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Detecting Developers’ Task Switches and Types
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Abstract—Developers work on a broad variety of tasks during their workdays and constantly switch between them. While these task
switches can be beneficial, they can also incur a high cognitive burden on developers, since they have to continuously remember and
rebuild the task context-the artifacts and applications relevant to the task. Researchers have therefore proposed to capture task
context more explicitly and use it to provide better task support, such as task switch reduction or task resumption support. Yet, these
approaches generally require the developer to manually identify task switches. Automatic approaches for predicting task switches have
so far been limited in their accuracy, scope, evaluation, and the time discrepancy between predicted and actual task switches. In our
work, we examine the use of automatically collected computer interaction data for detecting developers’ task switches as well as task
types. In two field studies—a 4h observational study and a multi-day study with experience sampling—we collected data from a total of 25
professional developers. Our study results show that we are able to use temporal and semantic features from developers’ computer
interaction data to detect task switches and types in the field with high accuracy of 84 percent and 61 percent respectively, and within a
short time window of less than 1.6 minutes on average from the actual task switch. We discuss our findings and their practical value for

a wide range of applications in real work settings.

Index Terms—Task detection, task switching, multi-tasking, work fragmentation, activity recognition, machine learning
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1 INTRODUCTION

0 successfully perform their work, software developers
Tare required to constantly switch between a broad vari-
ety of tasks, such as implementing a new feature, answering
an email or attending a meeting, with each task requiring its
own set of artifacts and applications [1], [2], [3]. These con-
stant task switches result in a high fragmentation of work,
requiring developers to continuously interrupt and later
resume their tasks and to relocate the artifacts and applica-
tions that are relevant to fulfill the task at hand. Subse-
quently, developers face a higher cognitive burden, lower
performance, and a higher error rate [4], [5].

To support developers in their fragmented task work,
researchers have proposed approaches that explicitly cap-
ture task context-artifacts and applications relevant to the
task—and that use this information to then support users by
preventing interruptions, easing task resumption, or by rec-
ommending relevant artifacts and applications [6], [7], [8],
[9], [10], [11]. While studies have shown that the explicitly
captured task context can lower the cognitive burden on
developers and increase productivity [6], [12], all of these
approaches require some form of manual interaction of
the developer to identify task boundaries, something that
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developers often forget to do in practice after using such an
approach for a few days [6].

To address this issue, few researchers have proposed
approaches to automatically detect switches between tasks,
varying mainly in the features used (e.g.,user input or appli-
cation based), and the method applied (e.g.,supervised ver-
sus unsupervised machine learning) [13], [14], [15]. Yet, the
evaluations performed to study these approaches are often
fairly limited in terms of the tasks and number of partici-
pants, and the results show that it is very challenging to
achieve high prediction accuracy of task switches without
too many false positives [15], [16], [17], or that one has to
accept a high deviation in time of 3 to 5 minutes between
predicted and actual task switches [13], [14], [18]. Since
these approaches focus on detecting task switches within
the IDE only, they are not capturing non-development
work, which can account for 39 percent up to 91 percent of
the time developers spend at work [1], [3], [19], [20], [21].

In our research, we extend this work and investigate
(RQ1) whether we can automatically detect task switches of
professional software developers in the field, based on tem-
poral and semantic features as extracted from their com-
puter interaction inside and outside the IDE. We were also
interested in classifying the type of task a developer is
working on, since the better we understand the context of a
task, the better we can support developers. To the best of
our knowledge, there has been only one approach so far
that looked at the automatic classification of developers’
activities on a task level [22]. Yet, their examination was lim-
ited to specific development activities only, and did not
consider the whole range of non-development tasks that
developers are working on, such as administrative or plan-
ning tasks. In our work, we investigate the task types
that software developers are working on more holistically,
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and explore (RQ2) how accurately we can predict them
in the field.

To address our research questions, we performed two
field studies: one with 12 professional developers in which
we observed their work over a 4-hour period and logged
the task switches and types without interrupting their
work; and one with 13 professional developers in which we
regularly prompted participants to self-report their task
switches and types over a period of about 4 workdays and
conducted a post-study questionnaire. By varying the study
methods, we wanted to achieve a higher generalizability of
our results and ensure that we take into account the effects
of self-reporting while also capturing the breadth of devel-
opers’ tasks over multiple days. For both field studies, we
also collected the participants’” computer interaction using a
monitoring tool that we installed on their machine and that
was running in the background. From the computer interac-
tion data, we extracted a total of 109 temporal and semantic
features. Our analysis of the data shows we can use the
automatically logged computer interaction data to train
machine learning classifiers and predict task switches with
a high accuracy of 87 percent, and within a short time win-
dow of less than 1.6 minutes of the actual task switch. Our
analysis further shows that we are able to predict task types
with an accuracy of 61 percent, yet that this accuracy varies
a lot by task type. The features based on mouse and key-
board interaction generally hold the highest predictive
power, while the lexical features we extracted from the
application names and window titles have the least predict
power in our approach.

Overall, our work extends previous work with an
approach that uses a broader range of features, also works
outside the IDE to capture developers’ work more holistically,
is evaluated in a field-study with 25 professional developers,
and achieves higher accuracy and less delay than previous
work. Our results provide evidence for the potential to auto-
matically detect software developers’ task switches and types
in the field. This opens up opportunities for providing devel-
opers with task support tools that lower the burden of frag-
mented work and constant task switching, by reducing task
switching and facilitating task resumption, and by greatly
complementing existing task support by freeing the devel-
oper from the laborious manual task boundary identification.

The primary contributions of this paper are:

e An approach to automatically detect task switches
and types based on developers’ computer interaction
that is not limited to the IDE.

e Two field studies with 25 professional developers
demonstrating our approach’s potential to detect
task switches and types with high accuracy and
within a small time window in the field.

e An evaluation of the predictive power of various
computer interaction features, including semantic
and temporal ones, and a comparison of individually
trained models versus a general model.

2 RELATED WORK

Work related to our research can broadly be grouped into
research that examined the detection of task switches and

task types, and into approaches to support task focused
work. Based on previous work [2], [6], [23], [24], [25], [26],
we defined a task as a well-defined work assignment with a spe-
cific goal that people divide their work into, such as fixing a bug,
or preparing for a team-meeting. A task switch occurs, when
a person switches between two different tasks.

2.1 Task Switch Detection
Several researchers have explored the detection of task
switches mostly for general knowledge workers. These
approaches mainly differ in the features they used to identify
the task boundaries or switches, ranging from semantic fea-
tures to temporal features, the method they use, unsuper-
vised versus supervised, and the way they evaluated their
approach. One of the most prominent approaches is by Shen
etal. [13],[14], [16], [18] that is mainly based on semantic fea-
tures and supervised learning. They reused an approach,
TaskTracer [7], that allows users to manually indicate the
tasks they are working on, and additionally tracks their
application interactions in the background, including win-
dow titles. Based on the assumption that windows of the
same task share common words in their titles, they create
vectors from window titles and identify task switches based
on a textual similarity measure using the users’ previously
declared tasks and supervised learning. After the first ver-
sion [18], they further improved their approach to reduce the
number of false positives and to be able to predict task
switches online [13], [14]. Their evaluation is based on a
small set of two users and counts a task switch as accurate if
it falls within a 4 to 5 minute time window of a real switch,
which is a very coarse measure, given the frequent task
switching in today’s environment that happen every few
minutes [2], [23]. Based on the assumption that switches
between windows of the same task occur more frequently
in temporal proximity than to windows of a different task,
Oliver et al. [27] examined a temporal feature of window
switches within a 5 minute time window in addition to
semantic features and using an unsupervised approach. An
evaluation based on 4 hours of a single participant, showed a
precision of 0.49 and recall of 0.72. Researchers have also
used other temporal features, in particular, the frequency
of window events, to determine task switches. Under the
assumption that users navigate between windows more fre-
quently when they switch tasks, as opposed to during a task,
Nair et al. [17] developed a system that calculates window
event frequency based on fixed 5 minute time windows. An
evaluation with 6 participants resulted in an accuracy of 50
percent. Mirza et al. [15] relaxed the constraint of a fixed time
window, used adjusted frequency averages and studied the
various approaches with 10 graduate students. They found
that their approach improved the accuracy and achieved an
overall accuracy of 58 percent. Overall, previous research
has shown that detecting task switches is difficult, even for
very short periods of time and in controlled environments.
In our work, we focus on software development work and
extend these approaches by including and examining both,
semantic and temporal features of window events as well as
user input features, and by conducting two studies with pro-
fessional software developers.

Only little research has been performed on task switch
detection in the software development domain and all of this
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research has focused solely on software development tasks
within the IDE. As one of the first, Robillard and Murphy
[28] proposed to use program navigation logs to infer devel-
opment tasks and they built a prototype, however, without
evaluating it. In 2008, Coman and Sillitti [29] focused on
splitting development sessions into task-related subsections
based on temporal features of developers’ access to source
code methods and evaluated their approach with 3 partici-
pants over 70 minutes each, finding that they can get close to
detecting the number of task switches, yet the point in time
when the task happens is a lot more difficult. Zou and God-
frey [30] replicated Coman and Sillitti’s study in an industrial
setting with six professional developers and found that the
algorithm detects many more task switches than the ones
self-reported by the participants with an error of more than
70 percent. Finally, on a more fine-grained level, Kevic and
Fritz [31] examined the detection of activity switches and
types within a change task using semantic, temporal and
structural features. In two studies with 21 participants, they
found that activity switches as well as the six self-identified
activity types can be predicted with more than 75 percent
accuracy. Different to these approaches, we focus on all tasks
a developer works on during a day, not just the change tasks
within the IDE.

2.2 Task Type Detection

Researchers also examined detecting the type of task or
activity a person is working on. Most similar to our
approach for task type detection is Koldijk et al. [32]. They
investigated the use of features over a fixed 5 minute time
window, using mouse and keyboard input, application
(switches) and the time of day. They tried to predict one of
12 task types that they identified in a survey, e.g., read email,
write email, plan, program, search information, and create
visualization. The results of a field study with 11 researchers
and an average of 10 hours of data per participant shows
that the prediction is very individual and that a general
classifier does not work well. Mirza et al. [33] focused on
classifying users’ desktop interactions into six higher level
activity types (not task types): writing, reading, communi-
cating, web browsing, system browsing and miscellaneous.
They used temporal, interaction-based (application window
events), and semantic features calculated over a 5 minute
time window. In a 6 hour field study with five participants
and a controlled lab study, they found that they can predict
the activity category for each of these 5 minute windows
with high accuracy (81 percent) and that interaction-based
features work best. Researchers have also explored bio-
metric features, such as Hassib et al. [34] who used Elec-
troencephalography to classify the task type according to
cognitive load, but without looking at specific task types. In
our work, we extend these approaches by not fixating on
fixed time windows of 5 minutes but by first detecting the
actual switches and then evaluating them with professional
developers in the field.

We have been able to find only very little research on pre-
dicting task types for software developers. To the best of our
knowledge, the only approach that is similar to our work is
by Bao et al. [22]. In their work, they automatically track
low-level computer interaction data (user input and appli-
cation usage) and use a Conditional Random Field (CRF)
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based approach to segment the data and infer one of six
development activities—coding, debugging, testing, naviga-
tion, search, or documentation—similar to our task types.
An analysis of data collected from ten developers over a
week shows that CRF is able to classify the activity with
73 percent accuracy. We extend the approach by focusing
on all activities developers perform during their workday,
not just development, and by examining when developers
switch between different tasks.

2.3 Task Support

While there is a vast number of approaches to support spe-
cific development activities, such as code search, code
review or debugging, only little research has looked into
supporting developers with understanding and managing
their tasks and the frequent switches between them. Several
researchers have therefore proposed to explicitly model
development tasks and to capture task contexts—artifacts
and applications relevant to a task—to support developers in
their task work, in particular by recommending relevant
artifacts [6], [8], identifying related tasks [35], easing the
resumption of interrupted tasks and switching between
them [6], [7], [9], [10], [11], [12], [36], [37], [38], or scoping
queries and recommending workflow improvements [5].
Early approaches to support task switching, such as virtual
workspaces [10] or the GroupBar [9], provide interfaces that
allow the user to manually group artifacts and applications
with respect to tasks. The approaches Mylyn by Kersten
and Murphy [6], and TaskTracer by Dragunov et al. [7],
both explicitly capture task context by automatically record-
ing user interactions within the IDE or the desktop environ-
ment respectively, given the user manually indicates the
start and end of a task. While several of these approaches
have great potential to support developers in their task
work, they require some form of manual interaction to iden-
tify the task boundaries, something that developers often
forget to do after using such a tool for a while [6]. Research-
ers have therefore examined how to best aid developers in
identifying task boundaries retrospectively [39], looked into
more lightweight approaches for supporting task resump-
tion through cues and without specific task context [40], or
explored the automatic mining of task contexts to support
window switching [38] and grouping files [37]. Overall, an
automatic and real-time task switch detection has thereby
the potential to complement and significantly improve the
value of most of these existing approaches for developers.

3 STuDY DESIGN

To investigate the use of computer interaction data for pre-
dicting task switches and types, we conducted two field
studies, a 4-hour observational study and a multi-day study
with experience sampling, with a total of 31 professional
software developers initially. The observations and self-
reports served as the ground truth of participants’ task
switches and types, while we additionally gathered com-
puter interaction data to extract features for our predictions.
In both studies, we used the same definitions of tasks, task
switches and types which we also shared with the partici-
pants. A brief overview of our study design is presented
in Fig. 1.
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Fig. 1. Overview of the study design and outcomes.

3.1 Study 1 - Observations

In our first study, we observed the work of 12 participants
over a period of 4 hours to gather a richer understanding of
developers’ task switches and types they work on.

Procebpure. For the observations, the observer, either the
first or second author, followed a detailed protocol that we
developed before the study. The very first observation ses-
sion was performed by both observers at the same time. A
cross-check of the two observation logs showed an inter-
rater agreement of 97 percent, suggesting a high overlap of
observing the same tasks and task switches.

Before each observation session, the observer explained the
study purpose and process to the participants and asked them
to sign a consent form, to install a monitoring tool that tracks
participants” computer interaction, and to describe the tasks
they were planning to work on during the observation. The
observer also introduced herself to nearby colleagues and
asked them to ignore her as much as possible, and collaborate
with the observed participant as they would normally do.
After that, the observer placed herself behind the participant
to prevent distractions, while still being able to see the screen
contents on the participant’s computer. Finally, the observer
started the actual observation session and asked the partici-
pant to continue their work as usual.

We observed participants for a total of four hours each on
a single workday: two hours before and two after lunch. For
the observations, we followed Mintzberg's protocol of a
structured observation session [41]. The observer wrote in
an observation log' each time the participant switched from
one task to another. Each entry in the observation log con-
sists of a timestamp, a description of the reason for the task
switch and a description of the task itself. We inferred tasks
and their details from the active programs and their con-
tents on the screen, as well as discussions participants had
with co-workers. After each session, the observer validated
the observed tasks and task switches with the participant,

1. We used our own observation logging tool: https:/ /github.com/
casaout/ObservationStudyTool

by going through the list of observed tasks and accompa-
nying notes and modifying mistakes made during the
observation.

ParTiciPANTs. We recruited 14 participants through pro-
fessional and personal contacts from two large-sized and
one medium-sized software companies. We excluded two
participants for which we were not able to observe a suffi-
cient amount of task switches (less than 10). Of the remaining
12 participants, 1 was female and 11 were male. Throughout
the paper, we refer to these participants as P1 to P12. Our
participants had an average of 10.8 (+7.4, ranging from 1 to
20) years of professional software development experience
and were working in different roles: 8 participants identified
themselves as individual contributors and 4 as developers in
a leading position. All participants resided either in Canada
or the United States.

MonitorING Toor. To collect computer interaction data
from developers, we developed and used our own monitor-
ing tool, PersonalAnalytics®, for the Windows operating
system. The tool tracks participants” mouse and keyboard
interaction, as well as their application usage. For the
mouse, the tool tracks the clicks (coordinates and button),
the movement (coordinates and moved distance in pixels),
and the scrolling (coordinates and scrolled distance in pix-
els) along with the corresponding time-stamp. For the key-
board, the tool records the type of each keystroke (regular,
navigating, or backspace/delete key) along with the corre-
sponding time-stamp. For privacy reasons, we did not
record specific keystrokes. Our tool further records the cur-
rently active application, along with the process name, win-
dow title, and time-stamp whenever the window title
changed or the user switched to another application.

Task Type INFERENCE. We inferred task type categories by
performing a Thematic Analysis [43] on the basis of related
work and our observation logs. The analysis process included
first familiarizing ourselves with the observed task switches,
open coding the observed and participant-validated tasks
and accompanying notes, identifying themes, and categor-
izing the resulting themes into higher level task types. This
process resulted in nine task type categories: Development,
Personal, Awareness & team, Administrative, Planned meeting,
Unplanned meeting, Planning, Other and Study. The task types
are described in more detail in Table 4 and discussed in
Section 6.1. In contrast to a task (and the task type), an activity
describes an event or happening that does not necessarily
need to have a particular purpose (or task). For example, the
activity Web Browsing, could be grouped into several task
types, such as Development when the developer is reading
API documentation online and Planned meeting when the
developer is using an online-conferencing tool.

3.2 Study 2 - Self-Reports

To capture a longer time period and more breadth in devel-
opers” work, we conducted a second field study with 13 par-
ticipants over a period of 4 workdays each. For this study,
we used experience sampling, in particular we regularly
prompted participants to self-report task switches and
types. By using experience sampling, we also wanted to

2. https:/ /github.com/sealuzh/PersonalAnalytics. Details can be
found in [42].
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mitigate the risk of a bias in participants’ behavior due to an
observer sitting behind them, which, for example, could
lead to participants being less likely to browse work unre-
lated websites.

ProcepuRE. Before the study, we emailed participants a
document explaining the study goal and high-level proce-
dure, asked them to sign a consent form and to answer a
pre-study questionnaire with questions on demographics,
their definition of a task, reasons for switching between
tasks, and on the task types they are usually working on.
Afterwards, participants received the study instructions,
detailing the study goals, definitions of task switches and
types that we used for the study, and instructions on how to
install and run the monitoring tool. They were asked to
install the same monitoring tool that we described above on
their main computer. In case participants worked on multi-
ple computers (e.g.,a desktop and a laptop), we asked them
to install the monitoring tool on both devices. Participants
were further asked to read our definitions of a task, task
switch and task type, as well as instructions on how to use
the self-reporting component that we added to our monitoring
tool. Finally, participants were asked to pursue their work
as usual for the next couple of workdays while also self-
reporting their task switches and types when the pop-ups/
prompts appeared.

For this study, our tool prompted participants once per
hour to self-report their task switches and types for the pre-
vious hour. The self-reporting step is explained in more
detail below. We intentionally decided to use an interval of
one hour rather than a full day, to balance the intrusiveness
of the prompts with the ability to accurately remember tasks
and task switches over the previous time interval [44]. To
further ensure high quality in the collected self-report data
we further allowed participants to withdraw from the study
at any point in time, and to pick the time for their participa-
tion themselves. In addition, and to avoid boredom or
fatigue, we asked participants to respond to a total of 12 to
15 prompts, assuming an average of four self-reports per
day and a total of three to four workdays for participation.
This number was a result of several test-runs over multiple
weeks and from qualitative feedback gathered with a pilot
participant, a professional developer. Furthermore, we pro-
vided support to postpone self-report prompts for 5
minutes, 15 minutes, or 6 hours, and built and refined the
self-reporting component to require as little effort as possi-
ble to answer, e.g., by letting participants answer the
required fields by simply clicking on elements instead of
asking them for textual input. Finally, each pop-up also
asked participants to report their confidence with their self-
reports.

Throughout the study, participants could check the num-
ber of completed pop-ups. Once they completed 12 pop-ups,
participants could notify us and upload the collected data
and self-reports to our server. The upload wizard once again
described the data collected and allowed participants to
obfuscate the data before sharing it with us. At the end of the
study, participants were asked to answer a post-study ques-
tionnaire with questions ontheexperienced difficultieswhen
self-reporting task switches and task types, on further task
types they were working on, and on how they could imagine
using information on task switches and types. After
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completing the survey, participants were given two 10 US$
mealcardstocompensatefortheirefforts.

ParticipanTs. We recruited 17 participants through pro-
fessional and personal contacts from one large-sized soft-
ware company. We discarded data from three participants
that self-reported less than 10 task switches in the days of
their participation. We further discarded the data of one
participant whose definition of a task switch was very dif-
ferent to ours and the rest of the participants (i.e., he consid-
ered every application switch a task switch). Of the
remaining 13 participants that we used for the analysis, 2
were female and 11 were male. Our participants had an
average of 12.1 (£8.2, ranging from 1 to 30) years of profes-
sional software development experience and were working
in different roles: 10 identified themselves as individual
contributors and 3 as developers in a leading position (i.e.,
Lead or Manager). All participants resided in the United
States. In the paper, we refer to these participants as P13
to P25.

SELF-REPORTING COMPONENT. The self-reporting compo-
nent is part of our monitoring tool and includes a pop-up
with three pages. The first page asked participants to self-
report the task switches they experienced in the past hour.
It visualized participants’ application usage on a timeline
using different colors for each application and allowed
them to self-report their task switches by clicking on the
lines denoting applications switches. We restricted the task
switch self-reports to a granularity of application switches
with a minimum length of 10 seconds for a variety of rea-
sons: First, we assumed that most of participants’ task
switches coincide with application switches (e.g.,switching
from the email client to the IDE, or from the browser to an
IM client) and fewer happen during a session uniquely
spent within the same application (e.g.switching tasks
directly in the IDE or in the browser). And, we wanted to
avoid cluttering the user interface of our self-reporting com-
ponent and simplify the reporting for participants. Similar
to [14], the timeline visualization provided additional
details when the participant hovers over an application,
such as the application name, time when it was used, win-
dow title(s) and user input produced in that application. As
soon as participants completed self-reporting their task
switches for the whole previous hour, they could proceed to
the second page and self-report their task types (see Fig. 2).
On the second page, we visualized the same timeline as
before, but added another row that prompted participants
to select task types from a drop-down menu. After selecting
the task types for all task segments, participants could pro-
ceed to the last page. The third page asked participants to
self-report their confidence with their self-reports of task
switches and task types on a 5-point Likert-scale (5: very
confident, 1: not at all confident) and optionally add a com-
ment. Capturing participants” confidence served as an indi-
cator of the quality and accuracy of their self-reports. The
user interface we used to collect the ground truth for task
switches and types resembles the one by Mirza et al. [15],
[25], [33].

The supplementary material [45] includes the study
instructions we shared with participants, the pre- and post-
study questionnaires they answered and additional screen-
shots detailing the self-reporting component.
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Step 2/3: Please validate your task types from 08:27 to 09:22

Below you see the timeline with your applications and the task switches you selected in the previous step.
Please change the task types where they are wrong using the drop-downs.

Postpone for 5 minutes | | Postpone for 15 minutes | [ Postpone for 6 hours | [ I don't remember my tasks

Hints: Task switches are shown as blue vertical lines. You can hover over the processes to see what you were doing in the application.

Select Task Type: Private

Spotify

Applications:
[(hover for details)

Timestamp: 08:53 08:54 08:56

09:13 09:14

Hint: The save button will be enabled once you

Fig. 2. Screenshot of the second page of the experience sampling pop-up that asked participants to self-report their task types.

4 DATA AND ANALYSIS

For this study, we collected two rich data sets, including
observed or self-reported ground truth data, and automati-
cally tracked computer interaction data. Prior to the main
analysis of the data, we performed multiple pre-processing
steps, including data segmentation and feature extraction,
which are summarized in the remainder of this section.

4.1 Collected Data

For our study 1, we collected observation logs for a total of
51.7 hours of work and an average of 4.3 (£1.3) hours per
participant. For our study 2, we collected self-reports for a
total of 58 workdays and an average of 4.5 (£1.7) days per
person. On average, participants reported a high confidence
with their self-reports (> 3) in 20.6 (£9.0), and a medium or
low confidence (<3) in 22.2 (£16.7) of the pop-ups they
answered. 77.0 percent was the highest ratio of medium or
low confidence self-reports that one participant had, and
16.7 percent was the lowest. We decided to only use the
data of the 268 self-reports with a high confidence (> 3),
thus including a total of 268 hours of work and discarding
the rest (289 self-reports). This allowed us to ensure we
were training our models with data that is of high quality
and accuracy. Future work could also account for over- or
under-confidence in participants’ self-reports.

Table 1 reports statistics on the self-reports. Since overall,
only 11 percent of the pop-ups were postponed by partici-
pants, one reason for the relatively high number of self-
reports with medium or low confidence could be that the
pop-ups appeared at inopportune moments and partici-
pants did not remember they could postpone it. Instead,
participants might have just clicked through the pop-up
and reported a low confidence to not distort the data. We

TABLE 1
Self-Reports for Study 2

All per Part.
Days participated 58 45(£1.7)
Pop-ups displayed to participants 557 42.8 (+£21.6)
Pop-ups answered by participants 268 20.6 (£9.0)
- Pop-ups answered within 5 minutes 158 12.2 (+6.3)
- Pop-ups answered after 5 minutes 110 8.5 (£5.4)
Pop-ups postponed by participants 62 4.8 (£3.5)
Pop-ups discarded by researchers 289 22.2 (£16.7)

discuss possible threats in Section 7 and improvements in
Section 8.

4.2 Time Window Segmentation

To calculate and extract task switch detection features, we
defined the time windows to be between two application
switches, which we call application segments. Thus, the task
switch detection model that we were going to build, could
recognize task switches whenever a developer switches
between applications, but would miss task switches within
an application, such as a switch from a work item to the
next one inside the IDE. We consider application segments
to be an appropriate time window with minimal prediction
delay, since developers spend on average only 1 to 2
minutes in an application before switching to another [2],
[3], [23], and to ensure the accuracy of participants’ self-
reports (in study 2) was high. Threats to this classification
are discussed in Section 8. In contrast, previous approaches
predominantly used longer and fixed window lengths of 5
or 10 minutes [13], [14], [17], [27]. These shorter and more
flexible time windows at borders of application switches
allow to more accurately capture developers’ behaviors,
and to more precisely locate the point in time of the task
switch. For the task type detection features, we used the time
windows between two task switches, as identified by our
observations (study 1) or participants’ self-reports (study 2),
which we call task segments for the feature extraction.

4.3 Task Switch Features Extracted
A next step towards building a classifier for task switch
detection is to extract meaningful features from the raw
computer interaction data collected by the monitoring tool.
The features that we developed are either based on heuris-
tics that participants stated as indicative of their task
switches in the post-study questionnaire (study 2), based on
features that have been linked to developers’ task switching
behavior in prior work, as well as based on our own heuris-
tics. The features we used are presented in Table 2 and are
discussed in more detail in the remainder of this section.
Task switch detection is a special case of change-point
detection [49], [50], which is the process of trying to detect
abrupt changes in time-series data. This is why many of our
features compare the similarity between characteristics of
the previous application segments with the current one, for
example the difference in the number of keystrokes. To
determine how many steps back one needs to compare the
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TABLE 2
Features Analyzed in Our Study and Their Importance for Predicting Task Switches and Task Types

Import. Import. Import.
Features Switch Type All Type Ul
User Input Features 45.8% 52.0% 81.0%
Keystroke differences (4): difference in the number of navigate/backspace/normal/total 16.4% 19.1% 29.9%
keystrokes pressed per second between the previous and current application/task
segment [22], [32], [33], [46]
Mouse click differences (4): difference in the number of left/right/other/total 17.9% 13.9% 29.4%
mouse clicks per second between the previous and current application/task segment
[22], [32], [46]
Mouse moved distance (1): total moved distance (in pixels) of the mouse per second [46] 6.8% 8.7% 13.5%
Mouse scrolled distance (1): total scrolled distance (in pixels) of the mouse per second 4.7% 5.0% 8.2%
[22], [32]
Application Category Features 29.4% 34.3% NA
Switch to/from specific application category (26): switch to/from a specific application 28.0% NA NA
category (e.g.,messaging), while the previous one was different. Application categories
considered: CodeReview [PS], DeveloperTool [3], IDE [3], Idle [PS],[35], IM [PS],[47],
Mail [PS],[47], Music [PS],[15], [22], [47], Navigate, Read /Write Document [3],
TestingTool [3], Utility, WebBrowser [PS],[3], Unknown
Same application category (1): the current application category is the same as the one in 1.4% NA NA
the previous application segment, e.g., both are messaging [15], [47]
Time spent per application category (13): the percentage of the total duration of the task NA 34.3% NA
segment that was spent in each of the 13 application categories [14], [32], [33]
Switching Frequency Features 16.6% 13.7% 19.0%
Difference in the window switches frequency (1): difference of the number of switches 72% 13.7% 19.0%
between windows of the same or a different application per second between the current
and the previous application/task segment [14], [27], [32]
Difference in the time spent in an application (1): difference of the total duration spent 9.4% NA NA
between the current and the previous application segment [14]
Lexical Features 8.2% 0% 0%
Code in window title (1): the window titles of the current and previous application/task 1.4% 0% 0%
segments both contain code, as identified by text that is written in camelCase or
snake_case. Can also distinguish between development and other file types
Lexical similarity of the window titles and application names (2): cosine similarity based 6.8% NA NA

on the term frequency-inverse document frequency (TF-IDF) between the current and
previous application segments” window titles or application names [14], [27], [48]

References on these features (in blue) are either on previous related work or participants’ suggestions (PS). A feature importance of NA denotes
that the feature was not used for the prediction group. For the task type columns, ‘All’ denotes that all features were considered, ‘Ul" indicates that
only the user interaction features were used, and the application category features were ignored. Numbers in brackets show feature counts.

current with the previous application segments’ features,
we run the task switch detection taking into account 1 and
up to 10 steps back into the past, and comparing the result-
ing precision and recall. Our analysis of the results indi-
cated that after an initial increase of the precision for
detecting a switch, the precision and recall gradually drop
as the number of steps increases. We therefore chose 2 as
the number of steps to go back in terms of application seg-
ments. As a result, the total number of features used for the
task switch detection is 84, which is double the number of
unique features used: once calculated for comparing the
current with the previous application segment, and once to
compare the previous two application segments. In the fol-
lowing, we provide an overview over all the features used:

User INpuT FeaTUREs. The first feature group are user
input features. They are based on keyboard and mouse
interaction, such as the difference in the number of key-
strokes the participant pressed per second between this and
the previous time window segment.

ArrLicATION CATEGORY FEATURES. We categorized com-
monly used applications into one of 13 predefined application

categories, based on our classification in previous work [3]
and participants’ suggestions of what they consider to be
good indicators for switching to another task. These include
categories specific to software engineering, such as Developer-
Tool, CodeReview or TestingTool, but also more general ones,
such as Read/Write Document, Email and Web Browser. They
are leveraged in 26 features that capture switches to or from a
specific application category, such as switching to a messag-
ing application or becoming idle. Since switching to another
application might be another indication for a task switch [15],
[47], we added one feature that captures these.

SwiTcHING FREQUENCY FEATURES. In the post-study ques-
tionnaire, participants mentioned that they often navigate
through several applications to clean-up their computer
right before starting a new task, which is why we added a
temporal feature based on the window switching frequency.
One feature captures the difference in the time spent in an
application, since this might be another indicator for a task
switch, either because a switch is less likely immediately
after a task switch, and the likelihood of a task switch
increases as time passes [14].
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Lexicar FEaTures. Inspired by prior work [14], [27], [48], we
also added three lexical/semantic features that are extracted
from application names and their window titles. The textual
data was first pre-processed to produce lists of words via
tokenization on punctutation and whitespace. From these
lists we also removed common stop words such as “and”,
“the”, and “or”. Since window titles might include code snip-
pets, such as a class or method name or development file
type, we added a feature that captures whether the window
title contains text written in camelCase or underscore_-
case, and whether this is different to the previous segment.
To determine whether the previous and current application
segments have a contextual similarity, two features are calcu-
lated based on the cosine similarity of the window titles and
application names using the term frequency-inverse docu-
ment frequency (TF-IDF). Note that the application name and
window titles were also used to determine the application
category features. In addition, and unlike some previous
work, we explicitly did not capture file contents to reduce
intrusiveness and avoid privacy concerns [37], [51], [52].

4.4 Task Type Features Extracted

For the task type detection, we reused the same features as
in the task switch detection whenever possible. However,
some features required adaption or made no sense in this
context. First, as the time window for task type detection
encompasses one or multiple application segments, we
replaced the application category features with a feature that
captures the ratio between the time spent in the specific appli-
cation category and the time spent in the task segment. This
allowed us to determine the dominant application category
in a task segment. Second, we eliminated the lexical similar-
ity features as these are computed based on an application
segment’s similarity to another segment. In the task type
detection scenario, we have no comparable ground truth to
use to calculate such features. This resulted in a total of 25
features used for the task type detection.

4.5 Outcome Measures

For the task switch detection, we labeled each application seg-
ment either with Switch or NoSwitch, depending on whether
we observed a task switch (in study 1) or whether the partici-
pant self-reported a task switch (in study 2). While our model
is able to detect task switches on the granularity of applica-
tion segments, an actual switch might happen while using
the same application. Thus, our task switch detection
approach is at most the duration of the application segment
away from the actual task switch, which was an average of
1.6 minutes (£2.2) in our study. For the task type detection, we
labeled each task segment with the observed or self-reported
task type. Descriptive statistics regarding participants’ task
switching behavior and the task types they worked on can be
found in Section 5.1 and Section 6.2, respectively.

4.6 Machine Learning Approach

We used scikit-learn [53], a widely used machine learning
library for Python, to predict task switches and task types.
We evaluated several classifiers by applying them to our
feature set and testing different hyperparameters. A Ran-
domForest classifier with 500 estimators outperformed all
other approaches, including a Gradient Boost-Classifier,

Support Vector Machine (SVM), Neural Network and Hid-
den Naive Bayes classifier. Details on the hyperparameters
of the evaluated classifiers can be found in the supplemen-
tary material [45]. A RandomForest classifier is one form of
ensemble learning that creates multiple decision tree classi-
fiers and aggregates their predictions using a voting mecha-
nism [54], [55]. It does not require a pre-selection of features
and can handle a large feature space that also contains
correlated features. Hence, for the remainder of this paper,
the presented results were obtained using a RandomForest
classifier. Prior to classification, we impute missing values
by replacing them with the mean and apply standardization
of the features, which centers the data to 0 and scales
the standard deviation to 1. These common steps in a
machine learning pipeline can improve a classifier’s perfor-
mance [56]. For the task switch detection, we further apply
Lemaitre’s implementation of SMOTE, which is a method
for oversampling and can considerably boost a classifier’s
performance in the case of an imbalanced dataset such
as ours [57]. For the fask type detection, where as much as 80-
90 percent of the reported types are of the Development class
we instead employ penalized classification to correct prob-
lems caused by class imbalance, as SMOTE has significant
drawbacks when the minority classes have a limited num-
ber of samples [58].

We built both individual and general models, where an indi-
vidual model is trained and tested with data solely from one
participant and a general model is trained on data from all
participants except one, and tested on the remaining one.
Individual models often have a higher accuracy since they
are trained on a person’s unique behavioral patterns. On
the other hand, general models are usually less accurate but
have the advantage of solving the cold-start-problem, which
means that no prior training phase is required and the
model can be applied to new users immediately.

To evaluate the individual models, we applied a 10-fold
cross-validation approach, where the model was iteratively
tested on 1/10 of the dataset while being trained on the
remaining data. We adapted the cross-validation approach
to account for the temporal dependency of the samples. In
particular, there is a dependency between samples in close
temporal proximity, since data from the preceding samples
is incorporated in the features. To ensure a valid and realis-
tic evaluation of the model [59], we therefore deleted h sam-
ples on either side of the test set block. In our case, we chose
h=10 since we included up to 10 preceding samples in the
feature calculation (see Section 4.3). The cross-validation
approach is illustrated in Fig. 3.

5 RESULTS: DETECTING TASK SWITCHES

5.1 Descriptive Statistics of the Dataset

Participants switched frequently between tasks, with a
mean task switch rate of 6.0 (£3.7, min: 1.8, max: 18.9) times
per hour. The average time spent on each task was 13.2
(+ 7.3, min: 3.1, max: 30.8) minutes’. Developers’ task
switch behaviors are similar to previous work [2], [23].

3. We do not report individual results for the two studies, since the
task switch rate (p-value=.056) and time spent on a task (p-value=.215)
are not significantly different in the two datasets.
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Fig. 3. Cross-validation approach for the individual models, leaving a gap
of 10 samples before and after the test set to account for the depen-
dence of samples in close temporal proximity.

5.2 Task Switch Detection Error Distance
and Accuracy

To analyze how well our task switch predictions work, we
run a first discrete analysis by calculating the error distance
between each predicted and the actual task switch. The aver-
age error distance is 2.79 (:2.30) application-switches, mean-
ing that in case a task switch was not detected at the exact
moment, it is on average 2.79 applications before or after the
predicted one. To put this in context, multiplying the average
application segment length of 1.6 (& 2.2) minutes (Section 4.5)
with the error distance results in an average of only
4.46 minutes that a task switch is predicted before or after the
actual one. Of all task switches that were not detected at the
exact moment, 44.7 percent of the task switches our model
predicted have an error distance of 1 application-switch,
15.8 percent have a distance of 2 application-switches, and
39.5 percent have a distance of 3 or more application-
switches.

Table 3 gives an overview of the task switch detection
performance of individual and general models. We split the
presentation of the data into the two studies, since they
were collected with a different method. As a baseline, we
report the results of a random classifier, where the likeli-
hood of predicting a certain class is based on the class distri-
bution of the training set.

Overall, our analysis revealed that we can detect task
switches at their exact location with a high averaged accuracy
of 84 percent (precision: 62 percent and recall: 35 percent,
kappa: 0.34) when trained with individual models. Applying
the general model, we achieved an averaged accuracy of
73 percent as well as higher recall of 55 percent and lower
scores in both precision (46 percent) and kappa (0.27). Over-
all, despite these differences we found the two models were
very similar in performance judged by both AUC (74 percent
for individual versus 75 percent for general) and Fl-score
(43 percent versus 40 percent). Compared with our baseline
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classifier, both the individual and general model show
substantial improvements across the board, with the excep-
tion of recall in the individual model. Note that this does
not mean that the baseline necessarily performed better
in this case, only that our model was more much selective
in its predictions, as is reflected in the higher precision
score. For the individual models, we compared the results of
each participant’s model (see supplementary material [45]).
It reveals that the prediction performance varies quite sub-
stantially for each participant. These results are discussed
with respect to their applicability in real-world scenarios in
Section 7.

5.3 Task Switch Feature Evaluation

A Random Forest classifier can deal well with a larger num-
ber of features which makes prior feature dimensionality
reduction of our 84 features obsolete [54], [55]. While we do
not apply a feature selection technique in our approach since
it would only select the most predictive features in the
model, we are still interested in learning if certain features
are generally more important, especially across different par-
ticipants. The second column of Table 2 contains the feature
importance as attributed by the RandomForest classifier
using all features and averaged over all participants” individ-
ual models. To calculate the feature importance metrics, we
used the Gini impurity measure from scikit-learn, which cap-
tures the feature’s ability to avoid mis-classification [53]. The
most predictive feature groups are user input (45.8 percent)
and application category (29.4 percent). The feature group
with the least predictive power are the lexical features
(8.2 percent). The supplementary material includes the fea-
ture importances of each individual feature [45].

6 RESULTS: DETECTING TASK TYPES

6.1 Identified Task Type Categories

As described in more detail in Section 3, we inferred task
type categories after collecting task and task switch data
from observing 12 developers at work and performing a
Thematic Analysis. This resulted in nine task type catego-
ries we described in Table 4. In the post-study question-
naires of study 2, participants reported that they agreed
with the identified task types and generally had no issues to
assign them. However, two participants mentioned that a
task type for Support duties was missing:

“[Support]-Duties. These are very specific tasks that require a
lot of different things to do. It’s not Development and it can be
a lot of ad-hoc and requires many context switches.” - P14

Overview of the Performance of Detecting t;,ﬁ%ﬁtghes, for Both Individual and General Models
INDIVIDUAL MODELS GENERAL MODEL
Dataset Accuracy AUC F-Score Precision Recall Accurracy AUC F-Score Precision Recall
Study 1: Observations 82% 76% 44% 57% 38% 70% 78% 46% 46% 61%
Study 2: Self-Reports 86% 72% 42% 67 % 31% 66% 72% 36% 43% 55%
All 84% 74% 43% 62% 35% 67% 75% 40% 46% 57%
Baseline 55% 49% 24% 18% 42% 51% 50% 25% 18% 48%
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TABLE 4
Overview and Descriptions of the Task Type Categories, the Average Time Developers Spent on Each Task Type Per Hour of
Work, and the Performance of our Task Type Detection Approach, for Both Individual and General Models

INDIVIDUAL MODELS GENERAL MODEL

Avg (Stdev)  Sample All Features Ul Features All Feat. UI Feat.
Task Type Category mins/h Size Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec
Development: bug-fix, refactoring, code review, 37.2(+12.2) 612 70% 85% 62% 77% 59% 77% 50% 78%
implementing new feature, reading/understanding
documentation/code, testing, version control, dev.-
related learning
Personal: work unrelated web browsing, private 9.7 (£7.0) 170 48%  45%  42%  34% 33% 32% 32% 23%
emails or texts, (bio or lunch) break
Awareness & team: reading/writing emails, 5.3 (+6.0) 234 64%  53%  40% 35% 36% 44% 22% 15%
discussions/answering questions in IM
Administrative: often routine tasks, e.g., reporting 4.0 (£3.6) 12 50% 17%  33% 8% NA NA NA NA
work-time, expenses report, paperwork
Planned Meeting; attending a scheduled meeting/ 3.6 (£2.7) 94 40% 40% 33% 31% 10% 4% 2% 1%
call, e.g., weekly scrum, weekly planning meeting
Unplanned Meeting: attending an ad-hoc, informal 3.1(£2.8) 90 43%  29% 36% 29% 41% 25% 30% 18%
meeting, usually with one team-member only, e.g.,
unscheduled phone call, colleague asking a question
Planning; in the calendar, task list, work item tracker 3.0 (£3.5) 90 31%  24%  26% 16% 16% 1% 1% 0%
Other: tasks that do not fit into the other categories. 2.7 (£3.9) 40 47%  25% 37% 25% 0% 0% 2% 1%
Participants mentioned that these were support-duty,
document writing (e.g.,in PowerPoint, Word) and for
product development/innovation.
Study: work related to this study (e.g.,talking to 1.9 (£1.9) 64 67% 58% 49%  41% 78%  69%  29%  20%
observer, filling out questionnaire)
All 1406 59% 61% 46% 49% 44% 50% 33% 41%
Baseline 1406 30% 30% 30% 30%  24% 24%  24% = 24%

The "All Features’ columns show results using models trained with all features, while the "UI Features” columns show results from models trained
using only user interaction features (i.e., excluding application category features).

Two participants mentioned that it was sometimes diffi-
cult to know if time spent on emails should be assigned to
Development or Awareness & team:

“I was sometimes unsure of how to classify the time I spent
responding to emails. I generally classified it as development
since most of the emails were development-related.” - P21

Most of our task type categories are consistent with pre-
vious work that investigated knowledge workers’ tasks [32],
[60], [61], [62]. For example, Meetings, Administrative, Plan-
ning and Private were also prevalent in both Kim et al.’s and
Czerwinksi et al.’s work [60], [62]. Kim et al. further divided
project work (in our case Development tasks) into Document-
ing and Conceptualizing Ideas, Environment and Development
and Design. We did not make these finer-granular distinc-
tions since we did not want to make the self-reporting of
task types in the second study too complicated, which
would degrade the quality of self-reports.

6.2 Descriptive Statistics of the Dataset

On average, developers worked on 6.1 (£1.6, min: 3, max: 9)
different task types during the studied time periods, indi-
cating that most of the identified task types are relevant to
all developers. The majority of developers worked on Devel-
opment, Awareness & team, Personal and Planning tasks on a
daily basis. Only five developers worked on Administrative
tasks during the study period, indicating that for many
developers this is not a task they spend time on very often.

The task type participants self-reported having spent the
most time on is Development, with an average of 37 (+ 12)
minutes spent for every hour of work. Participants also
spent a surprisingly high amount of time, almost 10 minutes
per hour of work, with Personal, including work unrelated
browsing and messaging. Table 4 reports details for all task
types as well as the number of participants who self-
reported having worked on the task type.

We also analyzed if having a higher diversity in work
(i.e., working on more different task types) correlates with
developers switching more between tasks. There is a weak,
not statistically significant positive correlation (Pearson’s
r = 0.32,p = .12), which suggests that there are other, more
important reasons causing developers to switch tasks.

6.3 Task Type Detection Accuracy

Table 4 shows the results of our task type detection
approach across all 9 task type categories. We omit the accu-
racy metric in this table, as recall is a measure of individual
class accuracy, and since the recall presented in the all row
is weighted by class size it therefore assumes exactly the
same value as accuracy. As with the task switch detection
analysis, we trained both individual models and one gen-
eral model which was trained on all participants. The
Administrative task type was not predicted a single time by
the general classifier, and as thus the precision scores were
undefined for this class. Similarly, the task types Planning
and Other had low precision and recall values, since the
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Fig. 4. Confusion matrix for task type prediction.

sample size used for training these types was small. In
general, the individual models (precision 59 percent, recall
61 percent) outperformed the general model by a large mar-
gin (precision 44 percent, recall 50 percent).

One important aspect of our approach that distinguishes
our classifier from previous work (e.g., [15], [22], [47]) is its
ability to make predictions even on previously unseen
applications. To demonstrate this, we split the results into
two categories: with the manual application category map-
pings (All Features) and without (Ul Features). The Ul Fea-
tures include all user interaction features, but exclude
application features. While the combined approach proved
to be superior, user input features still proved to have high
predictive power on their own. Overall, there was a 28.2
percent increase in precision when including the application
category features, and a 24.5 percent increase in recall.

We also found there was a substantial difference in per-
formance depending on the task type category. The Develop-
ment task type proved to be the easiest to predict, achieving
high recall (85 percent) and precision (70 percent) scores.
Conversely, the Planning task type saw very poor results,
with only 24 percent recall and 31 percent precision. These
results are somewhat in line with what one might expect.
Naturally, some task categories are more difficult to predict
than others. For instance, discerning the nature of a meeting
(planned or unplanned) based purely on a users applica-
tions used and input activity seems to be nearly impossible.
As seen in Fig. 4, there is substantial confusion between
some categories, especially between the two meeting cate-
gories (Planned Meeting and Unplanned Meeting) and the Per-
sonal category. These categories tended to have a high
amount of time spent idle, meaning the participant was
away from their computer which naturally makes correct
predictions exceptionally difficult. As a consequence of the
dominance of Development samples in our dataset, our clas-
sifier also exhibits a strong bias towards predicting the
Development category. While a larger sample size would
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likely help reduce this bias, it is of note that the Development
category is also the one participants spent the majority of
their time in, 37.2 (£12.2) minutes on average for every
hour of work.

6.4 Task Type Feature Evaluation

The third and fourth column of Table 2 show the Gini fea-
ture importances we calculated for our RandomForest
classifiers, averaged over all participants. When consider-
ing All Features, we found the time spent per application cat-
egory features to have by far the greatest importance (39.1
percent), followed by keystroke features (17.5 percent).
However, the combined user input feature group contrib-
uted more than any other feature group (47.6 percent).
The lexical features did not contribute at all to the results
of the classifier, which suggests there is room for
improvement in this area as window titles can contain a
substantial amount of hints that could help to identify a
specific task. The supplementary material includes indi-
vidual task type feature importances.

7 DISCUSSION

In this section, we discuss implications of our results, possi-
ble improvements to automated task switch and type detec-
tion, and practical applications of automated task detection
in real-world scenarios.

7.1 Improving Task Switch Detection

We found that for the task switch detection, the individual
models perform quite similarly to the general model overall,
even though the prediction performance varies quite sub-
stantially for each participant. This suggests that using the
general classifier is accurate enough to solve the cold-start
problem. For practical, real-world applications, we there-
fore suggest using a general model as a default, and then
allowing the user to improve the classifier by training it. As
we found in study 2, collecting periodic self-reports over
just a few days is feasible in real-world scenarios and may
even lead to some insights about work itself.

More research is required to explore reasons for and
better balance the individual differences in developers’
task switching behaviors. This includes investigating the
characteristics of inaccurately classified task switches and
consider additional data sources. For example, we could
imagine to include information about a developer’s per-
sonality and company culture to train a classifier that
works well for developers with similar work habits,
instead of building a general one for everyone. Future
work could also study the predictive power of features
extracted from additional data sources, such as emails,
calendars, biometrics (e.g.,detecting when a user is away
from the computer), and more detailed development
related data (e.g.,activities inside the IDE).

The relatively low feature importances of our lexical fea-
tures shows further potential to more effectively leverage
contextual information. Besides calculating lexical similarity
based on cosine similarity (TF-IDF) of window titles, we also
experimented with variations, such as an unweighted term
frequency metric and two different word embedding models
including one trained on Wikipedia, and one trained on



236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 1, JANUARY 2022

StackOverflow which has been shown to produce embed-
dings that are more closely related to the domain of software
engineering[63]. They led to even less predictive features,
which is why we did not report them separately. One reason
could be the little overlap in the window title data. Window
titles generally capture only the application name and the
name of the current file, document, email or website, which
limits overlaps with other window titles. Including the actual
contents of these resources could be one way to overcome
these limitations, but could result in privacy concerns, as dis-
cussed in more detail in the next section.

7.2 Improving Task Type Detection

For the task type predictions we found that the individual
models outperform the general model, with an overall accu-
racy of 61 percent compared to 50 percent. Even though we
collected data from a rather large sample of 25 participants
(compared to similar work), we were not yet able to build
highly reliable general models, which could solve the cold-
start problem. The difficulty to discover common patterns
across all participants emphasizes how individual and
diverse developers’ tasks are.

We see our work as a first step towards better understand-
ing and automatically characterizing developers’ task context.
With our models’ ability to automatically detect task switches
based on data collected through our computer interaction
monitoring, a next step could be to collect a more in-depth
set of data in-between two task switches, and from more par-
ticipants over a longer period of time. For example, IDE
extensions (e.g., Feedbag [64] or WatchDog [65]) could be lev-
eraged to identify the code files, code reviews, and projects
the developer has been working on, browser trackers (e.g.,
RescueTime [66]) could identify and classify the websites a
developer visited, and integrations into the email or IM client
could help to understand which people a developer commu-
nicated with. To better manage these large amounts of data,
research will need to come up with approaches to model and
summarize task context—and task types are a first step into
doing that. We have been able to find only very little work on
automatically detecting, characterizing and summarizing
(developers) tasks yet [22], [32], [33].

While more fine-grained lexical data, such as the file or
website contents (as applied in [37], [51], [52]) or partic-
ipants’ actual keyboard input, could be leveraged to
improve our models, it also might reveal details about the
company’s products or the developers” work and personal
life that they are not comfortable sharing with us. To mini-
mize privacy concerns, we had to find a trade-off between
intrusiveness, by capturing only a minimum set of data, and
completeness, by monitoring as much as possible to get
enough data that allowed us to predict task switches and
types in the field. To earn participants’ trust with capturing
potentially sensitive data, we were also very transparent
with what data we collect and how it will be used, allowed
participants to review it before sharing it with us, and mak-
ing it possible to pause the monitoring application at any
time that seemed particularly sensitive to them.

7.3 Reducing the Prediction Delay
Ideally, a task switch and type detection would be very
close to real-time, i.e., close to the exact time a switch occurs.

With our approach, there can be a prediction delay of a maxi-
mum of one unique application segment, on average 1.6
minutes (+2.2), when predicting a task switch. This delay is
considerably smaller compared to previous approaches that
applied fixed window lengths of (usually) 5 minutes (e.g.,
[13], [14], [171, [27], [32], [33]). Nonetheless, future work
could further reduce the prediction delay by further short-
ening the smallest possible segment size, in our case appli-
cation switches. This would allow to also identify switches
within an application, such as when a developer is switch-
ing tasks inside the web browser or IDE.

7.4 Applications for Automated Task Detection

An active area of research aims to better support develop-
ers’ frequent task switching, for example by supporting
resuming interrupted tasks or by easing task switching (see
Section 2.3). So far, most approaches are limited to devel-
opers’ manual identification of task switches, and their evalu-
ations have pointed out challenges this poses for them. Our
approach demonstrates the feasibility of automatically detect-
ing task switches and types in the field, based on a few hours
of training data, which makes it possible to increase the value
of previous approaches significantly and stimulate new
research and tool support. Notably, tool support would
greatly benefit from the improvements we discussed in the
sections above. In the post-study questionnaire of study 2,
participants described concrete applications that we qualita-
tively analyzed and related to prior work, which resulted in
the following three main opportunities for applying auto-
mated task detection:

One application of an almost real-time detection of task
switches that 8 (out of 13) participants described is to
actively reduce task switching. This includes automatically
blocking notifications from email, instant messaging or
social networks when a developer is focused on a (challeng-
ing) task, to allow extended times of deep focus:

“What if Windows has a built-in and personalized model about
when to give you notifications. I feel like there is a good middle
ground between forcing the user to turn off notifications from
the OS and having too many notifications interrupting the
user.” - P25

Reducing task switching at times of high focus could
greatly reduce multi-tasking, a major source of stress and
quality issues [2], [67], [68], [69]. Similarly, an automated
task switch detection could improve interruptibility classi-
fiers and postpone in-person interruptions from co-work-
ers to task switch borders, times they are less costly [70],
[71], [72].

Another application of automated task detection could
be to support the resumption of suspended or interrupted tasks.
Participants did not suggest this application themselves,
but 8 (out of 13) rated it as "useful’ or "very useful’ in a fol-
low-up question of the final questionnaire. According to
Parnin and Rugaber, a major challenge of task resumption
is to rebuild the interrupted task’s context [73]. Applying
similar summarization approaches as seen in other areas of
software development [74], [75] could be presented to the
user as cues upon returning to the suspended task, which
has been shown to considerably reduce the resumption
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lag [4], [76], [77]. While previous approaches, such as Task-
Tracer [7], Scalable Fabric [78], GroupBar [9] and Mylyn [6],
allow the capturing and presentation of task context, they
require the user to manually group related artifacts or manu-
ally state the start and end of a task, thus, reducing chances
of long-term adoption. Even tough there is room for
improvement as discussed above, our approach can serve
as a starting point to automate these approaches, since it
can already be beneficial to receive help with resuming
some tasks, as long as they are detected correctly.

A third opportunity of application that 10 (out of 13) par-
ticipants suggested is to use automated task detection to
increase their awareness about task work and time spent on
tasks, which could help to identify opportunities for work
habit and productivity improvements. This is in line with a
survey with 379 developers that showed the most-often
mentioned measurement of interest when reflecting about
productivity are the tasks developers made progress on and
completed in a workday [23]. An aggregated visualization
of the automatically inferred tasks could give developers
insights such as how much time they spend on different
tasks, when they worked on planned versus unplanned
tasks, or their multi-tasking behaviors:

“It can help point out different working styles that are also effec-
tive and efficient. Not everyone works in the same way.” - P 24

Recently, researchers started building retrospective dash-
boards for developers [42], [65], [79], [80] and other knowl-
edge workers [66], [81], [82], usually by visualizing data on
the level of applications or application categories, but sug-
gesting that a per-task level would be more beneficial. An
increased awareness about one’s task switching behavior
could support developers to identify goals that help to
maintain and improve good work habits, such as reducing
multi-tasking or actively blocking notifications from dis-
tracting services and websites at times they need to focus.
Participants further suggested that the data could help to
reduce administrative workloads that require them to
report time spent at work:

“We're often asked to report at the end of the month how much
time we spent on support requests (...) versus development
work. That kind of info is tedious to track manually, but a tool
could generate an automatic report as needed, allowing for
more accurate counts.” - P22

Lu et al. recently showed that the lack of logs of activi-
ties and tasks is often a hindrance to be able to transfer
them into time reports [83]. While a few time-tracking
tools already exist (e.g.,DeskTime [84], TimeDoctor [85]),
they all require users to manually specify the start and
end of a task.

8 THREATS TO VALIDITY

OBSERVING DEVELOPERS IN STUDY 1. The internal validity of our
results might be threatened by the presence of the observers
during the observation sessions, causing developers to
diverge from their regular work habits, e.g., having less
breaks than usual. Observing participants on a single day
only might not be representative of the participant’s regular
workday. We tried to mitigate these risks by not interacting
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with participants during the observations, splitting up the
session into two two-hour blocks, sitting as far away from the
participant as possible, telling co-workers beforehand that
they could still communicate and interrupt as usual, and by
allowing the participant to pick an optimal timeslot that is
representative of their usual work. Our observational study
has the advantage that, rather than performing a lab study or
experimental exercise, participants were observed during
their real-world work, thus increasing generalizability and
realism. However, the above mentioned risks of observing
developers at their workplace make it very difficult to scale
observational studies and observe them over many days.
Hence, we did not rely only on observations, but also on par-
ticipants’ self-reports and with that, combining two methods
and strengthening our overall approach.

SELF-REPORTING IN STUDY 2. While collecting participants’
task data using self-reports has proven to be a valuable
approach to scale the collection of labeled data for super-
vised learning, there are a few limitations. First, we rely on
the accuracy of participants” self-reports. For example, they
might not always have been able to accurately remember
their tasks, or filling out the pop-up regularly might be per-
ceived as cumbersome after a while. In Section 3.2, we
describe our actions to minimize these risks in detail,
including the ability to postpone a pop-up and collecting
confidence ratings. Aiming to make the self-reporting as
easy as possible required limiting the self-reports to seg-
ments with the granularity of an application switch and
excluding application switches shorter than 10 seconds.
This is why our models are unable to detect task switches
within an application, as well as very short ones. Since
developers switch between applications very frequently, on
average every 1.6 minutes (+2.2), our model is able to pre-
dict a task switch within the same time frame. Future work
could investigate how to give participants good-enough
cues that allow them to accurately self-report switches
within applications (e.g.,switching from a news website to
the work item tracker in the browser) without making the
interface too cluttered. Finally, the reliance on collecting
computer interaction data only, instead of also including
other sensors such as heart-rate monitors or cameras, limits
our knowledge of what is happening when there is no input
to the computer, e.g., in the case of idle times from using the
smartphone, reading a document without scrolling, or a dis-
cussion with a co-worker.

SampLE Size. A further threat to the external validity of
our results could be the number of participants. A higher
number of participants might have led to a more robust gen-
eral model to predict task switches and task types. Nonethe-
less, collecting task data from 25 participants is considerably
higher than what was reported in previous work (between 1
and 11 participants). We tried to mitigate this threat by
selecting participants from four different software compa-
nies in various locations.

Task DEerNITIONS. The construct validity of our results
might be threatened by our definitions of a task (switch)
and our open coding approach to identify task type cate-
gories. To minimize this risk, we based our definitions of
task, task switch and task type on previous work, and asked
participants about their own definitions in both studies
(Section 3).
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9 CONCLUSION

In this paper, we explored the potential of automatically
detecting task switches and task types based on developers’
computer interaction data. Running two field studies that
we conducted with a total of 25 professional software devel-
opers, we found that we are able to detect task switches and
task types with high accuracy in the field and within a short
time frame (average 1.6 minutes) from the actual task
switch. We thereby examined a broad range of semantic
and temporal features extracted from the computer interac-
tion data and found that features based on user input data
hold the highest predictive power.

Our work extends previous work with an approach
that uses a broader range of temporal and semantic fea-
tures, by developing new features, and by not being lim-
ited to capturing task switches and types within the IDE
only. The evaluation of our approach in a field-study
with 25 professional developers, compared to 1 to 11
participants in previous work, revealed higher accuracy
and less delay in the predictions than comparable prior
work. The strong evidence on the potential to automati-
cally predict task switches in the field opens up a wide
range of applications in real-world work settings, rang-
ing from complementing existing manual task support,
such as Mylyn [6], to automating time tracking tools, all
the way to new tool support to leverage developers’
workflows.
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