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Abstract—Fitting regression models with many multivariate responses and covariates can be challenging, but such responses and

covariates sometimes have tensor-variate structure. We extend the classical multivariate regression model to exploit such structure in

two ways: first, we impose four types of low-rank tensor formats on the regression coefficients. Second, we model the errors using the

tensor-variate normal distribution that imposes a Kronecker separable format on the covariance matrix. We obtain maximum likelihood

estimators via block-relaxation algorithms and derive their computational complexity and asymptotic distributions. Our regression

framework enables us to formulate tensor-variate analysis of variance (TANOVA) methodology. This methodology, when applied in a

one-way TANOVA layout, enables us to identify cerebral regions significantly associated with the interaction of suicide attempters or

non-attemptor ideators and positive-, negative- or death-connoting words in a functional Magnetic Resonance Imaging study. Another

application uses three-way TANOVA on the Labeled Faces in the Wild image dataset to distinguish facial characteristics related to

ethnic origin, age group and gender. A R package totr implements the methodology.

Index Terms—CP decomposition, HOLQ, HOSVD, kronecker separable models, LFW dataset, multilinear statistics, multiway regression,

random tensors, suicide ideation, tensor train format, tensor ring format, tucker format

Ç

1 INTRODUCTION

THE classical simple linear regression (SLR) model (with-
out intercept) relates the response variable yi to the

explanatory variable xi as yi ¼ bxi þ ei with VarðeiÞ ¼ s2

for i ¼ 1; 2; . . .; n, where b is the regression coefficient
parameter and s2 is the variance parameter. A natural
extension of SLR for vector-valued responses and explana-
tory variables is the multivariate multiple linear regression
(MVMLR) model

yyi ¼ Bxxi þ eei; VarðeeiÞ ¼ S; (1)

where ðyy1; xx1Þ; ðyy2; xx2Þ; . . .; ðyyn; xxnÞ are vector-valued
responses and covariates and ðB;SÞ are parameters. The
number of parameters relative to the sample size in (1) is
greater in the MVMLR model that in its SLR counterpart
because the parameters ðB;SÞ are matrix-valued [1]. Several
methodologies, for example, the lasso and graphical lasso
[2], [3], envelope models [4] and reduced rank regression
[5], have been proposed to alleviate issues arising from the
large number of parameters in (1). However, these method-
ologies are only for vector-valued observations and do not

exploit their underlying structure that may further reduce
the number of necessary parameters, in some cases making
computation feasible. Here we consider tensor- or array-
structured responses and covariates that arise in many
applications, such as the two motivating examples intro-
duced next.

1.1 Illustrative Examples

1.1.1 Cerebral Activity in Subjects at Risk of Suicide

The United States Center for Disease Control and Preven-
tion reports that 47,173 Americans died by suicide in 2017,
accounting for about two-thirds of all homicides in that
year. Accurate suicide risk assessment is challenging, even
for trained mental health professionals, as 78% of patients
who commit suicide deny such ideation even in their last
communication with professionals [6]. Understanding how
subjects at risk of suicide respond to different stimuli is
important to guide treatment and therapy. [7] provided
data from a functional Magnetic Resonance Imaging (fMRI)
study of nine suicide attempters and eight suicide non-
attempter ideators (henceforth, ideators) upon exposing
them to ten words each with positive, negative or death-
related connotations. Our interest is in understanding brain
regions associated with the interaction of a subject’s attemp-
ter/ideator status and word type to inform diagnosis and
treatment.

Traditional approaches fit separate regression models at
each voxel without regard to spatial context that is only
addressed post hoc at the time of inference. A more holistic
strategywould use (1) with the response vector yyi of size 30�
43�56�20¼1444800, which contains thirty 43�56�20
image volumes, for each of the i ¼ 1; 2; . . .; 17 subjects. The
explanatory variable here is a 2D vector that indicates a sub-
ject’s status as a suicide attempter or ideator. Under this
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framework, B and S have over 2.8 million and 1 trillion
unconstrained parameters, making estimation with only 17
subjects impractical. Incorporating a 3D spatial autoregres-
sive (AR) structure into the image volume, and another cor-
relation structure between the words can allow estimation of
the variance, but still needs additional methodology to
accomodate the large sixth-order tensor-structured regres-
sion parameter B. We develop such methodology in this
paper, and return to this dataset in Section 4.1.

1.1.2 Distinguishing Characteristics of Faces

Distinguishing the visual characteristics of faces is impor-
tant for biometrics. The Labeled Faces in the Wild (LFW)
database [8] is used for developing and testing facial recogni-
tion methods, and contains over 13000 250� 250 color
images of faces of different individuals along with their clas-
sification into ethnic origin, age group and gender [9], [10].
We use a subset, totalling 605 images, for which the three
attributes of ethnic origin (African, European or Asian, as
specified in the database), cohort (child, youth, middle-aged
or senior) and gender (male or female) are unambiguous.
The color at each pixel is a 3D RGB vector so each image
(response) is a 250�250�3 array. The three image attributes
can each be represented by an indicator vector, so the covari-
ates (attributes) have a three-way tensor-variate structure.
Our objective is to train a linear model to help us distinguish
the visual characteristics of different attributes. Transform-
ing the 3D tensors into vectors and fitting (1) requires a B of
250�250�3�2�3�4 or 4.5 million unconstrained parame-
ters and an error covariance matrix S of over 17 billion simi-
lar parameters, making accurate inference (from only 605
observed images) impractical. Methodology that incorpo-
rates the reductions afforded by the tensor-variate structures
of the responses and the covariates can redeem the situation.
We revisit this dataset in Section 4.2.

1.2 RelatedWork andOverview of Our Contributions

The previous examples show the inadequacy of training (1)
on tensor-valued data without additional accommodation
for structure, as the sizes of B and S in unconstrained vec-
tor-variate regression grow with the dimensions of the ten-
sor-valued responses and explanatory variables. Several
regression frameworks that efficiently allow for tensor
responses or covariates (but not both) have recently been
considered [11], [12], [13], [14], [15], [16], [17]. Tensor-on-
tensor regression (ToTR) refers to the case where both the
response and covariates are tensors. In this context, [18] pro-
posed an outer matrix product (OP) factorization of B, [19]
suggested canonical polyadic or CANDECOMP/PARAFAC
(CP) decomposition [20], [21], while [22] and [23] factorized
B using a tensor ring (TR) [24], [25] format. The CP, TR and
OP formats on B allow for quantum dimension reduction
without affecting prediction or discrimination ability of the
regression model. However, these methodologies do not
account for dependence within tensor observations, the
sampling distribution of their estimated coefficients and the
natural connection that exists between ToTR and the related
analysis of variance (ANOVA). Here, we propose a general
ToTR framework that renders four low-rank tensor formats
on the coefficient B: CP, Tucker (TK) [26], [27], [28], TR and

the OP, while simultaneously allowing the errors to follow
a tensor-variate normal (TVN) distribution [29], [30], [31], [32]
that posits a Kronecker structure on the S of (1). Assuming
TVN-distributed errors allows us to obtain the sampling dis-
tributions of the estimated coefficients under their assumed
low-rank format. Indeed, Section 4.1 uses our derived sam-
pling distributions to produce statistical parametric maps to
help detect significant neurological interactions between
death-related words and suicide attempter/ideator status.
The TVN assumption on the errors also allows us to consider
dependence within the tensor-valued observations. The Kro-
necker structured S in the TVN model renders a different
covariance matrix for each tensor dimension, allowing us to
simultaneously study multiple dependence contexts within
the same framework. Here we also introduce the notion of
tensor-variate ANOVA (TANOVA) under the ToTR frame-
work, which is analogous to ANOVA and multivariate
ANOVA (MANOVA) being instances of multiple linear
regression (MLR) andMVMLR.

The rest of the paper is structured as follows. Section 2
first presents notations and network diagrams, low-rank
tensor formats, the TVN distribution and our preliminary
results that we develop for use in this paper. We formulate
ToTR and TANOVA methodology with low-rank tensor
formats on the covariates, and TVN errors. We provide
algorithms for finding maximum likelihood (ML) estimators
and study their properties. Section 3 evaluates performance
of our methods in two simulation scenarios while Section 4
applies our methodology to the motivating applications of
Sections 1.1.1 and 1.1.2. We conclude with some discussion.
An online supplement with sections, theorems, lemmas, fig-
ures and equations prefixed with “S” is also available.

2 THEORY AND METHODS

This section introduces a regression model with TVN errors
and tensor-valued responses and covariates. We provide
notations and definitions, then introduce our models and
develop algorithms for ML estimation under the TK, CP,
OP and TR low-rank formats. A special case leads us to
TANOVA. We also derive asymptotic properties of our esti-
mators and computational complexity of our algorithms.

2.1 Background and Preliminary Results

We provide a unified treatment of tensor reshapings and
contractions by integrating the work of [27], [33], and [34]
with our own results that we use later. We use trð:Þ, ð:Þ0, and
ð:Þ� to denote the trace, transpose, and pseudo-inverse, In
for the n�n identity matrix and � for the Kronecker prod-
uct (Section S1, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2022.3164836, has additional definitions
and illustrations). We define tensors as multi-dimensional
arrays of numbers. The total number of modes or sides of a
tensor is called its order. We use lower-case letters (i.e., x) to
specify scalars, bold lower-case italics (i.e., xx) for vectors,
upper-case italics (i.e., X) for matrices, and calligraphic
scripts (i.e., X ) for higher-order tensors. Random matrices
or vectors are denoted using XX and random tensors by XX .
We denote the ði1; . . .; ipÞth element of a pth order tensor X
using Xði1; . . .; ipÞ or XðiiÞ where ii ¼ ½i1; . . .; ip�0. The vector
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outer product, with notation �, of p vectors generates the
pth-order tensor X ¼ �pj¼1xxj with ði1; . . .; ipÞth element
XðiiÞ ¼

Qp
j¼1 xxjðijÞ: Any pth-order tensor X 2 Rm1�...�mp (or

R
�p
j¼1mj ) can be expressed using the vector outer product as

X ¼
Xm1

i1¼1
. . .
Xmp

ip¼1
Xði1; . . .; ipÞ �

p

q¼1
ee
mq
iq

� �
; (2)

where eemi 2 Rm is a unit basis vector with 1 as the ith ele-
ment and 0 everywhere else. Equation (2) allows us to
reshape a tensor by only manipulating the vector outer
product. A pth-order diagonal tensor Ipr 2 R

�p
j¼1r has ones

where the indices in each mode coincide, and zeroes else-
where, that is,

Ipr ¼
Xr
i¼1

�
�p

q¼1
eeri

�
: (3)

Tensor structures are conveniently represented by tensor
network diagrams that are a recent adaptation [34] from
quantum physics where they were originally introduced to
visually describe many-body problems. Each node in a ten-
sor network diagram corresponds to a tensor and each edge
coming from the node represents a mode. A node with no
edges is a scalar, a node with one edge is a vector and a node
with two edges is a matrix. More generally, a node with p
edges is a pth-order tensor (Figs. 1a, 1b, 1c, and 1d). (The
angle between edges has no meaning beyond aesthetics.)
Diagonal tensors as in (3) are represented by putting a diago-
nal across the node, as in Fig. 1d.

2.1.1 Tensor Reshapings, Contractions, Low-Rank

Formats

The matricization of a tensor is a matrix with its elements
arranged differently. The following definition is from [33]

Definition 2.1. Let S ¼ fr1; . . .; rLg and T ¼ fm1; . . .;mMg be
ordered sets that partition the set of modesM¼ f1; . . .; pg of
X 2 R

�p
j¼1mj . Here LþM ¼ p. Then if ii ¼ ½i1; . . .; ip�0, the

matricization XðS�T Þ is a matrix of size ð
Q

q2SmqÞ �
ð
Q

q2T mqÞ defined as

XðS�T Þ ¼
Xm1

i1¼1
. . .
Xmp

ip¼1
XðiiÞ

O
q2S

ee
mq
iq

 ! O
q2T

ee
mq
iq

 !0
: (4)

We define matricizations in reverse lexicographic order to
be consistent with the traditional matrix vectorization. This
means that the q modes in the multiple Kronecker product
(4) are selected in reverse order. Table 1 defines several
reshapings by selecting different partitions ðS; T Þ of M.
These definitions are clarified in (S3), (S4) and (S5), available
online.

Tensor contractions [34] generalize the matrix product to
higher-ordered tensors. We use X �l1;...;la

k1;...;ka
Y to denote the

mode- l1;...;la
k1;...;ka

� �
product or contraction between the ðk1; . . .; kaÞ

modes of X 2 R
�p
j¼1mj and the ðl1; . . .; laÞ modes of Y 2

R
�q
j¼1nj , where mk1 ¼ nl1 ; . . . ;mka ¼ nla . This contraction

results in a tensor of order pþ q � 2a where the a pairs of
modes ðlj; kjÞ get contracted. A simple contraction between the
kth mode of X and the lth mode of Y has ði1; . . .; ik�1; ikþ1;
. . .; ip; j1; . . .; jl�1; jlþ1; . . .; jqÞth element

Xml

t¼1
Xði1; . . .; ik�1; t; ikþ1; . . .; ipÞYðj1; . . .; jl�1; t; jlþ1; . . .; jqÞ:

(5)

Similarly, multiple contractions sum over multiple products
of the elements of X and Y. Table 2 defines some contrac-
tions using this notation. An important special case is partial

contraction that contracts all the p < q modes of X 2 R
�p
j¼1mj

with the first p modes of Y 2 R
�q
j¼1mj resulting in a tensor

hXjYi ¼ X �1;...;p
1;...;p Y of size R

�q
j¼pþ1mj : The partial contraction

helps define ToTR, and can also be written as a matrix-vec-

tor multiplication using Lemma 2.1 (e) (below).
The tensor trace is a self-contraction between the two

outer-most modes of a tensor. Ifm1 ¼ mp, then

trðXÞ ¼
Xm1

i¼1
Xði; :; : . . .; :; iÞ; (6)

whence trðXÞ 2 R
�pþ1
j¼2mj . The contraction between two dis-

tinct modes (from possibly the same tensor) is represented
in tensor network diagrams by joining the corresponding
edges (see Fig. 2 for examples). Also, applying the kth mode
matricization to every mode of V 2 R

�p
j¼1gj with respect to

(WRT) Ai 2 Rmi�gi ; i ¼ 1; 2; . . .; p results in the TK product

B ¼ ½½V;A1; . . .; Ap�� defined as

Fig. 1. Tensor network diagrams of a (a) scalar, (b) vector, (c) matrix and
(d) third-order diagonal tensor.

TABLE 1
Tensor Reshapings Defined by Specifying

Partitions ðS; T Þ ofM in (4)

Reshaping Notation S T

kth mode matricization XðkÞ fkg f1; . . .; k� 1; kþ 1; . . .; pg
kth canonical matricization X <k> f1; . . .; kg fkþ 1; . . .; pg
vectorization vecðXÞ f1; . . .; pg ?

TABLE 2
Tensor Contractions, Where the Contraction Along

One Mode is Defined as Per (5)

Contraction Notation Definition Conditions

matrix product XY X �1
2 Y p ¼ q ¼ 2

kth mode matrix product X �k Y X �2
k Y q ¼ 2

kth mode vector product X ��kyy X �1
k yy q ¼ 1

inner product hX ;Yi X �1;...;q
1;...;p Y p ¼ q

partial contraction hXjYi X �1;...;p
1;...;p Y p < q

last mode with first mode X �1 Y X �1
p Y —

Here X 2 R
�p
j¼1mj , Y 2 R

�q
j¼1nj , and X and Y are the cases where p ¼ 2 and

q ¼ 2 respectively.
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B ¼
Xm1

i1¼1
. . .
Xmp

ip¼1
Vði1. . .ipÞ �pq¼1Aqð:; iqÞ

� �
: (7)

A tensor B that can be written as the product in (7) is said to
have a TK format with TK rankðg1; . . .; gpÞ. In this case, V is
called the core tensor and A1; . . .; Ap are the factor matrices.
When gi < < mi for i ¼ 1; . . . ; p, the TK format substantially
reduces the number of unconstrained elements in a tensor
and its complexity. TK formats are often fit by higher-order
singular value (HOSVD) [35] or LQ (HOLQ) decomposi-
tion [36]. For a diagonal core tensor V, as in (3), the TK format
reduces to the CP format of rank r. This reduction is equiva-
lent to setting the tensor B as the sum of r vector outer prod-
ucts, where the vectors correspond to the columns of matrix
factorsAi 2 Rmi�r; i ¼ 1; . . . ; p,

B ¼ ½½��;A1; . . .; Ap�� ¼
Xr
i¼1

��ðiÞ �p
q¼1

Aqð:; iÞ
� �

: (8)

The vector �� 2 Rr contains the diagonal entries of the core
tensor, and is often set to the proportionality constants that
make the matrix factors have unit column norms. When �� is
ignored in the specification of (8), we assume that �� ¼
½1; 1; . . .; 1�0. A tensor B is said to have an OP format if it can
be written as B ¼ �½½A1; A2. . .; Ap��, or

B ¼
X
i1 ;...ip
j1...;jp

Yp
q¼1

Aq½iq; jq�
 !

�p
q¼1

ee
hq
jq

� �
� �p

q¼1
ee
mq
iq

� �� �
; (9)

where for all q ¼ 1; . . .; p, we have Aq 2 Rmq�hq and the sum-
mation over iq is from 1 throughmq, and that over jq is from
1 through hq. Our novel OP format is essentially the outer
product of multiple matrices, and is useful for expressing
the TK product of (7) as a partial contraction between V and
�½½A1; A2. . .; Ap��, as we shortly state and prove in Theo-
rem 2.1(b). The derivation needs some properties of tensor
products and reshapings that we prove first in Lemma 2.1,
along with several other properties that are useful for tensor
manipulations. (Lemma 2.1(a),(c) and (d) have been stated
without proof in [27], [33], and [34] but we provide proofs
here for completeness.)

Lemma 2.1. Let X 2 R
�p
j¼1mj . Then using the notation of

Tables 1 and 2, where k ¼ 1; . . . ; p,

(a) X <p�1> ¼ X0ðpÞ.
(b) vecðXÞ ¼ vecðXð1ÞÞ ¼ vecðX < 1> Þ ¼ . . . ¼ vecðX <p> Þ:
(c) hX ;Yi¼ðvecXÞ0ðvecYÞ¼trðXðkÞY0ðkÞÞ, Y 2 R

�p
j¼1mj .

(d) vec½½X ;A1; . . .; Ap�� ¼ ð
N1

i¼p AiÞvecðXÞ, where Ai 2
Rni�mi for any ni 2 N.

(e) vechXjBi ¼ B0<p> vecðXÞ;B 2 R
ð�p

j¼1mjÞ�ð�
q
j¼1hjÞ:

(f) vecðXðkÞÞ ¼ KðkÞvecðXÞ; where KðkÞ ¼ðIQp

i¼kþ1 mi
�KQk�1

i¼1 mi;mk
Þ:

Proof. See Section S1.3, available online. tu

We now use Lemma 2.1 to state and prove the following

Theorem 2.1. Consider a pth-order tensor X and matrices
M1; . . . ;Mp such that the TK product with X can be formed.
Then

(a) �½½M1; . . . ;Mp��<p> ¼
N1

q¼p M
0
q.

(b) hXj � ½½M1; . . . ;Mp��i ¼ ½½X ;M1; . . .;Mp��:
(c) For any k ¼ 1; . . .p, let S ¼ fk; pþ kg. Then

� ½½M1; . . . ;Mp��ðS�ScÞ
¼ ðvecM 0

kÞðvec � ½½M1; . . . ;Mk�1;Mkþ1; . . . ;Mp��Þ0: (10Þ

Proof. See Section S1.4, available online. tu

Remark: If B ¼ �½½X0; X0�� for some matrix X, then Theo-
rem 2.1(a) implies that B< 2> ¼ X �X while Bð1;3Þ�ð2;4Þ ¼
ðvecXÞðvecXÞ0 by Theorem 2.1(c). In other words, X �X
and ðvecXÞðvecXÞ0 are different matricizations of the
same OP tensor B, which formalizes our intuition
because both X �X and ðvecXÞðvecXÞ0 have the same
number of elements, and it motivates naming the format
outer product.

Finally, a tensor B is said to have a Tensor Ring (TR) for-
mat with TR rank ðg1; . . .; gpÞ if it can be expressed as

B ¼ trðG1 �1 . . .�1 GpÞ; (11)

where Gi 2 Rgi�1�mi�gi for i ¼ 1; . . .; p and g0 ¼ gp. The TR for-
mat is called theMatrix Product State (MPS)with closed bound-
ary conditions in many-body physics [37]. When exactly one of
the TR ranks is 1, the TR format is the same as the Tensor Train
(TT) format [25] and is theMPSwith open boundary conditions.

We conclude our discussion of low-rank tensor formats
by using tensor network diagrams to illustrate in Fig. 3, a
fourth-order tensor in the TK, CP and TR formats.

2.1.2 The TVN Distribution

The matrix-variate normal distribution, abbreviated in [38] as
MxVN to distinguish it from the vector-variate multinormal
distribution (MVN), was studied extensively in [39]. A ran-
dom matrix XX 2 Rm1�m2 follows a MxVN distribution if
vecðXXÞ is MVN with covariance matrix S2 � S1, where Sk 2
Rmk�mk for k ¼ 1; 2. The TVN distribution, formulated in
Definition 2.2, extends this idea to the case of higher-order
random tensors. For simplicity, we define the following nota-
tion for use in the rest of the paper:

m ¼
Yp
i¼1

mi; m�k ¼ m=mk; S ¼
O1
i¼p

Si; S�k ¼
O1
i¼p
i6¼k

Si:

Fig. 2. Tensor network diagrams of (a) matrix product, (b) partial contrac-
tion, (c) inner product and (d) trace. Here A 2 Rp�q, B 2 Rq�r, D; E 2
Rp�q�r and C 2 Rp�q�r�p.

Fig. 3. Tensor network diagrams of example fourth-order tensor of (a) TK
format (7), (b) CP format (8), and (c) TR format (11).
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Definition 2.2. A random tensor XX 2 R
�p
j¼1mj follows a pth-

order TVN distribution with meanM2 R
�p
j¼1mj and non-neg-

ative definite scale matrices Si 2 Rmi�mi for i ¼ 1; 2; . . . ; p
(i.e., XX � NmmðM;S1;S2 . . . ;SpÞ where mm ¼ ½m1;m2; . . . ;
mp�0 ) if vecðXXÞ � NmðvecðMÞ;SÞ:

TheKronecker product inDefinition 2.2 is in reverse order
because we have defined vectorization in reverse lexico-
graphic order. Definition 2.2 defines the TVN distribution in
terms of a vectorization. We state and prove the distribution
of other tensor reshapings in Theorem 2.2. These results are
essential in the development of ToTR models with TVN
errors, as they allow us to model the vectorized tensor errors
in terms of theMVNdistribution.

Theorem 2.2. The following statements are equivalent:

(a) YY � NmmðM;S1;S2; . . .;SpÞ
(b) vecðYYÞ � NmðvecðMÞ;SÞ
(c) YYðkÞ � N ½mk;m�k�0 ðMðkÞ;Sk;S�kÞ; k ¼ 1; 2; . . .; p

(d) For k ¼ 1; 2; . . . ; p andmmk ¼ ½
Qk

i¼1 mi;
Qp

i¼kþ1 mi�0,
YY <k> � Nmmk

ðM<k> ;
N1

i¼k Si;
Nkþ1

i¼p SiÞ

Proof. (a) and (b) are equivalent, following Definition 2.2
while (b) and (c) are so fromLemma 2.1(f)withKðkÞSK

0
ðkÞ ¼

S�k � Sk. Further, (b) and (d) are equivalent because of
Lemma 2.1(b). tu

The density of YY � NmmðM;S1;S2; . . .;SpÞ is fðY;M;SÞ ¼
j2pSj�1=2expf� 1

2D
2
SðY;MÞg;whereD2

SðY;MÞ is the squared
Mahalanobis distance betweenY andM, and has the equiva-
lent representations

D2
SðY;MÞ ¼ vecðY �MÞ0S�1vecðY �MÞ

	 hðY �MÞ; ½½ðY �MÞ;S�11 ;S�12 ; . . .;S�1p ��i; (12)

by Lemmas 2.1(c) and 2.1(d). Property S1.2, available online,
provides similar alternative expressions for the determinant
det ðSÞ of S.

2.2 Tensor-Variate Linear Models With TVN Errors

2.2.1 Tensor-on-Tensor Regression

We formulate the ToTR model as

YYi ¼ �þ hX ijBi þ EEi; i ¼ 1; 2. . .; n; (13)

where the response YYi2R�
p
j¼1mj and the covariate X i 2

R
�l
j¼1hj are both tensor-valued, EEi �iid Nmmð0; s2S1;S2; . . . ;SpÞ

is the TVN-distributed error, B 2 R
ð�l

j¼1hjÞ�ð�
p
j¼1mjÞ is the

(tensor-valued) regression parameter and� is the (tensor-val-

ued) intercept. This model is essentially the classical MVMLR

model but exploits the tensor-variate structure of the covari-

ates and responses to reduce the total number of parameters.

To see this, we apply Lemma 2.1(e) and Theorem2.2(b) to vec-
torize (13) as vecðYYiÞ ¼ vecð�Þ þ B0< l> vecðX iÞ þ eei; where

eei�iid Nmð0; s2SÞ is the error. This formulation leads to a

MVMLR model with intercept, which can be incorporated

into the covariates as ½vecð�ÞB0< l> �½1; vecðX iÞ0�0. But the
covariate ½1; vecðX iÞ0�0 is then no longer a vectorized tensor

and we can not exploit the tensor structure of X i. To obviate

this possibility, (13) includes a separate intercept term�.

Imposing a low-rank format on B proffers several
advantages. First, it makes the regression model practical
to use, as accurate estimation of an unstructured version
of B may otherwise be prohibitive when dimensionality
is high relative to sample size. Second, B can be inter-
preted, in spite of its high dimensions, as being explain-
able through a few lower-dimensional tensor factor
matrices (Fig. 4). These explanations mirror the many-
body problem in physics, where weakly-coupled degrees
of freedom are often embedded in ultra-high-dimen-
sional Hilbert spaces [37], [40]. We now turn to the prob-
lem of learning B in the given setup.

The dispersion matrix S in the TVN distribution spec-
ification of the EEis in (13) is Kronecker-separable and
leads to the number of unconstrained parameters from
ð
Qp

i¼1 miÞ � ð
Qp

i¼1 mi þ 1Þ=2 to
Pp

i¼1 miðmi þ 1Þ=2. Further,
this Kronecker-separable structure is intuitive because it
assigns a covariance matrix to each tensor-response
dimension. This allows us to separately incorporate dif-
ferent dependence contexts that exist within a tensor.
For example, a tensor may have temporal and spatial
contexts in its modes. Kronecker separability allows us
to assign a covariance matrix to each of these different
contexts. However, Kronecker separability results in
unidentifiable scale matrices ðSiÞ, as cA�B ¼ A� cB for
any matrices A;B and c 6¼ 0, so we constrain the scale
matrices to each have Sið1; 1Þ ¼ 1, and introduce a
parameter s2 to capture an overall proportional scalar
variance. This approach further reduces the number of
parameters by p� 1 and imposes a curved exponential
family distribution on the errors [41].

2.2.2 The TANOVA Model

Suppose that we observe independent tensors YYj1;...;jl;i 2
R
�p
j¼1mj ði ¼ 1; . . . ; nj1;...;jlÞ, where jkðk ¼ 1; . . .; lÞ, indexes the

kth categorical (factor) variable of hk levels, that is, jk 2
f1; . . .; hkg. The tensor-valued parameter B encoding the
dimensions of YYi;j1;...;jl and all the possible factor classes is of
size h1 � . . .� hl �m1 � . . .�mp. To see this, consider the
lth ordered single-entry tensor X j1;...;jl ¼ �lq¼1ee

hq
iq

that is unity

at ðj1; . . .; jlÞ and zero everywhere else. Then hX j1;...;jl jBi 2
R
�p
j¼1mj and

hX j1;...;jl jBi ¼ B½j1; . . .; jl; :; :; . . .; :�: (14)

Therefore, modeling EðYYi;j1;...;jlÞ as hX j1;...;jl jBi results in
each factor combination ðj1; . . .; jpÞ getting assigned its own
mean parameter as a sub-tensor of B. This high-dimensional
parameter B is identical to cell-means MANOVA if we
vectorize (14) using Lemma 2.1(e) as B0< l> vecðX j1;...;jlÞ ¼

Fig. 4. Tensor network diagrams of tensor-on-tensor regression when
both the response and the covariates are third-order tensors and for (a)
Yi ¼ hX ijBi and (b-d) the special cases when the B in hX ijBi are of (b)
Tucker, (c) TR and (d) OP formats (illustrated in Fig. 3).
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vecðB½j1; . . .; jp; :; :; . . .; :�Þ; in which case vecðX j1;...;jpÞ ¼
�1

q¼lee
hq
iq

corresponds to a row in the MANOVA design

matrix. Although this formulation is fundamentally the

same as (14), the latter helps us visualize and formulate
a low-rank format on B. Based on the format, we refer to

tensor-valued response regression models with the mean

in (14) as TANOVAðl; pÞ, where l is the number of differ-

ent factors and p is the order of the tensor-valued

response. In this way, because scalar and vector varia-

bles are tensors of order 0 and 1, ANOVA and MAN-

OVA correspond to TANOVA(1,0) and TANOVA(1,1),

respectively. In general, TANOVAðl; pÞ with TVN errors
can be expressed as

YYi ¼ hX ijBi þ EEi; EEi �
iid Nmmð0; s2S1;S2; . . .;SpÞ; (15)

where X i is the single-entry tensor that contains all the

assigned factors of YYi, for i ¼ 1; . . . ; n. Model (15) is a ToTR

model as in (13) with no intercept. This is analogous to

ANOVA and MANOVA being special cases of univariate

and multivariate multiple linear regressions, respectively.

Further, the log-likelihood function of (15) is

‘ ¼ �n

2
log j2ps2Sj � 1

2s2

Xn
i¼1

D2
SðYYi; hX ijBiÞ: (16)

2.3 Parameter Estimation

We obtain estimators of (13) before deriving their properties.

2.3.1 Profiling the Intercept

We first show that the intercept in (13) can be profiled out
by centering the covariates and the responses. To see this,
we express the loglikelihood in terms of � as

‘ ¼ � 1

2s2

Xn
i¼1

D2
SðYYi;�þ hX ijBiÞ: (17)

We define the tensor differential of an inner product WRT �
using the matrix differential h@�;Si ¼ trð@�ð1ÞS0ð1ÞÞ. Apply-
ing it to (17) yields

@‘ð�Þ ¼ 1

s2
h@�; ½½SS;S�11 ; . . .;S�1p ��i;

where n�1SS ¼ �Y�Y � h �XjBi �� and �Y�Y; �X are the averaged
responses and covariates. Now, @‘ð�Þ¼0 if SS¼0, and for
fixed B, the ML estimator (MLE) of � is b�ðBÞ ¼ �Y�Y � h �XjBi:
Setting � in (17) to be b�ðBÞ yields (16) with centered
responses and covariates, sowe assumewithout loss of gener-
ality (WLOG) that (15) has no intercept, and estimate the other
parameters. Our estimation uses block-relaxation [42] to opti-
mize (16): we partition the parameter space into blocks and
serially optimize the parameters in each block while holding
fixed the other parameters.

2.3.2 Estimation of B;S1;S2; . . . ;Sp Given s2

Our estimates simplify as per the format of B so we consider
each case individually, before providing an overview.

TK format. Let B have TK format of rank ðc1; . . .; cl;
d1; . . .; dpÞ

BTK ¼ ½½V;L1; . . .; Ll;M1; . . .;Mp��; (18)

where M 0
kS
�1
k Mk ¼ Idk for k ¼ 1; . . .; p. Then the number of

parameters to be estimated goes down from the uncon-

strained
Ql

i¼1 hi

Qp
i¼1 mi to

Ql
i¼1 ci

Qp
i¼1 di þ

Pl
i¼1 cihi þPp

i¼1 dimi. The constraint M 0
kS
�1
k Mk ¼ Idk greatly simplifies

estimation and inference. Using (18), we vectorize (15) for

any k ¼ 1; . . .; l as

vecðYiÞ ¼ HTK
ik< 2> vecðLkÞ þ eei; (19)

whereHTK
ik< 2> is the 2-canonical matricization of the tensor

HTK
ik ¼ X i �1;...;k�1;kþ1;...;l

1;...;k�1;kþ1;...;l ½½V;L1; . . .; Lk�1;

Ihk ; Lkþ1; . . .; Ll;M1; . . .;Mp��; (20)

and eeis are i.i.dNmð0; s2SÞ. Optimizing (16)WRTLk forms its

own block, which corresponds to aMVMLRmodelwhere, for

STK
k ¼

Pn
i¼1ðHTK

ik< 2>S
�1HTK

ik< 2>

0Þ,

vecðcLkÞ ¼ ðSTK
k Þ

�1 Xn
i¼1
HTK

ik< 2>S
�1vecðYiÞ

 !
: (21)

The computation of STK
k is greatly simplified based on the

constraint that M 0
kS
�1
k Mk ¼ Idk for all k ¼ 1; 2; . . .; p. For

fixed L1; . . .; Lp;S1; . . .;Sp, we estimate M1; . . .;Mp;V. We

first show that V can be profiled from the loglikelihood for

fixed M1; . . .;Mp. To see this, we write an alternative vector-
ized form of (15) as

vecðYiÞ ¼ �1
i¼pMi

� �
V0< l>wwi þ eei;

wherewwi ¼ vec½½X i;L
0
1; L

0
2; . . .; L

0
l��. LettingZ¼Y �MV0< l>W ,

for M ¼ �1
k¼pMk, Y ¼ ½vecY1 . . . vecYn�, and W¼½ww1 . . .wwn�

simplifies (16) to

‘ ¼ �n

2
log jSj � 1

2s2
trðZ0S�1ZÞ
n o

: (22)

Optimizing (22) for fixed M1; . . .;Mp yields the profiled

MLE

bV < l> ðM1;S1; . . .;Mp;SpÞ ¼W�0Y 0ð
O1
k¼p

S
�1
k MkÞ; (23)

where W� is the right inverse of W . Therefore, given values

of all Mks, we obtain bV by simply inserting them in (23). To

estimate Mk we profile bV out of the loglikelihood by replac-

ing (23) into (22), and expressing it up to a constant as

‘ðMk;SkÞ ¼
1

2s2
jjM 0

kS
�1
k Qkjj22; (24)

whereQk¼½½YT ;M
0
1S
�1
1 ; . . .;M 0

k�1S
�1
k�1; Imk

;M 0
kþ1S

�1
kþ1; . . .; M

0
pS
�1
p ;

W�W ��ðkÞ and YT 2 R
ð�p

j¼1mjÞ�n is such that YT ð:; . . .; :; iÞ ¼ Yi

for i ¼ 1; . . .; n. From (24), the MLE ofMk is obtained via gen-

eralized SVD ofQk [43]
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bMkðSkÞ ¼ argmax
Mk:M

0
k
S�1k Mk¼Idk

jjM 0
kS
�1
k Qkjj22 ¼ S

1=2
k U; (25)

with the leading dk left singular vectors of S
�1=2
k Qk as the

columns of U . To estimate Sk at fixed BTK , we write (22) as

‘ðSkÞ ¼ �
nm�k
2

log jSkj �
1

2s2
trðS�1k SkÞ; (26)

where Sk ¼
Pn

i¼1 ZiðkÞS
�1
�kZ0iðkÞ and ZiðkÞ ¼ Yi � hX ijBi. The

MLE of Sk under the (TK format) constraint of (18) is

bSk ¼ argmax
Sk:Sk½1;1�¼1

‘ðSkÞ ¼ ADJUST ðnm�k; s2; SkÞ; (27)

where the ADJUST procedure is as introduced in [44] and

that was shown to satisfy the Karush-Kuhn-TK (KKT) con-

ditions. Without this constraint, the MLE is Sk=ðnm�ks2Þ.
Further reductions can be obtained by imposing additional
parameterized structures on Sks, as needed. Our block

relaxation algorithm, detailed in Algorithm 1, is initialized

by methods discussed in Section 2.3.4.

Algorithm 1. Block-Relaxation Algorithm for ToTR (13)
With TK Formatted B._____________________
Initial values k ¼ 0, bs2ð0Þ; bLð0Þ1 ; . . .; bLð0Þl ; ð bMð0Þ

1 ; bSð0Þ1 Þ; . . .; ð bMð0Þ
p ;bSð0Þp Þ

1: Center the data while saving the means �X , �Y.
2: while convergence criteria is not met do
3: for j ¼ 1; 2; . . .; p do

4: bMðkþ1Þ
j as per (25)

5: end

6: bVðkþ1Þ as per (23)
7: for j ¼ 1; 2; . . .; l do

8: bLðkþ1Þj as per (21)
9: end
10: for j ¼ 1; 2; . . .; p do

11: bSðkþ1Þj as per (27)

12: bs2ðkþ1Þ as per (39)
13: end
14: k kþ 1
15: end
16: b� ¼ �Y � h �Xj bBTKi

CP format. We now optimize (16) when B is

BCP ¼ ½½��;L1; L2; . . .; Ll;M1;M2; . . .;Mp��; (28)

that is, of CP format of rank r. Then, with Sk ¼ Imk
for k ¼

1; 2; . . .; p, (15) reduces to the framework of [19]. The CP for-
mat reduces the number of parameters in B fromQp

i¼1 mi

Ql
i¼1 hi to rð

Pp
i¼1 mi þ

Pl
i¼1 hiÞ. Here also, we opti-

mize (16) via a block-relaxation algorithm. The kth block
corresponds to ðMk;SkÞ for k ¼ 1; 2; . . .; p and can be esti-
mated in a MVMLR framework by applying Theorem 2.2(c)
on the kth mode matricized form of (15)

YiðkÞ ¼MkG
CP
ik þ Ei; Ei �iid N ½mk;m�k�0 ð0; s

2Sk;S�kÞ;
(29)

where GCP
ik 	 G

CP
ikðkÞ is the kth mode matricization of GCPik ¼

½½h½½X i;L
0
1; . . .; L

0
l��jI pþlr i;M1; . . .;Mk�1; Imk

;Mkþ1; . . .;Mp��:

Additional simplifications of GCP
ik are possible, for example,

using (Section S1.5.1), available online, the Khatri-Rao prod-
uct (
) [27]. When all parameters except ðMk;SkÞ are held
fixed, (29) matches a MVMLR model with loglikelihood

‘ðSk;MkÞ ¼
nm�k
2

log jS�1k j �
1

2s2
trðS�1k SkÞ; (30)

with Sk ¼
Pn

i¼1 ZikS
�1
�kZ

0
ik, where Zik ¼ YiðkÞ �MkG

CP
ik .

Then the MLEs are

bMk ¼
Xn
i¼1
YiðkÞS

�1
�kG

CP
ik

0 Xn
i¼1

GCP
ik S�1�kG

CP
ik

0
" #�1

;

bSkðMkÞ ¼ ADJUST ðnm�k; s2; SkÞ: (31)

The matrices
Pn

i¼1 YiðkÞS
�1
�kG

CP
ik

0
,
Pn

i¼1 G
CP
ik S�1�kG

CP
ik

0
are sub-

stantially simplified in Section S1.5.1. We estimate Sk by
directly optimizing (30). The other l blocks in the block-
relaxation algorithm correspond to L1; . . .; Ll and are each
MVMLR models obtained by vectorizing (15) as

vecðYiÞ ¼ HCP
ik vecðLkÞ þ eei; eei �iid Nmð0; s2SÞ; (32)

where HCP
ik ¼ HCP

ik< 2> and HCP
ik is identical to the HTK

ik of
(20), but for the fact that V is the diagonal tensor Ipþlr . (Fig. 5
displays HCP

ik for when p¼ l¼3.) For k ¼ 1; . . .; l, holding all
parameters except Lk fixed makes (32) a MLR model with
the MLE of Lk obtained as

vecð bLkÞ¼
Xn
i¼1

HCP
ik S

�1HCP
ik

0
 !�1 Xn

i¼1
HCP

ik S
�1vecðYiÞ

 !
:

(33)

The matrices
Pn

i¼1 H
CP
ik S

�1vecðYiÞ,
Pn

i¼1 H
CP
ik S

�1HCP
ik

0
are

substantially simplified in Section S1.5.1, available online.
As summarized in Fig. 5, the tensors HCP

ik and GCPik play a
critical role in the estimation of Mk and Lk through (29) and
(32), permitting the use of standard MVMLR and MLR esti-

mation methods. From (8), we deduce that the jth columns

of all the factor matrices in the CP decomposition (28) are

Fig. 5. Equivalent tensor-network diagrams for hX i;Bi when p ¼ l ¼ 3,
which can be expressed in multiple ways depending on the tensor factor
to be estimated and the type of low-rank on B (which are illustrated in
Fig. 4). By choosing the tensors Gik andHik, the tensorsM1 andM1 can
be estimated using multivariate multiple linear regression, and the ten-
sors L1 and L1 can be estimated using multiple linear regression,
respectively. In these cases, matricized versions of Gik and Hik are part
of the design matrix.
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identifiable only up to a constant. So we constrain the col-
umns to have unit norm. The MLEs of our parameters are

obtained using a block-relaxation algorithm, as outlined in

Algorithm 2.

Algorithm 2. Block-Relaxation Algorithm for ToTR (13)
With CP Formatted B._____________________
Initial values k ¼ 0; bs2ð0Þ; bLð0Þ2 ; bLð0Þ3 ; . . .; bLð0Þl ; bMð0Þ

1 ; bMð0Þ
2 ; . . .; bMð0Þ

p

1: Center the data while saving the means �X , �Y.
2: while convergence criteria is not met do
3: for j ¼ 1; 2; . . .; l do

4: bLðkþ1Þj as per (33) and normalize its columns
5: end
6: for j ¼ 1; 2; . . .; p� 1 do

7: ð bMðkþ1Þ
k ; bSðkþ1Þk Þ as per (31) and normalize the columns

of bMðkþ1Þ
k

8: end
9: ð bMðkþ1Þ

p ; bSðkþ1Þp Þ as per (31)
10: bs2ðkþ1Þ as per (39)
11: Normalize the columns of bMðkþ1Þ

p while setting b�b�ðkþ1Þ to
those norms

12: k ¼ kþ 1
13: end
14: b� ¼ �Y � h �Xj bBCP i

OP format. For an OP-formatted B, i.e.,

BOP ¼ �½½M1; . . .;Mp��; (34)

we use Theorem 2.1(b) to express (15) as

Yi ¼ ½½X i;M1; . . .;Mp�� þ Ei: (35)

We estimate the parameters in (35) by applying the kth
mode matricization for each k ¼ 1; . . .; p on both sides as
YiðkÞ ¼MkG

OP
ik þEi; where GOP

ik ¼ X iðkÞð
N1

j¼p;j6¼k M
0
jÞ and

Ei �iid N ½mk;m�k�0 ð0; s
2Sk;S�kÞ. Given the similarities between

this formulation and (29), theMLEs of the factor matrices are
as in (33) but withGOP

ik instead ofGCP
ik . The optimization pro-

cedure is similar to Algorithm 2, with the difference again
that M1; . . .;Mp�1 are normalized to have unit Frobenius
norm. We conclude by noting that (35) is the multilinear ten-
sor regression setup of [18], and for p ¼ 2 is the matrix-vari-
ate regression framework of [45] and [46]. So the OP format
frames existingmethodologywithin the ToTR framework.

TR format. Let B have TR format (11), i.e.,

BTR ¼ trðL1 �1L2 �1 . . .�1Ll �1M1 �1M2 �1 . . .�1MpÞ;
(36)

of TR rank ðs1; . . .; sl; g1; . . .; gpÞ, where Lj andMk are third
order tensor of sizes ðsj�1 � hj � sjÞ and ðgk�1 �mk � gkÞ
respectively, for all j ¼ 1; . . .; l and k ¼ 1; . . .; p, and where
g0¼sl and s0¼gp. The TR format reduces the number of
unconstrained parameters in B from

Ql
i¼1 hi

Qp
i¼1 mi toPl

j¼1 sj�1hjsj þ
Pp

k¼1 gk�1mkgk. To estimate parameters, we
apply the kth mode matricization for k ¼ 1; . . .; p on both
sides of (13), yielding

YiðkÞ ¼ Mkð2ÞG
TR
ik þ Ei; Ei �iid N ½mk;m�k�0 ð0; s

2Sk;S�kÞ;
(37)

and the vectorization for k ¼ 1; . . .; l, which gives us

vecðYiÞ ¼ HTR
ik vecðLkÞ þ eei; eei �iid Nmð0; s2SÞ; (38)

where GTR
ik and HTR

ik are matrices as defined in
Section S1.5.2, available online. Fig. 5 represents tensor-vari-
ate versions of HTR

ik and GTR
ik for when p¼ l¼3. Because (29)

and (32) are similar to (37) and (38), our ML estimators mir-
ror the CP format case but by replacing ðHCP

ik ; GCP
ik Þ with

ðHTR
ik ; GTR

ik Þ. In this case, estimating ðMk; vecðLkÞÞ corre-
sponds to estimating ðMkð2Þ; vecðLkÞÞ. The optimization pro-
cedure is similar to Algorithm 2, with the difference in this
case being that each factor tensor, other thanMp, is scaled
to have unit Frobenius norm. We end here by noting that
the special TR case of TT format has been used for ToTR in
[22], with S ¼ I, and hence Sk ¼ I for all k.

Concluding Remarks
Fig. 5 summarizes our estimation methods for B of differ-

ent formats. We see that in many cases, an algorithmic block
can be made to correspond to a linear model by appropriate
choice of Gik or Hik. Then, fitting a tensor-response linear
model involves sequentially fitting smaller-dimensional lin-
ear models (one for each tensor factor) until convergence.
This intuition behind the estimation of B is not restricted to
the TK, CP, OP and TR formats, but can also help guide esti-
mation algorithms for other formats such as the hierarchical
Tucker and the tensor tree formats [47], [48].

While the OP format has the advantage of parsimony, it
does not allow for the level of recovery to be adjusted
through a tensor rank (as will be illustrated in Section 3 and
Fig. 6). The CP format is a more attractive alternative, since
it is the natural generalization of the low-rank matrix format
(a tensor with CP rank k is the sum of k tensors with CP rank
1). However, the CP format can be too restrictive in some sce-
narios, such as when the tensor modes have very different
sizes. In such cases, the Tucker format provides a more
appealing alternative. Moreover, a Tucker-formatted tensor

Fig. 6. Performance of the four models presented in Section 3.1, with
each model corresponding to a different format on B. Each plot corre-
sponds to the normalized Frobenius norm of the difference between the
estimated and true population parameters. We observe that in all cases,
an increase in sample size corresponds to more accurate estimates.
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has the interpretation of being a core tensor that is stretched
on each mode by a tall matrix. However, its disadvantage is
that the core tensor has the same number ofmodes as the orig-
inal tensor, making it impractical in very high-order tensor
scenarios. In such situations, the TR format is preferred
because each additional tensor-mode requires only one addi-
tional tensor factor.

2.3.3 Estimation of s2

In all cases, the estimation of Sk involves finding the sum of
squared errors along the k-mode Sk, as in Equations (26)
and (30). Given the estimated bSk and Sk, the estimate of s2

is very cheap and given as

bs2 ¼ 1

nm
trðbS�1k SkÞ: (39)

Thus bs2 is obtained alternatingly within each iteration.
Moreover, the log-likelihood function evaluated at the cur-
rent estimated values is greatly simplified based on bs2 as

‘ ¼ �nm

2
1þ log ð2pbs2Þ þ

Xp
k¼1

log jbSkj=mk

" #
:

2.3.4 Initialization and Convergence

For local optimality, we need the two conditions that the
log-likelihood ‘ is jointly continuous and that the set fuu :
‘ðuuÞ � ‘ðuuð0ÞÞg, for a set of initial values uuð0Þ, is compact [42].
These conditions are satisfied because of the TVN distribu-
tional assumption on our errors, as long as the initial values
satisfy the constraints on the parameters. We initialized the
tensor factor entries in B with draws from the Uð0; 1Þ distri-
bution. With the TK format, Mk has the constraint

M 0
kS
�1
k Mk ¼ Idk for k ¼ 1; . . .; p, so we used S

1
2
kU as its initial-

izer, with U having the left singular vectors of a random
matrix of the same order asMk. We also suggest using iden-
tity matrices to initialize S1; . . .;Sp and s2 can be initialized
with 1. Our algorithms are declared to converge when we
have negligible changes in the loglikelihood, as simplified
in Section 2.3.3. A different criteria is the difference in norm
jjBjj þ jjs2Sjj, where jjs2Sjj ¼ s

Qp
k¼1 jjSkjj and jjBjj simpli-

fies as per format:

� for BTK , with Aq as the Q matrix from the LQ decom-
position of A [33], we have jjBTK jj ¼ jj½½V;Lq

1; . . .; L
q
l ;

Mq
1 ; . . .;M

q
p ��jj.

� for BCP , jjBCP jj2 ¼
PR

k;l¼1fdiagð��Þ½�li¼1ðL0iLiÞ� �
½�pi¼1ðM 0

iMiÞ�gðk; lÞ, where “�” is the Hadamard, or
entry-wise product [33].

� for BOP , jjBOP jj ¼
Qp

i¼1 jjMijj.

2.4 Properties of Our Estimators

2.4.1 Computational Complexity

We derive the computational complexity of our estimation
algorithms. Recall that in all cases the response Yi 2 R�

p
k¼1mk

and the covariate X i 2 R�
l
k¼1hk where l and p are considered

fixed. WLOG, we assume that m1¼maxfm1; . . .;mpg and
h1¼maxfh1; . . .; hlg.

Theorem 2.3. The computational complexity of our ToTR algo-
rithms when B has

1) the TK format of Section 2.3.2.1, with d ¼
Qp

q¼1 dq,
d�1 ¼ d=d1, c ¼

Ql
q¼1 cq, d1 ¼ maxfd1; . . .; dpg and

c1 ¼ maxfc1; . . .; clg and implemented in Algorithm 1
is Oðnhc1 þ n2cþn2m1d�1þ nm2

1d�1Þ þ Oðnmd1Þþ
Oðncdh1 þ nc21h

2
1dþ h3

1c
3
1Þ þ Oðm3

1 þ nmm1Þ.
2) the CP format of Section 2.3.2.2 and implemented in

Algorithm 2 is Oðnh2
1r

2 þ nrmþ rm2
1 þm3

1 þ h3
1r

3þ
nrhþm1r

2 þ nmm1Þ:
3) the TR format, as described in Section 2.3.2.4 and with

g0g1¼maxfgk�1gk :k¼1;2; . . .pg, s0s1¼maxfsk�1
sk : k ¼ 1; 2; . . .lg, g ¼ maxfg0; g1g, g0g1
m1 is
Oðmg1g0gpþhnsslþmh2

1s
2
0s

2
1 þ h3

1s
3
0s

3
1ÞþOðhs1s0slþ

m3
1 þ g30g

3
1 þ nmm1Þ:

Proof. See Sections S1.7.1 - S1.7.4 for the proofs, available
online. tu

In all cases we have the termOðnmm1Þ, which is the com-
plexity of obtaining the sum of square errors Sk of Equa-
tion (26) across the largest tensor-response mode, and it is
necessary for obtaining the scale matrices S1; . . .;Sp. In
many cases this term will dominate the computational com-
plexity. However, Oðnmm1Þ is considerably smaller than
Oðnm2Þ, which would be the case where our complexity
increases quadratically with the dimensionality of the ten-
sor response. We also note that in all cases, the cubic terms
are WRT the tensor ranks, which can be considered negligi-
ble because such ranks are often chosen to be small, in the
spirit of scientific parsimony. Finally, for the TK format,
some of the factors can assumed to be identity matrices,
allowing us to further reduce the complexity. (See Section
S1.7.3, available online, for the computational complexity of
the OP format under specific conditions.)

2.4.2 Asymptotic Sampling Distributions

We now derive the asymptotic distributions of our model-
estimated parameters, specifically, the linear component and
the covariance component (Section S1.13), available online.

We first explore the limiting distribution of the estimated
linear components vecð bBÞ, which in all cases is multivariate
normalwithmean vecðBÞ satisfying the same low-rank format
of vecð bBÞ. For the Tucker format, we first show that the vector-
ized core tensor vecð bVÞ follows a non-singular multivariate
normal distribution, and therefore by Slutsky’s theorem
vecð bBÞ follows a singular multivariate normal distribution,
where the singularity of the covariance matrix constraints the
limiting distribution to the original low-rank Tucker format.
For the CP, TR and OP cases we first show that the low-rank
format factors inB are jointly normally distributed. Therefore,
by the Delta method the estimated tensors bB in vectorized
form are asymptotic normally distributed. In this case the
resulting multivariate normal distribution is also singular,
but these are only approximations to theCP, TRorOP formats
and not constraints on the limiting distributions like it is the
case for the Tucker format.

For the remainder of this paper, we define h¼:
Ql

i¼1 hi,
M¼:

N1
i¼p Mi and L¼:

N1
i¼l Li. We first assume that (15)

holds without an intercept.
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Theorem 2.4. Let (15) hold with B 	 BTK of Tucker format as in
(18) and let X ¼ ½vecðX 1Þ. . .vecðXnÞ� and bBTK ¼ ½½ bV; bL1;bL2; . . .; bLl; bM1; bM2; . . .; bMp��. Then as n!1

vecð bBTKÞ!d Nmh vecðBTKÞ; s2ðMM 0Þ � ðPLðXX0Þ�1PLÞ
� �

;

where PL ¼
N1

i¼l Pi and Pi ¼ LiðL0iLiÞ�1L0i:

Proof. See Section S1.8, available online. tu

The limiting distribution in Theorem 2.4 is TVN when
XX0 has a Kronecker structure: examples include factorial
designs and B-splines [49]. Here we present one such case.

Corollary 2.1. When bBTK is used to estimate a balanced
TANOVA with q units for each factor combination, then for
ss ¼ ½h1; h2; . . .; hl;m1;m2; . . .;mp�0, as n!1

bBTK !d N ss B;
s2

q
P1; P2; . . .; Pl;M1M

0
1;M2M

0
2. . .;MpM

0
p

� �
:

Proof. Here XX0 ¼ qIh and so the variance-covariance
matrix in the limiting distribution of Theorem 2.4 is
ðs2=qÞðMM 0Þ � ð

N1
i¼l PiÞ, which is Kronecker-separable.

The result follows from Definition 2.2. tu

The CP format case is similar to Theorem 2.4.

Theorem 2.5. Consider (15) with B 	 BCP as in (28) and the
ML estimator bBCP ¼ ½½ bL1; bL2; . . .; bLl; bM1; bM2; . . .; bMp��: Then

vecð bBCP Þ !d Nmh vecðBCP Þ; JCPRCP ðIn � SÞR0CPJ 0CP
� 	

as n!1. Here JCP is a Jacobian matrix and is given along
with the block matrix RCP in Section S1.9, available online.

Proof. See Section S1.9, available online. tu

The sampling distributions of B under the OP or TR for-
mats are similar to the CP case, and are in theorem S1.2 of
Section S1.10, available online.

Theorem 2.6. For a model with intercept, as in (13), Theorems
2.4 and 2.5 also hold after centering the covariates.

Proof. See Section S1.12, available online. tu

Section S1.13, available online, also discusses inference
on the scale components bS1; bS2; . . .; bSp. Theorem S1.3, avail-
able online, establishes the asymptotic independence of the
scale and the linear components, we find the Fisher infor-
mation matrix WRT the scale parameters, and establish its
singularity. Our results on the asymptotic distribution of
the scale components are not unique to our regression meth-
odology but also generally hold for the TVN distribution.

2.5 Model Selection or Rank Determination

For the CP, TR and TK formats, we determine optimal ranks
using the Bayesian information criterion (BIC) [50], [51].
This calculation requires the loglikelihood that we simpli-
fied in Section 2.3.3. Section S1.6, available online, provides
more details on rank determination (equivalently, model
selection) and on the total number of calculations needed to
obtain the BIC.

3 EXPERIMENTAL EVALUATIONS

We study estimation performance of the scale parameters
and the low-rank linear component B using simulation
experiments on different ToTR models. Section 3.1 assesses
the consistency of our estimators, and Section 3.2 evaluates
the amounts of recovery that different low-rank formats
have of B, and the impact of noise on discrimination in a
TANOVA framework.

3.1 A TANOVA(2,2) Model With Low-Rank Formats

We simulated observations from thematrix-on-matrix regres-
sion (MoMR)model

Yijk ¼ hXijjBi þEijk; Eijk �iid N ½6;7�0 ð0; s2S1;S2Þ; (40)

where i ¼ 1; 2; 3; 4, j ¼ 1; 2; 3; 4; 5 and Xij is a 4�5 matrix
with 1 at the ði; jÞth position and zeroes everywhere else. We
set s2 ¼ 1 and obtained S1 and S2 independently fromWish-
art distributions, that is, we obtained S1 � W6ð6; I6Þ and
S2 � W7ð7; I7Þ before scaling each by their (1,1)th element.
We obtained realizations from four MoMRmodels, one each
forB of TK, CP, TR andOP formats, and fit appropriatemod-
els to the data using theML estimation procedures described
in Section 2.3. To study consistency properties of our estima-
tors, we used k ¼ 1; 4; 7; 10 and 13, meaning that our sample
sizes ranged over n 2 f20; 80; 140; 200; 260g. An unstruc-
tured B in this experiment would have 4� 5� 6� 7 ¼ 840
entries, but B has only 59 unconstrained parameters with the
OP format and 45 unconstrained parameters when it is of CP
format of rank 2. This number is only 60 when B has TK for-
mat with rank (2,2,2,2) and 70 when it is of the TR format
with rank (2,2,2,2). Thus, our lower-rank simulation frame-
work had at least 91% fewer unconstrained parameters in B.
We simulated data from (40) using B, s2, S1 and S2 and esti-
mated the parameters for each replication. Fig. 6 displays the
Frobenius norm of the difference between the true and esti-
mated parameters, and shows that as sample size increases,
ð bB; bs2; bS1; bS2Þ approach the true parameters ðB; s2;S1;S2Þ,
demonstrating consistency of the estimators.

3.2 Evaluating Recovery and Discrimination

We simulated 600 observations from the MoMRmodel

Yijk ¼ hXijjBi þEijk; Eijk �iid N ½87;106�0 ð0; s2S1;S2Þ;
(41)

where i ¼ 1; 2; 3; 4, j ¼ 1; 2; 3, Xij is a 4�3 matrix with 1 at
the ði; jÞth position and zero elsewhere, and �ij ¼ hXijjBi
corresponds to the pixel-wise logit transformation of the jth
additive color (Red, Green, Blue) of the ith Andean camelid
(Guanaco, Llama, Vicu~na, Alpaca) images of Fig. 7a. We set
S1 and S2 to be AR(1) correlation matrices with coefficients
0.1 and �0:1 respectively, and s2 ¼ 1. Sans constaints, we
have 3� 4� 87� 106 ¼ 110664 parameters in B.

We fit (41) separately for TR-, TK-, CP- and OP-formatted
B, with ranks set to have similar number of unconstrained
parameters in B. The TR format with rank (3,3,5,3) had 2958
such parameters, the TK format with rank (4,4,9,9) had 3061
parameters, the CP format with rank 15 had 3001 parame-
ters in B, while the relatively inflexible OP format had 666

LLOSA-VITE AND MAITRA: REDUCED-RANK TENSOR-ON-TENSOR REGRESSION AND TENSOR-VARIATE ANALYSIS OF VARIANCE 2291



parameters. In all cases, the dimension of B was reduced by
over 97%. The estimated tensor B in each case corresponds
to the estimated color images of the four Andean camelids.
Fig. 7a shows varying success of these four formats in recov-
ering the underlying camelid image (true B). The OP-esti-
mated images are the least-resolved, with the reduced
number of parameters for B inadequate for recovery. But
the other formats can adjust for the quantum of reduction in
parameters through their ranks. We illustrate this aspect by
fitting (41) with B having the TK, CP and TR formats with
optimal rank chosen by BIC, following Section 2.5. Fig. 7a
shows very good recovery of B by these BIC-optimized bBs,
with unappreciable visual differences in all cases. In con-
trast, the model fit with unstructured B and diagonal S, has
a BIC of 1:64� 107, while fitting a model with a similar B
but Kronecker-separable S has a BIC of 1:63� 107. The CP,
TK and TR formats therefore outperform these two alterna-
tives when the ranks are tuned.

The TANOVA(2,2) formulation of (41) enables us to test

H0 : P1 ¼ P2 ¼ P3 ¼ P4 vs.

Ha : Pi 6¼ Pi� ; for some i 6¼ i� 2 f1; 2; 3; 4g (42)

where Pi is a third-order tensor of size 3� 87� 106 that con-
tains the RGB slices of the ith Andean camelid image. The
usual Wilks’ L statistic [52] is L ¼ jbSRj=jbST j;where bSR is the
sample covariance matrix of the residuals and bST is the sam-
ple covariance matrix of the simpler model’s residuals,
which finds a commonmean across all camelids. (Section S2,
available online, details the calculation of bSR and bST .) We
illustrate the role of s2 and the low-rank OP, TR, CP or TK
formats in distinguishing the four camelids, as measured by
the Wilks’ L test statistic, in Fig. 7b, for s ¼ 2; 4; 6; 8; 10. The
value of L increases with s2, meaning that larger variances
decrease the power of our test. Further, the CP, TR and TK
formats yield lower-valued (more significant) test statistics
than OP. This finding illustrates the limits of the less-flexible
OP format relative to the others in recovering B.

Nevertheless, OP joins the other three formats in consistency
of estimation and discrimination, as illustrated byWilks’L.

4 REAL DATA APPLICATIONS

Having evaluated performance of our reduced-rank ToTR
methodology, we apply it to the datasets of Section 1.1.

4.1 A TANOVA(1,5) Model for Cerebral Activity

Section 1.1.1 laid out a TANOVA model involving 30 fMRI
volumes of voxel-wise changes in activation from a baseline,
each volume corresponding to one of ten words connoting
death, positive or negative affects, for each of 17 subjects. For
the jth subject we have a fifth-order tensor Yj of order 3�
10�43�56�20, where the first two modes correspond to the
three kinds of word stimulus and the individual words, and
the other modes correspond to the dimensions of the image
volume. The jth subject has status given by xxj that is a 2D
unit vector with 1 at position i that is 1 for attempter or 2 for
ideator.Wemodel these responses and covariates as

Yj ¼ hxxjjBi þ Ej; Ej �iid Nmm1
ð0; s2S1;S2;S3;S4;S5Þ;

where mm1 ¼ ½3; 10; 43; 56; 20�0 and j ¼ 1; . . .; 17. We let B
have the TK format ½½V;L1;M1;M2;M3;M4;M5�� with rank
(2,3,6,15,20,7) chosen by BIC from 256 candidate ranks, and
where M 0

kS
�1
k Mk¼Idk ; k ¼ 1; 2; 3; 4; 5. The 77578 parameters

to be estimated in our B represent an over 97.3% reduction
over that of the unconstrained B of size 2�3�10�43�56�
20, or 2889600 parameters. (Our use of a TK format exploits
its nicer distributional properties for easier inference, and
therefore we only use this format here.) We set S1 (specify-
ing relationships between word types) to be unconstrained,
S2 (covariances between same kinds of words) to have an
equicorrelation structure and S3;S4;S5 with AR(1) correla-
tions to capture spatial context in the image volume. Fitting
the model with unstructured B and diagonal S yielded a
BIC of 210 million, while the fitted model with a similar B
but Kronecker-separable S reported a BIC of 164 million. In

Fig. 7. (a) Results of fitting seven TANOVA(2,2) models on data simulated from (41). One model was fit assuming the OP format, and two models
were fit for each of the TK, CP and TR formats: one with set ranks and another one with optimal ranks, as chosen by BIC. The two factors are the
type of andean camelid (Guanaco, Llama, Vicu~na, Alpaca) and the type of additive color RGB (red, green, blue). The Guanaco, Llama and Alpaca
images are from Wikipedia Commons and the Vicu~na image is from Encyclopædia Britannica. It is evident that while one cannot adjust the OP rank,
increased rank for the TR, TK and CP formats result in more image restoration. (b) Monte-Carlo 95th quantiles of the Wilks’ L statistics that test the
set of hypothesis in equation (42), for the OP, CP, TR and TK formats, five values of scalar variance s2 in the x-axis, and for both true and false null
hypotheses. Large variabilities lead to larger test statistics when H0 is false, leading to weaker evidence against the null hypothesis. In all cases, CP,
TR and TK formatting leads to more significant statistics when compared to the OP, even when the ranks are not optimal.
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contrast, our TK model with Kronecker-separable covari-
ance outperformed these two alternatives with a BIC of 127
million.

Our primary interest here is to find regions of significant
interaction between word type and subject suicide attemp-
ter/ideator status to determine markers for suicide risk
assessment and intervention. The interaction estimate can
be expressed as bB� ¼ bB �1 cc

0
1 �2 C2 �3 cc

0
3; where cc1 is a con-

trast vector that finds differences between suicide attemp-
ter/ideation status, C2 is a contrast matrix for differences
across word type and cc3 is a contrast vector that averages
the ten words of each type. These contrast matrices and vec-
tors are given in (S30), available online. From Theorem 2.4,

bB� !d Nmm2
ðB�; t2C2M1M

0
1C
0
2;M3M

0
3;M4M

0
4;M5M

0
5Þ;

where mm2 ¼ ½3; 20; 43; 56�0, B� ¼ B �1 cc
0
1 �2 C2 �3 cc

0
3 and t2

is as in Section S3.1, available online. Using the asymptotic
distribution of bB�, we marginally standardize it to obtain bZ�
as shown in (S33), available online, which also follows the
TVN distribution but with correlation matrices as scale
parameters. In Section S3.1, available online, we detail its
derivation, interpretation and asymptotic distribution. For
the ith level interaction, consider the set of hypotheses at
the ðk; l;mÞth voxel

Ho : B�ði; k; l;mÞ ¼ 0 vs Ha : B�ði; k; l;mÞ 6¼ 0:

Under the null hypothesis of no ith interaction effect at
the ðk; l; mÞth voxel, the marginal distribution ofbZ�ði; k; l; mÞ is asymptotically Nð0; 1Þ. Fig. 8 displays 3D
maps of the brain with significant values of bZ� overlaid for
each of the three pairs of interactions. Significant voxels were
decided using cluster thresholding [53] (a ¼ 0:05), with

clusters of at least 12 contiguous (under a second-order
neighborhood specification) voxels, with this minimum clus-
ter size determined by the Analysis for Neuroimaging
(AFNI) software [54], [55]. There are many methods [56],
[57], [58], [59], [60], [61], [62] for significance detection in
fMRI studies but we use cluster thresholding here as an illus-
tration and also because it is the most popular method. We
now briefly discuss the results.

Fig. 8a identifies significant interactions between death-
and negative-connoting words on the one hand and suicide
attempters vis-a-vis ideators on the other. All significant
interactions are positive and dominated by the precuneus
and the orbital frontal cortex. The precuneus is associated
with depression and rumination [63], [64], [65], while the
orbital frontal cortex is associated with the influence that
emotions and feelings have on decision-making [66], as well
as with suicide attempters’ reactions to external stimuli [67].
Both regions are also associated with the Default Mode Net-
work (DMN) that plays a role in representing emotions [68].
These results indicatemore differential rumination and emo-
tions (between attempters and ideators) caused by death-
related words, as compared to negative-connoting words.
These findings are reinforced by the significance detected in
the occipital lobe, the premotor cortex (PMC) and the supe-
rior parietal cortical regions that are related toworkingmem-
ory and depression [69], [70], [71]. Fig. 8b displays significant
interactions between the positive and death-related words
and suicide attempters and ideators. The precuneus is more
pronounced here relative to Fig. 8a, indicating that death-
relatedwords aremore salient thanwords that have negative
and positive connotations among attempters vis-a-vis idea-
tors. This observation is reinforced with the detected signifi-
cance in the dorsal and ventral visual medial prefrontal
cortex, the mammillary bodies, and the posterior cingulate
cortex (PCC) that are all involved in processing emotional
information [72], [73]. The PCC is also involved in memory,
emotion, and decision-making [74], [75] and is connected to
the temporal-parietal junction [76] which is involved with
emotions and perception [77], [78]. High bZ� values in the
ventral and dorsal visual cortices are commensurate with
their association with working memory tasks [79]. Also, the
low values of bZ� in the temporal parietal junction point to
needed additional processing of death-related versus posi-
tive-connoting words among attempters relative to ideators.
Fig. 8c shows significant interactions between negative and
positive-emotingwords and suicide attempters and ideators.
The low values in the left and right temporal-parietal junc-
tions and the PMC indicate that words conveying negative
thoughts don’t need as much processing as do positive-con-
noting words among attempters relative to ideators. The sig-
nificant assocication of the PCC in both Figs. 8b and 8c
supports our hypothesis that death-related words are more
salient than negative or positive words in differentiating
attempters from ideators. In summary, the two groups of
subjects have positive- and negative-connoting words result
in neurally similar significant brain regions when compared
to death-related words, which show further significance in
areas associated with the processing of emotional feelings
and planning. Our conclusions here are on an experiment
with only 9 attempters and 8 ideators and so are preliminary,
but are intrepretable, providing some confidence in the

Fig. 8. The test statistic bZ� of the interaction between subject’s attempter/
ideator status and (a) death-negative, (b) death-positive and (c) negative-
positive words at voxels identified significant by cluster thresholding at the
5% level. These voxels are in the precuneus (PC), temporal-parietal junc-
tion (TPJ), orbital frontal cortex (OFC), premotor cortex (PMC), superior
parietal cortex (SPC), ventral visual cortex (VVC), dorsal visual cortex
(DVC), dorsal medial frontal cortex (DMPFC), ventral medial prefrontal
cortex (VMPFC), mamillary bodies (MB), posterior cingulate cortex
(PCC) and occipital lobe (OL).
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practical reductions afforded by TANOVA when coupled
with the use of the Tucker-formatted B for this application.

4.2 A TANOVA(3,3) Model for the LFW Face
Database

We return to the LFW database of Section 1.1.2 that is a com-
pendium of over 13,000 face images. Using the steps detailed
in Section S3.2, available online, we selected 605 images with
unambiguous genders, age group and ethnic origin, and
such that there are atmost 33 images for each factor combina-
tion. This dataset was also used by [19] with the goal of clas-
sification, leading to a vector-variate response of attributes
and tensor-valued covariates of color images, for which a CP
format was assumed. In contrast, our objective is to distin-
guish the characteristics of different attributes, leading to a
TANOVA(3,3) model with color images as the response and
gender, ethnic origin and gender as covariates. Our model is
as per (15) and specifically

Yijkl ¼ hX ijkjBi þ Eijkl; Eijkl � Nmm3
ð0; s2S1;S2;S3Þ;

where i ¼ 1; 2; j ¼ 1; 2; 3; k ¼ 1; 2; 3; 4; l ¼ 1; . . .; nijk; mm3 ¼
½151; 111; 3�0, and the ði; j; k; lÞth response Yijkl is the color
image of size 151�111�3 for the lth person of the ith gender,
jth ethnic origin and kth age group. Here X ijk¼ee2i � ee3j � ee4k is
the tensor-valued covariate for a TANOVA(3,3) model with
ðh1; h2; h3Þ¼ð2; 3; 4Þ, as described in Section 2.2.2, encoding
the genders � ethnic-origin � age-group attributes of Yijkl.
The corresponding TANOVAparameter B is of size 2�3�4�
151�111�3 and contains all the group means. We con-
strained B to have a tensor train (TT) format of TR rank
(1,3,3,4,10,3), chosen using BIC out of a total of 64 candidate
ranks. (In terms of the BIC, the TT format also bested the TK,
CP and OP formats.) The number of parameters involved in
B is 6393 due to the TT restriction, which is a reduction in the
number of unconstrained parameters of around 99% from
the unconstrained B that has more than 1.2 million parame-
ters. Fig. 9 displays the estimated bB, from where we observe
that the TT format preserved visual information regarding
ethnic origin, gender, and age-group. Fitting the model with
unstructured B and diagonal S resulted in a BIC of 1:02�
109, while the fitted model with a similar B but Kronecker-

separable S reported a BIC of �1:22� 107. In contrast, our
TT model with Kronecker-separable covariance outper-
formed these alternatives with a BIC of�1:87� 107.

5 DISCUSSION

We have provided a multivariate regression and ANOVA
framework that exploits the tensor-valued structure of the
explanatory and response variables using four different
low-rank formats on the regression coefficient and a Kro-
necker-separable structure on the covariance matrix. These
structures are imposed for context but more so for practical
reasons, as the number of parameters involved in the classi-
cal MVMLR model grows exponentially with the tensor
dimensions. Different stuctures can be compared between
each other using criteria such as BIC. We provided algo-
rithms for ML estimation, derived their computational com-
plexity, implemented them in an R package (totr), and
evaluated them via simulation experiments. We also stud-
ied the asymptotic properties of our estimators and applied
our methodology to identify brain regions associated with
suicide attempt or ideation status and death- negative- or
positive-connoting words. Finally, we also used our meth-
ods to distinguish facial characteristics in the LFW dataset.

A reviewer has asked whether our ToTR methodology,
that is based on linear modeling, has advantages over non-
linear deep learning methods in the context of the applica-
tions of Section 4. We contend that there are several aspects
that make ToTR more suitable than deep learning in both
cases. For one, the linearity of the model is dictated by the
experimental setup in both cases. Second, deep learning
generally requires substantial amounts of training data. For
the brain imaging application of Section 4.1, we only have
data on 17 subjects, while for the LFW dataset of Section 4.2,
we have factor combinations that are also severely imbal-
anced in sample size, with one factor combination having
around 2,000 replications, and some others having only a
handful of images. Further, we have developed inference
tools for our ToTR methodology which are needed to assess
cerebral activity in Section 4.1. That application also shows
our ToTR and TANOVA results as easily interpreted. Such
benefits are not present with deep learning methodology.
Finally, selecting the right deep learning model requires
knowledge of the loss function and training method, and
calls for considerable skill and expertise. In contrast, our
setup allows for a simple objective tool (BIC) for deciding
on the optimal model.

There are several other avenues for further investigation.
For instance, we can perform additional dimension reduc-
tion by adding an L1 penalty on the likelihood optimization.
Also, the number of parameters in the intercept can poten-
tially grow when the tensor response is high-dimensional,
whichmotivates specifying a low-rank structure on the inter-
cept term. Similarly, the independent identically distribution
assumption on the errors is not feasiblewhen external factors
group data-points into units that are similar to one another.
For these cases, a mixed-effects model is more appropriate.
Further, it would be worth investigating generalization of
the Kronecker separable structure of the dispersionmatrix or
the normality assumption to incorporate more general distri-
butional forms. Finally, it would be interesting to study the

Fig. 9. Different slices of the resulting factorized tensor B that results
from fitting a TANOVA(3,3) model on the LFW dataset using the TT for-
mat. The results are compressed mean images across genders (male,
female), ethnic origin (Asian, African, European) and age groups (child,
youth, middle aged and senior) from 605 central LFW images. We can
observe that the TT format preserved vital information regarding the fac-
tor-combination of age group, gender and ethnic-origin.
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exact distribution of Wilks’ L statistic or other statistic that
can be used for testing hypothesis in our TANOVA frame-
work without the need to do simulation. These are some
issues that may benefit from further attention and that we
leave for futurework.
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