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Abstract—Wepresent an approach to enhancing the realism of synthetic images. The images are enhanced by a convolutional network

that leverages intermediate representations produced by conventional rendering pipelines. The network is trained via a novel adversarial

objective, which provides strong supervision at multiple perceptual levels. We analyze scene layout distributions in commonly used

datasets and find that they differ in important ways.We hypothesize that this is one of the causes of strong artifacts that can be observed

in the results of many prior methods. To address thiswe propose a new strategy for sampling image patches during training.We also

introducemultiple architectural improvements in the deep networkmodules used for photorealism enhancement.We confirm the benefits

of our contributions in controlled experiments and report substantial gains in stability and realism in comparison to recent image-to-image

translation methods and a variety of other baselines.

Index Terms—Photorealism enhancement, photorealism, image-to-image translation, style transfer
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1 INTRODUCTION

PHOTOREALISM has been the defining goal of computer
graphics for half a century. In 1977, Newell and Blinn [1]

surveyed a decade of work on this problem. In the ensuing
four decades, substantial further progress has been made,
due in part to physically based simulation of light trans-
port [2], principled representation ofmaterial appearance [3],
[4], and photogrammetric modeling [5]. These techniques
and their approximations have been integrated into real-
time rendering pipelines, substantially advancing the
realism of computer games [6]. Nevertheless, a look at
even the most sophisticated real-time games will quickly
reveal that photorealism has not been achieved. An inef-
fable difference in the appearance of simulation and real-
ity remains.

In recent years, a complementary set of techniques has
been developed in computer vision and machine learning.
These techniques, based on deep learning, convolutional
networks, and adversarial training, bypass physical model-
ing of geometric layout, material appearance, and light
transport. Instead, images are synthesized by convolutional
networks trained on large datasets. These techniques have
been used to synthesize representative images from a given
domain [7], [8], [9], to convert semantic label maps to photo-
graphic images [10], [11], [12], [13], [14], [15], [16], and to
attempt to bridge the appearance gap between synthetic
and real images [17], [18], [19], [20], [21], [22], [23], [24], [25].
Images synthesized by these approaches capture aspects of
photographic appearance that often elude even state-of-the-
art computer games. On the flip side, these approaches are
largely disconnected from the rendering pipelines that drive

computer games, can be hard to control, and often produce
jarring artifacts that would be unacceptable in production-
quality media.

In this work, we take a step towards melding these two
complementary routes to photorealism. We seek to build on
the infrastructure developed in the production of modern
games and enhance their photorealism via techniques
developed in the deep learning community. Our starting
point is a set of intermediate buffers (G-buffers) produced
by game engines during the rendering process [6], [26].
These buffers provide detailed information on geometry,
materials, and lighting in the scene. We train convolutional
networks with these auxiliary inputs to enhance the realism
of images produced by the rendering pipeline. To integrate
these buffers into the photorealism enhancement flow, we
design new network components that modulate features
from a rendered image according to information extracted
from the buffers.

We also seek to eliminate artifacts that can be seen in the
results of prior deep-learning approaches, which often hal-
lucinate objects. To this end, we analyze the datasets that
are commonly used for photorealism enhancement. Our
analysis reveals that their scene layouts differ in ways
that can explain artifacts commonly seen in prior work.
To better align the datasets and alleviate the artifacts, we
propose a new strategy for sampling image patches
during training. We further design a new adversarial
training objective that facilitates enhancements that are
geometrically and semantically consistent with the con-
tent of the input image.

Combining all of our contributions, our approach signifi-
cantly enhances the photorealism of rendered images
(Fig. 1). It can add gloss to cars (1st row), green parched hills
(2nd row), and rebuild roads (3rd row). Training it with dif-
ferent real-world image collections (e.g., Cityscapes [28],
KITTI [29], or Mapillary Vistas [30]) expresses the corre-
sponding visual styles in the output (Fig. 2).

Our analysis further suggests that standard metrics con-
found differences in style and content. Motivated by this
observation, we develop a new family of metrics that mitigate
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the effect of mismatched scene layouts and provide a finer-
grained assessment of realism atmultiple levels.

We compare the presented approach against a broad
array of strong baselines that represent diverse perspectives
on photorealism enhancement. We also conduct a percep-
tual experiment to assess photorealism. The results indicate
that our approach consistently produces the most realistic
results, by a wide margin. In all experiments, our approach
outperforms all baselines and sets a new state of the art in
photorealism enhancement.

2 RELATED WORK

Photorealistic images can be synthesized by simulating all
the physical processes involved in image formation. How-
ever, this simulation is computationally expensive, may not
be feasible at interactive rates, and requires physically accu-
rate models of scenes, objects, materials, and lighting. As a
result, a variety of approximations have been developed
that generate images that may not be physically correct, but
nevertheless appear realistic to varying extents [6], [31].

Methods for conditional image synthesis aim to learn
the complete image formation process from data [10], [11],
[12], [14], [32], [33], [34], [35]. These works often focus on

synthesizing images from semantic label maps. As such, the
synthesis is severely underconstrained. Since geometric
structure is only provided through the silhouettes of objects
and their composition in the label map, substantial ambigu-
ity remains, leading to visible artifacts and temporal incon-
sistency. Furthermore, the reliance on semantic label maps
requires annotated real-world data, which is extremely
laborious to create at large scale [28]. Instead of trying to
synthesize images, our approach enhances already ren-
dered images, integrates scene information to produce geo-
metrically and semantically consistent images, and does not
require any annotation of real data.

Image-based rendering techniques can produce results
that are indistinguishable from photographs by recycling
real imagery of a scene for rendering novel views [36], [37],
[38], [39], [40], [41], [42], [43], [44]. However, they require cap-
turing photos of the scene of interest beforehand and make it
difficult to manipulate captured scenes afterward. Further-
more, novel views need to be fairly close to the prerecorded
camera trajectory to avoid artifacts.

Another promising direction combines traditional render-
ing with data-driven approaches. Johnson et al. proposed to
improve the realismof rendered images by transferring nearest
neighbor patches from similarly structured photographs [45].

Fig. 1. We train convolutional networks to enhance the photorealism of rendered images, using intermediate buffers produced by a conventional ren-
dering engine. Left: frames from a modern computer game (GTA V) [27]. Right: same frames enhanced by our approach to mimic the style of City-
scapes [28]. Enhancements by our method are semantically consistent and non-trivial. For example, our method adds gloss to cars (1st row),
reforests parched hills to mimic German climate (2nd row), and paves roads with smoother asphalt (3rd row). Insets magnify marked regions.
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Liao et al. retrieved nearest neighbor patches in a learned fea-
ture space [46]. Reinhard et al.matched color distributions of
a source image to a target image [47] and showed that this
can enhance the realism of computer graphics images. Subse-
quent work introduced increasingly sophisticated techni-
ques for photographic style transfer between images [18],
[48], [49], [50], [51], [52], [53], [54]. While early CNN-based
methods required costly optimization per image [55],
improvements in feature normalization reduced computa-
tion [56], enabled transfer to new styles [57], and increased
semantic consistency [14], [34], [35]. Recent work has focused
on encoder/decoder structures, mixing content and style of
source and target images [53], [58]. Common to all style-
transfer and example-based approaches [24] is the depen-
dence on a favorable reference image. Differences in content
or layout between rendered and reference images hurt the
quality of enhanced images. This is especially problematic
for enhancing dynamic content. Our approach learns the
style from images through adversarial training and does not
require reference images for enhancement.

Our approach is aligned with work on unpaired image-
to-image translation, which learns a mapping from one
image collection to another [19], [20], [21], [59], [60], [61]. By
training on large datasets, these methods do not depend on
favorable reference images, and often learn to capture the
unique styles of datasets very well. However, as there are
no direct correspondences across image collections (e.g.,
through paired images), the methods need to learn suitable
correspondences implicitly. This is challenging and often

produces images that appear realistic at first glance, but
contain artifacts that are inconsistent with the input images.
Improving the consistency between input and output has
received a lot of attention and led to additional constraints
on this ill-defined problem. Notable improvements came
from cycle-consistency [59], [62], custom attention mod-
ules [63], temporal regularization [64], modeling sensor
noise [65], geometric constraints in the image plane [66],
constraints derived from depth maps [67], and contrastive
losses [60].

Many approaches to image synthesis or translation have
employed adversarial objectives, which involve a discrimi-
nator network that evaluates the realism of generated
images. The discriminator is commonly trained alongside a
network performing the image generation [10], [59]. One
intention of this setup is for the discriminator to learn high-
level semantic concepts to provide high-quality supervision
to the generator network. However, with a simple binary
classification objective, the discriminator may focus on low-
level textures and patches instead, since these already pro-
vide discriminative features. To direct attention to high-level
semantic content, a number of modifications have been pro-
posed. For example, the binary real versus fake decision can
be accompanied by a classification objective [68], [69]. Addi-
tional semantic segmentation maps can be concatenated to
the input image [12], [70], projected to a high-dimensional
feature space [8], [15], [71], processed via a separate network
stream [72], or guide an auxiliary classifier [73]. These works
use ground-truth annotations for guiding the discriminator.

Fig. 2. Targeting different real-world datasets. We train our method to enhance images from GTA (top left) with KITTI, Cityscapes, and Vistas as tar-
get datasets. Our method is able to reproduce the characteristic appearance of these datasets (e.g., sensor noise in KITTI, saturation in Cityscapes,
fine textures in Vistas) while keeping the structure of the original GTA images. Insets show sample images from the respective target datasets.
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While this provides ground-truth semantic information, it
restricts the image collections available for training to
densely annotated datasets compatible with the synthetic
labelmaps at hand. In ourwork, we leverage a robust seman-
tic segmentation network [74] to provide label maps that are
approximately consistent for synthetic and real images. Pre-
viously, Hoffman et al. used a segmentation network for syn-
thetic-to-real translation [19]. In contrast to prior work [19],
[23], we neither train the segmentation network on any of
our datasets nor apply it to enhanced images. This is for two
reasons. First, training a segmentation network on synthetic
data is prone to overfitting. Thus a network trained in this
way may not provide semantically consistent guidance for
the transition from synthetic to real images during the train-
ing of the generator. Second, incorporating a segmentation
network during training can result in generated images that
are easy for the segmentation network to parse but are not
necessarilymore realistic.

Providing the discriminator with additional semantic
information supports adaptive processing for different
semantic categories. Incorporating the information into the
learning objective is an even stronger type of supervision,
as the distinction between different objects is explicitly
learned. However, datasets that are commonly used in syn-
thetic-to-real translation are limited in their diversity, espe-
cially in the context of urban driving [27], [28], [75]. Thus
high-capacity networks may overfit to spurious artifacts in
the data, leading to suboptimal performance of the genera-
tor [76], [77]. Prior research addressed this overfitting via
regularization [78], [79] or augmentation [76]. We take inspi-
ration from the neural patch discriminator of Li and
Wand [80] and train our discriminator on feature maps
from a pretrained VGG network. In contrast to the single-
image style transfer approach of Li and Wand, we use mul-
tiple feature maps extracted from different layers of the
VGG network, and train a discriminator on each.

Prior work hypothesized that differences in scene layout
may be a key contributing factor in suboptimal performance
in image translation [19] or in training semantic segmenta-
tion models [81], [82], and addressed this challenge via reg-
ularization [78], semantic consistency losses [19], [83], and
matching source and target images [81]. Akin to the work of
Li et al. on semantic segmentation [81], we address the lay-
out mismatch via semantics-aware sampling. However, Li
et al. train a dedicated network for matching samples across
datasets at image level, which significantly reduces the sam-
ples available for training, and hence diversity. We devise a
simpler sampling strategy that requires no training and
operates at the patch level, leaving sufficiently many
diverse samples for training.

Our work is inspired by hybrid approaches that integrate
the conventional rendering pipeline in a more structured
way, such that information generated during rendering can
be subsequently exploited by a learning-based approach. Nal-
bach et al. demonstrated that a CNN can learn to shadeG-buf-
fers rendered by a conventional rendering pipeline [84].
AlHaija et al. combined this approach with an adversarial loss
to improve the realism of rendered images [85]. We introduce
a different network structure that better integrates the G-buf-
fers, as well as a new discriminator architecture and training
objective, leading to significantly better results.

Bi et al. developed a pipeline that enhanced the realism of
low-quality renderings of indoor scenes [86]. Their approach
relies on the availability of paired low-quality and high-qual-
ity renderings of the same scenes, involves a number of syn-
thesis stages with different losses, and produces results of
limited fidelity. Our work is different in several ways. We
assume higher-quality input, as produced by modern com-
puter games. We do not rely on the availability of rendered
images at different levels of quality, but do utilize auxiliary
buffers produced by rendering engines. Our approach also
differs in the network architecture, training objectives, and
the application domain. We demonstrate significantly better
results, with temporal consistency and measurably higher
realism than high-production-value commercial games.

3 METHOD

3.1 Overview

Fig. 3 provides an overview of our approach. Our method
consists of an image enhancement network, which takes as
input a rendered image and outputs an enhanced image. To
facilitate the enhancement, we provide additional inputs to
the network. Specifically, we extract intermediate rendering
buffers (G-buffers) from the graphics pipeline. These G-buf-
fers provide information on the geometry, materials, and
lighting in the scene. They are processed by a G-buffer
encoder network, which outputs G-buffer features at multi-
ple scales. This is described in Section 3.2. The G-buffer fea-
tures are then provided as input to the image enhancement
network, where they modulate image features.

The image enhancement network is based on HRNetV2,
which demonstrated strong performance on a variety of
dense prediction tasks [88] (see Fig. 4). The HRNet processes
an image via multiple branches at different resolutions.
Importantly, one feature stream is kept at relatively high res-
olution (14 of the input resolution) to preserve fine image struc-
ture. We modify the HRNet architecture as follows. First, we
replace the initial strided convolutions by regular convolu-
tions to have the network operate on the full resolution and
preserve even finer detail. Second, within the residual blocks
in each branch we replace the batch normalization layers by
rendering-aware denormalization (RAD)modules, described
in Section 3.2. The modified blocks modulate the feature
streams based on information extracted from the G-buffers.

Fig. 3. Our approach is built around an image enhancement network that
transforms a rendered image. In addition to the image, the network
ingests G-buffer feature tensors at multiple scales. The tensors represent
rendering information from a conventional graphics pipeline, encoded by
a G-buffer encoder network. We train both networks jointly via an LPIPS
loss (to retain the structure of the rendered image) and a perceptual dis-
criminator (to maximize the realism of the enhanced image).
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The image enhancement network is trainedwith two objec-
tives. First, an LPIPS loss [89] penalizes large structural differ-
ences between the input and output images. Second, a
perceptual discriminator evaluates the realism of output
images. The discriminator, described in Section 3.3, is trained
to distinguish images enhanced by our network and real pho-
tographs from a target dataset. During training, a specific
sampling strategy for selecting real and synthetic image
patches significantly reduces artifacts that are commonly
observed in prior work. This is described in Section 3.4.

3.2 Leveraging Conventional Rendering Pipelines

Many real-time rendering methods factor the rendering pro-
cess into multiple passes. A particularly popular approach is
deferred shading or deferred lighting, which decouples visibility
and shading computations by caching intermediate render-
ing results in image-sized G-buffers [6], [26], [90], [91].
Although G-buffers generally contain no explicit semantic
information, they are consistent with semantic entities [27],
[92]. Since they capture geometry and material properties,
using them as auxiliary input allows a network to condition
the synthetic-to-real translation on the geometry, materials,
and illumination of a scene.

Extraction of G-buffers. We base our work on the popular
game Grand Theft Auto V. To obtain G-buffers from the
game, we follow recent approaches to extracting rendering
resources from computer games [27], [87], [93]. Specifically,
we extract G-buffers that provide information about geomet-
ric structure (surface normals, depth), materials (shader IDs,
albedo, specular intensity, glossiness, transparency), and
lighting (approximate irradiance and emission, sky, bloom),
illustrated in Fig. 5. We further augment this set with two
quantities we derive from the G-buffers. First, we reflect for
each pixel the view vector at the surface normal to obtain a
reflection vector. Second, we compute the dot product
between the surface normal and the reflection vector.

While we extract an extensive set of G-buffers for pro-
viding comprehensive information about the scene to the

generator network for best results, our experiments in Sec-
tion 4.4 confirm that substantial enhancements can be
achieved even if only a subset of the buffers is available.

G-buffer encoder. The G-buffers we extract mix one-hot
encodings for material information, dense continuous values
for normals, depth, and color, and sparse continuous infor-
mation for bloom and sky buffers. For some image regions
the G-buffers are zero, depending on the rendered content.
Few objects are transparent. And sky regions, for example,
contain neither geometry normaterial information.

To account for the different types of data in the G-buffers,
we process the G-buffers via a G-buffer encoder (Fig. 6). The
G-buffer encoder consists of multiple network streams that
process the same set of G-buffers. We fuse the streams
based on masks derived from the semantic segmentation
maps. This way, the streams can map information from the
G-buffers differently for certain types of objects.

Each stream comprises two residual blocks, shown in
Fig. 7.

Let fc denote a feature tensor from a stream targeting
object class c, and let mc denote a mask for objects of that
class. We then fuse the tensors via

P
c mc � fc.

The fused feature tensors are further processed via resid-
ual blocks. We extract a feature tensor before each down-
sampling residual block to obtain tensors at multiple scales.
The feature tensors are ingested by the image enhancement
network via RAD modules.

Rendering-Aware Denormalization (RAD). Our rendering-
aware denormalization modules take inspiration from
recent work on modulating feature tensors based on exter-
nal information [9], [14], [34], [35]. In contrast to prior work,
which conditions on semantic classes [14], style features [34],
[35], optical flow [16], or noise [9], our modules learn
weights from a comprehensive scene representation. Specif-
ically, our modules transform a feature tensor received
from the G-buffer encoder network via 2 residual blocks
(Fig. 7). The transformed features condition elementwise
scale and shift weights g and b. The weights represent the

Fig. 4. Image enhancement network. We replace the batch normalization layers within HRNet by rendering-aware denormalization (RAD), forming
RAD blocks (RB). Each branch of the HRNet receives a G-buffer feature tensor at a matching scale (different scales are coded by color). Original fea-
ture streams are shown in gray. We omit initial stem convolutions as well as transition and fusion layers for clarity.

Fig. 5. For a rendered image (left), G-buffers represent information on geometry (e.g., normal, depth), materials (e.g., albedo, glossiness), and lighting
(e.g., atmosphere). A semantic segmentation, which can be derived from theG-buffers [27], [87], provides further high-level information on the scene.
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parameters of an affine transformation of normalized image
features (Fig. 8).

Controlled experiments reported in Section 4.4 confirm
that RAD modules deliver better results than SPADE [14]
when applied to ingesting G-buffer features into the image
enhancement network.

3.3 Perceptual Discriminator

During training of the image enhancement network, a per-
ceptual discriminator evaluates the realism of enhanced
images. It consists of a robust semantic segmentation net-
work, a perceptual feature extraction network, and multiple
discriminator networks (Fig. 9). We employ MSeg [74] for
semantic segmentation and VGG-16 [95] for perceptual fea-
ture extraction. Both networks are pretrained and are not
optimized during training of the image enhancement net-
work. We apply the segmentation network to real images
from a target dataset and unmodified rendered images.
This provides compatible semantic information for real and
synthetic images. It also enables training on datasets with-
out ground-truth annotations. In practice, we apply the seg-
mentation network once to all images and cache results.

Prior work trained a segmentation network on synthetic
data and applied it during training to ensure semantic con-
sistency [19]. We avoid this as networks trained on synthetic

data tend to generalize poorly to real data. Applying such a
network to original and enhanced images can yield substan-
tially different segmentations. We also avoid backpropagat-
ing through the segmentation network as this may result in
images that are easy to segment but not necessarily realistic.

Applying the VGG network to real and enhanced images
provides perceptual features at several levels of abstraction.
We extract feature tensors from the relu layers of the VGG
and train a discriminator network for each level. This way
each network specializes on a different perceptual level.

The discriminator networks (Fig. 9) each consist of a stack
of five Convolution-GroupNorm-LeakyReLU (CGL) layers,
which produces a 256-dimensional feature tensor y, and a
Convolution-LeakyReLU-Convolution (CLC) layer, which
projects the feature tensor down to a single-channel map z.
The feature tensor y is further fused with an embedding ten-
sor e via an inner product. The embedding tensor contains a
256-dimensional embedding per pixel, learned from the label
maps discussed above. The inner product of features and
embeddingswas used in prior work [8], [15], [71].

Further details on the architecture of the discriminator net-
works are provided in the supplementarymaterial, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3166687.

Fig. 6. G-buffer encoder. The G-buffer encoder accounts for different
data types and varying spatial density of the G-buffers. It processes
them via multiple streams (0–c), which are fused into a joint representa-
tion in accordance with one-hot-encoded object IDs. The features are
further transformed via residual blocks (see Fig. 7), of which the orange
blocks downscale the tensors. The output scale of the feature tensors is
red, the channel width is blue. Scales match with branches in the image
enhancement network.

Fig. 8. Rendering-aware denormalization (RAD) modulates image feature
tensors via encoded geometry, material, lighting, and semantic information
from a conventional rendering pipeline. The image features are normalized
via group normalization, then scaled and shifted via per-element weights
g; b. The weights are learned and adapt to G-buffer features received from
theG-buffer encoder (Fig. 6). To better adapt the weights, we transform the
G-buffer features via three residual blockswithin eachRADmodule.

Fig. 9. Perceptual discriminator. A perceptual discriminator evaluates the
realism of enhanced images. It consists of pretrained robust segmenta-
tion (MSeg [74]) and perceptual (VGG [95]) networks (green). These
provide high-level semantic information via label maps and perceptual
feature tensors. The maps and tensors are ingested by discriminator
networks, which produce a realism score map. For clarity, we only show
a single discriminator network, indicated by the dashed rectangle.

Fig. 7. Residual blocks. In the G-buffer encoder and RAD modules we
employ residual blocks. They consist of convolutional layers (kernel size
3) with spectral normalization [94] and ReLUs. Changes in channel width
or downscaling are performed in Conv 1 and Conv P. If channel width
and resolution are constant, the projection via Conv P is omitted.
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3.4 Layout Differences Cause Artifacts

In an adversarial setup as we employ it, a discriminator is
trained to classify images, assigning a real or fake label to
each image or pixel. During training, the discriminator will
pick up any feature that allows it to easily discriminate real
and fake images. For example, if sensor noise is present in
real images, but not in synthetic ones, the discriminator will
quickly learn to correctly label a noisy patch as real. Back-
propagating the gradient from the discriminator to the gen-
erator encourages the generator to add noise to synthetic
images, making them appear more realistic.

A problem arises when fake and real images can be dis-
tinguished by relying on spurious features. For example,
the probability of seeing sky at the top of an image from
GTA V is much higher than for Cityscapes, as can be seen in
the probability density maps in Fig. 10. Conversely, at the
same position it is much more likely to find trees in City-
scapes than in GTA. Thus, a classifier trained on uniformly
sampled images from both datasets may easily identify
(real) images from Cityscapes by checking the top of the
image. If the top contains some texture resembling trees, it
is more likely to be real. Putting this discriminator to work
in an adversarial training setup will push the generator to
place trees in the sky.

Confirming evidence for this hypothesis comes from
recent methods that employ GANs to translate GTA V to
Cityscapes – they indeed hallucinate trees at the top or star
logos at the bottom of images, as shown in Fig. 11.

Sampling matching patches. Our analysis suggests that ran-
domly sampled images from GTA and Cityscapes differ in
their layout in expectation, although they may contain the
same type and quantity of objects [87]. This suggests that
the standard strategy of comparing image patches that are
as large as possible to maximize context [19], [20], [60], [78]
is suboptimal for enhancing realism. We propose a different
sampling strategy.

First, we shrink the crop size to an area of only about 7%
of the full image. This contrasts with prior work which
ingests 30–50% of an image as a single patch. Experiments
in Section 4.4 confirm that this simple modification already
improves results significantly.

Second, we match sampled patches across datasets to bal-
ance the distribution of objects presented to the discrimina-
tor. Specifically, we process patches from synthetic images
with a VGG network [95], pretrained on ImageNet [96], and
extract feature tensors at the last relu layer.We crop patches
at a width of 196 pixels, which corresponds to the receptive
field of VGG at this layer. We thus obtain a 1� 1� 512
dimensional feature vector per patch. Let fðpiÞ denote the
feature vector computed from patch pi. We consider two
patches asmatching if they have a cosine similarity above 0.5:

PmatchðpiÞ ¼ pj 2 Preal

����� fðpiÞ � fðpjÞ
jjfðpiÞjjjjfðpjÞjj > 0:5

( )
; (1)

where Preal is the set of patches extracted from real images.
For efficiency, we unit-normalize fðpiÞ and compute the

L2 distance via FAISS [97]. Per image of a dataset, we sam-
ple 75 patches. For each patch from the synthetic dataset,
we keep the 10 nearest patches of the target dataset, result-
ing in 13 milion pairs. During training, we sample from
these pairs such that all pixels from the synthetic dataset
appear at the same frequency. Examples of matching
patches across GTA and Cityscapes are shown in Fig. 12.

3.5 Implementation & Training Details

We train the generator and discriminator with an L2 loss.
The generator is further regularized with an LPIPS loss
(� ¼ 5) [89]. We train all networks with Adam [98] (b1 ¼ 0:9,
b2 ¼ 0:999, weight decay 0.0001). The learning rate is set to
0.0001 and halved every 100K iterations. We clip gradient
magnitudes greater than 1000 for all networks. All discrimi-
nators are regularized with a gradient penalty on real data

Fig. 10. Scene layouts are different in GTA (top) and Cityscapes (bot-
tom). This affects the probability of seeing certain classes at specific
positions. For example, GTA is more likely to have sky at the top of the
image, while Cityscapes is more likely to have trees there and a star
logo on the hood of the car. Fig. 11 illustrates the impact of this structural
mismatch on photorealism enhancement.

Fig. 12. Matching patches across datasets. We show patches sampled
from GTA (top) and corresponding patches from Cityscapes (bottom).

Fig. 11. When transforming images from GTA (left) to match the style of Cityscapes, GANs commonly hallucinate objects such as trees in the sky or
star logos at the bottom (remaining columns, highlighted).

1706 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 2, FEBRUARY 2023



(g ¼ 0:06) [79]. We train with batch size 1 for 1M iterations
(controlled experiments 600K).

Adversarial training can become unstable if discrimina-
tors become too strong and cease to provide meaningful
gradients to the generator [76], [99]. In addition, we have
encountered training difficulties that stem from the use of
multiple discriminators. For example, we have observed
that discriminators that operate on low-level VGG features
tend to learn faster, and are thus prone to dominating the
training and overfitting. To stabilize training and prevent
overfitting of individual discriminator networks, we throttle
the training speed of each discriminator by randomly skip-
ping the backward pass for this discriminator with a certain
probability. The probability of skipping the backward pass
is determined by the current performance of the discrimina-
tor. Intuitively, the better a discriminator becomes at judg-
ing realism, the closer it is to overfitting, and the less
frequently it will be updated by our training protocol. This
strategy keeps all discriminators roughly at the same level
of performance as training progresses. A similar mechanism
was used in ABC-GAN [100] to balance generator and dis-
criminator training. We use this idea to balance multiple
discriminators. Our computation of the probability of skip-
ping the backward pass for a given discriminator is inspired
by the augmentation probability of Karras et al. [76]. (Differ-
ent from Karras et al., we take into account both real and
fake samples in computing the update heuristic.)

4 EVALUATION

4.1 Metrics

A number of metrics for evaluating the realism of generated
images have been proposed. The most common are the
Inception Score (IS) [101], the Fr�echet Inception Distance
(FID) [102], and the Kernel Inception Distance (KID) [103].
Among these, the KID has been shown to be superior [103],
and we use it in our evaluation for this reason.

However, our analysis in Section 3.4 on the structural shift
across datasets implies that quality assessment using the KID
may be misleading due to mismatched scene layouts. The
KID compares features extracted from the pool3 layer of an
inception network [104], which corresponds to high-level
semantic concepts. Thus, roughly speaking, the KID meas-
ures distance between semantic structure, but not necessarily
a difference in perceived realism. This is problematic, since in
enhancing the photorealism of synthetic images we aim to
retain the scene structure and semantic content of the source
image, rather than shift them towards scene structures that
may be more common in the real-world dataset. Put another
way, we can triviallyminimize the KID by reproducing a real
image from the target dataset and ignoring rendered images
altogether. Thus, preserving semantic content poses a lower
bound on the KID, a level below which the KID should not be
driven. Overall, the KID objective is misaligned with the
broader photorealism enhancement objective and is a prob-
lematic metric for this reason.

We propose a different set of metrics that alleviate this
problem. Our metrics build on the KID, but incorporate
some key changes. In order to better assess the difference
between images at several perceptual levels, we replace the
features from the inception network with features extracted

at different layers of VGG, since this architecture has been
widely used for assessing perceptual image quality [11], [89].
To address the problem of mismatched layouts in the source
and target datasets, we align the distribution of patches for
which we extract features. Specifically, we extract quadratic
patches of 18 of the image size from the semantic label maps of
source and target datasets. We downsample these patches to
a resolution of 16� 16 to obtain a 256-dimensional vector.
The vectors obtained in this way correspond to ground-truth
semantic descriptions of the patches. For each such vector
from the synthetic dataset, we find the nearest neighbor in
the set of vectors from the real dataset.We retain pairs of vec-
tors with more than 50% matching entries. This way, we
obtain a set of semantically corresponding patches from the
two datasets (Fig. 13).

More formally, let s denote the vector encoding of a
patch and ½�� the Iverson bracket. We sample the nearest
neighbor patch for pi by

NNðpiÞ ¼ argmax
pj

X
k

skðpiÞ ¼ skðpjÞ
� �

; (2)

where k iterates over elements in the vector encoding.
Following the construction of KID [103], we define our

metric as the squared maximum mean discrepancy (MMD)
between features from a VGG-16, computed on correspond-
ing patches.1 The different feature representations of the
VGG give rise to a family of metrics, characterized by the
layer at which feature maps are extracted. We extract fea-
tures at relu1-2, relu2-2, relu3-3, relu4-3, relu5-
3, and term the corresponding metrics skvd� for semantically
aligned Kernel VGG Distance with a subscript indicating the
corresponding VGG relu layer.

4.2 Comparison to Prior Work

For the comparison to prior work, we select a number of base-
lines that represent multiple lines of work that can be applied
to photorealism enhancement. For methods that require
semantic segmentation labels as input, we provide maps for
synthetic and real images predicted by MSeg [74], the same
robust segmentation network we employ in the discriminator
of ourmethod (see the supplement, available online for exam-
ples). We report overall results in Table 1 and show examples
in Fig. 14 and in the supplement, available online.

Color transfer. We compare against classic work on color
transfer. Namely, we evaluate the seminal work of Reinhard
et al. [47] (Color Transfer) and the color distribution transfer

Fig. 13. Semantically corresponding patches sampled for calculating our
sKVD metrics.

1. To compute the MMD, we use the same polynomial kernel as Bin-
kowski et al. [103].
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(CDT) of Piti�e et al. [49]. Modifications by these methods are
restricted to colors of individual pixels. While this prevents
enhancements of textures, it also prevents the introduction
of artifacts common to more aggressive learning-based
approaches, thus keeping the resulting images fairly close
to the original input (Fig. 14). Consequently, the largest
improvements can be observed in the metrics for low-level
features (sKVD1�2 and sKVD2�2), where the gains match
the level of more recent deep learning approaches.

Photo style transfer. We compare against a closed-form
solution for fast photographic style transfer (PhotoWCT) [53]
and the state of the art, based on wavelet transforms
(WCT2) [54]. Both photo style transfer approaches require a
style image and semantic segmentation maps for both source
and style image. While color transfer methods apply transfor-
mations to individual pixel colors, photo style transfermethods
perform transformations in learned higher-level feature spaces
guided by semantic segmentations, and thus modify images
more strongly. However, photo style transfer methods rely on
a favorable style image thatmatches that input synthetic image.
When the input image changes, as happens during interactive
exploration of a synthetic environment, photo style transfer
can produce unrealistic color shifts or temporal instability.

Conditional image synthesis. We compare against a
representative approach to conditional image synthesis,
SPADE [14], as it dominates preceding approaches (e.g., [10],
[11], [12]). We use a model pretrained for synthesizing urban
street scenes, provided by the authors. (The model is pre-
trained on segmentation ground-truth from Cityscapes,
which is compatible with GTA.) SPADE considerably under-
performs othermethods. This can be explained by two factors.
First, synthesizing a photo from only a semantic segmentation
map is more challenging than modifying a given image. Sec-
ond, since SPADE is trained to synthesize images from the
Cityscapes dataset (and does so quite well), the distribution
shift in scene layouts between Cityscapes and GTA takes this
model far outside its training distribution.

Image-to-image translation. We compare against CyCADA
[19], which was specifically designed for adapting synthetic
images to real photos. To this end, it augments the commonly
used pixel-level cycle-consistency with a feature-level cycle-
consistency and a semantic consistency loss. The latter

leverages corresponding semantic labels to preserve the con-
tent of the synthetic images. As CyCADA was originally
trained on GTA V and Cityscapes already, we use images
provided by the authors. We further compare against
MUNIT [20], CUT [60], and TSIT [35]. MUNIT extends the
CycleGAN [59] architecture to multi-modal translation and
adds a domain-invariant perceptual loss. CUT and TSIT aban-
don the cycle consistency constraint. CUT builds instead on
contrastive learning, and TSIT uses an exemplar style image
for transferring style features.

We find that among the various types of baselines, image-
to-image translation methods perform best, and within this
group CyCADA demonstrates the best results. Although
CyCADA makes use of more explicit semantic information
than other methods that use a perceptual loss, it still halluci-
nates extraneous objects (see Fig. 11). A possible reason may
be its segmentation network, which is pretrained on unmodi-
fied synthetic images and is not updated during training of the
image synthesis network. Thus CyCADA implicitly assumes
that the drift between synthetic and real images will be limited
and the segmentation network will continue to work reliably.
Another possible reason is training on large image patches
(see Section 3.4 for the associated discussion).

4.3 Perceptual Experiment

We additionally compare our approach to all baselines in a
large-scale crowdsourced perceptual experiment. The setup
of the perceptual experiment follows prior work and is
based on pairwise comparisons with no time limit [11]. We
sample 500 images from GTA and compare enhancements
from our method to baselines. For each image, our method
is paired with each baseline. The pairs are presented to
crowd workers. Each pairing is shown 10 times in total
(across workers), resulting in 50,000 comparisons in all. The
assignment of pairs to workers, their order of presentation,
and the left-right order within pairs are all randomized. To
filter unreliable workers we include sentinel tasks. The
results are shown in Fig. 15. We find that images enhanced
by our method are consistently considered more realistic
than all baseline methods. The results are statistically signif-
icant for all methods (error bars indicate 95% confidence
intervals).

TABLE 1
Comparison to Prior Work. All Methods Were Trained on the Cityscapes Dataset. Performance Reported as Kernel Inception

Distance �1000 (KID) and Semantically Aligned Kernel VGG Distance �1000 (sKVD). Lower is Better

Gray values indicate standard deviation.
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4.4 Controlled Experiments

To assess the effect of specific ideas in our approach, we
conduct a set of controlled experiments. We evaluate our
sampling strategy, the importance of G-buffers, architec-
tures for ingesting G-buffers, and different setups for the
adversarial loss. The results are shown in Table 2. The first
column identifies the experimental question and the second
row lists the baseline condition. The first row provides ref-
erence metrics for unmodified GTA images. The last row
provides the metrics for our full approach.

How to sample? To assess how the patch sampling strategy
affects photorealism enhancement, we compare uniform

sampling with different patch sizes (196, 256, 400) to the sam-
pling of matching patch pairs (Ours). The results are consis-
tent with our hypothesis that sampling at smaller patch sizes
reduces themismatch between source and target datasets.We
observe stronger hallucination artifacts for larger patch sizes
(Fig. 16, columns 2 & 3). Sampling at smaller patch sizes
reduces the sKVD considerably. Sampling matching patches
further reduces sKVD atmedium to high levels of abstraction,
while slightly increasing sKVD at the lowest level (Table 2,
How to sample?). This may be explained by the benefits of
diversity when uniformly sampling patches, offset by the dis-
tributionmismatch for higher levels.

Fig. 14. We compare our results to original GTA images and a number of baselines. Our results are structurally consistent with the input. ColorTrans-
fer does not modify textures. WCT2 strongly depends on a favorable reference image. SPADE fails due to differences in the scene layouts. MUNIT
hallucinates trees, and CyCADA and CUT hallucinate star logos. Additional results for all baselines are shown in the supplement, available online.
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Do G-buffers help? The set of available G-buffers
depends on the rendering method used by the game and
the method for capturing G-buffers. For example, record-
ing at video rates and lack of deep integration with the
game engine limited the set of G-buffers recorded for the
VIPER dataset [87]. (The set of G-buffers available for VIPER
includes normal, reflection, depth, normal � view, and
semantic segmentation.) To investigate the effect of the avail-

able set of G-buffers on photorealism enhancement, we com-
pare three conditions: not using G-buffers at all (No G-
buffer), the limited set of buffers available for VIPER [87]
(VIPER), and our full set.

We find that without any G-buffers, enhanced images are
significantly less realistic at all but the lowest level. Without
any auxiliary information provided by the G-buffers, the
network seems to focus much more on low-level features.
Adding the buffers from VIPER improves realism at all lev-
els, with the strongest effects observed at low and medium
levels. With our full set, the sKVD1�2 is higher, which sug-
gests that the network allocates more capacity to enhancing
mid- and high-level features, for which sKVD is reduced.

How to ingest G-buffers? We investigate several strategies
for ingesting the G-buffers into the image enhancement net-
work. The first is to simply append them to the rendered
image (Concat). This corresponds to the strategy employed
by AlHaija et al. [85]. As this variant does not treat G-buffers
in any special way, RAD modules are not required, and we
use instance normalization instead. This condition uses a
standard HRNet architecture for image enhancement (no
RAD modules or RAD blocks). In the second condition, we
replace our RAD modules by SPADE modules [14]
(SPADE). The third condition is our full approach, which
uses our RAD modules (last row of Table 2).

Fig. 15. Perceptual experiment. Randomized blind unlimited-time pair-
wise comparisons of corresponding images. Values indicate percentage
of comparisons in which our method was considered more realistic than
the alternative. Chance is at 50%, indicated by the dashed line. Error
bars indicate 95% confidence intervals.

TABLE 2
Controlled Experiments. Each Specific Idea in Our Approach Outperforms the Respective Baselines. In Each Condition, We Train

for 600K Iterations on GTA and Cityscapes. Lower is Better

Gray values indicate standard deviation.

Fig. 16. How to sample? Uniform sampling (columns 2–4) and larger patch sizes (columns 2 and 3) lead to greater mismatch between source and
target datasets, inducing artifacts such as hallucinated trees (red) and stars (orange). These can be avoided with our sampling strategy (right).
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The results indicate that simple concatenation yields bet-
ter results than the SPADE modules. The results with
SPADE modules are volatile across the dataset, ranging
from realistic images to complete failures with strong arti-
facts and color shifts (Fig. 17, middle column). In contrast,
our results with RADmodules are of consistently high qual-
ity (Fig. 17, right column). This is confirmed by all metrics in
Table 2.

Which discriminator? We now assess the importance of
specific ideas in the perceptual discriminator. As a baseline
we pick the PatchGAN discriminator since it is standard in
image-to-image translation [10], [12], [14], [20], [32], [34],
[35]. Specifically, the PatchGAN condition uses four dis-
criminator networks that each directly ingest images at a
different scale, without applying a VGG-16. The network
stems share the same architecture as our discriminator net-
works, except for the projection of segmentations, which is

not part of the PatchGANarchitecture. That is, they only con-
sist of a CGL-block and a CLC-layer. In the next condition,
we remove the robust segmentation network from our
approach (No projection). In the third condition, we train the
discriminator without adaptively throttling the different dis-
criminator networks as described in Section 3.5 (No adaptive
backprop). The fourth condition is our full approach (last
row of Table 2).

As reported in Table 2, the results with the PatchGAN
discriminator are significantly less realistic. This is illus-
trated in Fig. 18. The projection layer and adaptive backpro-
pagation both help, but at different perceptual levels.
Removing adaptive backpropagation hurts sKVD at all but
the highest level. Removing the projection layer increases
sKVD at the higher levels. Its effect is illustrated in Fig. 19.
The combination of projection and adaptive backpropaga-
tion is beneficial when all levels are taken into account.

Fig. 17. How to ingest G-buffers? Enhancement of GTA images (left) using SPADE modules (middle) is highly volatile across the dataset (compare
the top and bottom rows). Our RAD modules yield more consistent results (right).

Fig. 18. Which discriminator? Our perceptual discriminator (right) is more effective than a PatchGAN discriminator (middle). Note the stronger
enhancements such as lights and reflections on the car on the right.

Fig. 19. Which discriminator?, continued. Adding the projection of semantic embeddings to the discriminator removes artifacts.
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4.5 Targeting Other Datasets

In addition to the Cityscapes dataset, we demonstrate
enhancing images of GTA tomimic the appearance ofMapil-
lary Vistas [30] and KITTI [29]. Fig. 2 showcases the different

appearances. We provide more examples from Vistas in
Fig. 20 and in the supplemental material, available online. In
Table 3, we compare original GTA images and images
enhanced by our approach via the KID. Here we refrain from

Fig. 20. More results of enhancing GTA images with Mapillary Vistas as the target dataset. Our method rebuilds roads and makes car paint more
glossy (rows 1 & 2). It further increases saturation to match the vibrant colors of Vistas (row 3), reduces haze (row 4), and adjusts the intensity of
Fresnel reflections (row 5). Insets magnify marked regions.
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computing the sKVD as the existing ground truth semantic
annotations of Vistas andKITTI differ fromGTAandmanual
annotation of the datasets would be a non-trivial amount of
work. We observe a considerable reduction of the KID for
our enhancements on all datasets. This indicates that our
method significantly enhances the realism of GTA images
regardless of the dataset being used as a target.

5 CONCLUSION

Our approach significantly enhances the realism of ren-
dered images. This is confirmed by a comprehensive evalu-
ation of our method against strong baselines. Intuitively,
our method achieves the strongest and most consistent
results for objects and scenes that have clear correspond-
ences in the real dataset; our method excels at road textures,
cars, and vegetation. Objects and scenes less common in the
real images (e.g., close-up pedestrians) are modified less
convincingly. Overall, our approach produces high-quality
enhancements that are geometrically and semantically
consistent with the input images while matching the style of
the respective dataset.

Our method integrates learning-based approaches with
conventional real-time rendering pipelines. We expect our
method to continue to benefit future graphics pipelines and
to be compatible with real-time ray tracing. Inference with
our approach in its current unoptimized implementation
runs at 2fps on a Geforce RTX 3090 GPU. Since G-buffers
are produced natively on the GPU, our method could be
integrated more deeply into game engines, increasing effi-
ciency and possibly further advancing the level of realism.

Additional results are shown in the supplementary
video: https://youtu.be/P1IcaBn3ej0

Images produced by our method are structurally consis-
tent with the input scenes, which can facilitate the use of
ground-truth annotations that may be available for syn-
thetic data [27], [87]. To support future research, we will
release enhanced images for the GTA V and VIPER datasets.
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