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Abstract—Defect prediction models are proposed to help a team prioritize the areas of source code files that need Software Quality

Assurance (SQA) based on the likelihood of having defects. However, developers may waste their unnecessary effort on the whole file

while only a small fraction of its source code lines are defective. Indeed, we find that as little as 1-3 percent of lines of a file are defective.

Hence, in this work, we propose a novel framework (called LINE-DP) to identify defective lines using a model-agnostic technique, i.e., an

Explainable AI technique that provides information why the model makes such a prediction. Broadly speaking, our LINE-DP first builds a

file-level defect model using code token features. Then, our LINE-DP uses a state-of-the-art model-agnostic technique (i.e., LIME) to

identify risky tokens, i.e., code tokens that lead the file-level defect model to predict that the file will be defective. Then, the lines that

contain risky tokens are predicted as defective lines. Through a case study of 32 releases of nine Java open source systems, our

evaluation results show that our LINE-DP achieves an average recall of 0.61, a false alarm rate of 0.47, a top 20%LOC recall of 0.27,

and an initial false alarm of 16, which are statistically better than six baseline approaches. Our evaluation shows that our LINE-DP

requires an average computation time of 10 seconds including model construction and defective line identification time. In addition, we

find that 63 percent of defective lines that can be identified by our LINE-DP are related to common defects (e.g., argument change,

condition change). These results suggest that our LINE-DP can effectively identify defective lines that contain common defects while

requiring a smaller amount of inspection effort and a manageable computation cost. The contribution of this paper builds an important

step towards line-level defect prediction by leveraging a model-agnostic technique.

Index Terms—Software quality assurance, line-level defect prediction

Ç

1 INTRODUCTION

SOFTWARE Quality Assurance (SQA) is one of software
engineering practices for ensuring the quality of a soft-

ware product [26]. When changed files from the cutting-
edge development branches will be merged into the release
branch where the quality is strictly controlled, an SQA team
needs to carefully analyze and identify software defects in
those changed files [1]. However, due to the limited SQA
resources, it is infeasible to examine the entire changed files.
Hence, to spend the optimal effort on the SQA activities, an
SQA team needs to prioritize files that are likely to have
defects in the future (e.g., post-release defects).

Defect prediction models are proposed to help SQA
teams prioritize their effort by analyzing post-release soft-
ware defects that occur in the previous release [16], [26],
[54], [58], [76], [79]. Particularly, defect prediction models
leverage the information extracted from a software system
using product metrics, the development history using

process metrics, and textual content of source code tokens.
Then, the defect models estimate defect-proneness, i.e., the
likelihood that a file will be defective after a software prod-
uct is released. Finally, the files are prioritized based on the
defect-proneness.

To achieve effective SQA prioritization, defect prediction
models have been long investigated at different granularity
levels, for example, packages [43], components [81], mod-
ules [44], files [43], [53], methods [28], and commits [45]. How-
ever, developers could still waste an SQA effort on manually
identifying the most risky lines, since the current prediction
granularity is still perceived as coarse-grained [86]. In addi-
tion, ourmotivating analysis shows that as little as 1-3 percent
of the lines of code in a file are actually defective after release,
suggesting that developers could waste their SQA effort on
up to 99 percent of clean lines of a defective file. Thus, line-
level defect prediction models would ideally help the team to
save a huge amount of the SQA effort.

In this paper, we propose a novel line-level defect predic-
tion framework which leverages a model-agnostic technique
(called LINE-DP) to predict defective lines, i.e., the source
code lines that will be changed by bug-fixing commits to fix
post-release defects. Broadly speaking, our LINE-DP will first
build a file-level defect model using code token features.
Then, our LINE-DP uses a state-of-the-art model-agnostic
technique (i.e., LIME [68]) to explain a prediction of which
code tokens lead the file-level defect model to predict that
the file will be defective. Finally, the lines that contain those
code tokens are predicted as defective lines. The intuition
behind our approach is that code tokens that frequently appeared
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in defective files in the past may also appear in the lines that will be
fixed after release.

In this work, we evaluate our LINE-DP in terms of (1) pre-
dictive accuracy, (2) ranking performance, (3) computation
time, and (4) the types of uncovered defects. We also com-
pare our LINE-DP against six baseline approaches that are
potential to identify defective lines based on the literature,
i.e., random guessing, a natural language processing (NLP)
based approach, two static analysis tools (i.e., Google’s
ErrorProne and PMD), and two traditional model interpre-
tation (TMI) based approaches using logistic regression and
random forest. The evaluation is based on both within-
release and cross-release validation settings. Through a case
study of 32 releases of 9 software systems, our empirical
evaluation shows that our LINE-DP achieves an average
recall of 0.61, a false alarm rate of 0.47, a top 20%LOC recall
of 0.27, and an initial false alarm of 16 which are signifi-
cantly better than the baseline approaches. The average
computation time (including the model construction and
defective line identification time) of our LINE-DP is 10.68 and
8.46 seconds for the within-release and cross-release settings,
respectively. We find that 63 percent of the defective lines
identified by our LINE-DP are categorized into the common
defect types. Our results lead us to conclude that leveraging
a model-agnostic technique can effectively identify and rank
defective lines that contain common defects while requiring a
manageable computation cost. Our work builds an important
step towards line-level defect prediction by leveraging a
model-agnostic technique.

Novelty Statement. To the best of our knowledge, our
work is the first to use the machine learning-based defect
prediction models to predict defective lines by leveraging a
model-agnostic technique from the Explainable AI domain.
More specifically, this paper is the first to present:

� A novel framework for identifying defective lines
that uses a state-of-the-art model-agnostic technique.

� An analysis of the prevalence of defective lines.
� The benchmark line-level defect datasets are avail-

able online at https://github.com/awsm-research/
line-level-defect-prediction.

� A comprehensive evaluation of line-level defect pre-
diction in terms of predictive accuracy (RQ1), rank-
ing performance (RQ2), computation cost (RQ3), and
the types of uncovered defects (RQ4).

� A comparative evaluation between our framework
and six baseline approaches for both within-release
and cross-release evaluation settings.

Paper Organization. The rest of our paper is organized as
follows: Section 2 introduces background of software quality
assurance and defect prediction models. Section 3 presents a
motivating analysis. Section 4 discusses the related work.
Section 5 describes our framework. Section 6 describes the
design of our experiment. Section 7 presents the results of
our experiment. Section 8 discusses the limitation and disclo-
ses the potential threats to validity. Section 9 draws the
conclusions.

2 BACKGROUND

In this section, we provide background of software quality
assurance and defect prediction models.

2.1 Software Quality Assurance

SoftwareQuality Assurance is a software engineering practice
to ensure that a software product meets the quality standards,
especially for the life-impacting and safety-critical software
systems. Thus, SQA practices must be embedded as a quality
culture throughout the life cycles from planning, develop-
ment stage, to release preparation so teams can follow the best
practices to prevent software defects. Fig. 1 illustrates a sim-
plified software engineering workflow that includes SQA
activities [1].

2.1.1 SQA Activities During the Development Stage

During the development stage, new features and other code
changes are implemented by developers. Such code changes
(or commits) must undergo rigorous SQA activities (e.g.,
Continuous Integration tests and code review) prior to
merge into themain branch (e.g., a master branch) [24]. Since
these commit-level SQA activities are time-consuming, Just-
In-Time defect prediction has been proposed to support
developers by prioritizing their limited SQA effort on the
most risky code changes that will introduce software defects
during the development cycle (i.e., pre-release defects) [45],
[60]. Nevertheless, JIT defect prediction only early detects
defect-inducing changes, rather than post-release defects
(i.e., the areas of code that are likely to be defective after a
release). Despite the SQA activities during the development
cycle (e.g., code reviews), it is still possible that software
defects still slip through to the official release of software
products [80], [81]. Thus, SQA activities are still needed dur-
ing the release preparation.

2.1.2 SQA Activities During the Release Preparation

During the release preparation, intensive SQA activities
must be performed to ensure that the software product is of
high quality and is ready for release, i.e., reducing the likeli-
hood that a software productwill havepost-release defects [1],
[57]. In other words, the files that are changed during the soft-
ware development need to be checked and stabilized to
ensure that these changes will not impact the overall quality
of the software systems [32], [50], [64]. Hence, several SQA
activities (e.g., regression tests, manual tests) are per-
formed [1]. However, given thousands of files that need to
be checked and stabilized before release, it is intuitively
infeasible to exhaustively perform SQA activities for all
of the files of the codebase with the limited SQA resources

Fig. 1. An overview of SQA activities in the Software Engineering
workflow [1].
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(e.g., time constraints), especially in rapid-release develop-
ment practices. To help practitioners effectively prioritize
their limited SQA resources, it is of importance to identify
what are the most defect-prone areas of source code that are likely
to have post-release defects.

Prior work also argued that it is beneficial to obtain early
estimates of defect-proneness for areas of source code to
help software development teams develop the most effec-
tive SQA resource management [56], [57]. Menzies et al.
mentioned that software contractors tend to prioritize their
effort on reviewing software modules that tend to be fault-
prone [54]. A case study at ST-Ericsson in Lund, Sweden by
Engstr€om et al. [17] found that the selection of regression
test cases guided by the defect-proneness of files is more
efficient than the manual selection approaches. At the
Tizen-wearable project by Samsung Electronics [46], they
found that prioritizing APIs based on the defect-proneness
increases the number of discovered defects and reduces the
cost required for executing test cases.

2.2 Defect Prediction Models

Defect prediction models have been proposed to predict the
most risky areas of source code that are likely to have post-
release defects [16], [54], [58], [76], [79], [88], [89]. A defect
prediction model is a classification model that estimates the
likelihood that a file will have post-release defects. One of
the main purposes is to help practitioners effectively spend
their limited SQA resources on the most risky areas of code
in a cost-effective manner.

2.2.1 TheModelling Pipeline of Defect PredictionModels

The predictive accuracy of the defect prediction model
heavily relies on the modelling pipelines of defect predic-
tion models [4], [22], [55], [72], [73], [75], [77]. To accurately
predicting defective areas of code, prior studies conducted
a comprehensive evaluation to identify the best technique
of the modelling pipelines for defect models. For example,
feature selection techniques [23], [39], [40], collinearity anal-
ysis [37], [38], [39], class rebalancing techniques [74], classi-
fication techniques [22], parameter optimization [4], [21],
[76], [79], model validation [78], and model interpreta-
tion [36], [37]. Despite the recent advances in the modelling
pipelines for defect prediction models, the cost-effectiveness
of the SQA resource prioritization still relies on the granu-
larity of the predictions.

2.2.2 TheGranularity Levels of Defect PredictionsModels

The cost-effectiveness of the SQA resource prioritization
heavily relies on the granularity levels of defect prediction.
Prior studies argued that prioritizing software modules at the
finer granularity is more cost-effective [28], [43], [60]. For
example, Kamei et al. [43] found that the file-level defect pre-
diction is more effective than the package-level defect predic-
tion. Hata et al. [28] found that the method-level defect
prediction is more effective than file-level defect prediction.
Defect models at various granularity levels have been pro-
posed, e.g., packages [43], components [81], modules [44],
files [43], [53], methods [28]. However, developers could still
waste an SQA effort on manually identifying the most risky
lines, since the current prediction granularity is still perceived

as coarse-grained [86]. Hence, the line-level defect prediction
should be beneficial to SQA teams to spend optimal effort on
identifying and analyzing defects.

3 MOTIVATING ANALYSIS

In this section, we perform a quantitative analysis in order
to better understand how much SQA effort could be spent
when defect-proneness is estimated at different granular-
ities. It is possible that developers may waste their SQA
effort on a whole file (or a whole method) while only a small
fraction of its source code lines are defective.

An Illustrative Example. Given that a defective file f has a
total lines of 100, all 100 lines in the file will require SQA effort
if the defect-proneness is estimated at a file level. However, if
the defect-proneness is estimated at a method level, only lines
in a defective methodm (i.e., the method that contains defec-
tive lines) will require SQA effort. Assuming that this defec-
tive method has 30 lines, the required SQA effort will be
30 percent of the effort required at a file level. If the defect-
proneness is estimated at a line level, only defective lines will
require SQA effort. Assuming that there are 5 defective lines
in this file, the required SQA effort will be only 5 percent of
the effort required at a file level.

Approach. To quantify possible SQA effort when the
defect-proneness is estimated at the file, method, or line lev-
els, we measure the proportion of defect-prone lines. To do
so, we first extract defective lines, i.e., the lines in the released
system that were removed by bug-fixing commits after
release (see Section 6.2).1 Then, for each defective file, we
measure the proportion of defect-prone lines at the line level,
i.e., #DefectiveLines

LOCf
, where LOCf is the total number of lines in a

defective file f . We also identify defective methods, i.e.,
methods in the defective file f that contain at least one defec-
tive line. Then, we measure the proportion of defect-prone

lines at the method level, i.e.,

P
m2M LOCm

LOCf
, where LOCm is the

number of lines in a defective method m and M is a set of
defective methods in the defective file f . Finally, we examine
the distributions of the proportion of defective lines across
the 32 studied releases of the nine studied systems.

Results. We find that as little as 1.2 - 2.5 percent of the
lines in a defective file are defective. Fig. 2 shows the distri-
butions of the proportion of defect-prone lines in a defective
file. We find that at the median, 1.2 to 2.5 percent of lines in
the defective files are defective lines, i.e., the lines that actu-
ally impacted by bug-fixing commits. Moreover, we observe
that 21 percent (Hive) - 46 percent (Camel) of defective files
have only one single defective line. As we suspected, this
result indicates that only a small fraction of source code
lines in the defective files are defective. This suggests that
when using file-level defect prediction, developers could
unnecessarily spend their SQA effort on 97 - 99 percent of
clean lines in a defective file.

Furthermore, Fig. 2 presents the distributions of the pro-
portion of defect-prone lines when using method-level pre-
diction. At the median, the defective methods account for
14 - 32 percent of lines in a defective file. This suggests that

1. Note that in this analysis, we only focus on the defective lines in
the defective files, i.e., the files that are only impacted by bug-fixing
commits.
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in our studied releases, the proportion of defect-prone lines
predicted at the method level is still relatively larger than
those defect-prone lines predicted at the line level. Hence, a
more fine-grained approach to predict and prioritize defective lines
could substantially help developers to reduce their SQA effort.

4 RELATED WORK

In this section, we discuss the state-of-the-art techniques that
identify defect-prone lines, i.e., static analysis approaches and
NLP-based approaches. We also discuss the challenges when
using machine learning to build line-level defect prediction
models.

4.1 Static Analysis

Static analysis is a tool that checks source code and reports
warnings (i.e., common errors such as null pointer de-
referencing and buffer overflows) at the line level. Various
static analysis approaches are proposed including heuristic
rule-based techniques (e.g., PMD [12]), complex algo-
rithms [20], and hybrid approaches like FindBugs2 which
incorporates the static data-flow analysis and the pattern-
matching analysis. A static analysis tool could potentially be
used to predict and rank defect-prone lines [84]. However,
Kremenek et al. [48] argued that Static Bug Finder (SBF) often
reported false warnings, which could waste developers’
effort. Several studies proposed approaches to filter and pri-
oritize warnings reported by SBF [29], [30], [48], [49], [69].
Recently, Rahman et al. [63] found that the warnings
reported by a static analysis tool can be used to prioritize
defect-prone files. However, they found that their studied
static analysis tools (i.e., PMD and FINDBUGS) and the file-
level defect prediction models provide comparable benefits,
i.e., the ranking performance between the defect models and
static analysis tools is not statistically different. Yet, little has
is known about whether the line-level defect prediction is
better than a static analysis or not.

4.2 NLP-Based Approaches

With a concept of software naturalness, statistical language
models from Natural Language Processing have been used
to measure the repetitiveness of source code in a software

repository [33]. Prior work found that statistical language
models can be leveraged to help developers in many soft-
ware engineering tasks such as code completion [67], [83],
code convention [5], and method names suggestion [6].
Generally speaking, language models statistically estimate
the probability that a word (or a code token) in a sentence
(or a source code line) will follow previous words. Instead
of considering all previous words in a sentence, one can use
n-gram language models which use Markov assumptions to
estimate the probability based on the preceding n� 1
words. Since the probabilities may vary by the orders of
magnitude, entropy is used to measure the naturalness of a
word while considering the probabilities of the proceeding
words. In other words, entropy is a measure of how sur-
prised a model is by the given word. An entropy value indi-
cates the degree that a word is unnatural in a given context
(i.e., the preceding n� 1words).

Recent work leverages the n-gram language models to
predict defect-prone tokens and lines [66], [87]. More specif-
ically, Wang et al. [87] proposed an approach (called
Bugram) which identifies the defective code tokens based
on the probabilities estimated by n-gram models. To evalu-
ate Bugram, Wang et al. manually examined whether the
predicted tokens are considered as true defects based on
specific criteria such as incorrect project specific function
calls and API usage violation. On the other hand, Ray et al.
[66] examined the naturalness of defective lines (i.e., lines
that are removed by bug-fixing commits) based on the
entropy of probabilities that are estimated by n-gram mod-
els. Ray et al. also found that ranking the files based on an
average entropy of lines is comparable to ranking source
files based on the probability estimated by the file-level
defect prediction models. However, little is known about
whether ranking defect-prone lines based on entropy is bet-
ter than a line-level defect prediction model or not.

4.3 Challenges in Machine Learning-Based
Approaches

The key challenge of building traditional defect models at
the line level is the design of hand-crafted software metrics.
The state-of-the-art software metrics (e.g., code and process
metrics) are often calculated at the class, file, and method
levels [28], [62]. Extracting those features at the line level is
not a trivial task since one would need to acquire accurate
historical data for each line in the source code files. In the lit-
erature, the finest-grained defect prediction models are cur-
rently at the method level [28].

Instead of using hand-crafted software metrics, prior
work directly uses semantic features of source code to build
defect prediction models [7], [14], [35], [88], [89]. For exam-
ple, Wang et al. [88] automatically generate semantic fea-
tures from source code using a deep belief network and
train a file-level defect prediction model using traditional
classification techniques (e.g., Logistic Regression). Despite
the success of using semantic features for file-level defect
prediction, the size of the training datasets is still highly-
dimensional and sparse (i.e., there is a large number of
tokens and a large number of files). Given a huge amount of
source code lines (e.g., 75K+ lines), it is likely infeasible and
impractical to build a line-level defect prediction model

Fig. 2. The proportion of lines in a file that are inspected when using the
line-level and method-level defect prediction models.

2. http://findbugs.sourceforge.net/
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using semantic features within a reasonable time. To dem-
onstrate this, we built a line-level defect prediction model
using the smallest defect dataset (i.e., 230,898 code tokens
and 259,617 lines of code) with the simplest ML learning
algorithm (i.e., Logistic Regression) with semantic features
(e.g., the frequency of code tokens). Our preliminary analy-
sis shows that the model building with the smallest defect
dataset still takes longer than two days.3 Hence, using
semantic features for line-level defect prediction remains
challenging.

5 MODEL-AGNOSTIC-BASED LINE-LEVEL DEFECT

PREDICTION

Similar to prior work [16], [54], [58], [76], [79], [88], [89], the
key goal of this work is to help a software development team
develop an effective SQA resource management by priortiz-
ing the limited SQA effort on the most defect-prone areas of
source code. Rather than attempting to build a line-level
defect model, we hypothesize that a prediction of a file-level
defectmodel can be further explained to identify defect-prone
lines. Recently, model-agnostic techniques have been pro-
posed to provide a local explanation for a prediction of any
machine learning algorithms. The fundamental concept of the
local explanation is to provide information why the model
makes such a prediction. Unlike the traditional model inter-
pretation techniques like variable importance for random for-
est [9] or the coefficients analysis for logistic regression
models [27], the model-agnostic techniques can identify
important features for a given file by estimating the contribu-
tion of each token feature to a prediction of the model. Fig. 3
illustrates the difference of important features that are identi-
fied by the TMI and model-agnostic techniques. The key dif-
ference is that the TMI techniqueswill generate only one set of
important features based on the models that are trained on a
given training dataset, while the model-agnostic technique
will generate a set of important features for each testing file.

To leverage the model-agnostic techniques to identify
defect-prone lines, we propose a Model Agnostic-based
Line-level Defect Prediction framework (called LINE-DP). To
do so, we first use source code tokens of a file as features

(i.e., token features) to build a file-level defect model. Then,
we generate a prediction for each testing file using the file-
level defect model. Then, we use a state-of-the-art model-
agnostic technique, i.e., Local Interpretable Model-Agnostic
Explanations (LIME) [68] to generate an explanation for a
prediction of the file-level defect models. More specifically,
given a testing file, LIME will identify important token fea-
tures that influence the file-level defect model to predict
that the testing file will be defective. Finally, we rank the
defect-prone lines based on LIME scores instead of the
defect-proneness of files. Our intuition is that code tokens
that frequently appeared in defective files in the past may
also appear in the lines that will be fixed after release.

Fig. 4 presents an overview of our framework. Below, we
provide the background of the Local Interpretable Model-
agnostic Explanations algorithm and describe the details of
our proposed framework.

5.1 Local Interpretable Model-Agnostic
Explanations (LIME)

LIME is a model-agnostic technique that aims to mimic the
behavior of the predictions of the defect model by explain-
ing the individual predictions [68]. Given a file-level defect
model fðÞ and a test instance x (i.e., a testing file), LIME will
perform three main steps: (1) generating the neighbor
instances of x; (2) labelling the neighbors using fðÞ; (3)
extracting local explanations from the generated neighbors.
Algorithm 1 formally describes the LIME algorithm. We
briefly describe each step as follows:

Algorithm 1. LIME’s Algorithm [68]

Input: f is a prediction model,
x is a test instance,
n is a number of randomly generated instances, and
k is a length of explanation

Output: E is a set of contributions of features on the predic-
tion of the instance x.

1: D = ?

2: for i in f1; . . . ; ng do
3: di ¼ GenInstAroundNeighbourhoodðxÞ
4: y0i ¼ Predictðf; diÞ
5: D ¼ D [ hdi; y0ii
6: end
7: l ¼ K-LassoðD; kÞ
8: E ¼ get coefficientsðlÞ
9: return E

1) Generate neighbor instances of a test instance x. LIME
randomly generates n synthetic instances surround-
ing the test instance x using a random perturbation
method with an exponential kernel function on
cosine distance (cf. Line 3).

2) Generate labels of the neighbors using a file-level defect
model f . LIME uses the file-level defect model f to
generate the predictions of the neighbor instances
(cf. Line 4).

3) Generates local explanations from the generated neigh-
bors. LIME builds a local sparse linear regression
model (K-Lasso) using the randomly generated
instances and their generated predictions from the

Fig. 3. An illustrative comparison between traditional model interpreta-
tion and model-agnostic techniques.

3. The detail is provided in Appendix (Section 10.1), which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2020.3023177.
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file-level defect model f (cf. Line 7). The coefficients
of the K-Lasso model (l) indicate the importance
score of each feature on the prediction of a test
instance x according to the prediction model l (cf.
Line 8).

The importance score (e) of each feature in E ranges from
-1 to 1. A positive LIME score of a feature (0 < e � 1) indi-
cates that the feature has a positive impact on the estimated
probability of the test instance x. On the other hand, a nega-
tive LIME score of a feature (�1 � e < 0) indicates that the
feature has a negative impact on the estimated probability.

5.2 Our LINE-DP Framework

Fig. 4 presents an overview of our Model Agnostic-based
Line-level Defect Prioritization (LINE-DP) framework. Given
a file-level defect dataset (i.e., a set of source code files and a
label of defective or clean), we first extract bag-of-token fea-
tures for each file. Then, we train traditional machine learn-
ing techniques (e.g., logistic regression, random forest)
using the extracted features to build a file-level defect
model. We then use the file-level defect model to estimate
the probability that a testing file will be defective. For each
file that is predicted as defective (i.e., defect-prone files), we
use LIME to identify and rank defect-prone lines based on
the LIME scores. We describe each step below.

(Step 1) Extracting Features In this work, we use code
tokens as features to represent source code files. This will
allow us to use LIME to identify the tokens that lead the file-
level defect models to predict that a given file will be defec-
tive. To do so, for each source code file in defect datasets, we
first apply a set of regular expressions to remove non-alpha-
numeric characters such as semi-colon (;), equal sign (=). As
suggested by Rahman and Rigby [65], removing these non-
alphanumeric characters will ensure that the analyzed code
tokens will not be artificially repetitive. Then, we extract
code tokens in the files using the Countvectorize function
of the Scikit-Learn library. We neither perform lowercase,
stemming, nor lemmatization (i.e., a technique to reduce

inflectional forms) on our extracted tokens, since the pro-
gramming language of our studied systems (i.e., Java) is
case-sensitive. Otherwise, meaningful tokens may be dis-
cardedwhen applying stemming and lemmatization.

After we extract tokens in the source code files, we use a
bag of tokens (BoT) as a feature vector to represent a source
code file. A bag of tokens is a vector of frequencies that code
tokens appear in the file. To reduce the sparsity of the vec-
tors, we remove the tokens that appear only once.

(Step 2) Building File-Level Defect Models We build a file-
level defect model using the feature vectors extracted in
Step 1. Prior work suggests that the performance of defect
models may vary when using different classification techni-
ques [22]. Hence, in this work, we consider five well-known
classification techniques [22], [76], [79], i.e., Random Forest
(RF), Logistic Regression (LR), Support Vector Maching
(SVM), k-Nearest Neighbours (kNN), and Neural Networks
(NN). We use the implementation of Python Scikit-Learn
package to build our file-level defect models using default
parameter settings. Based on the predictive performance at
the file level, we find that the file-level defect models that
use Logistic Regression can identify actual defective files rela-
tively better than other four classification techniques,
achieving a median MCC value of 0.35 (within-release) and
0.18 (cross-release).4 We consider that the accuracy of our
file-level defect models is sufficient since prior study
reported that a file-level prediction model typically has an
MCC value of 0.3 [70]. Hence, in this paper, our LINE-DP is
based on a file-level defect model that uses Logistic
Regression.

(Step 3) Identifying Defect-Prone Lines For the defect-prone
files predicted by our file-level defect models (a probability
> 0:5), we further identify defect-prone lines using
LIME [68]. Fig. 5 provides an illustrative example of our
approach. Given a defect-prone file, we use LIME to com-
pute LIME scores, i.e., an importance score of features (code
tokens). We identify the tokens that have a positive LIME
scores as risky tokens. For example, in Fig. 5, node and cur-

rent have a LIME score of 0.8 and 0.1, respectively. Hence,
these two tokens are identified as risky tokens. Then, we
define a defect-prone line as the line that contains at least one
of the risky tokens. For example, in Fig. 5, the lines that are
marked by star polygon contain node and current. There-
fore, these three lines are identified as defect-prone lines.

Considering all positive LIME scores may increase false
positive identification. Therefore, in this paper, we use top-

Fig. 5. An illustrative example of our approach for identifying defect-
prone lines.

Fig. 4. An overview of our approach of predicting defective lines.

4. We provide complete evaluation results of the file-level defect
models in Appendix (Section 10.2), available in the online supplemental
material.
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20 risky tokens ranked based on LIME scores when identify-
ing defect-prone lines. The number of top risky tokens (k) is
selected based on a sensitivity analysis where 10 � k � 200.5

(Step 4) Ranking Defect-Prone Lines Once we identify
defect-prone lines in all predicted defective files, we now
rank defect-prone lines based on the number of the top-20
risky tokens that appear in the defect-prone lines. The intui-
tion behind is that the more the risky tokens that a line con-
tains, the more likely the line will be defective. For example,
given two defect-prone lines l1 ¼ fA;B;C;Dg and l2 ¼
fC;D;E; F;Gg, where A�G denote code tokens and tokens
A, B and E are the top-20 risky tokens. Then, line l1 should
be given a higher priority than line l2 as l1 contains two
risky tokens and l2 contains only one risky token.

6 EXPERIMENTAL SETUP

In this section, we describe our studied software systems, an
approach to extract defective lines, baseline approaches,
evaluation measures, and validation settings.

6.1 Studied Software Systems

In this work, we use a corpus of publicly-available defect
datasets provided by Yatish et al. [90] where the ground-
truths are labelled based on the affected releases. The data-
sets consist of 32 releases that span nine open-source soft-
ware systems from the Apache open source software
projects. Table 1 shows a statistical summary of the studied
datasets. The number of source code files in the datasets
ranges from 731 to 8,846, which have 74,349 - 567,804 lines
of code, and 58,659 - 621,238 code tokens.

6.2 Extracting Defective Lines

We now describe an approach for extracting defective lines.
Similar to prior work [63], [66], we identify that defective lines
are those lines that were changed by bug-fixing commits. Fig. 6
provides an illustrative example of our approach, which we
describe in details below.

Identifying bug-fixing commits: We first retrieve bug
reports (i.e., the issue reports that are classified as “Bug”
and that affect the studied releases) from the JIRA issue
tracking systems of the studied systems. We then use the ID
of these bug reports to identify bug-fixing commits in the
Git Version Control Systems (VCSs). We use regular expres-
sions to search for the commits that have the bug report IDs

in the commit messages. Those commits that have the ID of
a bug report are identified as bug-fixing commits. This tech-
nique allows us to generate a defect dataset with fewer false
positives than using a defect-related keyword search (like
“bug”, “defect”) which lead to a better performance of
defect prediction models [62], [90].

Identifying defective lines: To identify defective lines, we first
examine the diff (a.k.a. code changes) made by bug-fixing
commits. We use the implementation of PyDriller package to
extract such information from Git repositories [71]. Similar to
prior work [63], [66], the lines that were modified by bug-
fixing commits are identified as defective lines. We only con-
sider the modified lines that appear in the source files at the
studied release. Other lines that are not impacted by the bug-
fixing commits are identified as clean lines. Similar to Yatish
et al. [90], we also identify the files that are impacted by the
bug-fixing commits as defective files, otherwise clean.

6.3 Baseline Approaches

In this work, we compare our LINE-DP against six approaches,
i.e., random guessing, two static analysis tools, an NLP-based
approach, and two traditional model interpretation based
approaches.Wedescribe the baseline approaches below.

Random Guessing. Random guessing has been used as a
baseline in prior work [63], [66]. To randomly select defect-
prone lines, we first use the file-level defect model to iden-
tify defect-prone files. Then, instead of using LIME to com-
pute a LIME score, we assign a random score ranging from
-1 to 1 to each token in those defect-prone files. The tokens
with a random score greater than zero are identified as risky
tokens. Finally, the line is identified as defect-prone lines if it
contains at least one of the top-20 risky tokens based on the

TABLE 1
An Overview of the Studied Systems

System Description #Files #LOC #Code Tokens %Defective Files Studied Releases

ActiveMQ Messaging and Integration Patterns 1,884-3,420 142k-299k 141k-293k 2%-7% 5.0.0, 5.1.0, 5.2.0, 5.3.0, 5.8.0
Camel Enterprise Integration Framework 1,515-8,846 75k-485k 94k-621k 2%-8% 1.4.0, 2.9.0, 2.10.0, 2.11.0
Derby Relational Database 1,963-2,705 412k-533k 251k-329k 6%-28% 10.2.1.6, 10.3.1.4, 10.5.1.1
Groovy Java-syntax-compatible OOP 757-884 74k-93k 58k-68k 2%-4% 1.5.7, 1.6.0.Beta_1, 1.6.0.Beta_2
HBase Distributed Scalable Data Store 1,059-1,834 246k-537k 149k-257k 7%-11% 0.94.0, 0.95.0, 0.95.2
Hive Data Warehouse System for Hadoop 1,416-2,662 290k-567k 147k-301k 6%-19% 0.9.0, 0.10.0, 0.12.0
JRuby Ruby Programming Lang for JVM 731-1,614 106k-240k 72k-165k 2%-13% 1.1, 1.4, 1.5, 1.7
Lucene Text Search Engine Library 805-2,806 101k-342k 76k-282k 2%-8% 2.3.0, 2.9.0, 3.0.0, 3.1.0
Wicket Web Application Framework 1,672-2,578 106k-165k 93k-147k 2%-16% 1.3.0.beta1, 1.3.0.beta2, 1.5.3

Fig. 6. An illustrative example of our approach for extracting defective
lines.

5. We provide the results of our sensitivity analysis in Appendix
(Section 10.3), available in the online supplemental material
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random scores. We then rank defect-prone lines randomly
similar to prior work [66].

Static Analysis Tools. Prior work shows that a static analy-
sis tool can be used to identify defect-prone lines [25], [42],
[47], [63], [65], [66]. Habib and Pradel [25] found that static
bug detectors are certainly worthwhile to detect real-world
bugs. Hence, we use two static analysis tools, i.e., PMD [12]
and ErrorProne [2] as our baseline approaches.

PMD: We use PMD [12] which is often used in previous
research [42], [47], [63], [65], [66]. We did not use FINDBUGS

since prior studies [65], [66] show that the performance of
PMD and FINDBUGS are comparable. PMD is a static analysis
tool that identifies common errors based on a set of prede-
fined rules with proven properties. Given a source code file,
PMD checks if source code violates the rules and reports
warnings which indicate the violated rules, priority, and the
corresponding lines in that file. Similar to prior work [65],
[66], we identify the lines reported in the warnings as defect-
prone lines. We rank the defect-prone lines based on the pri-
ority of the warnings where a priority of 1 indicates the
highest priority and 4 indicates the lowest priority.

ErrorProne (EP): Recently, major companies, e.g., Google,
use ErrorProne to identify defect-prone lines [2]. ErrorProne is
a static analysis tool that builds on top of a primary Java com-
piler (javac) to check errors in source code based on a set of
error-prone rules. ErrorProne checks if a given source code
file is matching with error-prone rules using all type attribu-
tion and symbol information extracted by the compiler. The
report of ErrorProne includes the matched error-prone rules,
suggestion messages, and the corresponding lines in the file.
In this experiment, we identify the corresponding lines
reported by ErrorProne as defect-prone lines. Since ErrorProne
does not provide priority of the reported errors like PMD, we
rank the defect-prone lines based on the line number in the
file. This mimics a top-down reading approach, i.e., develop-
ers sequentially read source code from the first to last lines of
the files.

NLP-Based Approach. Ray et al. [66] have shown that
entropy estimated by n-gram models can be used to rank
defect-prone files and lines. Hence, we compute entropy for
each code token in source code files based on the probability
estimated by n-gram models. In this work, we use an imple-
mentation of Hellendoorn and Devanbu [31] to build cache-
based language models, i.e., an enhanced n-gram model
that is suitable for source code. We use a standard n-gram
order of 6 with the Jelinek-Mercer smoothing function as
prior work demonstrates that this configuration works well
for source code [31]. Once we compute entropy for all code
tokens, we compute average entropy for each line. The lines
that have average entropy greater than a threshold are iden-
tified as defect-prone lines. In this experiment, the entropy
threshold is 0.7 and 0.6 for the within-release and cross-
release validation settings, respectively.6 Finally, we rank
defect-prone lines based on their average entropy.

Traditional Model Interpretation (TMI)-Based Approach. TMI
techniques can be used to identify the important features in
the defect models [8]. However, the TMI techniques will pro-
vide only one set of important features for all files of interest,

e.g., testing files (see Fig. 3). Nevertheless, onesmight use TMI
techniques to identify defect-prone lines like our LINE-DP
approach. Hence, we build TMI-based approaches using two
classifcation techniques: Logistic Regression (TMI-LR) and
RandomForest (TMI-RF) as our baseline approaches.

TMI-LR: To identify defect-prone lines using the TMI-
based approach with Logistic Regression, we examine stan-
dardized coefficients in our logistic regression models.
Unlike the simple coefficients, the standardized coefficients
can be used to indicate the contribution that a feature made
to the models regardless the unit of measurement, which
allows us to compare the contribution among the fea-
tures [52]. The larger the positive coefficient that the feature
has, the larger the contribution that the feature made to the
model. To examine standardized coefficients, we use the
StandardScalar function of the Scikit-Learn Python
library to standardize the token features. Then, we use the
coefficient values of the standardized token features in the
logistic regression models to identify risky tokens. More
specifically, the tokens with a positive coefficient are identi-
fied as risky tokens. Then, for the testing files, we identify
the lines as defect-prone lineswhen those lines contain at least
one of the top-20 risky tokens based on the coefficient val-
ues. Finally, we rank the defect-prone lines based on the
number of the top-20 risky tokens that appear in the defect-
prone lines similar to our LINE-DP approach.

TMI-RF: To identify defect-prone lines using the TMI-
based approach with Random Forest, we examine feature
importance in the model, i.e., the contribution of features to
the decision making in the model. The larger the contribution
that a feature (i.e., a token) made to the model, the more
important the feature is. To do so, we use the feature_

importances_ function of the Scikit-Learn Python library
which is the impurity-based feature importance measure-
ment. We identify defect-prone lines based on the feature
importance values of the tokens. In this experiment, the top-
20 important token features are identified as risky tokens.
Then, for the testing files, the lines are identified as defect-prone
lines if they contain at least one of the top-20 important token
features. Similar to our LINE-DP approach, we rank the defect-
prone lines based on the number of the top-20 important
token features that appear in the defect-prone lines.

6.4 Evaluation Measures

To evaluate the approaches, we use five performance meas-
ures preferred by practitioners [86], i.e., recall, false alarm
rate, a combination of recall and false alarm rate, initial false
alarm, and Top k%LOC Recall.7 In addition, we use Mat-
thews Correlation Coefficients (MCC) to evaluate the over-
all predictive accuracy which is suitable for the unbalanced
data like our line-level defect datasets [8], [70]. Below, we
describe each of our performance measures.

Recall. Recall measures the proportion between the num-
ber of lines that are correctly identified as defective and the
number of actual defective lines. More specifically, we com-
pute recall using a calculation of TP

ðTPþFNÞ , where TP is the

number of actual defective lines that are predicted as

6. The sensitivity analysis and its results are described in Appendix
(Section 10.4), available in the online supplemental material.

7. Note that we have confirmed with one of the authors of the sur-
vey study [86] that top k%LOC Recall is one of the top-5 measures, not
top k%LOC Precision as reported in the paper.
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defective and FN is the number of actual defective lines that
are predicted as clean. A high recall value indicates that the
approach can identify more defective lines.

False Alarm Rate (FAR). FAR measures a proportion
between the number of clean lines that are identified as defec-
tive and the number of actual clean lines. More specifically,
we measure FAR using a calculation of FP

ðFPþTNÞ , where FP is
the number of actual clean lines that are predicted as defective
and TN is the number of actual clean lines that are predicted
as clean. The lower the FAR value is, the fewer the clean lines
that are identified as defective. In other words, a low FAR
value indicates that developers spend less effort when
inspecting defect-prone lines identified by the an approach.

A Combination of Recall and FAR. In this work, we use Dis-
tance-to-heaven (d2h) of Agrawal and Menzies [4] to combine
the recall and FAR values. D2h is the root mean square of the

recall and false alarm values (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�RecallÞ2þð0�FARÞ2

2

q
) [3], [4].

A d2h value of 0 indicates that an approach achieves a perfect
identification, i.e., an approach can identify all defective lines
(Recall¼ 1) without any false positives (FAR¼ 0). A high d2h
value indicates that the performance of an approach is far
from perfect, e.g., achieving a high recall value but also have
high a FAR value and vice versa.

Top k%LOC Recall. Top k%LOC recall measures how
many actual defective lines found given a fixed amount of
effort, i.e., the top k% of lines ranked by their defect-prone-
ness [34]. A high value of top k%LOC recall indicates that
an approach can rank many actual defective lines at the top
and many actual defective lines can be found given a fixed
amount of effort. On the other hand, a low value of top k%
LOC recall indicates many clean lines are in the top k%
LOC and developers need to spend more effort to identify
defective lines. Similar to prior work [43], [53], [63], [66], we
use 20 percent of LOC as a fixed cutoff for an effort.

Initial False Alarm (IFA). IFAmeasures the number of clean
lines on which developers spend SQA effort until the first
defective line is found when lines are ranked by their defect-
proneness [34]. A low IFA value indicates that few clean lines
are ranked at the top, while a high IFA value indicates that
developers will spend unnecessary effort on clean lines. The
intuition behinds this measure is that developers may stop
inspecting if they could not get promising results (i.e., find
defective lines) within the first few inspected lines [59].

Matthews Correlation Coefficients (MCC). MCC measures a
correlation coefficients between actual and predicted out-
comes using the following calculation

TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FP ÞðTP þ FNÞðTN þ FP ÞðTN þ FNÞp : (1)

An MCC value ranges from -1 to +1, where an MCC value
of 1 indicates a perfect prediction, and -1 indicates total dis-
agreement between the prediction

6.5 Validation Settings

In this paper, we perform both within-release and cross-
release validation settings. Below, we describe each of our
validation settings.

Within-Release Setting. To perform within-release valida-
tion, we use the stratified 10�10-fold cross validation

technique for each release of the studied systems. To do so,
we first randomly split the dataset of each studied release
into 10 equal-size subsets while maintaining the defective
ratio using the StratifiedShuffleSplit function of the
Scikit-Learn Python library. The stratified k-fold cross vali-
dation tends to produce less bias for estimating the predic-
tive accuracy of a classification model than the traditional
10-fold cross validation [78]. For each fold of the ten folds,
we use it as a testing dataset and use the remaining nine
folds to train the models (e.g., the file-level defect models,
n-gram models). To ensure that the results are robust, we
repeat this 10-fold cross-validation process 10 times, which
will generate 100 performance values. Finally, we compute
an average of these 100 values to estimate the performance
value of the approach.

Cross-Release Setting. To mimic a practical usage scenario
of defect prediction models to prioritize SQA effort, we use
the cross-release setting by considering a time factor (i.e.,
the release date) when evaluating an approach. The goal of
this validation is to evaluate whether an approach can use
the dataset of the past release (k� 1) to identify defect-
prone lines in the current release (k) or not. More specifi-
cally, we use the dataset of release k� 1 to train the models
(e.g., the file-level defect models, n-gram models). Then, we
use the dataset of the release k as a testing dataset to evalu-
ate the approaches. For example, we build the models using
the dataset of ActiveMQ 5.0.0 and use the dataset of
ActiveMQ 5.1.0 to evaluate the models. We perform this
evaluation for every pair of the consecutive releases of a
studied system. For 32 studied releases shown in Table 1,
we have 23 pairs of consecutive releases for our cross-
release validation.

6.6 Statistical Analysis

We now describe our approaches to analyze the perfor-
mance of our LINE-DP against each baseline approach.

Performance Gain. To determine whether our LINE-DP is
better than the baseline approaches, we compute the per-
centage of the performance difference between our LINE-DP
and each of the baseline approaches using the following cal-
culation:

%PerformanceDiff ¼
PðPerfLine�DP � PerfbaselineÞP

Perfbaseline
: (2)

A positive value of the percentage difference indicates that
the performance of our LINE-DP is greater than the baseline
approaches, while a negative value indicates that the perfor-
mance our LINE-DP is lower than the baseline approaches.

Statistical Test. We use the one-sided Wilcoxon-signed
rank test to confirm the statistical difference. More specifi-
cally, we compare the performance of our LINE-DP against
each baseline approach (i.e., LINE-DP vs Random, LINE-DP vs
PMD). We use a Wilcoxon signed-rank test because it is a
non-parametric statistical test which performs a pairwise
comparison between two distributions. This allows us to
compare the performance of our LINE-DP against the base-
line approach based on the same release for the within-
release setting (or the same train-test pair for the cross-
release setting). We use the wilcoxsign_test function of
the R coin library. We also measure the effect size (r) i.e., the
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magnitude of the difference between two distributions
using a calculation of r ¼ Zffiffi

n
p where Z is a statistic Z-score

from the Wilcoxon signed-rank test and n is the total num-
ber of samples [82]. The effect size r > 0:5 is considered as
large, 0:3 < r � 0:5 is medium, and 0:1 < r � 0:3 is small,
otherwise negligible [18]. We did not use the commonly-
used Cohen’s D [11] and Cliff’s d [51] to measure the effect
size because both methods are not based on the assumption
that the data is pairwise.

7 EVALUATION RESULTS

In this section, we present the approach and results for each
of our research questions.

(RQ1) How Effective is Our LINE-DP to Identify
Defective Lines?

Motivation.Our preliminary analysis shows that only 1-3 per-
cent of lines in a source code file are defective (see
Section 3), suggesting that developers couldwaste a relatively
large amount of their effort on inspecting clean lines. Prior
work also argues that it may not be practical when predicting
defects at the coarse-grained level even if the defect models
achieve high accuracy than fine-grained granularity level of
predictions [28]. Thus, a defect prediction model that identi-
fies defect-prone lines (i.e., lines that are likely to be defective
after release) would be beneficial to an SQA team to focus on
the defect-prone lines. Hence, in this RQ,we set out to investi-
gate howwell our LINE-DP can identify defective lines.

Approach. To answer our RQ1, we use our LINE-DP and six
baseline approaches (see Section 6.3) to predict defective lines
in the given testing files. We evaluate our LINE-DP and the
baseline approaches using the within-release and cross-release
validation settings. To measure the predictive accuracy, we
use Recall, False Alarm Rate (FAR), Distance-2-heaven (d2h),
and the Matthews Correlation Coefficients (see Section 6.4).
We did not specifically evaluate the precision of the
approaches because the main goal of this work is not to iden-
tify exact defective lines, but instead to help developers reduce
the SQA effort by scoping down the lines that require SQA.
Moreover, focusing on maximizing precision values would
leave many defective lines unattended from SQA activities.

Finally, we perform a statistical analysis to compare
the performance between our LINE-DP and the baseline
approaches (see Section 6.6). More specifically, we use the
one-sided Wilcoxon signed-rank test to confirm whether the
recall and MCC values of our LINE-DP are significantly

higher than the baseline approaches; and whether the FAR
and d2h values of our LINE-DP are significantly lower than
the baseline approaches.

Results. Fig. 7a shows that at the median, our LINE-DP
achieves a recall of 0.61 and 0.62 based on the within-release
and cross-release settings, respectively. This result indicates
that 61 and 62 percent of actual defective lines in a studied
release can be identified by our LINE-DP. Fig. 7b also shows
that our LINE-DP has a FAR of 0.47 (within-release) and 0.48
(cross-release) at the median values. This result suggests
that when comparing with the traditional approach of pre-
dicting defects at the file level, our LINE-DP could poten-
tially help developers reduce SQA effort that will be spent
on 52 percent of clean lines, while 62 percent of defective
lines will be examined.

Fig. 7a shows that our LINE-DP achieves the most promising
results, compared to the six baseline approaches for both
within-release and cross-release settings. Moreover, Table 2
shows that the recall values of our LINE-DPare 44 - 4,871 percent
(within-release) and 18 - 6,691 percent (cross-release) larger
than the recall values of the baseline approaches. The one-sided
Wilcoxon signed-rank tests also confirm the significance
(p-value < 0.01)with amedium to large effect size.

On the other hand, Fig. 7b shows that our LINE-DP has a
FAR value larger than the baseline approaches. Table 2 shows
that only the NLP-based approach that has a FAR value
15 percent larger than our LINE-DP for the cross-release set-
ting. The lower FAR values of the baseline approaches
because of the lower number of lines that are predicted as
defective. Indeed, at themedian, 0 - 77 of lines in a file are pre-
dicted as defective by the baseline approaches, while 90 - 92 of
the lines are predicted as defective by our LINE-DP. Intuitively,
the fewer the predicted lines are, the less likely that the tech-
nique will give a false prediction. Yet, many defective lines
are still missed by the baseline approaches according to the
recall values which are significantly lower than our LINE-DP.
Hence, the performance measures (e.g., distance-to-heaven)
that concern both aspects should be used to compare the stud-
ied approaches.

Fig. 7c shows that, at the median, our LINE-DP achieves a
median d2h value of 0.44 (within-release) and 0.43 (cross-
release), while the baseline approaches achieve a median d2h
value of 0.52 to 0.70. Table 2 shows that our LINE-DP have the
d2h values 16 - 37 percent (within-release) and 15 - 37 percent
lower than the baseline approaches. The one-sidedWilcoxon-
signed rank tests also confirm the statistical significance
(p-value < 0.001) with a large effect size. These results

Fig. 7. Distributions of Recall, FAR, D2H, and MCC values of our LINE-DP and the baseline approaches.
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indicate that when considering both the ability of identifying
defective lines (i.e., recall) and the additional costs (i.e., FAR),
our LINE-DP outperforms the baseline approaches.

Table 2 also shows that our LINE-DP also achieves MCC
significantly better than the baseline approaches. The one-
sided Wilcoxon-signed rank tests also confirm the statistical
significance (p-value < 0.001) with a medium to large effect
size. Fig. 7d shows that at the median, our LINE-DP achieves
an MCC value of 0.05 (within-release) and 0.04 (cross-
release), while the baseline approaches achieve an MCC
value of -0.01 - 0.02 (within-release) and -0.01 - 0.03 (cross-
release). These results suggest that our LINE-DP achieves a
better predictive accuracy than the baseline approaches.

Nevertheless, our LINE-DP still achieves a relatively low
MCC value. This is because our LINE-DP still produces high
false positives, i.e., many clean lines are predicted as defec-
tive. Given a very small proportion of defective lines (i.e.,
only 1 - 3 percent) in a file, it is challenging to identify exact
defective lines without any false positives. Moreover, the
main goal of this work is not to identify exact defective lines,
but instead to help developers reduce the SQA effort by
scoping down the lines that require SQA. Then, focusing on
minimizing false positives may leave many defective lines
unattended from SQA activities. Considering the d2h value,
we believe that our LINE-DP is still of value to practitioners
(i.e., achieving a relatively high recall given the false posi-
tives that the approach produced).

(RQ2) HowWell Can Our LINE-DP Rank Defective
Lines?

Motivation. One of the key benefits of defect prediction is to
help developers perform a cost-effective SQA activity by pri-
ortizing defect-prone files in order to uncover maximal
defectswithminimal effort [28], [43], [53], [60]. In otherwords,
an effective prioritization should rank defective lines to the
top in order to help developers find more defects given the

limited amount of effort. Thus, we set out to investigate the
ranking performance of LINE-DP. More specifically, we evalu-
ate howmany defective lines can be identified given the fixed
amount of effort (i.e., Top k%LOC Recall) and how many
clean lines (i.e., false positives) will be unnecessarily exam-
ined before the first defective line is found (i.e., Initial False
Alarm). The intuition behinds is that developers may stop fol-
lowing a prediction if they could not get promising results
(i.e., find defective lines) given a specific amount of effort or
within the first few inspected lines [59].

Approach. To answer our RQ2, we rank the defect-prone
lines based on our approach (see Section 5.2) and the baseline
approaches (see Section 6.3). To evaluate the ranking perfor-
mance, we use top k%LOC recall and Initial False Alarm (IFA)
(see Section 6.4). Top k%LOC recall measures the proportion
of defective lines that can be identified given a fixed amount of
k% of lines. Similar to prior work [43], [53], [63], [66], we use 20
percent of LOC as a fixed cutoff for an effort. IFA counts how
many clean lines are inspected until the first defective line is
found when inspecting the lines ranked by the approaches. We
evaluate the ranking performance based on both within-release
and cross-release settings. Similar to RQ1, we use the one-sided
Wilcoxon signed-rank test to confirmwhether the top 20%LOC
recall values of our LINE-DP are significantly higher than the
baseline approaches; and whether the IFA values of LINE-DP
are significantly lower than the baseline approaches.

Results. Fig. 8a shows that, at the median, our LINE-DP
achieves a recall of 0.27 (within-release) and 0.26 (cross-
release) if top 20 percent of the total lines are examined. On
the other hands, the baseline approaches achieve a lower top
20%LOC recall with a median of 0.17 - 0.22. Table 3 shows
that the top 20%LOC recall values of our LINE-DP are 22 - 91
percent (within-release) and 19 - 68 percent (cross-release)
larger than those of the baseline approaches. The one-sided
Wilcoxon-signed rank tests also confirm the statistical signifi-
cance (p-value < 0.05) with a medium to large effect size.

TABLE 2
A Comparative Summary of the Predictive Accuracy Between Our LINE-DP and the Baseline Approaches

Within-release validation

LINE-DP vs Recall% FAR& d2h& MCC%
Baseline %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r)

Random 260% L��� 298% � -26% L��� 91% M��
PMD 4,871% L��� 4,712% � -37% L��� 1,411% M���
EP 240% L��� 250% � -25% L��� 264% M���
NLP 44% M��� 4% � -16% L��� 484% L���
TMI-LR 1,225% L��� 4,112% � -35% L��� -9% �
TMI-RF 180% L��� 173% � -23% L��� 80% M���

Cross-release validation

LINE-DP vs Recall% FAR& d2h& MCC%
Baseline %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r) %Diff Eff. Size (r)

Random 243% L��� 303% � -25% L��� 72% M��
PMD 6,691% L��� 5,159% � -37% L��� 2,754% L���
EP 226% L��� 254% � -25% L��� 149% M��
NLP 18% M�� -12% L��� -15% L��� 914% L���
TMI-LR 5,079% L��� 5,966% � -37% L��� 639% L���
TMI-RF 190% L��� 163% � -24% L��� 308% M���

Effect Size: Large (L) r > 0:5, Medium (M) 0:3 < r � 0:5, Small (S) 0:1 < r � 0:3, Negligible (N) r < 0:1
Statistical Significance: ���p < 0:001, ��p < 0:01, �p < 0:05, �p � 0:05
The bold text indicates that our LINE-DP is better than the baseline approaches.
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These results suggest that our LINE-DP can rank defective
lines better than the baseline approaches.

Fig. 8b shows that at the median, our LINE-DP has a
median IFA value of 16 (within-release) and 9 (cross-
release), while the baseline approaches have a median IFA
value of 10 - 517 (within-release) and 26 - 403 (cross-release).
Table 3 also shows that the IFA values of our LINE-DP are
23 - 94 percent (within-release) and 29 - 99 percent smaller
than the baseline approaches. The one-sided Wilcoxon-
signed rank tests confirm the statistical significance (p-value
< 0.05) with a medium to large effect size for our LINE-DP
against Static Analysis and NLP-based approaches. These
results suggest that when using our LINE-DP, fewer clean
lines will be inspected to find the first defective line.

(RQ3) How Much Computation Time is Required to
Predict Defective Lines?

Motivation. Fisher et al. [19] raise a concern that the
increased complexity of data analytics may incur additional
computation cost of building defect prediction models. Yet,

many practitioners [19] still prefer simple and fast solutions,
but accurate. Thus, we set out to investigate the computa-
tional cost of identifying defective lines of our LINE-DP
when compared to other approaches.

Approach. To address RQ3, we measure the computation
time of the model construction and the identification of defect-
prone lines for each approach. We measure the computation
time for both within-release and cross-release settings. For the
within-release setting, we measure an average computation
time for 10�10-folds of all 32 studied releases. Similarly, we
measure an average computation time for 23 pairs of the con-
secutive releases for the cross-release validation setting. The
computational time is based on a standard computingmachine
with an Intel Core i9 2.3 GHz and 16 GB of RAM. Then, we
report the statistical summary of the distribution of the compu-
tation time of each step for all studied defect datasets.

Results. Fig. 9 presents the average computation time for
the model construction and the identification of defect-
prone lines for a given test file. The results show that the
average computation time for our LINE-DP is 10.68 and
8.46 seconds for the within-release and cross-release settings,
respectively. Fig. 9 also shows that the NLP-based approach
takes the computation times 251 percent ð26:8510:68Þ and 158 percent
ð13:398:46 Þ longer than our LINE-DP, indicating that our LINE-DP
makes a line-level prediction faster than the NLP-based
approach. Although Fig. 9 shows the static analysis tools (i.e.,
PMD and ErrorProne) and the TMI-based approaches take
shorter time than our LINE-DP, the additional computational
time of our LINE-DP should still be manageable when consider-
ing the predictive accuracy of defective lines.

(RQ4)What Kind of Defects Can be Identified byOur
LINE-DP ?

Motivation. The key motivation of RQ4 is to qualitatively
analyze the types of defects that our LINE-DP can identify.

Fig. 8. Distributions of Initial False Alarm values and a proportion of
defective lines found at the fixed effort (i.e., 20 percent of lines) of our
LINE-DP and the baseline approaches.

TABLE 3
A Comparative Summary of the Ranking Performance Between

Our LINE-DP and the Baseline Approaches

Within-release validation

LINE-DP vs. Recall@Top20%% IFA&
Baseline %Diff Eff. Size (r) %Diff Eff. Size (r)

Random 53% M��� -23% �
PMD 46% M��� -55% M���
EP 18% S� -50% M���
NLP 91% M��� -94% L���
TMI-LR 22% M�� -43% �
TMI-RF 11% S� -70% M���

Cross-release validation

LINE-DP vs. Recall@Top20%% IFA&
Baseline %Diff Eff. Size (r) %Diff Eff. Size (r)
Random 42% L��� -51% M�
PMD 22% M� -82% L���
EP 17% M� -78% L���
NLP 68% M��� -99% L���
TMI-LR 19% M� -29% �
TMI-RF 17% M� -89% M���

Effect Size: Large (L) r > 0:5, Medium (M) 0:3 < r � 0:5,
Small (S) 0:1 < r � 0:3, Negligible (N) r < 0:1
Statistical Significance: ���p < 0:001, ��p < 0:01, �p < 0:05, �p � 0:05
The bold text indicates that our LINE-DP is better than the baseline approaches.

Fig. 9. The average computation time (seconds) of our approach and
baseline approaches.

WATTANAKRIENGKRAI ETAL.: PREDICTING DEFECTIVE LINES USING A MODEL-AGNOSTIC TECHNIQUE 1491



This analysis will provide a better understanding of the
cases for which our LINE-DP can predict defective lines.
Hence, we set out to examine the defective lines that our
LINE-DP can and cannot identify.

Approach.We first identify a defective code block, i.e., con-
secutive lines that are impacted by bug-fixing commits. We
examine a code block because it provides a clearer context
and more information than a single defective line. Then, we
examine the hit defective blocks, i.e., the code blocks ofwhich all
the defective lines can be identified by our LINE-DP; and the
missed defective blocks, i.e., the code blocks of which none of the
defective lines can be identified by our LINE-DP.

In this RQ, we conduct a manual categorization based on
the cross-release setting because this setting mimics a more
realistic scenario than the within-release setting. We obtain
6,213 hit blocks and 5,024 missed blocks from the dataset of
23 consecutive pairs across nine studied systems. Since the
number of studied code blocks is too large to manually
examine in its entirety, we randomly select a statistically
representative sample of 362 hit blocks and 357 missed
blocks for our analysis. These sample sizes should allow us
to generalize the conclusion about the ratio of defect types
to all studied code blocks with a confidence level of
95 percent and a confidence interval of 5 percent.8

We categorize a defect type for the sampled code blocks
based on how the defect was fixed in the bug-fixing com-
mits. We use a taxonomy of Chen et al. [10] which is summa-
rized in Table 4. To ensure a consistent understanding of the
taxonomy, the first four authors of this paper independently
categorize defect types for the 30 hit and 30 missed defective
blocks. Then, we calculate the inter-rater agreement
between the categorization results of the four coders using
Cohen’s kappa. The kappa agreements are 0.86 and 0.81 for
the hit and missed blocks, respectively, indicating that the
agreement of our manual categorization is “almost perfect”
[85]. Finally, the first author of this paper manually catego-
rized the remaining blocks in the samples.

Results. Table 5 shows the proportion of defect types for the
defective code blocks that can be identified by our LINE-DP (i.e.,
hit defective blocks) and that cannot be identified by our LINE-
DP (i.e., missed defective blocks). The result shows that the
majority types of defects for the hit defective blocks are argu-
ment change (32 percent) and condition change (18 percent),
which account for 50 percent of the sampleddata. Furthermore,
Table 5 shows that 63 percent of the hit defective blocks can be

categorized into the common defect types, while the remaining
37 percent of them are categorized as others. These results indi-
cate that our LINE-DP canpredict defect-prone lines that contain
commondefects.

On the other hand, Table 5 shows that the call changes
and the target changes appear in the missed defective
blocks more frequent than the hit defective blocks. Never-
theless, we observe that the defects in the missed defective
blocks require a more complex bug fixing approach than
the hit defective blocks. Table 5 also shows that 50 percent
of the missed defective blocks cannot be identified in the
common defect types. These results suggest that while our
LINE-DP can identify the common defects (especially the
argument changes and the condition changes), our LINE-DP
may miss defects related to call changes, target changes,
and other complex defects.

Furthermore, we observe that code tokens that frequently
appear in defective files tend to be in the defective lines that
will be fixed after the release. This is consistent with our intui-
tion that code tokens that frequently appeared in defective files
in the past may also appear in the lines that will be fixed after
release. For example, “runtime.getErr().print(msg);”
is a defective line where “runtime” is identified as a risky
token by our LINE-DP. We observe that 90 percent of defective
files (3033) in the training dataset contain “runtime” token.
Moreover, “runtime” is one of the 10most frequent tokens in
defective files in the training dataset. Another example is that
two out of three files that contain the “filterConfig” token are
defective files in our training dataset. Then, our LINE-DP identi-
fies “filterConfig” as a risky token for “super.init(fil-
terConfig)” which was eventually fixed after the release. We
provide examples of hit and missed defective blocks and their
risky tokens for each defect type in Appendix (Section 10.5),
available in the online supplementalmaterial.

TABLE 4
A Brief Description of Defect Types

Type Description

Call change Defective lines are fixed by modifying calls to method.
Chain change The chaining methods in the defective lines are changed, added, or deleted.
Argument change An argument of a method call in the defective lines are changed, added, or deleted.
Target change A target that calls a method is changed in the defective lines.
Condition change A condition statement in the defective lines is changed.
Java keyword change A Java keyword in the defective lines is changed, added, and deleted.
Change from field to method call A field assessing statement in the defective lines is changed to a method call statement.
Off-by-one A classical off-by-one error in the defective lines.

TABLE 5
Defect Types in Our Samples

Defect type Hit Miss

Argument change 116 (32%) 70 (20%)
Condition change 64 (18%) 13 (3%)
Call change 16 (4%) 46 (13%)
Java keyword change 16 (4%) 12 (3%)
Target change 13 (4%) 36 (10%)
Chain change 5 (1%) 2 (1%)
Others 132 (37%) 178 (50%)

Sum 362 (100%) 357 (100%)
8. https://www.surveysystem.com/sscalc.htm
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8 DISCUSSION

In this section, we discuss the limitation of our approach
and possible threats to the validity of this study.

8.1 Limitation

The limitation of our LINE-DP is summarized as follow.
Our LINE-DP will produce many false positive predictions

when common tokens become risky tokens. Our RQ1 shows that
our LINE-DP has a false alarm rate value larger than the
baseline approaches. We observe that our LINE-DP will pro-
duce many false positive predictions when the common
tokens (e.g., Java keywords or a generic identifier) are iden-
tified as risky tokens. This work opts to use a simple
approach to select risky tokens, i.e., using top-k tokens
based on a LIME score where k is selected based on the
distance-to-heaven value. Future work should investigate
an alternative approach to identify risky tokens, while less-
ening the interference of the common keywords.

Nevertheless, when considering all of the evaluation
aspects other than false positives (i.e., recall, false alarm
rate, d2h, the Top20%LOC Recall, Initial False Alarm), the
empirical results show that LINE-DP significantly outper-
forms the state-of-the-art techniques that predict defective
lines (i.e., NLP, ErrorProne, PMD). More specifically, our
RQ1 shows that our LINE-DP achieves a more optimal pre-
dictive accuracy (i.e., a high recall with a reasonable number
of false positives) than other techniques which not only pro-
duce few false positives but also achieve a low recall value.
Our RQ2 shows that given the same amount of effort
(20 percent of LOC), our LINE-DP can identify more defec-
tive lines (i.e., Top20%LOC recall) than these state-of-the-art
techniques. Our RQ3 shows that our LINE-DP requires addi-
tional computation time of 3 seconds (8.46s - 5.74s) and
6 seconds (8.46s - 2.16s) compared to PMD and ErrorProne,
respectively (see Fig. 9b). These results suggest that based
on the same amount of SQA effort, our LINE-DP can help
developers identify more defective lines than the state-of-
the-art techniques with small additional computation time.
Thus, these findings highlight that our LINE-DP is a signifi-
cant advancement for the development of line-level defect
prediction in order to help practitioners prioritize the lim-
ited SQA resources in the most cost-effective manner.

Our LINE-DP depends on the performance of the file-level
defect prediction model. The results of RQ1 and RQ2 are based
on the file-level defect prediction models using the Logistic
Regression technique. It is possible that our LINE-DP will
miss defective lines if the file-level defect model misses
defective files. In other words, the more accurate the file-
level defect model is, the better the performance of our
LINE-DP. Hence, improving the file-level defect model, e.g.,
optimizing the parameters [79] or using the advanced tech-
niques (e.g., embedding techniques [61]), would improve
the performance of our LINE-DP.

Recent studies have shown that deep learning and
embedding techniques can improve the predictive accuracy
of file-level defect models [6], [15], [61], [91]. However, the
important features of the embedded source code identified
by a model-agnostic technique cannot be directly mapped
to the risky tokens. Hence, future work should investigate
deep learning techniques to build accurate file-level models

and/or techniques to utilize the embedded source code to
identify risky tokens.

Our LINE-DP cannot identify defective lines that include only
rare code tokens. During our manual categorization of RQ4,
we observe that the defective lines that our LINE-DP has
missed sometimes contain only tokens that rarely appear in
the training dataset. This work uses a vector of token fre-
quency as a feature vector to train the file-level model.
Hence, future work should investigate an approach that can
weight the important keywords that rarely appear in order
to improve the predictive accuracy of our LINE-DP.

8.2 Threats to Validity

We now discuss possible threats to the validity of our
empirical evaluation.

Construct Validity. It is possible that somedefective lines are
identified as clean when we construct the line-level defect
datasets. In thiswork, we identify that bug-fixing commits are
those commits that contain an ID of a bug report in the issue
tracking system. However, some bug-fixing commits may not
record such an ID of a bug report in the commit message. To
ensure the quality of the dataset, we followed an approach
suggested by prior work [13], [90], i.e., focusing on the issues
that are reported after a studied release; labelled as bugs;
affected only the studied release; and already closed or fixed.
Nevertheless, additional approaches that improve the quality
of the dataset (e.g., recovering missing defective lines) may
further improve the accuracy of our results.

The chronological order of the data may impact the results
of prediction models in the context of software vulnerabil-
ity [41]. To address this concern, we use the defect datasets
where defective files are labelled based on the affected version
in the issue tracking system, instead of relying the assumption
of a 6-month post-release window. In addition, we also per-
form an evaluation based on the cross-release setting which
considers a time factor, i.e., using the past release (k� 1) to
predict defects in the current release (k).

Internal Validity.The defect categorization of the qualitative
analysis was mainly conducted by the first author. The result
of manual categorization might be different when perform by
others. Tomitigate this threat, a subset of defect categorization
results are verified by the other three authors of this paper.
The level of agreement among the four coders is 0.86 and 0.81
for a subset of hit and missed defective blocks, respectively,
indicating a perfect inter-rater agreement [85].

External Validation. The results of our experiment are lim-
ited to the 32 releases of nine studied software systems.
Future studies should experiment with other proprietary
and open-source systems. To foster future replication of our
study, we publish the benchmark line-level datasets.

9 CONCLUSION

In this paper, we propose a line-level defect prediction frame-
work (called LINE-DP) to identify and prioritize defective lines
to help developers effectively prioritize SQA effort. To the
best of our knowledge, ourwork is the first to use themachine
learning-based defect prediction models to predict defective
lines by leveraging a state-of-the-art model-agnostic tech-
nique (called LIME). Through a case study of 32 releases of 9
software systems, our empirical results show that:
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� Our LINE-DP achieves an overall predictive accuracy
significantly better than the baseline approaches,
with a median recall of 0.61 and 0.62 and a median
false alarm of 0.47 and 0.48 for the within-release
and cross-release settings, respectively.

� Given a fixed amount of effort (i.e., the top 20 percent of
lines that are ranked by our LINE-DP), 26 and 27 percent
of actual defective lines can be identified for the within-
release and cross-release settings, respectively. On the
other hand, only 17 - 22 percent of actual defective lines
can be identified when ranking by the baseline
approaches. Furthermore, fewer clean lines (false posi-
tives) will be examined to find the first defective line
when ranking by our LINE-DP.

� The average computation time of our LINE-DP is 10.68
and 8.46 seconds for the within-release and cross-
release settings, respectively. On the other hand, the
baseline approaches take 0.89 to 26.85 seconds to iden-
tify defective lines.

� 63 percent of the defective lines that our LINE-DP can
identify are categorized into the common defect types.
More specifically, themajority defects that can be iden-
tified by our LINE-DP are related to argument change
(32 percent) and condition change (18 percent).

The results show that our LINE-DP can effectively identify
defective lines that contain common defects while requiring
a smaller amount of SQA effort (in terms of lines of code)
with a manageable computation time. Our work sheds the
light on a novel aspect of leveraging the state-of-the-art
model-agnostic technique (LIME) to identify defective lines,
in addition to being used to explain the prediction of defec-
tive files from defect models [36]. Our framework will help
developers effectively prioritize SQA effort.
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