
going flow. As with preflow, we refer to the difference
between incoming and outgoing flow for a node as its excess,
e;. A positive excess is referred to as a surplus and a negative
excess as a deficit.

During operation, HPF algorithms maintain two auxil-
iary structures: the forest of trees and a node labeling func-
tion. Only one node in every tree, the root, is allowed to
have an excess. The algorithm works by repeatedly pushing
the flow along the paths connecting the trees, and growing
the trees.

A generic algorithm from the HPF family is initialized by
saturating all terminal arcs. At this point, each graph node
is a singleton tree in the forest. The algorithm then selects a
tree with surplus and containing at least one node with the
label less than n (the number of nodes in the graph). In this
tree, 1 denotes the node with the lowest label. If there are no
residual arcs from 7 to a node with a lower label, the label of
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1 is incremented. If there is a residual arc (¢, 7) that leads to a
node j with a lower label, a merge is performed. This opera-
tion involves pushing surplus along the path from the root
of the tree containing 4, over 4, over j, and to the root of the
tree containing j. If the arc capacities along this path allow
it, the entire surplus will be pushed and the trees will be
merged with j as the root. If the flow along the path satu-
rates an arc (i/,7), a surplus will be collected in i/, and a
new tree rooted in i’ will be created. In contrast to the AP
algorithms, the only restrictions on how much flow to push
are the individual arc capacities, not the path capacity.

The algorithm terminates when no selection can be
made, at which point nodes labeled with n constitute the
source set. Additional processing is needed to recover the
maximum feasible flow. Fig. 1f shows an intermediate step
of the HPF algorithm.

There are two main algorithms in this family: HPF and
Excesses Incremental Breadth First Search (EIBFS) [31]. The
main differences are the order in which they scan through
nodes when looking for an arc connecting two trees in the
forest, and how they push flow along the paths. Both have
sophisticated heuristics for these choices, which makes use
of many of the same ideas developed for PPR algorithms.

3.4 Implementation Details

As stressed by [46], the implementation details can signifi-
cantly affect the measured performance of a given min-cut/
max-flow algorithm. In this section, we will highlight the
trends of modern implementations and how they differ.

3.4.1 Data Structures and Data Types

The implementations considered in this paper all use a vari-
ant of the adjacency list structure [60] to represent the
underlying graph. The most common setup mimics the BK
algorithm: there is a list of nodes and a list of directed (half-
)arcs. Each Node structure stores a pointer to its first outgo-
ing half-arc. Each Arc stores a pointer to the node it points
to, a pointer to the next outgoing arc for the node it points
from, a pointer to its reverse arc, and a residual Capacity.
For algorithms implemented with computer vision applica-
tions in mind (e.g., BK, IBFS, and EIBFS), the terminal arcs
are stored as a single combined terminal capacity for each
Node, instead of using the Arc structures. Other implemen-
tations simply keep track of the source and sink nodes and
use Arc structures for all arcs. The HPF implementation
uses a bidirectional Arc structure with a capacity, a flow,
and a direction. It is also common to store auxiliary values
such as excesses, labels, or more.

As a result of these differences, the memory footprint
varies between implementations, as shown in Table 1. The
footprint also depends heavily on the data types used to store
the data, in particular references to nodes and arcs, as we dis-
cuss in the next subsection. For storing arc capacities, integers
are common because they are computationally efficient and
may use as little as 1 byte. However, some graph construc-
tions involve large capacities to model hard constraints, and
here some care must be taken to avoid overflow issues. With
floats, this can be modeled using infinite capacity. However,
floats are less efficient and some algorithms are not guaran-
teed to terminate with floats due to numerical errors.
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TABLE 1
Summary of the Tested Implementations Including
Their Memory Footprint

Serial algorithms Algorithm type Memory footprint

HI-PR® [56] Preflow push-relabel 40n + 40m; +40my
HPF’ [32] Pseudoflow 104n + 48my +48my
EIBFS [31] Pseudoflow

L, EIBFS° Pseudoflow 2n +72my
L., EIBFS-I* Pseudoflow 29n +50my
L, EIBFS-I-NR* Pseudoflow 49n +24my
BK [1] Augmenting path

L. BK? Augmenting path 48n +64my
L, MBK* Augmenting path 23n +24my
L. MBK-R" Augmenting path 23n +48my
Parallel algorithms

P-PPR“ [48] Parallel PPR 48n + 68my +68my
Liu-Sun* [47] Ada. bot.-up merging' 25n +24mpy
Strandmark-Kahl* [42] Dual decompositionT 29n +24my
P-ARD*" [41] Region dischargef 40n +32my

The table shows the bytes required as a function of the number of nodes, n,
number of terminal arcs, mr, and number of neighbor arcs, my. We assume
the common case of 32-bit capacities and 32-bit indices, which is also what we
use for all of our experiments. Since HPF stores undirected arcs, we give all
sizes as undirected arcs, i.e., for implementations using directed arcs the size
per arc reported here is doubled. Note that the numbers depend on, but are not
the same as, the Node and Arc structure sizes, as the footprint reported
includes all stored data (connectivity, capacity, and any auxiliary data).

tUses BK (augmenting path).

*Implemented or updated by us:
https:/[github.com/patmjen/maxflow_algorithms

i Assuming 32-bit indices
“https:/[cmp.felk.cout.cz/~shekhovt/d_maxflow/index.html
Yhttps:/[riot.ieor.berkeley.edu Applications/Pseudoflow/maxflow.html
“https:/|github.com/sydbarrett/ AlphaPathMoves
http://pub.ist.ac.at/~vnk/software.html
Chttps://github.com/niklasb/pbbs-maxflow

As the size of the data structures influences how much
the CPU can store in its caches, which has a large effect on
performance, it is generally beneficial to keep the data struc-
tures small. Note that some compilers do not pack data
structures densely by default, which may significantly
increase the size of the Arc and Node data structures.

3.4.2 Indices versus Pointers

One way to reduce the size of the Arc and Node data struc-
tures on 64-bit system architectures is to use indices instead
of pointers to reference nodes and arcs. As long as the indi-
ces can be stored using unsigned 32-bit integers, we can
halve the size arc and node references by using unsigned
32-bit integers instead of pointers (which are 64-bit). This
approach can significantly reduce the size of the Arc and
Node data structures, as the majority of the structures con-
sist of references to other arcs and nodes [35]. As the perfor-
mance of min-cut/max-flow algorithms is mainly limited
by memory speed, smaller data structures can often lead to
improved performance. The downside of indices is that
extra computations may be needed for every look-up,
although this depends on the exact assembly instructions
the compiler chooses to use.

Some grid-based algorithms [35] use 32-bit indices to
reduce the size of their data structure. The generic algorithms
we have investigated in this work all use pointers to store
references between nodes and arcs. Some implementations
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avoid the extra memory requirement by compiling with 32-
bit pointers. However, 32-bit pointers limit the size of the
graph much more than 32-bit indices. The reason is that the
32-bit pointers only have 4 GiB of address space, and the
Node and Arc structures they point to take up many bytes.
For example, the smallest Arc structure we have tested, c.f.
Table 1, uses 24 bytes, meaning that an implementation based
on 32-bit indices could handle graphs with 24 times more arcs
than an implementation based on 32-bit pointers.

3.4.3 Arc Packing

The order in which the arcs are stored may significantly
affect performance. Arc packing is used to reduce CPU cache
misses by storing the arcs in the same order that the algo-
rithm will access them. For example, min-cut/max-flow
algorithms often iterate over outgoing arcs from a node,
making it beneficial to store outgoing arcs from the same
node adjacent in memory. However, as arcs may be added
to the graph in any order, packing the arcs usually incurs an
overhead from maintaining the correct ordering or reorder-
ing all arcs as an extra step before computing the min-cut/
max-flow. Similar to arc packing, node packing may improve
performance. However, this is not done in practice as
opposed to arc packing.

Of the serial reference implementations that we exam-
ined, only HI-PR [56], IBFS, and EIBFS implement arc pack-
ing. These all implement it as an extra step, where arcs are
reordered after building the graph but before the min-cut/
max-flow computations start. None of the examined imple-
mentations use node packing.

3.4.4 Arc Merging

In practice, it is not uncommon that multiple arcs between
the same pair of nodes are added to the graph. Merging
these arcs into a single arc with a capacity equal to the sum
of capacities of the merged arcs may reduce the graph size
significantly. As this decreases both the memory footprint
of the graph and the number of arcs to be processed, it can
provide substantial performance benefits [35], [41]. How-
ever, as redundant arcs can usually be avoided by careful
graph construction and they should have approximately the
same performance impact on all algorithms, we have not
investigated the effects of this further.

4 PARALLEL MIN-CUT/MAX-FLOW

Like serial algorithms, parallel algorithms for min-cut/max-
flow problems can be split into families based on shared
characteristics. A key characteristic is whether the algo-
rithms parallelize over individual graph nodes (node-based
parallelism) or split the graph into sub-graphs that are then
processed in parallel (block-based parallelism). Other impor-
tant algorithmic traits include whether the algorithm is dis-
tributed, which we do not consider in this paper, and the
guarantees in terms of convergence, optimality, and com-
pleteness provided by the algorithm.

We should note that since many (but not all) min-cut/max-
flow problems in computer vision are defined on grid graphs,
several algorithms [34], [35], [36], [37] have exploited this
structure to create very efficient parallel implementations.


https://github.com/patmjen/maxflow_algorithms
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
https://github.com/sydbarrett/AlphaPathMoves
http://pub.ist.ac.at/~vnk/software.html
http://pub.ist.ac.at/~vnk/software.html
https://github.com/niklasb/pbbs-maxflow
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However, many important computer vision problems are not
defined on grid graphs, so in this paper we focus on generic
min-cut/max-flow algorithms.

The category of node-based parallel algorithms is gener-
ally dominated by parallel versions of PPR algorithms. In
the block-based category, we have identified three main
approaches: adaptive bottom-up merging, dual decomposi-
tion, and region discharge, which we investigate. In the fol-
lowing sections, we give an overview of each approach and
briefly discuss its merits and limitations.

4.1 Parallel Preflow Push-Relabel

PPR algorithms have been the target of most parallelization
efforts [33], [37], [48], [61], [62], [63], [64], since both push
and relabel are local operations, which makes them well
suited for parallelization. Because the operations are local,
the algorithms generally parallelize over each node — per-
forming pushes and relabels concurrently. To avoid data
races during these operations, PPR algorithms use either
locking [61] or atomic operations [64]. As new excesses are
created, the corresponding nodes are added to a queue
from which threads can poll them. In [48], a different
approach is applied, where pushes are performed in paral-
lel, but excesses and labels are updated later in a separate
step, rather than immediately after the push.

Since parallel PPR algorithms parallelize over every
node, they can achieve good speed-ups and scale well to
modern multi-core processors [48], or even GPUs [37].
However, these algorithms have not achieved dominance
outside of large grid graphs for min-cut/max-flow prob-
lems [43]. Since GPU hardware has advanced considerably
in recent years, it is unclear whether GPU method should
remain restricted to grid graphs, but this question is not
within the scope of this paper.

4.2 Adaptive Bottom-Up Merging

The adaptive bottom-up merging approach introduced by
Liu and Sun [47] uses block-based parallelism and has two
phases, which are summarized in Fig. 4. In phase one, the
graph is partitioned into a number of disjoint sets (blocks),
and arcs between blocks have their capacities set to 0 —
effectively removing them from the graph. For each pair of
blocks connected by arcs, we store a list of the connecting
arcs (with capacities now set to 0) along with their original
capacities. Disregarding s and ¢, the nodes in each block
now belong to disjoint sub-graphs and we can compute the
min-cut/max-flow solution for each sub-graph in parallel.
The min-cut/max-flow computations are done with the BK
algorithm — although one could in theory use any min-
cut/max-flow algorithm.

In phase two, we merge the blocks to obtain the complete
globally optimal min-cut/max-flow. To merge two blocks,
we restore the arc capacities for the connecting arcs and
then recompute the min-cut/max-flow for the combined
graph. This step makes use of the fact that the BK algorithm
can efficiently recompute the min-cut/max-flow when
small changes are made to the residual graph for a min-
cut/max-flow solution [38].

For merges in phase two to be performed in parallel, the
method marks the blocks being merged as locked. The
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Split graph First merge Second merge Last merge
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Fig. 4. lllustration of the adaptive bottom-up merging approach for paral-
lel min-cut/max-flow. Terminal nodes and arcs are not shown. Note that
the underlying graph does not have to be a grid graph. Phase one: (a)
The graph is split into blocks and the min-cut/max-flow is computed for
each block in parallel. Phase two: (b) The topmost blocks are locked,
merged, and the min-cut/max-flow recomputed. (c) As the topmost block
is locked, the next thread works on the bottom-most blocks (in parallel).
(d) Last two blocks are merged and min-cut/max-flow recomputed to
achieve the globally optimal solution.

computational threads then scan the list of block pairs,
which were originally connected by arcs, until they find a
pair of unlocked blocks. The thread then locks both blocks,
performs the merge, and unlocks the new combined block.
To avoid two threads trying to lock the same block, a global
lock prevents more than one thread from scanning the list
of block pairs at a time.

As the degree of parallelism decreases towards the end of
phase two — since there are few blocks left to merge — per-
formance increases when computationally expensive merges
are performed early in phase two. To estimate the cost of
merging two blocks, [47] uses a heuristic based on the poten-
tial for new augmenting paths to be formed by merging two
blocks. This heuristic determines the merging order of the
blocks.

By using block-based, rather than node-based parallelism,
adaptive bottom-up merging avoids much of the synchroni-
zation overhead that the parallel PPR algorithms suffer
from. However, its performance depends on the majority of
the work being performed in phase one and in the beginning
of phase two, where the degree of parallelism is high.

4.3 Dual Decomposition

The dual decomposition (DD) approach was introduced by
Strandmark and Kahl [42] and later refined by Yu et al. [43].
The approach was originally designed to allow for distrib-
uted computing, such that it is never necessary to keep the
full graph in memory. Their algorithm works as follows:
first, the nodes of the graph are divided into a set of overlap-
ping blocks (see Fig. 5a). The graph is then split into disjoint
blocks, where the nodes in the overlapping regions are
duplicated in each block (see Fig. 5b). It is important that
the blocks overlap such that if node 4 is connected to node j
in block b; and node k in block b;, then i is also in both
blocks b; and b.

Once the graph has been partitioned into overlapping
blocks, the algorithm proceeds iteratively. First, the min-
cut/max-flow for each disjoint block is computed in parallel
using the BK algorithm. Next, for each duplicated node, it is
checked if all duplicates of that node are in the same s-f parti-
tioned set, S or 7' In that case, we say that the node dupli-
cates agree on their assignment. If all duplicated nodes agree
on their assignment, the computed solution is globally opti-
mal and the algorithm terminates. If not, the terminal arc
capacities for the disagreeing duplicated nodes are updated
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Fig. 5. lllustration of the dual decomposition approach. Terminal nodes
and arcs are not shown. Note that the underlying graph does not have to
be a grid graph. (a) Graph nodes are divided into a set of overlapping
blocks. (b) The graph is split into disjoint sub-graphs and nodes in over-
lapping regions are duplicated into each blocks. (c) The min-cut/max-flow
for each block is computed in parallel which gives an assignment to
source set (black) or sink set (white). The source/sink capacities are then
adjusted for disagreeing duplicated nodes. (d) The min-cut/max-flow is
recomputed and capacities are adjusted until all duplicated nodes agree.

according to a supergradient' ascent scheme and the min-
cut/max-flow is recomputed. This process of updating termi-
nal capacities and recomputing the min-cut/max-flow is
repeated until all duplicated nodes agree on their assignment.

A limitation of the original dual decomposition approach
is that convergence is not guaranteed. Furthermore, [43]
and [41] have demonstrated that the risk of nonconvergence
increases as the graph is split into more blocks. To overcome
this, Yu et al. [43] introduced a new version with a simple
strategy that guarantees convergence: if the duplicated
nodes in two blocks do not belong to the same set, S or 7T,
after a fixed number of iterations, the blocks are merged
and the algorithm continues. This trivially guarantees con-
vergence since, in the worst case, all blocks will be merged,
at which point the global solution will be computed serially.
However, performance significantly drops when merging is
needed for the algorithm to converge, as merging only hap-
pens after a fixed number of iterations and all blocks may
(in the worst case) have to be merged for convergence.

4.4 Region Discharge

The region discharge (RD) approach was introduced by
Delong and Boykov [33] and later generalized by Shekhovt-
sov and Hlavac [41]. The idea builds on the vertex discharge
operation introduced for PPR in [51]. Similarly to DD by
Strandmark and Kahl, RD was designed to allow for distrib-
uted computing. The method (summarized in Fig. 6) first
partitions the graph into a set of blocks (called regions in [41]
following the terminology of [33]). Each block R has an asso-
ciated boundary defined as the set of nodes

BR={veV|v¢R,(u) € E,uc Rv#s,t}. )

Capacities for arcs going from a boundary node to a block
node are set to zero. This means that flow can be pushed out
of the block into the boundary, but not vice versa. Further-
more, each node is allowed to have an excess.

The method then performs the region discharge operation,
which aims to push as much excess flow to the sink and/or
the boundary nodes as possible (the source, s, is assumed to
have infinite excess). This has been done with a PPR [33], [41]
or an AP algorithm (specifically BK) [41]. When using a PPR
algorithm, the discharge of a block is done by performing

1. Analogous to subgradients for convex functions [65].

Fig. 6. lllustration of the region discharge approach. Terminal nodes and
arcs are not shown. Note that the underlying graph does not have to be
a grid graph. (a) Graph nodes are divided into a set of blocks and the
region discharge operation is run on each block, which pushes flow to
the sink or boundary. (b) Flow is synchronized between boundaries. (c)
Region discharge is run again. The process repeats until no flow crosses
the block boundaries.

only push and relabel operations between nodes in the same
block.

When using the BK algorithm, a distance labeling is
maintained for the boundary nodes which gives an estimate
of how many boundaries must be crossed to reach the sink.
Initially, in each block, flow is pushed exclusively to the
sink. Then, flow is pushed to the boundary nodes with dis-
tance labels less than 1, then less than 2, etc., until no more
flow can be pushed. The BK implementation used by Shek-
hovtsov and Hlava¢ has been slightly modified to allow
excess in the boundary nodes and for flow to be pushed
from the boundary nodes out of the block (but not back).

The discharge operation is performed on all blocks in par-
allel. Afterward, flow along boundary arcs is synchronized
between neighboring blocks. This may create additional
excesses in some blocks, since boundary nodes overlap with
another block. The discharge and synchronization process is
repeated until no new excesses are created, at which point
the algorithm terminates. It is proved in [41] that this process
terminates in at most 2n? iterations of discharge and syn-
chronization when using PPR and 2n% + 1 when using AP,
where n; is the total number of boundary nodes.

The guarantee of convergence, without having to merge
blocks, is beneficial, as it means that the algorithm can main-
tain a high degree of parallelism while computing the min-
cut/max-flow solution. However, because flow must be
synchronized between blocks, the practical performance of
the method still depends on well-chosen blocks and may be
limited by synchronization overhead. For details on the
heuristics used in the algorithm, which are also important
for its practical performance, see [41].

5 PERFORMANCE COMPARISON

We now compare the performance of the algorithms dis-
cussed in the previous sections. For all experiments, the
source code was compiled with the GCC C++ compiler ver-
sion 9.2.0 with -03 optimizations on a 64-bit Linux-based
operating system with kernel release 3.10. Experiments
were run on a dual socket NUMA (Non-Uniform Memory
Access) system with two Intel Xeon Gold 6226R processors
with 16 cores each and HTT (Hyper-Threading Technology)
disabled, for a total of 32 parallel CPU threads. The system
has 756 GB of RAM, and for all experiments all data were
kept in memory. All resources were provided by the DTU
Computing Center [66].
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For all parallel benchmarks, we prefer local CPU core
and memory allocation. This means that for all parallel
benchmarks with up to 16 threads, all cores are allocated on
the same CPU/NUMA node. If the data fits in the local
memory of the active node, we use this memory exclusively.
If the data cannot fit in the local memory of one node, mem-
ory of both NUMA nodes is used. For benchmarks with
more than 16 threads, both CPUs and their memory pools
are used.

Run time was measured as the minimum time over three
runs and no other processes (apart from the OS) were running
during the benchmarks. We split our measured run time into
two distinct phases: build time and solve time. Build time
refers to the construction of the graph and any additional data
structures used by an algorithm. If the algorithm performs arc
packing or similar steps, this is included in the build time.
To ensure that the build time is a fair representation of the
time used by a given algorithm, we precompute a list of
nodes and arcs and load these lists fully into memory
before starting the timer. Solve time refers to the time
required to compute the min-cut/max-flow. For the pseu-
doflow, PPR, and region discharge algorithms (c.f. Table 1),
that only compute a minimum cut, we do not include the
time to extract the full feasible maximum flow solution.
The reason for this is that for most computer vision appli-
cations the minimum cut is of principal interest. Further-
more, converting to a maximum flow solution usually
only adds a small overhead [46].

5.1 Datasets
We test the algorithms on the following benchmark datasets:

1) The commonly used University of Waterloo [67]
benchmarks problems. Specifically, we use 6 stereo
[7], [8], 36 3D voxel segmentation [23], [24], [68], 2
multi-view reconstruction [69], [70], and 1 surface fit-
ting [9] problems.

2)  The 4 super resolution [17], [71], 4 texture restoration
[17], 2 deconvolution [17], 78 decision tree field
(DTF) [72], and 3 automatic labelling environment
(ALE) [73], [74], [75], [76] datasets from Verma’s and
Batra’s survey [46].

3) New problems that use anisotropic MRFs [77] to seg-
ment blood vessels in large voxel volumes from [78].
We include 3 problems where the segmentation is
applied directly to the image data and 3 to the output
of a trained V-Net [79].

4) New problems that use MRFs to clean 3D U-Net [80]
segmentations of prostate images from [81]. We con-
tribute 4 benchmark problems.

5) New problems on mesh segmentation based on [82].
We contribute 8 benchmark problems. The original
paper uses a-expansion and ap-swaps [1], [23] to
handle the multi-class segmentation problem. For
our benchmarks, we instead use QPBO to obtain the
segmentation with a single min-cut, which may lead
to different results compared with the referenced
method.

6) New problems using the recent Deep LOGISMOS
[19] to segment prostate images from [81]. We con-
tribute 8 problems.
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7) New problems performing multi-object image seg-
mentation via surface fitting from two recent papers
[5], [83]. We contribute 9 problems using [83] and 8
using [5].

8) New problems performing graph matching from the
recent paper [16]. The original matching problems
can be found at https:/ /vislearn.github.io/libmpopt/
iccv2021. For each matching several QPBO sub-prob-
lems are solved. We contribute the QPBO subpro-
blems (300 per matching problem) for each of the 316
matching problems.

In total, our benchmark includes 495 problems covering a
variety of different computer vision applications. Note that
some datasets consist of many small sub-problems that must
be run in sequence. Here, we report the accumulated times.
All the benchmark problems are available at: DOI:10.11583/
DTU.17091101 [84].

For the parallel algorithm benchmarks, we only include a
subset of all datasets. This is because parallelization is
mainly of interest for large problems with long solve times.
For the block-based algorithms, we split the graph into
blocks in one of the following ways: For graphs based on an
underlying image grid, we define blocks by recursively
splitting the image grid along its longest axis. For the sur-
face-based segmentation methods [5], [83], we define blocks
such that nodes associated with a surface are in their own
block. For mesh segmentation, we compute the geodesic
distance between face centers and then use agglomerative
clustering to divide the nodes associated with each face into
blocks. For bottom-up merging, we use 64 blocks for the fol-
lowing dataset: the grid graphs, the mesh segmentation,
and the cells, foam, and simcells. For the NT32 tomo data
we use two blocks per object. For 4Dpipe we use a block per
2D slice. For P-GridCut we use the same blocks as for bot-
tom-up merging. For dual decomposition and region dis-
charge, we use one and two blocks per thread, respectively.

5.2 Tested Implementations

All tested implementations (except GridCut [34]) are avail-
able at https://github.com/patmjen/maxflow_algorithms
and are archived at DOI:10.5281/zenodo.4903945 [52].
Beware that the implementations are published under differ-
ent licenses — some open and some restrictive. See the links
above for more information.

In the following, typewriter font refers to a specific
implementation of a given algorithm. We use this for BK and
EIBFS, where we test more that one implementation of each
algorithm, e.g., BK refers to the algorithm, BK is the reference
implementation, and MBK is one of our implementations.

BK [1] We test the reference implementation (BK) of the
Boykov-Kolmogorov algorithm from http://pub.ist.ac.at/
~vnk/software.html. Furthermore, we test our own imple-
mentation of BK (MBK), which contains several optimizations.
Most notably, our version uses indices instead of pointers to
reduce the memory footprint of the Node and Arc data struc-
tures. Finally, we test a second version (MBK-R), which reor-
ders arcs so that all outgoing arcs from a node are adjacent in
memory. This increases cache efficiency, but uses more mem-
ory (see Table 1) and requires an extra initialization step. The
memory overhead from reordering could be reduced by
ordering the arcs in-place; however, this may negatively
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impact performance. Therefore, we opt for the same sorting
strategy as EIBF'S, where arcs are copied during reordering.

EIBFS [31] We test a slightly modified version [3]
(EIBFS) of the excesses incremental breadth first search
algorithm originally implemented by [31] available from
https:/ /github.com/sydbarrett/ AlphaPathMoves. This ver-
sion uses slightly larger data structures to support non-inte-
ger arc capacities and larger graphs, compared to the
implementation tested in [31]. Although these changes may
slightly decrease performance, we think it is reasonable to
use the modified version, as several of the other algorithms
have made similar sacrifices in terms of performance. Addi-
tionally, we test our own modified version of EIBFS
(EIBFS-1I), which replaces pointers with indices to reduce
the memory footprint. Finally, since both EIBFS and
EIBFS-I perform arc reordering during initialization, we
also test a version without arc reordering (EIBFS-I-NR) to
better compare with other algorithms.

HPF [32] We test the reference implementation of Hoch-
baum pseudoflow (HPF) from https://riot.ieor.berkeley.
edu/Applications/Pseudoflow /maxflow.html. This imple-
mentation has four different configurations that we test:

1)  Highest label with FIFO buckets (HPF-H-F).

2) Highest label with LIFO buckets (HPF-H-L).

3) Lowest label with FIFO buckets (HPF-L-F).

4)  Lowest label with LIFO buckets (HPF-L-L).

HI-PR [56] We test the implementation of the preflow
push-relabel algorithm from https://cmp.felk.cvut.cz/
~shekhovt/d_maxflow/index.html.”

P-ARD [41] We test the implementation of parallel aug-
menting paths region discharge (P-ARD) from https://cmp.
felk.cvut.cz/~shekhovt/d_maxflow/index.html. P-ARD is
an example of the region discharge approach. It uses BK as
the base solver. Note that, as the implementation is designed
for distributed computing, it makes use of disk storage dur-
ing initialization, which increases the build time.

Liu-Sun [47] Since no public reference implementation is
available, we test our own implementation of the adaptive
bottom-up merging approach based on the paper by Liu
and Sun [47]. Our implementation uses MBK as the base
solver.

P-PPR [48] We test the implementation of a recent parallel
preflow push-relabel algorithm from https://github.com/
niklasb/pbbs-maxflow.

Strandmark-Kahl [42] We test our own implementation of
the Strandmark-Kahl dual decomposition algorithm based
on the implementation at https://cmp.felk.cvut.cz/
~shekhovt/d_maxflow/index.html.> The original imple-
mentation can only handle grid graphs with rectangular
blocks, while our implementation can handle arbitrary
graphs and arbitrary blocks at the cost of some additional
overhead during graph construction. Our implementation
uses MBK as the base solver. Note that our implementation
does not implement the merging strategy proposed by [43]
and, therefore, is not guaranteed to converge. We only
include results for cases where the algorithm does converge.

2. Orignally from http://www.avglab.com/andrew/soft.html, but
the link is no longer available.

3. Originally from https://www1.maths.lth.se/matematiklth/
personal/ petter/cppmaxflow.php but the link is no longer available.
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GridCut [34], [35] We test both the serial and parallel ver-
sions of the highly optimized commercial GridCut imple-
mentation from https:/ /gridcut.com. The primary goal is to
show how much performance can be gained by using an
implementation optimized for grid graphs. GridCut is only
tested on problems with graph structures that are sup-
ported by the reference implementation, i.e., 4- and 8-con-
nected neighbor grids in 2D, and 6- and 26-connected (serial
only) neighbor grids in 3D.

Table 1 lists the tested implementations along with their
type and memory footprint. Their memory footprint can be
calculated based on the number of nodes and arcs in the
graph and will be discussed further in Section 7.

5.3 Serial Algorithms

The primary experimental results for the serial algo-
rithms are listed in Table 2 and Fig. 7. Table 2 shows a
representative subset of the results, grouped by problem
family, while Fig. 7 shows the distribution of the solve
time and the total time for each algorithm on each data-
set relative to the fastest algorithm on the dataset. Thus,
for a given dataset, a relative performance score of 0.5
means that the algorithm used double the amount of
time as the fastest algorithm on that dataset. The distri-
bution of these scores indicates how well the different
algorithms perform relative to each other.

From Fig. 7b, we see that EIBFS and HPF outperform the
other two algorithms on the majority of the datasets in terms
of solve time and total time, as the algorithms have most of
their relative times close to 1. Looking at the median, EIBFS
has a slightly better relative solve time than HPF, while HPF
is faster w.r.t. total time. Furthermore, HPF has the best
worst-case performance for both solve and total time. How-
ever, despite its overall good performance, HPF performs
significantly worse on the oriented MRF and U-Net cleaning
datasets. The performance of BK varies significantly depend-
ing on the benchmark problem. Although it has a median rel-
ative total time of just over 0.5, its relative performance is
considerably more inconsistent than that of the three other
algorithms. It performs particularly poorly on the 4Dpipe
datasets, using over 6 hours on 4Dpipe_small, which both
HPF and EIBFS completed in less than 30 seconds. For 4Dpi-
pe_large, BK was not able to find the solution within 45
hours. HI-PR generally has the worst performance but does
have the fastest solve time for a few datasets. However, mea-
sured on total time, it almost never manages a relative score
of more than 0.5. It is worth noting that the distribution of rel-
ative times for all algorithms exhibits a bimodality. This indi-
cates that all algorithms have datasets where they are poorly
suited compared to the others. We further investigate this in
Section 6.

5.3.1  Algorithm Variants

The different variants of each algorithm are compared in
Fig. 8, which shows the relative performance of each imple-
mentation compared to a chosen “reference” implementa-
tion. For the BK algorithm, the BK implementation is used
for reference, for the EIBFS algorithm, the EIBFS imple-
mentation is used as a reference, and for HPF the HPF-H-F
configuration is used as reference, since it is the one


https://github.com/sydbarrett/AlphaPathMoves
https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
https://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://github.com/niklasb/pbbs-maxflow
https://github.com/niklasb/pbbs-maxflow
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://cmp.felk.cvut.cz/~shekhovt/d_maxflow/index.html
https://gridcut.com
http://www.avglab.com/andrew/soft.html
https://www1.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
https://www1.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
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TABLE 2

Performance Comparison of Serial Algorithms Based on Both Their Solve and Total (build + solve) Times
Dataset Nodes Arcs Solve Total Solve Total Solve Total Solve Total Solve Total
3D segmentation: voxel-based MBK-R [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
adhead.n26¢100 [23], [24], [68] 12M 327 M 65.81s 92.57 s 22.60 s 33.93s 2429 s 29.03 s 225.38 s 424.67 s 2519s 27.79s
adhead.n6¢100 [23], [24], [68] 12M 75M 23.88 s 28.03 s 13.23s 15.85s 1413 s 15.87 s 59.65 s 102.84 s 6.98 s 7.31s
babyface.n26c100 [23], [24], [68] 5M 131M  82.29s 92.87 s 30.13s 34.74 s 54.47 s 56.71s 183.60 s 228.09s  5321s 54.11s
babyface.n6c100 [23], [24], [68] 5M 30M 7.78s 944 s 5.56 s 6.61s 11.56s 12.24 s 57.28 s 69.66 s 2.88s 3.00s
bone.n26¢100 [23], [24], [68] 7M 202M 9.01s 25.62 s 9.18s 16.28 s 424 s 7.16s 68.39 s 173.75s 4525 5.88 s
bone.n6¢100 [23], [24], [68] 7M 46 M 4.09s 6.65s 2.74s 435s 2.30s 3.36s 23.66 s 46.71s 091s 112s
bone_subx.n6c100 [23], [24], [68] 3M 23 M 410s 5.36s 2.38s 311s 1.28s 1.81s 10.34 s 21.49s 1.34s 1.44s
bone_subx.n26c100 [23], [24], [68] 3M 101 M 7.70s 15.78 s 4.74 s 8.23s 2.14s 3.61s 25.51s 75.15s 3.69s 445s
liver.n26¢100 [23], [24], [68] 4M 108 M 11.78 s 2041s 1049 s 1420 s 572s 6.50 s 71.88s 131.00 s 5.62s 6.21s
liver.n6c100 [23], [24], [68] 4M 25M 10.08 s 11.40s 582s 6.57 s 5.70s 6.24s 3049 s 42.71s 3.87s 3.99s
3D segmentation: oriented MRF MBK [1] EIBFS-I-NR [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
vessel.orimrf.256 [1], [77], [78] 16 M 66 M 1.84s 295s 1.13s 2.03s 3.19s 6.80s 411s 30.99 s 0.40s 1.04s
vessel.orimrf.512 [1], [77], [78] 134M 536 M 1244s 21.40s 795s 15.39 s 2529 s 55.32s 32.16s 321.75s 243s 7.73s
vessel.orimrf.900 [1], [77], [78] 688 M 2B 7523 s 121.82s 48.13s 88.09 s 147.22s  300.79 s 177.38 s 1774.65s 1597s 44.70s
3D U-Net segmentation cleaning MBK [1] EIBFS-I-NR [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
clean.orimrf.256 [1], [77], [78] 16 M 66 M 097 s 2.09s 0.69 s 1.61s 3.21s 6.89 s 3.93s 30.83 s 0.13s 0.77 s
clean.orimrf.512 [1], [77], [78] 134M 536 M 7.87s 17.03 s 551s 13.51s 27.10s 58.22 s 3140s 320.87 s 091s 6.27 s
clean.orimrf.900 [1], [77], [78] 688 M 2B 35.83s 81.92s 25.96 s 64.22s  130.22s 280.73s  163.88s  1755.87s 390s 3143s
unet_mrfclean_2 [1] 8M 32M 0.47 s 1.01s 0.29 s 0.74 s 3.55s 5.36 s 9.80s 22.82s 62 ms 0.36 s
unet_mrfclean 3 [1] 15M 63 M 0.82s 1.88s 0.52s 1.37s 5.68s 9.14s 20.59 s 46.69 s 0.11s 0.68 s
unet_mrfclean_8 [1] 4M 19M 048s 0.81s 0.24s 0.50s 2.39s 3.46s 6.55s 13.89 s 0.11s 0.28 s
Surface fitting MBK [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
LB07-bunny-Irg [9] 49M 300 M 1540s 21.17 s 6.38 s 15.25s 21.87 s 32.13s 610.24 s 820.64 s 2.36s 3.75s
3D segmentation: sparse layered graphs (SLG) MBK-R[1] EIBFS-I[31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
4Dpipe_small [5] 14M 124 M 6.03 h 6.03 h 2.06 s 15.55s 1791s 28.85s 202.49 s 266.01 s - -
4Dpipe_big [5] 143 M 1B - - 20.59s  19541s 222.09s 332.06s 2611.65s 3436.43s - -
NT32_tomo3_.raw_3 [5] 7M 49M 1542s 18.69s 24.22s 2719s 15.87 s 18.33 s 176.11 s 200.29 s - -
NT32_tomo3_.raw_10 [5] 22M 154 M 52.86 s 63.15s 50.82's 60.01 s 36.46 s 4414 s 645.33 s 741.98 s - -
NT32_tomo3_.raw_30 [5] 67M  462M  145.23s 176.37s 194.79s 22190s 179.82s 202.73s 2939.04s  3260.63 s - -
NT32_tomo3_.raw_100 [5] 183 M 1B 77839s 860.71s 553.50s 627.08s 520.26s 583.76s 9732.34s 295h - -
3D segmentation: seperating surfaces MBK-R [1] EIBFS-I[31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
cells.sd3 [83] 13 M 126 M 4823s 59.03s 35.24s 40.66 s 15.52s 21.84s 98.25s 167.56 s - -
foam.subset.r160.h210 [83] 15M 205 M 6.05s 22.02s 321s 12.52s 17.14s 26.18 s 15.16 s 145.58 s - -
foam.subset.r60.h210 [83] ™M 24 M 0.62s 258s 0.39s 149s 1.98s 3.01s 1.85s 12.82s - -
simcells.sd3 [83] 3M 27M 9.93s 12.10s 294s 412s 3.23s 4.60s 21.57 s 33.89s - -
Deep LOGISMOS MBK [1] EIBFS-I[31] HPF-H-F [32] HI-PR [56] GridCut [34], [35]
deeplogismos.2 [19] 511 K 4M 0.15s 0.25s 28 ms 0.21s 0.12s 0.31s 0.16s 1.29s - -
deeplogismos.3 [19] 707 K 5M 0.18s 0.31s 41 ms 0.30s 0.18s 0.45s 0.24s 1.90s - -
deeplogismos.7 [19] 989 K 7M 0.34s 0.54s 0.26s 0.66 s 0.29s 0.69 s 0.36s 2.86s - -
Super resolution BK [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
super_res-E1 [17], [71] 10K 62K 2 ms 2ms 1ms 2ms 2 ms 3 ms 1ms 7 ms - -
super_res-E2 [17], [71] 10K 103 K 4 ms 5ms 2ms 3 ms 2 ms 3ms 2ms 12 ms - -
super_res-Paper1 [17], [71] 10K 62 K 2ms 3 ms 1ms 2 ms 2 ms 3 ms 1ms 7 ms - -
superres_graph [17], [71] 43K 742K 62 ms 78 ms 10 ms 26 ms 7 ms 12 ms 19 ms 0.16s - -
Texture MBK-R [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
texture-Cremer [17] 44K 783K 1.54s 1.58s 0.35s 0.37 s 0.17 s 0.19s 42 ms 0.19s - -
texture-OLD-D103 [17] 43K 742 K 0.60 s 0.65s 0.19s 0.21s 73 ms 92 ms 41 ms 0.19s - -
texture-Paper1 [17] 43K 742K 0.65s 0.69s 0.19s 0.21s 76 ms 95 ms 36 ms 0.17s - -
texture-Temp [17] 14K 239K 0.22s 0.23s 30 ms 34 ms 9ms 15 ms 6 ms 32 ms - -
Automatic labelling envrionment (ALE) MBK-R [1] EIBFS-I-NR[31] HPF-L-L [32] HI-PR [56] GridCut [34], [35]
graph_1 (s) [74], [75], [76], [85] 185K 5M 16.80 s 18.52s 0.35s 0.79 s 1.00 s 1.60 s 1.58s 10.60 s - -
graph_2 (s) [74], [75], [76], [85] 175K 3M 7.38s 1047 s 0.83 s 1.64s 225s 3.55s 291s 20.87 s - -
graph_3 (s) [74], [75], [76], [85] 179K 7M 27.68s 35.55s 2.69s 4.51s 4.63s 6.96 s 6.49 s 43.73 s - -
Multi-view MBK-R[1] EIBFS-I[31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
BLO06-camel-lrg [70] 18M 9BM 10753s 11142s  28.55s 31.54s 2444 s 28.82s 291.71s 33791s - -
BLO6-gargoyle-lrg [70] 17M 86 M 238.08s  241.65s 33.76 s 36.57 s 26.51s 30.61s 208.27 s 251.10 s - -
Deconvolution MBK-R [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
graph3x3 [17] 2K 47K 9ms 11 ms 3 ms 3ms 1ms 1ms 1ms 5ms - -
graph5x5 [17] 2K 139K 62 ms 67 ms 6 ms 9 ms 3ms 4ms 2ms 15 ms - -
Stereo 1 BK [1] EIBFS-I-NR [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
BVZ-sawtooth (s) [7] 164K 796K 091s 1.16s 0.58 s 0.69 s 1.39s 1.85s 7.89s 12.27 s - -
BVZ-tsukuba (s) [7] 110K 513K 049s 0.58's 0.35s 0.41s 0.66 s 0.84s 4.69s 6.64's - -
BVZ-venus (s) [7] 166 K 795 K 1.72s 2.03s 1.30s 1.44s 1.94s 2.46's 15.00 s 20.11s - -
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TABLE 2
(Continued)

Dataset Nodes  Arcs Solve Total Solve Total Solve Total Solve Total Solve Total
Stereo 2 BK [1] EIBFS-I[31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
KZ2-sawtooth (s) [8] 294 K 1M 2.59s 340s 1.14s 2.02s 3.30s 4.66 s 23.79 s 36.55 s - -
KZ2-tsukuba (s) [8] 19 K ™ 141s 1.84s 0.71s 1.12s 1925 2.55s 20.95 s 27.14s - -
KZ2-venus (s) [8] 301 K 2M 398s 4.89s 2.18s 3.16 s 4.70s 6.21s 41.63s 55.60 s - -
Decision tree field (DTF) MBK-R [1] EIBFS-I [31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
printed_graph1 [72] 20K ™M 0.63s 0.73s 0.13s 0.17s 40 ms 51 ms 51 ms 0.25s - -
printed_graph16 [72] 11K 683 K 0.24s 0.29s 44 ms 62 ms 16 ms 22 ms 25 ms 0.12s - -
Graph matching: small BK [1] EIBFS-I-NR[31] HPF-L-L[32] HI-PR [56] GridCut [34], [35]
atlas1.dd (s) [16], [86] 1K 5K 37 ms 59 ms 34 ms 52 ms 21 ms 39 ms 23 ms 0.18 s - -
carl.dd (s) [16], [73], [87] 38 131 1ms 1ms 0 ms 1ms 1ms 1ms 0 ms 3 ms - -
hassan1.dd (s) [16], [88], [89] 120 2K 17 ms 30 ms 5ms 25 ms 2ms 6 ms 4ms 65 ms - -
matching1.dd (s) [16], [90], [91] 38 380 10 ms 12 ms 5ms 8 ms 2 ms 4 ms 6 ms 14 ms - -
Graph matching: big MBK-R[1] EIBFS-I[31] HPF-H-L [32] HI-PR [56] GridCut [34], [35]
pairl.dd (s) [16] 1K 58K 1.42s 1.97s 0.70's 0.96 s 92 ms 0.13s 0.82s 1.68s - -
Mesh segmentation MBK-R [1] EIBFS-I [31] HPF-H-F [32] HI-PR [56] GridCut [34], [35]
bunny.segment [82] 97K 536 K 0.12s 0.14s 63 ms 75 ms 68 ms 91 ms 0.20s 0.30s - -
bunnybig.segment [82] 2M 13M 1.01s 1.59s 0.62s 1.23s 143s 212s 499s 991s - -
candle.segment [82] 159K 959K 87 ms 0.13s 49 ms 83 ms 0.11s 0.15s 0.29s 0.53s - -
candlebig.segment [82] 1M 5M 0.51s 0.72s 0.26 s 0.44s 0.60 s 091s 2.03s 3.70s - -
chair.segment [82] 305 K 1M 076 s 0.88s 031s 0.39s 0.27s 0.37s 0.86s 137s - -
chairbig.segment [82] 3M 26 M 1.62s 2.89s 1.02s 245s 3.23s 459s 9.98 s 2092 - -
handbig.segment [82] 248 K M 0.15s 0.19s 71 ms 0.11s 0.13s 0.18s 0.35s 0.63 s - -
handsmall.segment [82] 15K 69 K 4ms 5ms 2 ms 3 ms 4ms 6 ms 10 ms 16 ms - -

We show a representative subset of the datasets, which have been grouped according to their problem family. For each problem family we only show the fastest var-
iant of each algorithm measured in total time. The fastest solve time for each dataset has been underlined and the fastest total time has been marked with bold

face. Datasets which contain many sub-problems are marked with (s).

recommended by the authors. As we are now measuring
relative to a specific implementation, rather than the fastest
implementation as in Fig. 7, it is possible to obtain a relative
performance score of more than one.

For the BK algorithm, both MBK and MBK-R overall
perform similarly or slightly better than BK, when mea-
sured on total time. Looking at solve time, MBK-R shows
a large speed-up over the other variants. This clearly
reflects the effect of arc packing (reordering the arcs), in
that it typically decreases solve at the cost of increased
build time. From Table 2, we see that BK is generally
best for smaller problems where the smaller memory
footprint of the index-based variants is less of an advan-
tage. However, the very small difference in absolute
time for these small problems will in many cases render
the choice of algorithm irrelevant.

For the EIBFS variants, the index-based version (EIBFS-
I) consistently outperforms the reference implementation
with a median improvement of more than 20%. Meanwhile,
EIBFS-I-NR performs worse than EIBFS on almost all
datasets w.r.t. to solve time, but better w.r.t. total time for
the majority of the problems. In some cases, it also outper-
forms EIBFS-TI, again showing that while arc packing gen-
erally significantly reduces the solve time, the additional
overhead is not always worth it.

For the HPF algorithm, HPF-H-L consistently performs
the best, while HPF-L-F andHPF-L-L perform worse than
the reference HPF-H-F for the majority of datasets. How-
ever, for some datasets HPF-L-F and HPF-L-L show large
speed-ups over the other variants. Table 2 reveals that the
HPF-L variants seem to be better for graph matching and
ALE datasets.

5.4 Parallel Algorithms

Our benchmark results for the parallel algorithms are shown
in Table 3, where we compare the build and solve time for
each algorithm on each dataset. The table includes the num-
ber of CPU threads used by each algorithm for the listed solve
times. Furthermore, it includes the solve time of the best serial
algorithm for each dataset for comparison. We focus on the
solve time, as that is what reveals how successfully the
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Fig. 7. Relative performance for the serial algorithms. For each dataset,
the solve and total times for each algorithm were compared to those of
the fastest algorithm for that dataset and a relative time was computed.
This shows how often an algorithm was fastest and, if it was not fastest,
how much slower than the fastest it was. We oversample speed-ups
from each problem family (c.f. Table 2) so all groups have the same num-
ber of entries. This is to avoid bias due to some problem groups having
more entries than others. Finally, we overlay a random sample of the
(oversampled) speed-ups as jittered points.
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Fig. 8. Performance comparison of serial algorithm variants. The solve time and total time is compared against the times for the chosen reference
algorithm for each dataset. The violin plots show a Gaussian kernel density estimate of the data and the horizontal bars indicate — from top to bottom
— the maximum, median, and minimum. The values were re-sampled as described in Fig. 7.

algorithms distribute the work as more threads are added.
Additionally, a lack of optimization leads to very long build
times for some of the parallel implementations, especially -
PPR and P-ARD. Finally, some datasets are omitted for P-PPR
due to run-time errors and for Strandmark-Kahl due to exces-
sive run time.

From Table 3, it is clear that no algorithm is domi-
nant, except P-GridCut for 6-connected grid graphs. Every
algorithm has datasets where it is the fastest and a serial
algorithm often gives the best or close to the best perfor-
mance. The parallel algorithms show their strength for the
large datasets with more than 1 M nodes where significant
performance improvements are found. Curiously, only P-
ARD shows a significant speed-up for smaller problems.

The parallel benchmarks are also summarized in Fig. 9.
All algorithms have median speed-ups less than one. Liu-
Sun generally performs best, giving a speed-up for almost
half of the dataset and having the largest maximum speed-
up. P-PPR and P-ARD still provide good speed-ups for
some datasets. Strandmark-Kahl comes off the worst, as it
rarely beats the best serial algorithm.

Finally, Fig. 10 shows the speed-up distribution of the
parallel algorithms compared to their single-threaded per-
formance. Only P-PPR improves consistently as more
threads are added. Liu-Sun and P-ARD only show consis-
tent improvements when looking at the maximum speed-
up, and for over half of the datasets they have issues scaling
beyond 12 threads.

6 ALGORITHM SELECTION

As the previous section shows, the performance of the indi-
vidual min-cut/max-flow algorithms depends on the prob-
lem to be solved, i.e., the structure of the graph. Choosing the
wrong algorithm may significantly increase the run time. In
this section, we investigate strategies for selecting a min-
cut/max-flow algorithm that maximize the expected perfor-
mance given different levels of knowledge about the graph.
To quantify the expected performance of a strategy, we will
use the relative performance (RP), which we compute as fol-
lows: 1. Use the strategy to select an algorithm for each data-
set. 2. For each dataset, compute the relative performance of
the selected algorithm. For serial algorithms, this is the total
time of the selected algorithm divided by the total time of the
fastest algorithm for that dataset. For parallel algorithms, we
use the solve time. This score shows the expected perfor-
mance of a given strategy compared to choosing the fastest
algorithm.

Scenario 1: No Graph Knowledge. If one has no knowledge
of the graph to be solved, the best strategy is to choose the
overall best algorithm. Table 4 shows summary statistics for
the performance scores of each algorithm. To avoid bias in
Fig. 8, we oversample scores from each problem family so
that they all have the same number of samples.

For the serial algorithms, the best choice is by far GridCut
if it is applicable. It is almost always the fastest option and
never more than 36% slower than the best option. Other-
wise, the best option is HPF-H-L in which case the expected
performance 64% of the optimal. Another good option is
EIBFS-I due to its high mean and high minimum RP
scores. All implementations, except EIBFS, have a maxi-
mum RP of 1, meaning that they outperformed all other
implementations on at least one problem instance.

For the parallel algorithms, GridCut again dominates
when applicable. Otherwise, the best parallel option is Liu-
Sun which is slightly better than P-PPR. Surprisingly, using
the best serial algorithm for a dataset is the overall best
option, although we should note that comparing to the best
serial algorithm gives some advantage to the serial algo-
rithms. If one compares to a single serial algorithm, the par-
allel algorithms do give an improvement — although the
mean RP is only 1.8x higher in the best case.

Scenario 2: Known Problem Family. If one knows from which
problem family the graph to be solved comes, a good strategy
is to select the algorithm that performs well on that problem
family. This could, for example, be established beforehand by
running a set of benchmarks on example graphs.

Table 5 shows the best performing serial algorithm for
each problem family. Note that, as opposed to Table 2, we
split graph matching into sub-groups as papers use differ-
ent energy functions for the matching. For all but four prob-
lem families, the best algorithm achieves a mean relative
performance of 95% or higher. Furthermore, for most prob-
lem families, one algorithm is always the best. This indicates
that the problem family is a strong predictor of algorithm
performance. The problem family where this strategy per-
forms the worst is 3D segmentation with sparse layered
graphs (SLG). Here, the mean RP is only 81%, which is
likely due to the large variation in graph size in this prob-
lem family.

Table 6 shows the best performing parallel algorithm for
each problem family. For the 6-connected graphs, the paral-
lel GridCut algorithm is clearly superior, but otherwise, the
different families appear to favor different algorithms.

Scenario 3: Known Graph. Finally, we consider a strategy
where the graph is known, but the problem family is not.
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TABLE 3

Performance of Parallel Algorithms based on Build and Solve Times
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Liu-Sun [47] P-PPR [48] Strandmark-Kahl [42] P-ARD [41] P-GridCut [34], [35] Best serial
Dataset Build Bestsolve Build Bestsolve Build Best solve Build Best solve Build Bestsolve  Algo. Solve
3D segmentation: voxel-based
adhead.n26c10 [23], [24], [68] 690 1741 8T 4271 1437 12T 2614 2540 2T 7820 35.17 AT - - - GridCut 13.21
adhead.n26¢100 [23], [24], [68] 6.86 20.87 8T 4179 841 32T 2765 1930 6T 7537 4291 AT - - - EIBFS  22.60
babyface.n26c100 [23], [24], [68] 289 7226 32T 1599 793 32T 9.15 40.86 4T 32.01 6120 32T - - - EIBFS  30.13
bone.n26¢100 [23], [24], [68] 436 368 32T 2563 401 32T 1638 5.04 8T 4890 1121 4T - - - HPF 3.48
bone_subx.n26c100 [23], [24], [68] 230  4.04 16T 1248 234 32T 8.03 4.43 8T 2407 1171 16T - - - HPF 2.14
liver.n26¢10 [23], [24], [68] 237 1079 6T 1442 791 32T 0.89 3.49 1T 2193 1495 1T - - - GridCut 295
liver.n26¢100 [23], [24], [68] 236 1824 6T 1394 545 32T 0.86 6.69 1T 27.07 2574 24T - - - GridCut 5.62
liver.n6c100 [23], [24], [68] 053 762 6T 478 368 16T 0.51 7.24 1T 618 774 32T 011 270 6T GridCut 3.87
adhead.n6¢100 [23], [24], [68] 1.59 1117 8T 1449 472 32T 252 7.17 AT 1546 1441 2T 031 3.83 4T GridCut 698
babyface.n6c10 [23], [24], [68] 066 270 32T 530 3.09 24T 0.73 3.55 1T 8.87 5.35 1T 012 088 32T GridCut 152
babyface.n6c100 [23], [24], [68] 0.66 534 32T 653 3.63 24T 098 5.24 AT 729 728 32T 012 1.66 16T GridCut 2.88
bone.n6c100 [23], [24], [68] 099 079 24T 830 266 32T 1.23 2.01 2T 1118 2.08 4T 020 0.7 12T GridCut 091
3D segmentation: oriented MRF
vessel.orimrf.256 [1] 122 069 6T 1467 1.69 32T 1.89 1.04 2T 1624 0.82 32T 052 014 12T GridCut 040
vessel.orimrf.512 [1] 972 492 8T - - - 15.08 6.49 2T 10095 554 16T 426 043 32T GridCut 243
vessel.orimrf.900 [1] 49.62 28.66 8T - - - 79.82 3845 2T 599.09 24.02 32T 2198 249 32T GridCut 1597
3D U-Net segmentation cleaning
clean.orimrf.256 [1] 123 039 12T 1650 248 24T 239 0.48 4T  15.96 0.84 8T 052 0.06 32T GridCut 0.13
clean.orimrf.512 [1] 9.73 245 16T - - - 18.26 3.81 4T 131.62 481 8T 437 0.27 32T GridCut 091
clean.orimrf.900 [1] 50.52 1236 16T - - - 85.77 18.66 4T 578.09 20.17 16T 2364 0.82 32T GridCut 3.90
unet_mrfclean_3 [1] 115 027 32T - - - 2.15 0.45 4T  12.66 0.53 4T 046 0.04 32T GridCut 0.11
unet_mrfclean_8 [1] 037 021 8T - - - 0.64 0.23 4T 401 0.28 2T 0.14 0.04 16T GridCut 0.11
Surface fitting
LB07-bunny-Irg [9] 6.14 186 16T 5588 2427 32T 7.73 4.14 4T  72.02 431 16T 124 032 24T GridCut 2.36
3D segmentation: sparse layered graphs (SLG)
4Dpipe_small [5] 993 939 12T - - - - - - 4753  421.60 24T - - - EIBFS 2.06
4Dpipe_big [5] 12243 86.18 16T - - - - - - 57044 7485.11 4T - - - EIBFS  20.59
NT32_tomo3_.raw_10 [5] 499 1858 12T 3490 14.39 32T 2202 8549 1T 4395 1540 12T - - - HPF 36.46
NT32_tomo3_.raw_30 [5] 1493 4570 16T 111.70 59.81 32T 66.56 363.06 1T 13241 36.13 32T - - - BK 145.23
NT32_tomo3_.raw_100 [5] 3893 9524 32T - - 1T 17038 1189.78 1T 365.60 158.92 24T - - - HPF 49894
3D segmentation: seperating surfaces
cells.sd3 [83] 418 1033 16T 2593 947 32T 2390 7640 1T 21.84 4498 1T - - - HPF 15.52
foam.subset.r160.h210 [83] 591 859 32T 37.08 3.61 32T 5211 1724 1T 33.72 7.32 1T - - - EIBFS 3.21
simcells.sd3 [83] 069 228 16T 560 199 32T 149 282 32T 496 0.89 32T - - - EIBFS 2.94
Multi-view
BLO06-camel-Irg [70] 3.99 5741 8T - - - 1.87 7556 1T 1376 9540 1T - - - HPF 24.44
BL06-gargoyle-Irg [70] 370 2928 16T - - - 1.70 190.07 1T 1220 10231 2T - - - HPF 26.51
Mesh segmentation
bunnybig.segment [82] 030 037 12T 281 1.15 32T 1.12 1.89 1T  3.66 041 32T - - - EIBFS 0.62
chairbig.segment [82] 060 064 24T 610 176 32T 262 3.29 1T  6.89 0.57 32T - - - EIBFS 1.02
handbig.segment [82] 002 011 8T 025 025 16T 0.04 0.16 1T 040 0.11 32T - - - EIBFS 0.07

We show a representative subset of the datasets grouped according to their problem family. See Table 2 for the number of nodes and arcs. The algorithms were run
with1,2,4,6,8,12, 16,24, and 32 threads. Only the best time is shown along with the thread count for that run. For comparison, the solve time for the fastest
serial algorithm is also included. All times are in seconds. The fastest solve time for each dataset has been marked with bold face.

Here, our strategy is to train a simple decision tree to predict
the best algorithm given a feature vector that describes the
graph to be solved. Although a single decision tree is not
the strongest classifier, it has the benefit of being easily
interpretable.

The first components of our feature vector consist of the
number of nodes, the number of terminal arcs, the number of
neighbor arcs, and whether the graph is a grid graph. Then
we include mean, standard deviation, and standard devia-
tion of non-zero values for a number of arc and node proper-
ties. For arc properties, we use: source, sink, terminal (source
and sink combined), and neighbor capacities. Finally, for
node properties we use: sum of in-going neighbor capacities,
sum of out-going neighbor capacities, sum of neighbor
capacities, degrees, out degrees, and in degrees counts only

non-zero arcs. Note that these statistics can be computed effi-
ciently during graph construction. We normalize all capacity
statistics by the mean over all arc capacities. In total, our fea-
ture vector has 31 entries per graph. Fig. 11 shows a UMAP
embedding [94] of the feature vectors for all benchmark data-
sets. Similar problem families cluster together, despite
UMAP receiving no information on this. This suggests the
feature vectors provide a good description of the graphs.

We train the decision tree using Scikit-learn [95] version
0.23.1. We use Gini impurity as the split criterion and
reduce the tree using minimal cost-complexity pruning [96].
The optimal amount of pruning is determined with 5-fold
cross validation. We split each problem family evenly into
the folds (if it contains at least 5 datasets). When fitting,
each dataset is weighed by one over the number of datasets
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Fig. 10. Speed-up of the the parallel algorithms compared to their single-
threaded performance. For each number of threads, the distribution of
the speed-ups over all datasets is shown. The values were re-sampled
as described in Fig. 7.

in its problem family. When evaluating, we oversample
the validation data, so that each problem family has the
same number of entries. This indicates how well the deci-
sion tree will perform with representative training data.
We also perform an additional evaluation where we hold
out one problem family, fit on the rest, and then evaluate
on the held out family. This indicates how well the deci-
sion tree will perform for a problem family that it has
not yet encountered. We use the mean RP as validation
metric.

We first train a decision tree for the serial algorithms; the
result is shown in Fig. 12. It achieves a mean RP of 0.82 and
0.82 in the two evaluations, respectively. This means that
the tree is significantly better than naively choosing the
overall best algorithm but not as good as knowing the best
algorithm for a problem family.

Next, we train a decision tree for the parallel algorithms.
We include a category ‘Serial’, which means that choosing a
serial algorithm would be faster. For simplicity, we do not
specify which serial algorithm to choose in this scenario.
The result is shown in Fig. 13. The decision tree achieves a
mean RP of 0.56 and 0.57 in the two evaluations, respec-
tively. Thus, the tree is slightly better than simply choosing
the overall best algorithm. However, the best option is to
choose the best algorithm for a given category.
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TABLE 4
Summary of Relative Performance (RP) Scores for Each
of the min-cut/max-flow Algorithm Variants

Serial algorithms Mean RP £ Std. RP  MinRP  Max RP

EIBFS-I 0.59 +£0.28 0.1309 1.00
EIBFS-I-NR 0.56 +0.32 0.0535 1.00
EIBFS 047 £0.23 0.1288 0.94
HI-PR 0.16 = 0.17 0.0046 1.00
HPF-H-F 0.59 +0.33 0.0279 1.00
HPF-H-L 0.64 + 0.36 0.0393 1.00
HPF-L-F 0.49 +£0.29 0.0313 1.00
HPF-L-L 0.53 +0.31 0.0312 1.00
MBK-R 0.27 £0.20 0.0006 1.00
BK 0.27 +0.24 0.0005 1.00
MBK 0.28 +£0.22 0.0005 1.00
GridCut* 0.99 + 0.03 0.6419 1.00
Parallel algorithms

Liu-Sun 0.48 + 0.30 0.0667 1.00
P-PPR 0.46 +0.38 0.0133 1.00
Strandmark-Kahl 0.23 +0.16 0.0667 0.85
P-ARD 0.35 +0.32 0.0028 1.00
P-GridCut* 1.00 + 0.00 1.0000 1.00
Best serial 0.59 + 0.33 0.1365 1.00

* Only grid graphs included (6- and 26-conn. for serial, 6-conn for parallel).
The best score (higher is better) in each column has been marked with bold
face. Results were oversampled as described in Fig. 7. We only include results
where the algorithm ran to completion.

TABLE 5
Relative Performance (RP) Scores for the Best Serial
Algorithm Variant for Each Problem Family

Problem family Algorithm  Mean RP
3D segmentation: SLG [5] HPF-H-L 0.81
Multi-view [70] HPF-H-L 1.00
Surface fitting [9] GridCut 1.00
3D segmentation: voxel-based [23], [24], [68] = GridCut 0.98
Mesh segmentation [82] EIBFS-I 0.95
3D segmentation: sep. surfaces [83] EIBFS-I 0.92
3D MRF [1] GridCut 1.00
Deep LOGISMOS [19] EIBFS-I-NR  0.96
Deconvolution [17] HPF-H-L 0.96
DTF [72] HPF-H-L 1.00
Super resolution [17], [71] EIBFS-I 0.87
Stereo 1 [7] EIBFS-I 0.99
Stereo 2 [8] EIBFS-I 1.00
ALE [75], [76], [85] EIBFS-I-NR  1.00
Graph matching: small [16], [86] HPF-L-L 1.00
Graph matching: small [16], [73], [87] EIBFS-I-NR 0.91
Graph matching: small [16], [88], [89] HPF-L-F 1.00
Graph matching: small [16], [92], [93] HPF-L-L 1.00
Graph matching: small [16], [90], [91] HPF-L-F 1.00
Graph matching: big [16] HPF-H-L 1.00
Mean + std. 0.97 + 0.05

Almost all problem families have one dominant algorithm.

7 DISCUSSION

In this section, we discuss the most interesting findings
from our experiments.

7.1 Serial Algorithms

Our results clearly show that GridCut is superior to the other
tested algorithms for min-cut/max-flow problems with fixed
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TABLE 6
Relative Performance (RP) Scores for the Best Parallel
Algorithm for Each Problem Family

Problem family Algorithm  Mean RP
3D segmentation: SLG [5] Liu-Sun 0.63
Multi-view [70] Serial 1.00
Surface fitting [9] P-GridCut 1.00
3D seg.: voxel-based [23], [24], [68] (26-conn.) Serial 0.86
3D seg.: voxel-based [23], [24], [68] (6-conn.) ~P-GridCut 1.00
Mesh segmentation [82] P-ARD 0.88
3D segmentation: sep. surfaces [83] P-PPR 0.74
3D MRF [1] P-GridCut 1.00
Mean =+ std. 0.89 +0.14

Since the parallel GridCut implementation can only handle 6-connected
graphs ‘3D segmentation: voxel based’ has been split into two subgroups: 6-
connected graphs and 26-connected graphs. If an algorithm did not run to
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problem family. When a benchmark consists of multiple sub-problem we
use the mean feature vector. Notice that points from the same problem
family tend to cluster together.

neighborhood grids. This is not surprising since GridCut has
been designed and optimized specifically for this type of
graph. However, as shown in Table 2, the performance bene-
fit of GridCut decreases significantly when moving from 6-
connected to 26-connected graphs. Actually, both EIBFS and
HPF manage to beat GridCut on a couple of the 26-connected
problems. This indicates that the benefit of using GridCut
significantly decreases for graphs with high connectivity,
perhaps because it is an AP algorithm.

In general, the pseudoflow algorithms have the best over-
all performance. Measured on solve time, EIBFS performs
the best, which aligns with existing literature [31]. However,
looking at the total time, HPF performs better overall,
slightly contradicting previous benchmarks [31]. The reason
for the difference between the results may be that [31] com-
pared EIBFS with HPF-H-F, which we show to be inferior to
HPF-H-L. Also, in [31] they use 32-bit pointer for most data-
sets, which may also provide slightly improved perfor-
mance. Finally, the hardware used in [31] may have different
performance characteristics than ours. We observed that
EIBFS actually performed better on an older system than on
the one we used for our experiments. We speculate if this
could be due to the lower cache and memory latency (esti-
mated using Intel ® Memory Latency Checker v3.9a) on the

means a serial algorithm would be the best option. Note that capacity
statistics are normalized, c.f. Section 6.

older system compared to the one used for our benchmarks.
In any case, this raises the question whether HPF imple-
mented with arc packing could outperform EIBFS on even
more problems.

Our results also show that the performance of the differ-
ent algorithm variants varies, and the choice of variant can
significantly affect the run time. Optimizing for cache effi-
ciency seems to be of particular importance, since optimiza-
tions such as arc packing and smaller data structures have
large effects on the solve times for both BK and EIBFS.

As shown in Section 6, for non-grid problems, the best
algorithm most often comes down to a choice between
EIBFS or HPF. From Fig. 12 it seems that HPF is faster when
the sink (or, more likely, terminal) arc capacities vary a lot.
As expected, EIBFS-I-NR is preferred for small graphs,
while the preferred HPF variant for small graphs appears to
be HPF-L-L, which aligns with the results in Table 5. How-
ever, the best strategy is to test several algorithms on a set
of problems from the family at hand.

7.2 Parallel Algorithms

P-GridCut provides the best performance of the parallel
algorithms for 6-connected grid graph problems and scales
well with many threads. Of the other parallel algorithms,
Liu-Sun is overall the best, closely followed by P-PPR, which
aligns with previous results [47] and expectations [41], [42].
However, all the block-based algorithms only scale well for
large graphs. For small to medium problems, they do not
scale to many threads, but seem to peak at 8-12 threads, c.f.
Fig. 10. This also means that choosing an optimal thread
count may be difficult. Only P-PPR scaled consistently with
up to 32 threads. In addition, all parallel algorithms were
often outperformed by a serial algorithm except on large
graphs. In fact, as Table 4 shows, selecting a good serial algo-
rithm has better expected performance than selecting any of
the parallel algorithms.
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For practical use, only the Liu-Sun, P-PPR, and P-ARD
algorithms seem to be relevant as is. However, the block-
based algorithms have the additional challenge of dividing
the graph into blocks — the result of which significantly
affects the run time of the algorithms. This was also shown
in [41], where it was noticed that the multiview problems
would scale better with more processors when partitioned
on vertex numbers versus the grid. While the graphs tested
in this work have a natural way to be split, this may not
always be the case. Meanwhile, even though this problem is
avoided with P-PPR, it does not perform as well as the
block-based algorithms overall, as shown in Fig. 9.

Finally, while all parallel algorithms had datasets where
they were best, selecting the best parallel algorithm is diffi-
cult (except for 6-connected grid graphs). No algorithm
showed dominant performance — neither globally nor per
problem family. Furthermore, using the decision tree only
gives a small improvement over selecting the best overall
algorithm. Fig. 13 indicates that for grid and low-degree
graphs, a serial algorithm or GridCut performs best. Other-
wise, the choice comes down to graph size, with P-ARD
doing better for the smaller graphs, P-PPR being faster for
the medium-sized ones, and Liu-Sun performing the best
for the largest graphs. However, as Table 6 shows, the best
strategy is again to test on a number of graphs from the
problem family at hand.

8 CONCLUSIONS AND PERSPECTIVES

We now summarize our findings for the serial and parallel
algorithms tested in this work. We also provide perspec-
tives on possible future developments of min-cut/max-flow
methods, as well as how these may fit into the future of
computer vision.

8.1 Serial Algorithms

For the serial min-cut/max-flow algorithms, we have tested
a total of 12 different variants across five of the fastest and
most popular algorithms: PPR, BK, EIBFS, HPF, and Grid-
Cut. These include representatives for the three families of
min-cut/max-flow algorithms: augmenting paths, push-
relabel, and pseudoflow.

Our results clearly show that, for simple grid graphs,
GridCut has the best performance. In most other cases, the
two pseudoflow algorithms, EIBFS and HPF, are signifi-
cantly faster than the other algorithms and thus should be
the first choice for anyone looking for a fast serial min-cut/
max-flow algorithm for static computer vision problems.
For dynamic problems, we refer to [31].

Contrary to existing literature, we recommend the HPF
algorithm in the H-LIFO configuration as the default, since
it has the best overall performance. However, the EIBFS
algorithm (EIBFS-I implementation) is a very close con-
tender and can easily replace HPF with little impact on per-
formance — and indeed may perform better on some
problem families. If memory usage is of chief concern, the
MBK and EIBFS-I-NR implementations are both good
options, as they use significantly less memory than the ref-
erence EIBFS and HPF implementations.

Furthermore, we think significant performance improve-
ments may be gained from further improving the algorithm
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implementations — especially with a focus on memory use
and cache efficiency. In particular, faster and more memory
efficient methods for arc (and node) packing could result in
significant benefits, since the extra initialization step incurs
a large memory and run time overhead. We would like to
see a reimplementation of HPF with a half-arc data struc-
ture and arc packing.

Finally, we found significant gains through automatic
algorithm selection. Based on our results, it seems likely
that one could train a robust classifier for selecting the
appropriate algorithm based on the min-cut/max-flow
problem to be solved. By selecting the right algorithm for
the job, run time could in many cases be significantly
reduced without the need for new algorithms or implemen-
tations. In general, we find it unlikely that a single algorithm
will ever be dominant for all types of graphs.

8.2 Parallel Algorithms

We tested five different parallel algorithms for min-cut/
max-flow problems: parallel PPR (P-PPR), adaptive bottom-
up merging (Liu-Sun), dual decomposition (Strandmark-
Kahl), region discharge (P-ARD), and parallel GridCut
(P-GridCut).

If the graph is a simple grid, P-GridCut significantly out-
performs all other algorithms. For other graphs, we found
adaptive bottom-up merging, as proposed by Liu and Sun
[47], to be the best overall parallel approach. However, each
parallel algorithm had an area in which it was the best, and
it is difficult to predict the best parallel algorithm for a
graph (except for 6-connected grid graphs).

Of the parallel algorithms, only P-GridCut and P-PPR
improved consistently with more threads. All block-based
algorithms failed to scale beyond 12 threads, except on large
graphs. Furthermore, except for P-GridCut, all parallel algo-
rithms were often outperformed by a serial algorithm, and
consistent improvements over serial algorithms were
obtained only for large graphs. These issues reveal a major
deficiency in the state of current parallel min-cut/max-flow
algorithms and deserve further study. While providing good
scaling on any type of graph may be unreachable as min-
cut/max-flow is P-complete and therefore hard to parallelize
[97], computer vision graphs often come with additional
structure. Therefore, it seems highly likely that further
improvements in practical performance can be achieved.
However, at this time, we only recommend using a parallel
algorithm for graphs with more than 5 M nodes or where a
serial algorithm uses at least 5 seconds.

To improve the parallel min-cut/max-flow algorithms,
one could try to replace BK, which is currently used in all
the tested block-based parallel algorithms, with a pseudo-
flow algorithm. However, this may not be trivial. In [49],
results for a Liu-Sun implementation using EIBFS instead of
BK showed a significant performance decrease compared to
serial EIBFS. Still, given the superior performance of pseu-
doflow algorithms, this is an important area to investigate.
Furthermore, parallelized graph construction is currently
only available for P-GridCut. As the build time is a signifi-
cant part of the total time, reducing build time will be
important — especially as solve time decreases.

Finally, choosing an optimal blocking strategy remains an
open problem. Generally, when nodes correspond to spatial
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positions (e.g., pixels or mesh vertices), we find that group-
ing based on spatial distance works well. However, we rec-
ommend that practitioners experiment with different
blocking strategies since it can significantly affect the perfor-
mance. Furthermore, a general method that only considers
the graph structure would be of high interest, as this would
also make the algorithms more accessible to the average
user. An alternative would be to focus on P-PPR algorithms
that do not rely on blocking. Further improvements in these
areas could also open the door to GPU-based implementa-
tions for solving general min-cut/max-flow problems.

8.3 Min-Cut/Max-Flow in Modern Computer Vision

It is no secret that the field of computer vision is currently
dominated by deep learning. In this context, it is highly rele-
vant to consider the future role of traditional computer
vision tools, such as min-cut/max-flow algorithms.

For 3D images used in medical imaging and materials sci-
ence research [98], it is common to have images where no rele-
vant training data are available. Here, segmentation methods
based on min-cut/max-flow continue to play an important
role, as they work without training data and allow geometric
prior knowledge to be incorporated. Furthermore, while
modern 3D images can already be very large (many GB per
image), dynamic imaging (3D + time) with high acquisition
rates is now also possible [99], [100]. Computational efficiency
is paramount to be able to process this ever increasing amount
of data, and for this, parallel min-cut/max-flow algorithms
could prove particularly useful.

Finally, as mentioned in [20], there is agreement that the
performance of deep learning-based segmentation methods
has started to plateau, and investigating how to integrate
CNNs with ‘classical’ approaches should be pursued.
Already, combinations with active contours have shown
promising results [101], [102], [103] and a combination of
CNNs and min-cut/max-flow methods could lead to new
advances. As deep learning involves repeated forward and
backward passes through a model, it is crucial that the min-
cut/max-flow algorithms are fast and efficient. While not
the focus of this work, this is also an area where dynamic
min-cut/max-flow algorithms can be of great importance,
as they are effective at handling repeated solves of graphs
where capacities do not change drastically between succes-
sive solves.
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