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Latent Gaussian Model Boosting

Fabio Sigrist

Abstract—Latent Gaussian models and boosting are widely used techniques in statistics and machine learning. Tree-boosting shows excellent
prediction accuracy on many data sets, but potential drawbacks are that it assumes conditional independence of samples, produces
discontinuous predictions for, e.g., spatial data, and it can have difficulty with high-cardinality categorical variables. Latent Gaussian models,
such as Gaussian process and grouped random effects models, are flexible prior models which explicitly model dependence among samples
and which allow for efficient learning of predictor functions and for making probabilistic predictions. However, existing latent Gaussian models
usually assume either a zero or a linear prior mean function which can be an unrealistic assumption. This article introduces a novel approach
that combines boosting and latent Gaussian models to remedy the above-mentioned drawbacks and to leverage the advantages of both
techniques. We obtain increased prediction accuracy compared to existing approaches in both simulated and real-world data experiments.

Index Terms—Machine learning, boosting, mixed effects models, gaussian processes

1 INTRODUCTION

00sTING [1], [2] is a machine learning technique that
Bachieves state-of-the-art prediction accuracy [3], [4].
This is reflected in statements such as “[i]n general ‘boosted
decision trees’ is regarded as the most effective off-the-shelf
non-linear learning method for a wide range of application
problems” [5]. In boosting, and in many other supervised
machine learning algorithms, it is assumed that a poten-
tially complex predictor function F'(-) relates a set of predic-
tor variables to a response variable, and that conditional on
F(-) evaluated at the predictor variables, different samples
are independent. Apart from this potentially unrealistic
independence assumption, tree-boosting can have difficulty
with high-cardinality categorical variables, and it produces
discontinuous predictions. The latter is often unrealistic for
spatial and spatio-temporal data.

Latent Gaussian models are a broad class of flexible prior
models in which, conditional on latent Gaussian variables, a
response variable is assumed to follow a known parametric
distribution, and parameters of this distribution are related
to the latent Gaussian variables. Two widely known types
of latent Gaussian models are Gaussian process [6] and
grouped, or clustered, random effects models [7]. Gaussian
process models are used for modeling, for instance, time
series, spatial, and spatio-temporal data. Further, grouped
random effects models are used for modeling data with a
grouping structure. In particular, grouped random effects
models can be seen as an approach for modeling categorical
variables with possibly high-cardinality, as every categori-
cal variable corresponds to a grouping and vice versa.
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Latent Gaussian models have the advantage that they are
probabilistic models which allows for making probabilistic
predictions. Besides, the explicit modeling of dependence
allows for efficient learning of the predictor function F(-). A
drawback of existing latent Gaussian models is that the
prior mean is often assumed to be either zero or to be a lin-
ear function of predictor variables. Both the zero-mean and
the linearity assumption can be unrealistic, and higher pre-
diction accuracy can be obtained by relaxing these assump-
tions; see, e.g., our experiments in Sections 4 and 5.

The goal of this article is to combine boosting and latent
Gaussian models for non-Gaussian data distributions. Specifi-
cally, we consider a class of models where the response vari-
able follows a known parametric distribution, and a parameter
of this distribution is related to the sum of a non-parametric
function and a latent Gaussian variable. We propose to model
the predictor function F(-) by an ensemble of base learners,
such as regression trees [8], learned in a stage-wise manner by
doing functional gradient descent steps in a boosting frame-
work, and the hyperparameters of the covariance structure of
the latent Gaussian model are jointly estimated with the pre-
dictor function; see Section 3 for more details.

Our novel approach allows for relaxing both the indepen-
dence assumption in boosting and the linearity assumption in
latent Gaussian models in a flexible non-parametric way. Fur-
ther, it allows for obtaining continuous, or smooth, predic-
tions for predictor variables such as spatial coordinates while
at the same time being able to capture non-linearities, discon-
tinuities, and interactions for predictor variables for which
this is desirable. In addition, the use of grouped random
effects is as a way for dealing with high-cardinality categorical
variables in tree-boosting. As we show in our experiments in
Sections 4 and 5, our novel approach leads to higher predic-
tion accuracy compared to both existing boosting algorithms
and linear latent Gaussian models.

1.1 The View of Latent Gaussian Models as Priors
and Regularizers

An algorithm for learning a predictor function F(-), which

relates predictor variables to a response variable, should
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result in an estimate F'(-) that has both low bias and low var-
iance. Intuitively, a low bias estimator F(-), such as a flexi-
ble machine learning model, can have high variance if the
complexity of the function F(-) is large relative to the sam-
ple size. Examples of data for which this can occur include,
first, time series, spatial, and spatio-temporal data where
the amount of variation over space and/or time is large rela-
tive to the sample size and, second, data with high-cardinal-
ity categorical variables where the number of categories is
large relative to the sample size.

Modern supervised machine learning approaches such as
deep neural networks and tree-boosting typically have low
bias but need to apply some form of regularization to avoid
high variance in F(-). General-purpose regularization
options for boosting include early stopping, learning rate
shrinkage, and restrictions on the base learners such as the
depth of trees and the minimal number of samples per leaf.
However, as we argue in this article, for applications involv-
ing, e.g., spatial data or high-cardinality categorical variables,
it can be advantageous to apply problem-specific regulariza-
tion which incorporates available prior knowledge instead of
relying on agnostic general-purpose regularization.

Prior models such as latent Gaussian models which
explicitly model residual dependence among data can be
interpreted as applying a form of regularization. For
instance, an important prior assumption of Gaussian pro-
cesses is that observations that are close together in space
and/or time, or any other feature that defines a Gaussian
process, are “more similar to each other than distant
samples”. For spatial data, this prior assumption is often
referred to as Tobler’s first law of geography [9]. Such a
prior model implies regularization in the sense that predic-
tions for points that are close together are similar, and that
the amount of similarity varies in a continuous, or poten-
tially smooth, manner with distance. Further, heuristically,
a prior assumption of grouped random effects models is
that different group effects are similar to some degree, and
deviations from a global average are stochastic and identi-
cally distributed. Crucially, important characteristics of a
latent Gaussian model such as the speed at which the
dependency decays over space and/or time, the smooth-
ness, the amount of variation over space and/or categories,
and thus the amount of regularization implied by the prior
is characterized by hyperparameters which can be learned
from data. Our proposed approach allows for incorporating
this reasonable prior knowledge and thus for applying
explicit data-specific regularization in boosting algorithms.

Intuitively, we conjecture that the improvement in pre-
diction accuracy of our novel approach over classical inde-
pendent tree-boosting is the larger, the more categories a
categorical variable has and the faster the covariance decays
over space and/or time or, in other words, the higher the
complexity of F(-) is compared to the sample size since
appropriate regularization is more important in these cases.
This hypothesis is confirmed in simulated experiments in
Section 4.1.

1.2 Related Work

For Gaussian data, existing approaches for combining
Gaussian process and grouped random effects models with
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machine learning algorithms include Hajjem et al. [10], Sela
and Simonoff [11], Fu and Simonoff [12], Hajjem et al. [13],
Sigrist [14], Griesbach et al. [15], Rabinowicz and Rosset [16],
and Saha et al. [17].

For non-Gaussian data, there exists little prior work on
combining non-linear machine learning methods with latent
Gaussian models. For the special case of grouped random
effects, Hajjem et al. [18], Fokkema et al. [19], and Speiser
et al. [20] propose algorithms that use regression trees to
model the function F(-). Speiser et al. [21] and Pellagatti
et al. [22] extend these algorithms by replacing trees with
random forests. However, all of these methods are heuristi-
cally motivated. In particular, it is unclear which objective
functions these algorithms minimize — they do not maxi-
mize a marginal or approximate marginal log-likelihood
neither in a component-wise way nor using an EM algo-
rithm — and whether and to which values they converge.

A straightforward alternative to the use of Gaussian pro-
cesses and grouped random effects is to simply include the
variables that define the latent Gaussian model, such as spa-
tial coordinates, time points, and categorical variables, in
the deterministic predictor function F(-) of a statistical or
machine learning model. A special example of this is the
approach Hothorn et al. [23] where splines are used to
model spatial effects and ridge regression is used to model
grouped random effects. However, while the adoption of
splines avoids discontinuities in predictions, this approach
has several drawbacks compared to using latent Gaussian
models. First, the hyperparameters, and thus the amount of
regularization or smoothing, cannot be learned from data
and need to be chosen using, e.g., cross-validation and, sec-
ond, since the base learners are deterministic, probabilistic
predictions cannot be made. Further, splines have the disad-
vantage that they suffer from the so-called “curse of
dimensionality” when the dimension of the “locations” is
large and the locations are thus sparse in space. This
approach can thus not be used in situations where Gaussian
processes are applied to higher-dimensional non-spatial
“locations” as is often done in machine learning applica-
tions of Gaussian processes.

The linearity assumption in mixed effects models can
also be relaxed by using splines or generalized additive
models [24], [25] for modeling the predictor function F(-);
see, e.g., Tutz and Reithinger [26] and Groll and Tutz [27].
However, one has to assume a certain functional form with
only limited possibility for interaction effects for the predic-
tor function by specifying, for instance, main and second-
order interaction effects. In general, this can thus result in
model misspecification.

2 A NON-PARAMETRIC LATENT GAUSSIAN MODEL

We assume that the response variable y = (yi, .. ., yn)T eR"
follows a parametric distribution which has a density
p(ylu, &) with respect to a sigma finite product measure
with parameters u € R" and £ € & C R". The focus of this
article is on non-Gaussian densities p(y|u, £). If p(y|p,€) is a
Gaussian density, calculations simplify as the required mar-
ginalization can be done analytically; see Sigrist [14]. Exam-
ples of p(y|u, &) include Bernoulli and Poisson densities for
binary classification and Poisson regression. The parameter
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w is related to the sum of a predictor function F(-) evaluated
at predictor variables and a latent Gaussian variable:

where F(X) is the row-wise evaluation of a function F\(-) :
R’ - R, F(X)=(F(X)),...,F(X,)", and X;=(X;...,
X;,)" € R? is the ith row of X € R™? containing predictor
variables for observation i, ¢ = 1,...,n. For notational sim-
plicity, we assume that the distribution p(y|u, §) is parame-
terized in a way such that u € R". Otherwise, if the support
of u is not R”, the model needs to be reparametrized using,
e.g., a so-called link function. Further, we assume that con-
ditional on p, the data is independent:

Hp yilii, €)

Any additional, auxiliary or hyper-, parameters of the likeli-
hood p(y|u, &) are denoted by £. In many situations such as
classification and Poisson regression, there are no additional
parameters.

We assume that F'(-) is a function in a function space H
that is the linear span of a set S of so-called base learners
fi(-) : R? — R. Classes of base learners include, e.g., linear
functions [28], smoothing splines [29], wavelets [30], repro-
ducing kernel Hilbert space (RKHS) regression functions
[31], and regression trees [8], with the latter being the most
popular choice. For defining functional derivatives, we
additionally assume that the space M is normed. For
instance, assuming that the X;’s are identically distributed
and that all ' € H are square integrable with respect to the
law of X, a norm on H can defined by the inner product
(F,G) = Ex, (F(X1)G(X))) for F,G € H.

Examples of latent Gaussian variables b € R™ include
finite-dimensional versions of Gaussian processes and/or
grouped random effects. We assume that the covariance
matrix Cov(b) =32 is parametrized by a set of parameters
6 € ® C RY whose dimensionality is often relatively low,
and ¥ can depend on predictor variables S € R™*?. For
instance, for spatial and temporal Gaussian processes, these
predictor variables S are locations and time points, respec-
tively. For notational simplicity, we suppress the depen-
dence of X on its parameters 6 and on S. Further, Z € R"*™
are predictor variables which relate the random variable b
to p. Often, Z is simply an incidence matrix with entries in
{0, 1}. For instance, for grouped random effects, Z consists
of dummy variables that encode categorical variables. In
general, Z can also contain continuous predictor variables,
e.g., in the case of random coefficient models [32]. Note that,
conditional on F(X) and Z, dependence among the
response variable y can arise either due to the matrix Z
being non-diagonal or due to the covariance matrix 3 being
non-diagonal.

In summary, we distinguish between three sets of predic-
tor variables: X with input variables for the predictor func-
tion F(-), S which determines the covariance structure of
the random variable b, and Z which relates b to u and thus
also determines the covariance structure of u and y. Note
that these three sets of predictor variables may or may not
be over-lapping. If e.g., X and S contain disjoint sets of

p(ylu, &) =
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predictor variables, one assumes that there are no interac-
tions among them. On the other hand, if, for instance, spa-
tial locations in S are also included in X, interactions
among locations and other predictor variables in X can be
modeled.

In comparison to our approach, existing boosting algo-
rithms, and many supervised machine learning algorithms
in general, do not distinguish between the different types of
predictor variables X, S, and Z, and one essentially has two
options: either ignore the additional predictor variables in S
and Z or include them in the set of predictor variables X for
the predictor function F(-). It goes without saying that the
former is not a good option as potentially important infor-
mation is neglected. Furthermore, the second option can
result in the high variance problem mentioned in the intro-
duction, and this translates into inferior prediction accu-
racy; see, e.g., our experiments in Sections 4 and 5. Besides,
existing boosting algorithms assume that the data y is inde-
pendent conditional on F'(X) and thus ignore any potential
residual correlation. Further, in most latent Gaussian mod-
els, it is assumed that F'(-) is either a linear function, F'(X) =
XB, or that F(-) is simply zero, F(X) = 0.

For notational simplicity, we assume that only one
parameter p of the data distribution p(y|u, §) is related to a
latent Gaussian variable. However, the extension to multi-
variate data and/or the situation where multiple parame-
ters depend on potentially multiple Gaussian variables is
straightforward. Also note that we assume that the latent
variable b follows a Gaussian distribution, but moderate
violations of this assumption have been shown to have only
a small effect on prediction accuracy in the context of gener-
alized linear mixed models [33].

2.1 Definition of Learners
The marginal density of the response y is given by

P(yF.6.€) = / p(ulie, E)p(b|e)db. @

Ideally, we would like to minimize the empirical risk func-
tional
R(F(-),0,€) :

(F(')797‘£) = 710g(p(y|F79>£)) 7

—F(X)

If p(y|u, &) is a Gaussian distribution, the marginalization in
(2) can be done analytically. For non-Gaussian data, how-
ever, an approximation has to be used. In order that an
approximation is applicable for the boosting algorithms pre-
sented in this article, it needs to fulfill two requirements.
First, one must be able to compute it efficiently as this needs
to be done repeatedly. Second, the gradient with respect to
F(-) must be computable in an efficient way.
Our goal is thus to find the joint minimizer

(F A( ), 6 é) argmin
(F(-).0:6)€(M.0,5)

RA(F(')a9>£)> (3)

where RA(F(-),6,€) is an approximate empirical risk func-
tional

RA(F()vevg) (F()79a€) = LA(Z/|F707£) 7 ) “)

—F(X)
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and LA(y|F,6,¢) is an approximation to the negative loga-
rithmic marginal likelihood —log (p(y|F,0,€)). Note that
RA(F(-),0,€) is calculated by evaluating F(-) at X and then
calculating LA(y|F = F(X),6,&). Le., the risk functional
RA(F(-),6,€) is, in general, infinite dimensional in its first
argument and finite dimensional in its other arguments.

2.2 The Laplace Approximation
In this article, we focus on the Laplace approximation [34]
for approximating the marginal likelihood in (2). However,
other approximations that satisfy the above-mentioned
requirements can equally well be used. For instance, if
p(ylun, &)p(blo) factors into low-dimensional components,
numerical integration, such as adaptive Gauss-Hermite
quadrature, can be used to approximate (2). Examples,
where this applies, are single-level grouped random effects
models. Another potential approximation is expectation
propagation (EP) [35]. Depending on the data distribution,
for instance, for binary classification, this can lead to more
accurate approximations [36], but it is computationally
more demanding than the Laplace approximation.

For applying the Laplace approximation, we assume that
p(yiln;, €) is three times differentiable in p;. The Laplace
approximation for (2) is given by

P(YIF,0,€) ~p(ylii, §)p(blo)

- det (ZTWZ + 2*1)71/2(%)’”/ ()

where b is the mode of p(y|b, F, €)p(b|6),
b= argmax p(ylu, )p(blF)
1
= argmax logp(y|u,§) — §bT271b7
b

ft = F(X)+ Zb, and W € R™" is a diagonal matrix with
entries

- #log p(yil 1, €)
(W) 0

n=p
Note that b depends on F' = F'(X), 6, and &, but we suppress
this dependence for notational simplicity. The mode can be
found, for instance, using Newton’s method.

Modulo constant terms that do not depend on 6, &, or F,
the Laplace approximation to the negative log-marginal
likelihood —log (p(y|F; 0, €)) is given by

1o 4~
LMy, F,0,€) = — logp(y| iz, §) + ;"% 'b
1 N
+ 5 log det (EZ"WZ+1,,). ©)
Since
F.b,&)p(blo
Dl 0. ) = PUED.Op00)

p(bly. 0.

the Laplace approximation in (5) is equivalent to the follow-
ing Gaussian approximation to the posterior p(b|y, 6, €):

z./\/<5, (zTWz+z-1)’l>. (7

p(bly,6,€)
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2.2.1 Gradients

For the boosting algorithms introduced in the following, we

LA/, ar LA, LA/,
need to calculate % and also £ ((,ng’g’O nd % %"‘F‘Q’O

if, e.g., a first-order optimization method is used for mini-
mizing with respect to 6 and &. These are obtained as follows.

Proposition 2.1. The gradients with respect to F, 6, and & of the
approximate negative logarithmic marginal likelihood of the
Laplace approximation L*(y, F,0,¢) in (6) are given by

AL (y, F60,6) _ dlogp(yili, §)

OF; B oft;
1 TT7 -1\ 7! TaW
+2tr((Z WZ+s ) s
AL M (y, F,0
N (v, F.6,6)\" ®
ab 8F
AL (y, F,6 £ _ ~T 1 0%
90, 2" ekz
1 T17 1 -1 82
+§tr((2+ (Z7W Z) ) @)
LA (y, F,0,
N ( (y, f)) ©)
ob 0y
AL A (y, F,0,€) _ dlogp(ylir, &)
08, &
1 - ~ oW
| (ZTW2Z zr—z
+2 r(( WZ+3 ) % )
AL"(y, F,0 g))
4+ [ —L S (10)
( ob 3¢’
fori=1,...nk=1,....,¢,l=1,...,7, where
LAy, F 1 -1 V
L 10,8 _ (ZTWZ+2 ) 2% an
ab; 3b;
b -
s (Z WZ+3" ) (12)
b 0% dlogp(yli, €)
"Wz 122 gr o) 13
Frn ( +2 ) 2" 30y o ’ (13)
b -1 8*log p(y|it, )
Z'wz - A Lt A 14
e~ ( +x7) 260 1
W, denotes column i of W, 3’2 = diag( %), % =
diag(_a:floiz(;ggl]m@) W _ dia e 3 IOBP(UZWZ é)Z )

Proof of Proposition 2.1 The derivation is s1m11ar as in Williams
and Rasmussen [6, Chapter 5.5.1]. All three gradients are
sums of the explicit derivatives of L4 (y, F} 6, £) and implicit
derivatives through the dependency of b on F, 6, and ¢. The
explicit derivatives with respect to F, 6, and &, ignoring any
dependency through b, are given in the first two summands in
(8), (9), and (10). For the implicit derivatives, we first note that

ZT{;—WZ>

J

LA
AESS Ly sy
ob, 2

where we use the fact that the derivative of the first two
terms in (6) with respect to b vanishes, and
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aw ¥ i
v_ _diag< ogp(yslumﬁ) Z{j)
ab; op;

since

Wi _ (am)Taﬁ
b, ) db;

W,
= — — ZL[
op;
_ Plogp(yili, €)
o
To find a";fi , we differentiate

9 i 1peits
0—8—5(10gp(ylu,£)—§b Y b)

g7 dlog p(y| i, §) _sg

o7 (15)

with respect to F; and obtain

_ yr Plogp(ylit, &)

0 OOt
d (_rologp(ylit,§) b
~(z LS )
zszW<+< 7TWZ -3 ) %
* AF;’

321
where W, = % is column i of W, i.e., a vector of

#log p( Y |24,
du

The statement in Equation (12) thus follows. Slmllarly,
multiplying Equation (15) with % and differentiating it
with respect to ), gives

0’s except for the ith entry which is given by

9 dlogp(yli ) b
T I 30,

from which we obtain Equation (13) by multiplying with
3", Equation (14) follows analogously. 0

0= +(-22"WZ - I,,)

We note that in our software implementation, we use dif-

ferent equivalent versions of the above result depending on
the specific latent Gaussian model for computational effi-
ciency and stability. If Zb consists of only grouped random
effects, we use the version presented in Proposition 2.1
except that in (9), we replace (3 + (Z7TW2)™')™! 4 with the
equivalent expression (Z"WZ+3 s 1g%kZTWZ. In
this case, Z and 371 are sparse, and the random effects
dimension m is smaller than the number of samples n. It fol-
lows that a Cholesky factor for Z"WZ + 37" can be com-
puted efficiently using sparse matrix algebra, and also the
remaining calculations for obtaining the gradients in Propo-
sition 2.1 can be done efficiently. If Zb contains a finite
dimensional versions of a Gaussian process, we use the
Sherman-Morrison-Woodbury formula (ZTWZ 437!
S - SZTWYA(L, + W2 Z3 ZTW2) ' W12 Z3, factorize the
matrix I, + Wl/ ZZEZTWV 2, and, similarly as in Williams
and Rasmussen [6, Chapter 5.5.1], adapt all calculations in
Proposition 2.1 accordingly.
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3 LATENT GAUSSIAN MODEL BOOSTING

We propose to do the minimization of the risk functional in
(3) using a novel boosting algorithm presented in the fol-
lowing. For known and fixed 6 and ¢, boosting finds a mini-
mizer of the approximate empirical risk functional
RA(F(),6,€) in a greedy way by sequentially adding an
update f,,(-) to the current estimate F,,_;(-):

(16)

Fn() = Fna () + fn(), fm €8,

where f,,(1), m =1,..., M, is chosen such that its addition
results in the minimization of the risk. This minimization
cannot be done analytically and an approximation is thus
used. In general, such an approximation consists of either a
penalized functional first-order or a functional second-order
Taylor expansion of the risk around the current estimate
F,—1(+). This corresponds to functional gradient descent or
functional Newton steps. See Sigrist [37] for more informa-
tion on the distinction between gradient and Newton
boosting.

In our case, we use functional gradient descent. Spe-
cifically, f(-) is given by the least squares approxima-
tion to the vector obtained when evaluating the negative
functional gradient of RA(F(-),6,¢) at (F—1(-), Ix, (), i =
1,...,n, where Ix,(-) are indicator functions which equal
1 at X; and 0 otherwise. Equivalently, f,, () is the mini-
mizer of a first-order functional Taylor approximation of
RA(F(-),0,€) around F,_;(-) with an L? penalty on f(-)
evaluated at (X;); see, e.g., Sigrist [37] for more informa-
tion. It is easily seen that the negative Gateaux derivative
of RA(F(-),Q,Q“) evaluated at (Fj,—1(-),Ix;(-)) is given by

LA (y,F0,6)
- oF

A, Frp1 (X
as —W:+*195 This means that fm(+) can be found as
the following least squares approximation:

the vector which we denote shortly

2

A
Ly Fn1,0,8) ol an

fm(') = argmin||— OF _ f

f()es
where f = (f(X1),..., (X)) Notethat%depends
on the approximation used for the marginal log-likelihood. For
the Laplace approximation, this is given in Proposition 2.1.
It has been empirically observed that damping the
update in (16),

Fm(') - mel(') + me(')’ v > 07

results in higher prediction accuracy [2]. Further, func-
tional gradient descent can also be accelerated using
momentum. For instance, Biau et al. [38] and Lu ef al.
[39] propose to use Nesterov acceleration [40] for gradi-
ent boosting.

To jointly learn F(-) and (6,£), we propose to combine
functional boosting updates in the direction of F(-) with
coordinate descent steps in 6 and £. The reasons for this
choice are outlined in Sigrist [14]. The LaGaBoost Algorithm
1 summarizes our approach. Note that, despite not being
explicitly stated in Algorithm 1, the approximation for the
negative logarithmic marginal likelihood needs to be calcu-
lated repeatedly in the algorithm whenever L4 (y, F,6,¢) is
evaluated or a gradient of it is calculated.
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Algorithm 1. LaGaBoost: Latent Gaussian model Boosting

Input : Initial values 6, € © and, if applicable, ¢, € Z, learn-
ing rate v > 0, number of boosting iterations M € N,
approximation L4(y, F, 0, £)

Output: Function F() = Fu(-), hyperparameters 0 =0y,

and auxiliary parameters € = £
1: Initialize Fy(-) = argmin,cz L (y, ¢ - 1,60, &)
2: form =1to M do

3: Find (6,,,, &) = argmin LA(y, F,-1,6,€) using a method
(0,6)€(0.5)
for convex optimization initialized with (6,,—1,&,-1)

aLA (yv Fm,—h 97717 gm)

4: Find f,,(-) = argmin || — -, :
fo() = argmin| i fi
5. Update F,,(-) = Fp1() + vfu(’)

6: end for

If the risk functional RA(F(-),0,&) is convex in its argu-
ments and ® and & are convex sets, then (3) is a convex opti-
mization problem since H = span(S) is also convex. This
means that there exists a unique minimizer and the LaGa-
Boost algorithm converges to the minimum, as long as the
learning rate v is not too large to avoid overshooting, i.e.,
that the risk increases when doing too large steps. Further,
the computational complexity of the algorithm depends on
the specific latent Gaussian variable model and the mar-
ginal likelihood approximation used. For instance, for the
Laplace approximation, the calculation of Cholesky factors
is usually the bottleneck.

3.1 Out-of-sample Learning for Hyperparameters

It has recently been observed that state-of-the-art machine
learning techniques such as neural networks, kernel
machines, or boosting can achieve a zero training loss and
interpolate the training data while at the same time having
excellent generalization properties [41], [42], [43], [44], [45].
Such an interpolation of the training data could be problem-
atic for the hyperparameter estimation in the LaGaBoost
algorithm. We propose to circumvent this potential problem
by estimating the hyperparameters 6 and the auxiliary
parameters ¢ using out-of-sample validation data obtained
by applying cross-validation or by partitioning the data into
two disjoint training and validation sets. To avoid that the
function F(-) and/or the parameters 6§ and ¢ are only
learned on a fraction of the full data, we propose a two-step
approach presented in the LaGaBoostOOS Algorithm 2. In
brief, the LaGaBoostOOS algorithm first runs the LaGaBoost
algorithm on the training data and obtains predictions o
for the function F(-) on the left out validation data. The
parameters 6 and ¢ are then estimated on the validation
data using the predicted values le. Finally, the LaGaBoost
algorithm is run a second time on the full data while hold-
ing 6 and ¢ fixed. When k-fold cross-validation is used, both
the function F(-) and the parameters 6 and ¢ are thus
learned using the full data.

3.2 Prediction

In the following, we show how predictions can be made. We
distinguish between predicting observables variables y, and
latent variables pu,. Let y, € R™ and u, € R™ denote the
observable and latent random variables for which
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predictions should be made. The following holds true:
b . < 0 ) + ((Inuomxmp)) < b >
Hp F(X,) Zy by 7
; s (8,%,)2]
(i)
FX) )\ 26350 20 )2
2 2p
(18)

where b, € R is a latent random variable for which no cor-
responding data has been observed in y, (I;,0mxm,) €
R™*(m+mp) € R™™ is an identity matrix, Ormxm, € R
is a matrix of zeros, the matrix 7, € Rw*(mtmp) relates the
vector of observed and new latent variables (b7, bg)T €
R™™ t0 p, (2,2,) € R™<(mtmp) S = Cov(b,b,), 3, =
Cov(b,), and X, € R"*P is the predictor variable matrix of
the predictions.

Algorithm 2. LaGaBoostOOS: Latent Gaussian model
Boosting with Out-Of-Sample hyperparameter estimation

Input : Initial values 6, € O and, if applicable, & € Z, learn-
ing rate v > 0, number of boosting iterations M € N,
approximation LA (y, F, 6, €)

Output: Function F() = Fy(-), hyperparameters 0=0,,

and auxiliary parameters f =&

1: Partition the data into training and validation sets, e.g.,
using k-fold cross-validation or by partitioning the data
into two disjoint sets

2: Run the LaGaBoost algorithm on the training data and gen-

erate predictions P, for the function F(-) on the validation
data

3: Find (,€) = argnlin((,yf)e(@@LA (Yoat, Fra, 6, €) using the vali-

dation data with response variable y,q

4: Run the LaGaBoost algorithm on the full data while holding

the hyperparameters 6 and auxiliary parameters ¢ fixed at 6

and ¢, i.e., by skipping line 3 in Algorithm 1, to obtain F'(-)

By the law of total probability, we have

p(ieyly,0,€) = /p(uplby 0)p(bly, 6, &)db
and

P(yply, 0,€) = /p(ypluwf)p(uply, 0,8)du,. (19)

If we apply the Laplace approximation, then by (7), (18), stan-
dard results for conditional distributions of multivariate
Gaussian distributions, and the law of total variance, we have

p(ﬂp|ya 975) ~ N(wp: Qp)a
where

Wp :F(XP) + Zﬁ(zvzoﬁ)TE_lgv

)

—F(X,) + 23,3, 77 2P

op
2 2,
Qp_Zp<2T E")Zg
op p

483, (34 (W2 ) (55,7,
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where in the last line, we have used the Sherman-Morrison-
Woodbury formula.

Further, the integral in (19) is analytically tractable for a
Bernoulli likelihood with a probit link [see, e.g., 6, Chapter
3.9], but for other likelihoods, it needs to be numerically
approximated. In our software implementation and the
experiments below, we use adaptive Gauss-Hermite quad-
rature [46] as numeric integration technique.

3.3 Software Implementation

The LaGaBoost and LaGaBoostOOS algorithms based on
the Laplace approximation are implemented in the
GPBoost library written in C++ with corresponding Python
and R packages; see https://github.com/fabsig/GPBoost
for more information. For linear algebra calculations, we
rely on the Eigen library [47]. Sparse matrix algebra is
used, in particular for calculating Cholesky decompositions,
whenever covariance matrices are sparse, e.g., in the case of
grouped random effects. Further, multi-processor paralleli-
zation is done using OpenMP. For the tree-boosting part, in
particular the tree growing algorithm, we wuse the
LightGBM library [48]. The GPBoost library allows for
modeling Gaussian processes, grouped random effects
including nested and crossed ones, random coefficients,
and combinations of the former. Further, the GPBoost
library currently implements gradient descent with optional
Nesterov acceleration and the Nelder-Mead method for
minimizing with respect to the parameters 6 and ¢ in line 3
of the LaGaBoost Algorithm 1.

4 SIMULATED EXPERIMENTS

In the following, we perform simulated experiments to com-
pare the novel LaGaBoost algorithm to alternative
approaches. We simulate binary classification data from a
latent Gaussian model as in (1) assuming a Bernoulli likeli-
hood with a probit link function: y; € {0,1}, P(y; =1) =
®(u;), i =1,...,n, where ®(-) denotes the standard normal
cumulative distribution function. For the latent Gaussian
variable Zb, we consider both grouped random effects with
a single grouping level and a spatial Gaussian process
model with an exponential covariance function c(s, s)
Ulexp(st — &||/p) where the locations s are in [0, 1] and

= 0.1. The marginal variance in both models is set to 02 =
1. Concerning the function F'(-) and the predictor variables
X, we sample independently from

F(z)=Ci+Cy- (224 +x§ +4- T 50 + 2log (|z1|)z3),
Lxo), z~ N(0, ). (20)

x = (z1,..
This function has been used previously in Hajjem et al. [13]
and Sigrist [14] to compare non-parametric mixed effects
models for Gaussian data. The constant C; is chosen such
that the mean of F'(x) is approximately 0, and C5 is chosen
such that the variance of F'(x) equals approximately 1, i.e.,
that F'(x) has the same signal strength as the latent Gaussian
variable.

We simulate 100 times training data sets of size n and
two test data sets each also of size n. All models are trained
on the training data and evaluated on the test data. We use
a sample size of n = 5000 for the grouped random effects
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Fig. 1. Example of locations for training and test data for the spatial data.
‘Test’ and ‘Test_ext’ refers to locations of the interpolation and extrapola-
tion test data sets, respectively.

with m = 500 different groups. This corresponds to a cate-
gorical variable with 500 different categories and 10 samples
per category. For the Gaussian process model, we use a
sample size of n = 500. The reason for using a smaller sam-
ple size is that this allows us to avoid any additional
approximation error due to a large data approximation. In
every simulation run, two test data sets, denoted as
“interpolation” and “extrapolation” test sets, are generated
as follows. For the grouped random effects model, the inter-
polation test data set consists of n samples from the same m
groups as in the training data, and the extrapolation test
data consists of n samples for m new groups that have not
been observed in the training data. For the Gaussian process
model training data locatlons are samples uniformly from
[0,1]* excluding [0.5,1]?, the interpolation test data sets are
obtained by also simulating locations uniformly in the same
area, and the extrapolation test data contains locatlons sam-
pled uniformly from the excluded square [0.5,1]°. Fig. 1
illustrates this.

We compare the LaGaBoost algorithm based on the Lap-
lace approximation to the following alternative approaches:
linear Gaussian process and grouped random effects models
for binary data with a probit link function and F(z) =
2T B, B € R?, independent Newton boosting for binary data
with the log loss (‘LogitBoost’) [49], and model-based gradi-
ent boosting (‘mboost’) [23] with the log loss, i.e., a negative
Bernoulli log-likelihood, and a probit link function. For the
LogitBoost algorithm, we include the locations for the spatial
data and the categorical grouping variable as additional pre-
dictor variables in the function F(-). For all boosting algo-
rithms, we use trees as base learners, except for the grouped
and spatial random effects in mboost. Learning and predic-
tion with the LaGaBoost and LaGaBoostOOS algorithms, the
linear latent Gaussian models, and LogitBoost is done using
the GPBoost library version 0.7.0 compiled with the MSVC
compiler version 19.24.28315.0 and OpenMP version 2.0. For
the linear latent Gaussian models, the LaGaBoost algorithm,
and the LaGaBoostOOS algorithm, optima for hyperpara-
meters 6 are found using Nesterov accelerated gradient


https://github.com/fabsig/GPBoost
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TABLE 1
Results for the Grouped/High-Cardinality Categorical Variable Data and a Binary Bernoulli Likelihood

LaGaBoost LinearME LogitBoost mboost LaGaBoostOOS
Error 0.2373 0.287 0.3393 0.2825 0.2373
(sd) (0.00674) (0.00885) (0.00871) (0.00958) (0.00677)
[p-val] [1e-86] [2.8e-106] [6.4e-73] [0.66]
NegLL 2421 2785 3030 2917 2421
(sd) (45.5) (46.1) (28.8) (19.7) (45.6)
[p-vall [3.1e-105] [8.2e-114] [6.5e-111] [0.67]
Error_ext 0.3432 0.4206 0.3533 0.3434
(sd) (0.00793) (0.00898) (0.015) (0.00783)
[p-vall [1.9e-95] [9.2e-12] [0.31]
NegLL_ext 3028 3295 3078 3029
(sd) (31.4) (17.9) (55) (31.7)
[p-vall [1.2e-105] [7.5e-18] [0.0036]
RMSE o? 0.2099 0.3589 0.2141
Bias o® -0.1953 -0.3536 -0.1941
Time (s) 0.6646 0.03906 0.07785 16.96 3.276

The results for the “extrapolation” test data sets are denoted by *_ext’. ‘NegLL’" denotes the negative log-likelihood (=log loss for binary data).

descent. Further, for the linear models, the coefficients 8 are
also learned using Nesterov accelerated gradient descent.
Note that the gradient of L4(y, F,6,¢) with respect to 8 is
given by
8LA(y7 F7 97 5) _ XT aLA(y7 F7 97 5)
9B N oF

For LogitBoost applied to the grouped random effects data,
we consider the grouping variable as a numeric variable
and not as a categorical variable as suggested by the
authors of LightGBM' since the number of categories is
large. Concerning the mboost algorithm, we use the
mboost R package [50] version 2.9-2, where spatial effects
are modeled using bivariate P-spline base learner (bspa-
tial with df=6), grouped random effects are modeled
using random effects base learners (brandom with df=4),
and all other predictor variables are modeled using trees as
base learners. All calculations are done on a laptop with a
2.9 GHz quad-core processor and 16 GB of random-access
memory (RAM).

Tuning parameters are chosen by simulating 10 addi-
tional training and test sets and choosing the parameter
combinations that minimize the average log loss on the test
sets. In doing so, we use the union of both the interpolation
and extrapolation test data sets to calculate test losses. For
all boosting algorithms, we consider the following grid of
tuning parameters: the number of boosting iterations M €
{1,...,1000}, the learning rate v € {0.1,0.05,0.01}, the maxi-
mal depth of the trees € {1,2,5,10}, and the minimal num-
ber of samples per leaf € {1, 10, 100}.

The results for the grouped and spatial data are reported
in Tables 1 and 2. We report average test error rates ("Error’)
and test log losses (‘NegLL’) for both the interpolation and
extrapolation (“_ext’) test sets. Further, we calculate p-val-
ues of paired t-tests comparing the LaGaBoost algorithm to
the other approaches. We find that the LaGaBoost algorithm
significantly outperforms all alternative approaches in all

1. https:/ /lightgbm.readthedocs.io/en/latest/ Advanced-Topics.
html#categorical-feature-support (retrieved on May 11, 2021)

prediction accuracy measures for both the grouped and spa-
tial data. In Tables 1 and 2, we additionally report the
results for the LaGaBoostOOS algorithm, root mean square
errors (RMSEs) and biases for the hyperparameters, and
wall-clock time. Overall, we observe no large differences
between the LaGaBoost and the LaGaBoostOOS algorithms.
However, for the spatial data, the hyperparameter estimates
of the LaGaBoostOOS algorithm have smaller RMSEs and
biases compared to the LaGaBoost algorithm in line with
our arguments laid out in Section 3.1. As expected, the
LaGaBoostOOS algorithm has a higher computational time.

An alternative option to simulating additional training
and test sets for choosing tuning parameters is to use cross-
validation on the training data sets in every of the 100 simu-
lation runs. However, this is computationally more expen-
sive as the number of simulation runs is relatively large. To
investigate the differences between these two options for
choosing tuning parameters, we redo the simulated exp-
eriments with 10 simulation runs and choose tuning para-
meters using 4-fold cross-validation on the training data in
every simulation run. The results of this are reported in
Tables A.1 and A.2 in the appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2022.3168152.
Overall, we observe only minor differences.

Next, we also perform the same simulated experiments
using a Poisson likelihood with a logarithmic link function
instead of a binary Bernoulli likelihood. Specifically, we
simulate grouped and spatial random effects as described
above with 0% = 0.2, and we simulate F(X) according to
(20) with C chosen as described above and C5 chosen such
that the variance of F(X) is approximately 0.2. Response
variable data is then simulated from a Poisson distribution
with mean equaling exp(F(X) + Zb). Tuning parameters
are chosen similarly as for the binary data by minimizing
the test negative Poisson likelihood. Further, we use the
RMSE and the negative Poisson likelihood for evaluating
prediction accuracy. The results of this are reported in
Tables 3 and 4. We find qualitatively very similar results as
for the binary data. In particular, the LaGaBoost algorithm


http://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3168152
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3168152
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#categorical-feature-support
https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html#categorical-feature-support
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TABLE 2
Results for the Spatial Data and a Binary Bernoulli Likelihood
LaGaBoost LinearGP LogitBoost mboost LaGaBoostOOS
Error 0.3085 0.3309 0.3501 0.3808 0.3068
(sd) (0.0286) (0.0278) (0.0293) (0.0336) (0.027)
[p-val] [1.4e-22] [6e-30] [8.6e-41] [0.057]
NegLL 290.5 302.4 312.1 330.3 288.6
(sd) (13.3) (13.5) 9.72) (6.32) (13.5)
[p-vall [8.8e-31] [8.8e-40] [6.2e-55] [7.3e-16]
Error_ext 0.3755 0.3953 0.3986 0.4283 0.3732
(sd) (0.0419) (0.0306) (0.055) (0.0662) (0.0396)
[p-vall [6.8e-07] [3.3e-07] [2.4e-14] [0.044]
NegLL ext 320 328.3 331.4 339.7 319.1
(sd) (15.8) (11.3) 21 (10.9) (15.8)
[p-vall [8.9¢-10] [7.9e-11] [7e-26] [0.00027]
RMSE o? 0.6237 0.4314 0.4944
RMSE p 0.1001 0.06225 0.05211
Bias o” -0.5945 -0.3353 -0.4398
Bias p 0.06441 0.02141 0.01426
Time (s) 14.32 1.908 0.03377 0.7835 40.83

See the caption of Table 1 for information on the abbreviations used in this table.

significantly outperforms all alternative approaches in all
prediction accuracy measures for both the grouped and the
spatial data.

4.1 When Does the LaGaBoost Algorithm
Outperform Independent Boosting?

It is relatively obvious that the LaGaBoost algorithm tends
to outperform linear latent Gaussian models when there are
non-linearities and interactions. It is less clear in which sit-
uations the LaGaBoost algorithm outperforms classical
boosting algorithms which include categorical variables
and/or spatial locations in the predictor variables X for
F(-) and, conditionally on this, assume independence
among samples. As mentioned in Section 1.1, intuitively,
we expect that the improvement in prediction accuracy of
our novel approach over independent tree-boosting is the
larger, the smaller the number of observations per category
of a categorical variable is and the faster the covariance

decays over space and/or time. To analyze this, we repeat
the above simulated experiments for the binary data with
varying numbers of samples per group and varying
range parameters p. Specifically, for the grouped random
effects with n = 5000 samples, we consider the following
number of samples per group: 10, 20, 50, 100, and 200.
For the spatial data, we consider the following range
parameters p: 0.1, 0.2, 0.5, and 1. Apart from this, we use
the same experimental setup as above for the Bernoulli
likelihood.

Fig. 2 reports the relative decrease in the test error of the
LaGaBoost algorithm compared to the LogitBoost algorithm
as well as the average test error of the two algorithms for
the interpolation test data sets. These results confirm our
hypothesis that the improvement in prediction accuracy is
the larger, the smaller the number of observations per group
is and the faster the covariance decays over space. In other
words, the higher the complexity of the underlying true

TABLE 3
Results for the Grouped/High-Cardinality Categorical Variable Data and a Poisson Likelihood
LaGaBoost LinearME PoissonBoost mboost LaGaBoostOOS

RMSE 1.465 1.614 1.575 1.528 1.445
(sd) (0.514) (0.531) (0.503) (0.51) 0.5)
[p-vall [2.5e-12] [4e-55] [9.6e-09] [1.3e-05]
NegLL 7062 7504 7515 7293 7033
(sd) (215) (285) (235) (239) (179)
[p-vall [3.1e-62] [6.8e-77] [2.9e-39] [8.8e-07]
RMSE_ext 1.516 1.599 1.536 1.504
(sd) (0.482) (0.481) (0.481) (0.468)
[p-val] [3.9e-75] [1.1e-07] [0.0066]
NegLL_ext 7488 7884 7546 7466
(sd) (212) (286) (218) (181)
[p-val] [1.2e-66] [1.3e-14] [7.9e-05]
RMSE o2 0.05751 0.02506 0.04392
Bias o? -0.05382 -0.00339 -0.03661
Time (s) 0.3154 0.02697 0.0606 8.992 5.368

See the caption of Table 1 for information on the abbreviations used in this table.
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TABLE 4
Results for the Spatial Data and a Poisson Likelihood
LaGaBoost LinearGP PoissonBoost mboost LaGaBoostOOS
RMSE 1.415 1.465 1.452 1.494 1.421
(sd) (0.324) (0.324) (0.322) (0.33) (0.323)
[p-val] [4.7e-24] [1.2e-17] [4.6e-28] [7.7e-05]
NegLL 747.2 767 764.1 787.5 749.6
(sd) (53.5) (56.5) (55) (62.2) (53)
[p-vall [2.4e-30] [9.2e-22] [1.9e-34] [4.5e-05]
RMSE_ext 1.505 1.528 1.525 1.554 1.507
(sd) (0.624) (0.623) (0.623) (0.621) (0.622)
[p-vall [2.7e-09] [1e-08] [2.1e-21] [0.17]
NegLL_ext 773.4 785.6 783.1 799.1 774.2
(sd) (94) (96.1) (95.8) 92.1) 91.1)
[p-val] [4.6e-09] [2.4e-09] [3.8e-24] [0.36]
RMSE o 0.09264 0.1217 0.1256
RMSE p 0.06708 0.06526 0.06721
Bias o2 -0.06304 0.08664 0.08688
Bias p -0.003803 -0.05122 -0.05566
Time (s) 10.16 2.022 0.04036 0.689 26.77

See the caption of Table 1 for information on the abbreviations used in this table.

function relative to the sample size, the larger is the
improvement obtained by the LaGaBoost algorithm. We
conjecture that this is not just due to more accurate learning
of the random effects themselves but also more efficient
learning of the remaining part of the predictor function
F(-). Fig. 2 also shows that, as expected, average test errors
of both algorithms decrease when having fewer categories
for the categorical grouping variables and when the correla-
tion decays slower of space.
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Fig. 2. Comparison of the LaGaBoost and LogitBoost algorithms for
grouped data with varying number of samples per group and spatial
data with varying range parameters p. The top row shows the relative
decrease in test error of the LaGaBoost versus the LogitBoost algorithm
visualized using violin plots. The red rhombi representing means over
the simulation runs. The bottom row shows the average test error of the
two algorithms.

5 REAL-WORLD APPLICATIONS

In the following, we apply the LaGaBoost algorithm to two
real-world binary classification data sets and compare its pre-
diction accuracy to alternative approaches. We consider both
grouped data with a high-cardinality categorical variable and
a spatial data set. For the former, we consider data on poverty
among young females in the US collected by the National
Longitudinal Study of Youth (NLSY) and available from
https:/ /www3.nd.edu/~rwilliam/statafiles / teenpovxt.dta.

Here, the person id number is the high-cardinality categorical
variable that determines the grouped random effects, and the
goal is to predict the binary poverty indicator. As a spatial
data set, we consider species distribution data. Specifically,
we use presence-absence data on rainforest understorey vas-
cular plants in North-east New South Wales, Australia, spe-
cies “nsw43” obtained from the disdat R package [51]. The
goal is to predict the presence or absence of the species. Table 5
summarizes the data sets.

We compare the LaGaBoost algorithm to the same alter-
native approaches as in the simulated experiments in Sec-
tion 4 using nested 4-fold cross-validation. For the grouped
poverty data, we perform stratified cross-validation such
that every fold contains approximately the same amount of
data for every category of the grouping variable. A reason
for doing this is that one of the alternative approaches, the
mboost R package, does not allow for making predictions
for unobserved groups. Tuning parameters are chosen by
doing an additional inner 4-fold cross-validation on every

TABLE 5
Summary of Real-World Data Sets
Name Data type #data Freq.of1’s #features #cat.
Poverty Grouped 5755 36.79 % 7+1 1151
Species Spatial 909 23.76 % 13+2

‘# data’ denotes the sample size, ‘# features’ the number of predictor variables,
and “# cat.” the number of groups of the high-cardinality categorical variable.


https://www3.nd.edu/~rwilliam/statafiles/teenpovxt.dta
https://www3.nd.edu/~rwilliam/statafiles/teenpovxt.dta
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TABLE 6
Results for the Real-World Data Sets
LaGaBoost Linear LogitBoost mboost
Poverty (grouped/high-cardinality categorical data)
Error 0.2792 0.2848 0.3239 0.3197
AUC 0.7318 0.7313 0.7001 0.7028
Log_loss 0.5789 0.5878 0.6013 0.6081
Species (spatial data)

Error 0.2365 0.3003 0.2717 0.2728
AUC 0.7383 0.7061 0.683 0.635
Log_loss 0.4933 0.5625 0.527 0.5662

‘Linear” denotes the linear grouped mixed effects and linear Gaussian process
models.

of the four training data sets.”> We consider the same set of
tuning parameters and selection criterion as in the simu-
lated experiments

The results are reported in Table 6. In addition to the test
error and the test log loss, we also report the test area under
the ROC curve (AUC). We find that the LaGaBoost algo-
rithm outperforms all alternative methods in all three pre-
diction accuracy metrics for both the grouped data with a
high-cardinality categorical variable and the spatial data.

6 CONCLUSION

We have introduced a novel way for combining latent
Gaussian models, such as Gaussian processes and random
effects models, with boosting. This is done by applying
functional gradient descent to the negative logarithmic mar-
ginal likelihood of a generalized mixed effects model in a
boosting framework while jointly learning hyperpara-
meters. We have obtained increased prediction accuracy
compared to existing approaches in both simulated and
real-world data experiments. Future research can investi-
gate how the approximation used for the marginal likeli-
hood impacts properties such as prediction accuracy and
computational time of the LaGaBoost algorithm.
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