
Comparative Analysis of Constraint
Handling Techniques for Constrained

Combinatorial Testing
Huayao Wu , Changhai Nie, Justyna Petke , Yue Jia, and Mark Harman

Abstract—Constraints depict the dependency relationships between parameters in a software system under test. Because almost all

systems are constrained in some way, techniques that adequately cater for constraints have become a crucial factor for adoption,

deployment and exploitation of Combinatorial Testing (CT). Currently, despite a variety of different constraint handling techniques

available, the relationship between these techniques and the generation algorithms that use them remains unknown, yielding an

important gap and pressing concern in the literature of constrained combination testing. In this article, we present a comparative

empirical study to investigate the impact of four common constraint handling techniques on the efficiency of six representative (greedy

and search-based) test suite generation algorithms. The results reveal that the Verify technique implemented with the Minimal

Forbidden Tuple (MFT) approach is the fastest, while the Replace technique is promising for producing the smallest constrained

covering arrays, especially for algorithms that construct test cases one-at-a-time. The results also show that there is an interplay

between efficiency of the constraint handler and the test suite generation algorithm into which it is developed.

Index Terms—combinatorial testing, test suite generation, constraint handling, constrained covering array, empirical comparison

Ç

1 INTRODUCTION

COMBINATORIAL testing (CT), or combinatorial interaction
testing (CIT), is a potentially powerful testing technique

for revealing failures triggered by interactions of parameters
that govern software system execution behaviour [1]. Since
the initial idea of CT was sketched in 1985 [2], it has been an
active research areawith over 760 scientific publications,1 con-
tributing to the development of theory, techniques and appli-
cations. CT is also gradually finding its way into industrial
practice, and has been included into testing standards such as
ISO/IEC/IEEE 29119 [3].

Traditionally, CT assumes that the parameters of software
under test are independent from each other. The t-way cover-
ing array, in which each input combination of t parameters
must appear at least once, can thus be directly used as the test
suite. However, in real-world programs, there usually exist

dependency relationships between parameters. Such relation-
ships can be described as constraints in CT, indicating that
some particular input combinations are infeasible or undesir-
able. Any application of a t-way covering array that fails to
take constraints into account will lead to many ‘invalid’ test
cases. As a result, CT could be less effective than people
would otherwise expect.

For example, a constraint may indicate that the Linux oper-
ating system cannot be combinedwith the IE browser: if a test-
ing strategy requests this combination, then no test case can
realise it. Of course, we could simply dismiss such invalid
combinations, but there is a computational cost in doing so
and the result may also affect the size of the test suites; per-
haps other valid sets of combinations could be reduced if the
constraint was handled earlier.

Constraints typically denote tests that simply cannot be
achieved. While these may be an irritation, more pernicious
are hidden constraints. For example, sometimes a test case
that violates constraints may still be executed, but will yield
results that are difficult to distinguish from a software failure.
Where such constraints are merely implicit, they can lead to
considerable wasted effort generating and analysing results
from tests that should have been avoided from the outset.

The concept of a constraint was introduced early in the
development ofCT. In 1987, Tatsumi et al. were already aware
that “not all of the combinations of the factors and states
entered in the test factor table actually exist” and “these condi-
tions deserve special consideration” [4], [5]. The early CT tools
of 1990s, such as CATS [6] and AETG [7], were also able to
deal with constraints. In 2006, Grindal et al. [8] presented the
first review of constraint handling techniques. In their study,
constraints are assumed to be few and simple in practice, so

� H. Wu and C. Nie are with the State Key Laboratory for Novel Software
Technology, and the Department of Computer Science and Technology,
Nanjing University, Nanjing, Jiangsu 210023, China.
E-mail: {hywu, changhainie}@nju.edu.cn.

� J. Petke is with the CREST, Computer Science, University College London,
London WC1E 6BT, U.K. E-mail: j.petke@ucl.ac.uk.

� Y. Jia and M. Harman are with the Facebook Inc., London W1T 1FB, U.K.,
and also with the CREST, Computer Science, University College London,
London WC1E 6BT, U.K. E-mail: {yue.jia, mark.harman}@ucl.ac.uk.

Manuscript received 25 Jan. 2019; revised 8 Aug. 2019; accepted 10 Nov.
2019. Date of publication 26 Nov. 2019; date of current version 12 Nov. 2021.
(Corresponding author: Changhai Nie.)
Recommended for acceptance by T. Xie.
Digital Object Identifier no. 10.1109/TSE.2019.2955687

1. The data to support this claim was obtained from Combinatorial
Testing Repository. [Online]. Available: http://gist.nju.edu.cn/
ct_repository.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021 2549

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0003-1383-5421
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
mailto:hywu@nju.edu.cn
mailto:changhainie@nju.edu.cn
mailto:j.petke@ucl.ac.uk
mailto:yue.jia@ucl.ac.uk
mailto:mark.harman@ucl.ac.uk
http://gist.nju.edu.cn/ct_repository
http://gist.nju.edu.cn/ct_repository

the techniques to modify test models to remove constraints
played an important role at that time.

However, in 2007, the study by Cohen et al. revealed that
constraints are large and complex in real-world applications,
especially for highly configurable software systems [9]. They
found that the previous constraint handling techniques were
unsatisfactory in terms of both generality and scalability, and
proposed to use a satisfiability (SAT) solver as a general solu-
tion to resolve constraints during test suite generation. Since
then, a variety of automated constraint handling techniques
have been developed and successfully applied [10], [11]. New
research directions, such as automatically inferring [12], vali-
dating [13], [14], and repairing constraints [15], have also
started to attract attention.

Even though the topic of constraints has been discussed
in many studies since 1987, the importance of constraints,
and the need for constrained combinatorial testing, remains
a fundamental barrier to the wider update of CT. In 2014,
Khalsa and Labiche [16] analysed the applicability of 75 test
suite generation algorithms and tools in CT. They found
that more than half of these studies simply do not imple-
ment any constraint handling technique. More recently, Wu
et al. [11] further examined the test suite generation publica-
tions between 2015 and 2018. They found that the influence
of constraints is only accounted in 30 percent of them, which
makes a large proportion of the proposed techniques inap-
plicable to many real-world programs.

Moreover, since recent studies [10], [11] have revealed a
diverse set of different constraint handling techniques, a sub-
sequent natural question is the extent to which these techni-
ques make a difference in the efficiency of different test suite
generation algorithms. This is important because test suite
generation studies of CT usually follow (arbitrary choices of)
one of the previous practices to determine the constraint han-
dler to be used (for example, many recent studies directly use
the SAT solver approach without further examination [17],
[18], [19], [20], [21]), whichmaypotentially restrict the capabil-
ity of the proposed algorithms. Unfortunately, except one
early comparative study [8] that is based on unrealistic set-
tings (few and simple constraints), none of the studies has pre-
sented results on the relationship between the more recently
developed constraint handling techniques and test suite gen-
eration algorithms.

In this study, we present the first comparative analysis to
investigate the impact of choices concerning constraint han-
dling techniques and test suite generation algorithms that use
them. To establish a uniform (level playing field) empirical
comparison, we first developed a framework of constrained
covering array generation as the reference implementation,
which includes the four common constraint handling techni-
ques (including Verify, Solver, Tolerate, and Replace) as config-
urable options. A total number of six representative greedy
and search-based test suite generation algorithms (including
AETG [22], DDA [23], IPO [24], PSO [25], SA [26], and TS [27])
were then implemented based on this framework, and the
experiments were conducted on a well-known bench-
mark [22] of constrained covering array generation. Finally,
the sizes of test suites, computational costs, and failure revela-
tion abilities obtained from different combinations of test
suite generation algorithms and constraint handlers are
recorded and analysed.

Our experimental results reveal that the constraint han-
dlers denote a key decision point when designing new test
suite generation algorithms, instead of simply treating the
solver as an afterthought or a detachable independent com-
ponent. It is important to take both generation algorithms
and test goals into consideration to determine the ‘best’ con-
straint handler that should be used.

This study seeks to address the important gap of ade-
quately handling constraints in test suite generation for CT,
and thereby extends current knowledge on constrained com-
binatorial testing. We hope and believe that this work may be
helpful to facilitate future research and practice in constrained
combinatorial testing, aswell as to suggest potentially promis-
ing constraint handling techniques for the design of test suite
generation algorithms.

Summing up, the primary findings of this study are as
follows:

1) We observe statistically significant difference in not
only test suite size (86 percent of cases) and computa-
tional cost (99 percent of cases), but also failure reve-
lation ability (52 percent of cases), when different
constraint handling techniques are used in the test
suite generation algorithm.

2) The technique that resolves constraints after test suite
generation, i.e., Replace, performs surprisingly well,
confounding the ‘conventional wisdom’ that prefers
techniques that avoid constraints during test suite gen-
eration. Especially for generation algorithms that con-
struct test cases one-at-a-time, Replace can produce
significantly smaller test suites and the bA12 effect size
is higher than 0.9 in 70 percent of cases, indicating a
very high probability that Replace is highly efficient.
Whereas, when the whole test suite is directly con-
structed by search-based algorithms, Tolerate could be
a more promising choice, as large effect sizes (higher
than 0.8 or lower than 0.2) are observed in 71 percent
of cases for whichTolerate is significantly better.

3) The Verify technique implemented with the Minimal
Forbidden Tuple (MFT) approach tends to be the
fastest technique, while the technique that relies on a
constraint satisfaction solver, i.e., Solver, is usually
the slowest. In particular, for the greedy algorithms
(AETG, DDA and IPO), the average bA12 effect size
between Verify and the other techniques is only 0.07;
there is little, or no chance that Verify could perform
worse than its competitors.

4) The constraint handling technique that minimises the
size of t-way covering arrays tends to result in a lower
chance of detecting failures triggered by k > t param-
eters, but the observed difference is not as large as that
in the size of test suites. Especially, the large difference
(with bA12 higher than 0.8 or lower than 0.2) in test suite
size can be observed in 42 percent of cases, while this
proportion is, on average, only 10 percent in terms of
failure revelation ability.

The rest of this paper is organised as follows. Section 2 sets
out the background on constrained combinatorial testing,
and presents a brief review of currently available constraint
handling techniques. Section 3 explains the experimentmeth-
odology of our comparative analysis of constraint handling

2550 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

techniques. Section 4 presents experimental findings and dis-
cussions. Section 5 analyses threats to validity, and finally,
Section 6 concludes thiswork.

2 CONSTRAINED COMBINATORIAL TESTING

We begin this study with background on constrained com-
binatorial testing, and also a brief review of currently avail-
able constraint handling techniques.

2.1 Background

Combinatorial testing (also known as combinatorial interac-
tion testing) is a systematic technique that selects combina-
tions of program inputs or features for testing [28]. It models
the input space of the Software Under Test (SUT) by a set of n
parameters (such as system configurations, internal or exter-
nal events, and user inputs) and their associated value
domains (a finite set of discrete values). A test case of the SUT
is then produced by assigning to each parameter a specific
value [1].

Table 1, for example, shows a test model for testing font
effects in a word processor (this example is adapted from
previous work [29]). This test model has five parameters:
Style and Underline Colour can take three values, and each of
the others can take two values.

Software failure in such systems is usually triggered by
interactions of parameters, which can be represented using
a t-way combination (i.e., a combination of t parameter val-
ues). Here, we refer to a failure as the inability of a system
to perform its required functions; while a fault is a manifes-
tation of an error, which is a human action that produces an
incorrect result [30].

Exhaustive testing covers all n-way combinations by def-
inition. Such test suites, however, are usually prohibitively
large. Instead, CT provides a systematic approach to select-
ing a subset of all possible inputs by using a a mathematical
object named a t-way covering array. Its concept comes
from the fact that if no more than t parameters are involved
in any failure, then covering all k-way combinations (k � t)
is effectively equivalent to exhaustive testing.

Definition 1 (Covering Array [1]). A t-way covering array of
a SUT is a set of test cases, in which every t-way combination is
covered at least once. Such a covering array can be denoted by
CAðN; t; v

k1
1 v

k2
2 . . . vkmm Þ, where v

ki
i stands for ki parameters

with the same number of vi values,
P

ki ¼ n.

The value of t is referred to as the strength of a covering
array. Determining this value is a key issue in CT. The
empirical observations of Kuhn et al. have demonstrated
that most software failures can be triggered by interactions
of one or two parameters, and the value of t is not likely to
exceed six [31]. Hence, t ¼ 2, or pairwise, is the most widely

used choice in practice, which can achieve a good balance
between test suite size and failure finding effectiveness.

The conventional definition of a covering array assumes
that every possible t-way combination is feasible and has
the potential to trigger a failure. However, this may be unre-
alistic due to the constraints between parameter values.
Constraints may be introduced because of inconsistencies
between hardware components, limitations on possible con-
figurations, or simply design choices [9]. For example, one
constraint for the model in Table 1 is that “Superscript and
Subscript cannot both be enabled for the same character”. A
test case that violates this constraint is considered invalid.

In order to incorporate constraints into CT, the definition
of a covering array needs to be extended to that of a con-
strained covering array, which can be defined as follows:

Definition 2 (Constrained Covering Array [22]). A t-way
constrained covering array of a SUT with respect to a set of
constraints C is a set of test cases, in which (1) each test case is
C-satisfying; and (2) every C-satisfying t-way combination is
covered at least once.

Table 2 gives a 2-way constrained covering array of the
test model in Table 1, where each row is a valid test case of
the SUT (the invalid combination, Superscript ¼ On ^ Sub-
script ¼ On, does not appear in this table). Here, instead of
exhaustively examining all 54 constraint satisfying test
cases, CT only requires 9 test cases to cover every valid 2-
way combination at least once.

Constraints in CT can be either hard or soft. A hard con-
straint requires that certain parameter combinations cannot
appear in any test case, because their existence will prevent
the test case from execution. The constraint in Table 1 is an
example of a hard constraint. A soft constraint, on the other
hand, is the combination that does not need to be tested, based
on the knowledge and experience of testers [32]. It is possible
to include test cases that violate soft constraints, but these are
undesirable and bring no benefit to test effectiveness.

Intuitively, all constraints are explicitly specified in the
test model. Sometimes the interactions of a set of constraints
may give rise to new constraints. Such a newly introduced
constraint is named an implicit constraint, because usually
such implicit constraints are unknown to the tester. For
example, for the test model in Table 1, we already have one
invalid combination (�, �, �, On, On). If we add another
invalid combination (Bold, �, �, Off, �) as a constraint, then
a new invalid 2-way combination (Bold, �, �, �, On) is
introduced, because we cannot find a test case that covers

TABLE 1
ATest Model for ‘Font Effect’

Style Underline Underline Colour Superscript Subscript

Regular On Red On On
Italic Off Blue Off Off
Bold Green

Constraint: Superscript and Subscript cannot both be enabled.

TABLE 2
A 2-way Constrained Covering Array CAð9; 2; 31213122Þ

Style Underline Underline Colour Superscript Subscript

t1 Regular On Red Off On
t2 Regular Off Blue On Off
t3 Regular On Green Off Off
t4 Italic Off Red On Off
t5 Italic On Blue Off Off
t6 Italic Off Green Off On
t7 Bold Off Red Off On
t8 Bold Off Blue Off On
t9 Bold On Green On Off

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2551

both this combination and does not cover the two explicitly
given invalid combinations.

The impact of constraints may vary with different prob-
lems, but in general, constraints increase the complexity and
difficulty of effectively applying combinatorial testing [11].
Nevertheless, testers can build more accurate and flexible test
models for the SUTwith the help of constraints. A large num-
ber of constraints can also greatly reduce the size of the search
space, which makes the generation of high strength covering
arrays feasible at a reasonable computational cost [33], [34].

2.2 Constraint Handling Techniques

Given a test model with constraints, one key challenge in CT
is to generate a constrained covering array of the minimum
size to cover all valid t-way combinations. Constraint han-
dling focuses on this process to ensure that the final solution
only contains valid test cases. Currently, there are four main
categories of constraint handling techniques that can be
used [10], [11]: Remodel, Avoid, Post-Process, and Transfer.
Fig. 1 additionally gives an overview of the chronological
development of these techniques [11].

2.2.1 Remodel

The ‘remodel’ technique focuses on eliminating constraints
from test models before test suite generation, so that conven-
tional covering arrays can be used directly. The Sub-model and
Abstract Parameter techniques are two representative choices in
this category, which remove constraints by constructing con-
flict-free sub-models [6], and combine conflicting parameters
into abstract parameters [35], respectively. These techniques
are typically less competitive in the size of generated test suite,
and rely onmanual efforts for themodelmodification [8], [36].

2.2.2 Avoid

The ‘avoid’ technique focuses on constructing conflict-free
solutions during test suite generation. It typically integrates
particular strategies as extensions into greedy or search-based

generation algorithms (for example, to ensure that each para-
meter value assignment is constraint satisfying). There are
four representative choices in this category:

1) Verify. The ‘verify’ technique is probably the most
basic technique to handle constraints in the more gen-
eral case. Its idea is to maintain a list of forbidden
tuples, so that each partial or complete solution during
the generation process can be verified against them to
prevent the appearance of constraint violation [7].
Recently, Yu et al. [37] improved this technique by
introducing the concept of Minimum Forbidden Tuple.
AMFT is a forbidden tuple of minimum size that cov-
ers no other forbidden tuples. Once all MFTs are
found, validity verification can be quickly performed
by only checking whether a solution contains any
MFT.

2) Solver. The idea of ‘solver’ technique is similar to Ver-
ify, but it encodes constraints and solutions into a
formula and applies an existing constraint satisfac-
tion solver (usually, a SAT solver) to check the for-
mula’s validity [22]. This technique can be integrated
into any generation algorithm, but it may lead to a
high computational cost due to the large number of
solver calls required. To address this issue, several
improvements have been proposed, such as using
the solvers only when necessary [9], [38], as well as
exploiting the solving result and history [19], [22],
[38].

3) Weight. The ‘weight’ techniquewas initially developed
to cater for soft constraints, where combinations were
weighted as either important with positive values, or
undesirable with negative values [32]. This technique
only avoids the undesirable combinations where pos-
sible, and does not guarantee the exclusion of such
constraints [32].

4) Tolerate. When using search-based algorithms to gen-
erate constrained covering arrays, one choice is to

Fig. 1. The chronological development of constraint handling techniques [11].

2552 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

exclude all invalid solutions from the search space, so
that all intermediate and final solutions are constraint
satisfying. However, sometimes some elements of
invalid intermediate solutions may help to find the
optimal solution, so it maybe desirable to ‘tolerate’
such invalid solutions in the search space, but penalise
them in favour of valid solutions [25], [27]. For exam-
ple, one choice to implement this technique is to incor-
porate a penalty term into the fitness function, which
evaluates the number of constraint violations (such a
value can be calculated using the the minimal for-
bidden tuple approach or a constraint solver) [27].

2.2.3 Post-Process

The ‘post-process’ technique focuses on repairing constraint
violations after test suite generation. Its aim is to resolve con-
flicts in covering arrays that are generatedwithout considering
constraints, while at the same time retaining combination cov-
erage. This process usually starts from the identification of all
invalid test cases, which can be efficiently achieved by using
theminimal forbidden tuple approach or a constraint solver.

Currently, there are two representative techniques in this
category. The Replace technique tries to replace invalid test
cases by a set of valid ones [8], [39], which is general enough
to be combined with any test suite generation algorithm.
While the Extend technique is specifically designed for event
sequence testing, which inserts new events to create execut-
able test sequences to remove conflicts [40].

2.2.4 Transfer

The ‘transfer’ technique focuses on reformulating the prob-
lem of covering array generation into other problems, or
using other structures to model the constrained input space,
so that final solutions can be directly obtained by applying
existing algorithms or tools. One choice of this technique is
to reduce the covering array generation problem into the
Constraint Satisfaction Problem (CSP), and then constraint
solvers can be used to produce satisfiable test cases or test
suites [41], [42]. Such CSP-based techniques can generate
the covering array of minimum size and prove its optimal-
ity, but they usually have high computational cost, and are
only practicable for pairwise testing [42], [43], [44].

Another choice is to use a Graph Model to represent and
manipulate the search space. This allows graph-related
operations and theories to be used directly to construct test
cases or test suites. Exemplary applications include naviga-
tion graph [45], binary decision diagram [46], edge clique
covering problem [47], and graph colouring problem [48].

3 EXPERIMENTAL DESIGN

In this section, we describe the research questions we seek
to investigate, and explain our experimental methodology.

3.1 Research Question

Constraint handling is the most prominent research field in
constrained combinatorial testing [11].With the rich collection
of currently available constraint handling techniques (as
reviewed in Section 2.2), there is clearly a need to understand
how these techniques will make a difference in different test

suite generation algorithms. This thereby motivates our main
research question:

Given a particular test suite generation algorithm, is
there a significant difference in efficiency between con-
straint handling techniques?

Especially, we are interested in the test suite size (RQ1)
and computational cost (RQ2) that can be achieved when
using different constraint handlers. These are the conven-
tional efficiency indicators for evaluating a test suite genera-
tion algorithm in CT. In addition, test practitioners might
also be interested in the failure revelation ability (RQ3) of the
t-way covering arrays generated, in particular when a fail-
ure is triggered by combinations of more than t parameters.
We will also investigate the effectiveness of different con-
straint handlers in terms of this aspect.

3.2 The CCAG Framework

In order to answer our research questions, we need to exe-
cute and compare a particular test suite generation algorithm
with different choices of constraint handlers. Although there
are available tools for test suite generation, for example,
PICT,2 ACTS3 and CASA,4 the selection of different con-
straint handlers is not supported in these tools. Moreover,
these tools are implemented by different developers with
different programming languages, which might otherwise
introduce additional sources of bias into our evaluation.
Therefore, in this study, we chose to develop a reference
implementation, which we imagine to have been realised in
any greedy or search-based constrained covering array gen-
eration algorithm (there is already an exemplary study in the
fuzzing literature [49]).

Algorithm 1. The CCAG Framework

1: PreProcess()
2: S an initial solution
3: while S is not a covering array do
4: S Next (S, isValid(), PenaltyTerm())
5: end while
6: PostProcess()
7: return S

Algorithm 1 shows our Constrained Covering Array Gen-
eration (CCAG) framework. It is general enough to accommo-
date the three widely used frameworks for covering array
generation [50]: (1) iteratively constructing a single test case
that maximises combination coverage (one-test-at-a-time); (2)
first constructing a test set for t parameters and then extend-
ing it horizontally and vertically (in-parameter-order); and (3)
directly constructing a covering array for a given size (evolve-
test-suite). These three frameworks can be realised by both
greedy and search-based strategies. In either case, the genera-
tion algorithm will start from an initial solution S, and then
apply a step-by-step process (i.e., the Next function) to
improve S (typically, by assigning or changing parameter val-
ues), in order to cover as many combinations as possible.

2. [Online]. Available: https://github.com/Microsoft/pict
3. [Online]. Available: https://csrc.nist.gov/Projects/Automated-

Combinatorial-Testing-for-Software
4. [Online]. Available: http://cse.unl.edu/�citportal/

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2553

https://github.com/Microsoft/pict
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
https://csrc.nist.gov/Projects/Automated-Combinatorial-Testing-for-Software
http://cse.unl.edu/~citportal/
http://cse.unl.edu/~citportal/

Finally, a covering array is achieved when all valid t-way
combinations are covered.

We then chose constraint handling techniques that can be
incorporated into theCCAG framework. This excludes techni-
ques in the Transfer category, because they use constraint solv-
ers and graph-related techniques to construct solutions
directly, which thus cannot be combinedwith algorithms that
construct covering arrays step-by-step. Moreover, we want
the techniques we consider to be automated and general (not
designed for a specific algorithm or test scenario) to enable a
fair comparison. This excludes techniques in the Remodel cate-
gory, because they usually require manual effort to modify
testmodels. This requirement also excludesWeight andExtend
techniques, because they can only be used to deal with soft
constraints, and test sequences in GUI testing, respectively,
while our focus is to handle the more common hard con-
straints in general cases. Consequently, Verify, Solver, Tolerate,
and Replace are the only feasible choices among all reviewed
techniques in Section 2.2.

To incorporate the above four constraint handling techni-
ques, CCAG provides a uniform interface that consists of
the following four functions: PreProcess, PostProcess,
isValid, and PenaltyTerm. As long as a generation algo-
rithm is implemented under the CCAG framework with
these functions, it can be easily configured to work with any
of the four constraint handlers. Specifically,

� PreProcess is the process executed before execut-
ing the covering array generation algorithm, such as
configuring and initialising the constraint handler
based on the given test model.

� isValid takes a t-way combination, a test case, or a
test suite as input, and returns a Boolean value indi-
cating whether the given candidate solution is con-
straint satisfying.

� PenaltyTerm takes a test case, or a test suite as
input, and returns the value of the penalty term for
calculating the fitness function of the candidate solu-
tion (in particular, for the Tolerate technique).

� PostProcess is the process executed once a cover-
ing array is generated.

Different constraint handling techniques typically per-
form different tasks in these functions. We will explain the
respective implementations of the four constraint handling
techniques in the next section.

3.3 Constraint Handling Techniques

Table 3 shows the detailed implementations of the four con-
straint handling techniques that theCCAG framework includes.

The Verify technique uses the Minimal Forbidden Tuple
approach to resolve constraints by definition. It thus needs to

calculate the set of MFTs in PreProcess. We implemented
the same approach, as reported in previous work [37], to
deduce the set of MFTs. The validity of a candidate solution
can then be determined by verifying against MFTs in
isValid. In addition, as Verify does not allow invalid inter-
mediate solutions, the PenaltyTermwill always return zero
(namely, there is no penalty term in the fitness function).
There is also no task to perform inPostProcess.

The implementation of the Solver technique is similar to that
of Verify, but it uses a constraint solver to resolve constraints,
instead of using the MFT approach. Here, we used SAT4J,5

which is a widely used constraint solver for JAVA, to imple-
ment Solver. Accordingly, it needs to initialise the solver in
PreProcess, and the validity of a candidate solution is deter-
minedby solving a constraint satisfactionproblem inisValid.

For Tolerate and Replace, one key operation is to determine
whether a constraint is violated in a candidate solution. This
can be implemented by using either the MFT approach or a
constraint satisfaction solver. Here, we choose to use the same
MFT approach [37], as used in the Verify technique. As a
result, these two techniques need to calculate the set of MFTs
in PreProcess. Moreover, because Tolerate allows invalid
intermediate solutions, and Replace simply ignores all con-
straints during the generation, isValid will always return
True in these two techniques.

The Tolerate technique incorporates a penalty term into
the fitness function to include invalid intermediate solutions
into the search space. The fitness function used in this study
is of the same form as proposed in previous work [27]:

fitnessðsÞ ¼ UðsÞ þ v� V ðsÞ;
where s is a candidate solution, UðsÞmeasures the ability of
s in covering t-way combinations, V ðsÞ is the number of
constraint violations in s, and v is the penalty weight. Here,
if s indicates a test suite (i.e., the evolve-test-suite framework),
we define UðsÞ as the number of uncovered combinations in
s (the goal is to minimise the fitness function); otherwise,
UðsÞ is the number of uncovered combinations that can be
covered by s (the goal is to maximise the fitness function).
In either case, the PenaltyTerm of Tolerate will calculate
and return the value of V ðsÞ.

Unlike the above three constraint handling techniques,
Replace resolves constraints in PostProcess. A straightfor-
ward approach is to replace each invalid test case by a specific
set of valid test cases, selecting to retain combination coverage.
Because this approach tends to lead to unnecessarily large test
suites, we used an alternative approach to replace test cases,
as shown in Algorithm 2. The key idea of our approach is to
combine asmany ‘compatible’ tuples as possible into each test

TABLE 3
The Detailed Implementations of the Constraint Handler-Related Functions in the CCAG Framework

PreProcess isValid PenaltyTerm PostProcess

Verify Calculate MFTs Determine based on MFTs Return zero None
Solver Initialise a SAT solver Determine based on the solver Return zero None
Tolerate Calculate MFTs Return true Calculate based on MFTs None
Replace Calculate MFTs Return true Return zero Replace invalid test cases

by valid ones

5. [Online]. Available: http://www.sat4j.org

2554 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

http://www.sat4j.org

case. Two tuples are compatible if values from both tuples are
the same or at least one of them is unfixed (note that a t-way
combination is a n-tuple with t fixed parameters). For exam-
ple, tuples ð1; 1; 1;�Þ and ð1;�;�; 2Þ are compatible, but
tuples ð1; 1; 1;�Þ and ð1; 2;�;�Þ are not.

In Algorithm 2, we first determine R: the set of valid
t-way combinations that are only covered by invalid test
cases, and remove all invalid test cases from T (Lines 2-7).
We then generate a set of test cases, E, to cover all combina-
tions in R (Lines 8-16).

Algorithm 2. The Replace Algorithm

1: T ¼ a t-way covering array generated without taking con-
straints into account

2: R ¼ ;
3: for each invalid test case t 2 T do
4: X ¼ the set of valid t-way combinations that are only cov-

ered by t
5: R ¼ R [X
6: remove t from T
7: end for
8: E ¼ ;
9: for each t-way combination x 2 R do
10: C ¼ the set of incomplete test cases in E that are both

compatible and constraint satisfying with x
11: if C 6¼ ; then
12: use x to update c 2 C, such that c has the largest number

of overlapping fixed parameters with x
13: else
14: add x into E
15: end if
16: end for
17: for each incomplete test case e 2 E do
18: assign unfixed parameters of e values chosen at random

from those that are constraint satisfying
19: end for
20: T ¼ T [E
21: return T

For each valid t-way combination x in R, we find all
incomplete test cases (n-tuples with unfixed parameters) that
can cover x from E, namely each of these test cases should be
compatible with x, and also constraint satisfying if it is
updated with x. If there are such test cases, we select the one
that has the largest number of overlapping fixed parameters
with x, and update it with x (we assign values to as few
unfixed parameters as possible); otherwise, as x cannot be
covered by any of the existing test cases inE, we add x toE.

After that, if there remain unfixed parameters in E, these
parameters will be assigned to values chosen at random from
the set of those that are constraint satisfying, so that each row
of E is a complete and valid test case (Lines 17-19). Note that
each incomplete test case in E is always constraint satisfying
in this algorithm, so that we can find at least one valid value
assignment. Finally, we combine test cases in T and E as the
final constrained t-way covering array.

3.4 Test Suite Generation Algorithms

We implemented six well-known covering array generation
algorithms in this study: AETG [22], DDA [23], IPO [24],
PSO [25], SA [26] and TS [27].

We chose these algorithms because they are the most rep-
resentative implementations of the three available covering
array generation frameworks: one-test-at-a-time, in-parame-
ter-order and evolve-test-suite [50]. They also cover the widely
used computational search methods (greedy and heuristic
search-based) to generate covering arrays. We do not con-
sider mathematical methods, because they can only be used
in a restricted subset of cases, though they can yield the
optimal covering arrays [1].

Specifically, AETG [22], DDA [23] and PSO [25] are based
on the one-test-at-a-time framework, during which a test case
that covers the largest number of yet uncovered t-way combi-
nations is generated and added into the test suite one-at-a-
time. AETG [22] andDDA [23] apply greedy strategies to con-
struct such a test case, while PSO [25] applies the search-based
particle swarm optimisation to achieve the same purpose.

IPO [24] is an implementation of the in-parameter-order
framework. It first constructs a test set for t parameters that
have the largest number of values, and then conducts hori-
zontal and vertical extensions for each of the remaining
unfixed parameters. A greedy strategy is used to determine
the best value assignment for each parameter.

SA [26] and TS [27] are based on the evolve-test-suite frame-
work. They directly construct a covering array of size N ,
while the value of N is determined by a binary-search-like
method [26]. For each choice of N , a random array A of size
N � n is first initialised. This array is then evolved by the
simulated annealing and tabu search strategies, guided by
the fitness function that calculates the number of uncovered
t-way combinations inA.

Note that the efficiency of these test suite generation
algorithms is usually impacted by their parameter settings.
Here, we used the same settings as reported in their respec-
tive previous work [22], [23], [24], [25], [26], [27]. However,
when the Tolerate constraint handler is used, our prelimi-
nary experiments reveal that SA and PSO usually need dif-
ferent settings for the number of iterations and penalty
weight (v), respectively. In order to ensure the quality of
solutions, we set the maximum number of iterations in SA
to 200000, and set the penalty weight in PSO to �0:05.

In addition, as our goal is to compare different constraint
handling techniques, not to design the most effective gener-
ation algorithms, we only implemented the basic versions
of the above six algorithms. As a result, the covering arrays
generated in this study may be slightly larger than those
reported in previous studies [22], [23], [24], [25], [26], [27].

3.5 Subjects and Process

We used a well-known benchmark of constrained covering
array generation [22] as our subject test models. This bench-
mark consists of 35 test models; five of them are real-world
problem instances, and the others are synthetic instances
that are randomly generated to mimic the structures of the
five real-world models. This set of models is often relied
upon as a “standard benchmark set” to evaluate the effi-
ciency of test suite generation [17], [18], [22], [26], [27].

For each testmodel,we used a total of 21 algorithms to gen-
erate 2-way constrained covering arrays, which are the most
widely used objects in practice. Each of these algorithms is a
combination of a test suite generation algorithm and a

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2555

constraint handling technique: three variants (X+Verify, X
+Solver, X+Replace) for each of AETG, DDA and IPO, and
four variants (X+Verify, X+Solver, X+Tolerate, X+Replace) for
each of PSO, SA and TS (note that Tolerate can be used only
with a search-based algorithm). For each algorithm, the size of
the test suite generated and its computational cost are directly
recorded.

Regarding the failure revealing ability, because there is
no available fault corpus of the subject test models used in
this study, we chose to conduct simulation experiments to
compare constraint handlers in terms of their failure finding
effectiveness. Specifically, it is known that using a 2-way
covering array can always detect a failure that is triggered
by one or two parameters (in this case, a smaller test suite is
more computationally cost-effective). While the remaining
question is how different algorithms perform when a failure
is triggered by the combinations of more than two parame-
ters. To this end, for each test model, we first generate 100
failure-causing combinations for each of strengths 3, 4, 5,
and 6 at random. The proportion of these combinations that
can be “hit” by each algorithm is then recorded.

All variants of generation algorithms implemented in
this study involve some level of random selection among
candidate partial solutions.6 Inferential statistical analysis is
thus required to cater for the randomness in these algo-
rithms [51], [52]. For each test model, each variant of genera-
tion algorithms is repeated 30 times. We then performed
ANOVA (with significance level a set at 0.05) to determine
whether there is a significant difference in efficiency of any
pair of constraint handling techniques. We also performed
the non-parametric Mann-Whitney U-test (a ¼ 0:05) for
each pair of constraint handling techniques to further inves-
tigate their relationships.

Moreover, since performing only significance tests would
be insufficient to measure the effect size (and thereby accept-
ability) of the findings, we also calculated the non-parametric
Vargha and Delaneys bA12 effect size assessment for each pair
of constraint handling techniques to investigate the magni-
tude of difference. Here, bA12 indicates the probability that
one algorithm outperforms another. bA12 ¼ 0:5 denotes that
Algorithms 1 and 2 are equally likely to outperform one
another, and the greater the bA12 the higher probability that
running Algorithm 1 yields higher measure values (test suite

size, computational cost, proportion of failures detected) than
runningAlgorithm 2.

Note that the aim of this study is to compare different
constraint handling techniques for each test suite generation
algorithm. We do not seek to compare the generation algo-
rithms, as search-based algorithms usually produce smaller
covering arrays than greedy algorithms [17], [18], [26], [27].

We implemented the CCAG framework as an open source
project in JAVA (JDK 1.8), which allows other researchers to
build on our reference implementation in subsequent compar-
isons, and to seek to replicate our results and findings.We also
implemented the six test suite generation algorithms inCCAG
for illustration and comparison. The experiment is executed
on a machine with Intel Xeon CPU E5-2640 2.0GHz and 16GB
RAM. The CCAG framework, all algorithms, and detailed
experimental data can be obtained on this paper’s companion
website: https://github.com/GIST-NJU/CCAG.

4 RESULTS

This section presents the results of our experiments and
answers the research questions.

4.1 The Difference in Efficiency

Tables 4, 5 and 6 show the sizes of test suites, computational
costs, and average proportions of k-way failures detected
obtained from all 35 test models, for each combination of test
suite generation algorithms and constraint handling techni-
ques. Especially, the last column of these tables reports the
number of test models in which ANOVA produces a p-value
< 0:05, namely, we have no evidence to claim that the differ-
ent constraint handlers are drawn from the same performance
distribution (theNullHypothesis).

From Tables 4 and 5, among all 210 cases studied (6 gener-
ation algorithms � 35 test models), there are 180 (86 percent)
cases where we have evidence that different constraint han-
dling techniques exhibit statistically significant difference in
efficiency in terms of test suite size (i.e., p-value < 0:05). In
almost all of these cases (99 percent), we also have evidence
to support the claim that the different techniques will lead to
significantly different computational costs.

In addition, from Table 6, there is no surprise that the
proportion of failures detected decreases with the increase
in the number of parameters involved in the failure-causing
combinations (as the difficulty to cover such combinations
increases). Nevertheless, when a failure is triggered by 3, 4,
5, and 6 parameters (i.e., the value of k), there are 43, 54, 61,
and 51 percent of cases where we have evidence that

TABLE 4
Sizes of 2-way Constrained Covering Arrays Generated by

Different Combinations of Covering Array Generation
Algorithms and Constraint Handling Techniques

Verify Solver Tolerate Replace # Diff

AETG 1588.6 1590.6 � 1399.9 34
DDA 1384.1 1382.7 � 1350.5 24
IPO 1276.0 1276.0 � 1290.6 29
PSO 1599.1 1597.2 1582.8 1399.9 34
SA 1451.5 1449.2 1286.6 1277.2 28
TS 1241.9 1247.1 1152.7 1204.2 31

TABLE 5
Computational Costs (Seconds) of the Covering Array

Generation Algorithms With Different Constraint Handling
Techniques for t ¼ 2

Verify Solver Tolerate Replace # Diff

AETG 232.7 2522.8 � 350.7 35
DDA 85.0 482.8 � 229.4 35
IPO 12.2 21.1 � 163.9 35
PSO 1089.0 14732.2 580.2 652.9 35
SA 6126.8 10675.7 8124.8 5199.5 35
TS 20258.3 26146.8 19753.7 18395.5 33

6. The original version of IPO [24] is a deterministic algorithm,
where it assigns specific values to positions that have no impact on the
combination coverage. In this study, we assign random values to such
positions to introduce some level of randomness into this algorithm.

2556 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

https://github.com/GIST-NJU/CCAG

different constraint handling techniques exhibit signifi-
cantly different failure revelation abilities, respectively.

These findings indicate that the constraint handler is indeed
a crucial factor that impacts the efficiency of the test suite gen-
eration algorithms that use it. Both size of test suite and
computational cost of an algorithm can be greatly improved
with an appropriate choice of the constraint handler. For

example, when AETG is used to generate 2-way covering
arrays for these 35 test models, we can see that using Replace
as the constraint handler will produce smaller test suites
(12 percent reduction) with much lower time cost (7.2 times
faster) than using Solver as in its original version [22].

Next, we determine which constraint handling tech-
nique performs best for each of the six test suite generation
algorithms. For variants of each algorithm, we conducted
Mann-Whitney U-test for each pair of constraint handlers.
Tables 7, 8 and 9 show the number of cases where con-
straint handler A is significantly superior (þ), significantly
indistinguishable (¼), or significantly inferior (�) to con-
straint handler B across all 35 test models, in terms of test
suite size, computational cost, and failure revelation ability,
respectively.

Correspondingly, Figs. 2, 3 and 4 show the distributions
of bA12 statistics for each pair of constraint handlers (namely,
each box contains 35 effect sizes obtained from 35 test mod-
els). As we seek to generate smaller test suites faster, a
higher bA12 indicates that the second constraint handler has
a higher chance of outperforming the first one in terms of
test suite size, or computational cost; for failure revelation, a
higher bA12 indicates that the first constraint handler has a
higher chance of finding more failures.

4.2 Size of Test Suite (RQ1)

From Tables 4, 7 and Fig. 2, we can see that Verify and Solver
generate test suites of comparable sizes in almost all cases.
In particular, among all six generation algorithms, their effi-
ciency is significantly indistinguishable in at least 94 percent
(33/35) of cases, and the medians of effect sizes are very
close to 0.5. This is because these two techniques are only
responsible for the validity-checking of each value assign-
ment, while the value to be assigned is determined by the
greedy or search-based strategies embedded in the genera-
tion algorithm.

TABLE 6
Proportions of k-way Failures Detected by Different

Combinations of Covering Array Generation
Algorithms and Constraint Handling Techniques

TABLE 7
The Number of Test Models Where Constraint Handler A is Significantly Superior (þ), Indistinguishable (¼),

or Significantly Inferior (�) to Constraint Handler B in Terms of Test Suite Size

A & B Verify & Solver Verify & Tolerate Verify & Replace Solver & Tolerate Solver & Replace Tolerate & Replace

þ ¼ � þ ¼ � þ ¼ � þ ¼ � þ ¼ � þ ¼ �
AETG 0 34 1 � � � 1 1 33 � � � 1 1 33 � � �
DDA 0 35 0 � � � 3 10 22 � � � 3 11 21 � � �
IPO 0 35 0 � � � 19 6 10 � � � 19 6 10 � � �
PSO 0 34 1 4 23 8 0 1 34 3 23 9 0 1 34 0 1 34
SA 0 33 2 2 22 11 14 9 12 5 19 11 14 8 13 18 8 9
TS 2 33 0 0 28 7 25 5 5 0 26 9 25 5 5 25 7 3

TABLE 8
The Number of Test Models Where Constraint Handler A is Significantly Superior (þ), Indistinguishable (¼),

or Significantly Inferior (�) to Constraint Handler B in Terms of Computational Cost

A & B Verify & Solver Verify & Tolerate Verify & Replace Solver& Tolerate Solver & Replace Tolerate & Replace

þ ¼ � þ ¼ � þ ¼ � þ ¼ � þ ¼ � þ ¼ �
AETG 35 0 0 � � � 23 4 8 � � � 0 0 35 � � �
DDA 34 0 1 � � � 31 3 1 � � � 2 0 33 � � �
IPO 34 0 1 � � � 35 0 0 � � � 30 0 5 � � �
PSO 35 0 0 0 0 35 0 0 35 0 0 35 0 0 35 15 9 11
SA 35 0 0 27 8 0 5 16 14 6 3 26 0 2 33 2 3 30
TS 32 3 0 12 18 5 6 14 15 0 2 33 1 4 30 4 15 16

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2557

By comparisonwithVerify and Solver,Replace removes con-
flicts after test suite generation. From Tables 4, 7 and Fig. 2, we
can see that this technique performs well in terms of test suite
size. Especially for AETG, DDA, and PSO (the one-test-at-at-
time based algorithms), it produces significantly smaller cov-
ering arrays than Verify and Solver in 33, 21, and 34 out of 35

cases, respectively; among which its chance of outperforming
the other two techniques is higher than 0.9 in 70 percent of
cases. Regarding the other algorithms, although the efficiency
of Replace is not as good as that of the one-test-at-a-time var-
iants, it can still significantly outperformVerify and Solver in at
least five cases, inwhich the effect sizes are all higher than 0.6.

TABLE 9
The Number of Test Models Where Constraint Handler A is Significantly Superior (þ), Indistinguishable (¼), or Significantly Inferior

(�) to Constraint Handler B in Terms of k-way Failure Revelation Ability

Fig. 2. The distribution of bA12 statistics for each pair of constraint handling techniques in terms of test suite size.

Fig. 3. The distribution of bA12 statistics for each pair of constraint handling techniques in terms of computational cost.

2558 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

This finding confounds the ‘conventional wisdom’ that
handling constraints as a post-processing phase is an ineffi-
cient approach, since there is no strong evidence that sup-
ports either efficiency or failure revelation effectiveness of
such a technique [11]. In particular, there is only one study in
2006 that examines the efficiency of Replace [8]. The results
suggest that this technique can be a general choice, but it can-
not produce smaller test suites than the techniques that avoid
constraints during test suite generation. As a result, post-
processing related techniques are less studied in the litera-
ture, and also not the primary choice for the design of new
generation algorithms. For example, a number of recently
developed algorithms [17], [18], [27] can produce very small
test suites, while none of them uses the Replace, or similar,
technique to resolve constraints.

Tolerate is a constraint handling technique for search-based
algorithms. From Tables 4, 7 and Fig. 2, we can see that it is
not significantly worse than either Verify or Solver in at least
86 percent (30/35) of cases, and the medians of effect sizes are
close to 0.5 between Tolerate and these two techniques. How-
ever, the efficiency of Tolerate varies when comparing with
Replace. For the one-test-at-a-time based PSO, it is significantly
worse than Replace in 34 cases; while for the evolve-test-suite
based SA and TS, it outperforms in 18 and 25 cases, respec-
tively. Moreover, among the cases where Tolerate performs
significantly better for SA and TS, we observe large differen-
ces (with bA12 higher than 0.8 or lower than 0.2) in 71 percent
of cases. This indicates that Tolerate has the potential to be an
efficient constraint handling technique for the search-based
algorithms that directly construct thewhole test suite.

Summing up, the experimental results in this section
(RQ1) reveal that the Replace technique is the best choice to
produce small test suites for generation algorithms of the
one-test-at-a-time framework. The bA12 effect size can be
higher than 0.9 in 70 percent of cases for AETG, DDA, and

PSO. Whereas, for search-based generation algorithms of
the evolve-test-suite framework, Tolerate could be a more
promising choice, as large effect sizes (higher than 0.8 or
lower than 0.2) can be observed in 71 percent of cases for
which Tolerate is significantly better.

4.3 Computational Cost (RQ2)

As far as the computational cost is concerned, from Tables 5,
8 and Fig. 3, we can see that Solver tends to be the most
time consuming technique. Specifically, for all generation
algorithms except IPO, the probability that Solver is slower
than Verify, Replace and Tolerate is at least 0.8 in 93, 94 and
77 percent of cases, respectively. While for IPO, although
Replace usually spends the most time, the difference between
any two techniques is nevertheless less than two seconds in
21 out of 35 cases.

By contrast, Verify tends to be the fastest constraint han-
dling technique. Especially for AETG, DDA and IPO, the
average bA12 effect size between Verify and the other techni-
ques is 0.07, indicating a very high probability that Verify
runs faster. However, for PSO, SA and TS, the computa-
tional cost of Verify can be significantly higher than that of
Replace in 35, 14 and 15 cases, respectively. Moreover, for
Tolerate, although it can produce smaller covering arrays
than Replace for SA and TS, it is slower than Replace with a
probability of higher than 0.63 in at least half of the cases.
This indicates that Replace could be a time efficient choice to
handle constraints for the search-based algorithms.

Note that the implementations of Verify, Replace and Toler-
ate are all based on the Minimal Forbidden Tuple approach,
namely, they use the set ofMFTs to determine the validity of a
candidate solution (see Table 3). Our finding thus indicates
that using MFT for the validity-checking tends to result in a
much better performance than using a constraint solver: for

Fig. 4. The distribution of bA12 statistics for each pair of constraint handling techniques in terms of detecting failures triggered by k parameters.

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2559

the MFT-based techniques, we only need to calculate MFT
once, and check whether a forbidden tuple is involved at each
value assignment; while for Solver, we need to solve a more
complex constraint satisfaction problem on each occasion.

Summing up, the experimental results in this section
(RQ2) reveal that the constraint handling technique that
relies on a constraint satisfaction solver (i.e., Solver) is usu-
ally the slowest technique. By contrast, the Verify technique
implemented with the Minimal Forbidden Tuple approach
tends to be the fastest technique for greedy algorithms
(AETG, DDA, and IPO), as it has only a probability of
7 percent that spends more time than the other techniques.
While for the search-based algorithms of the evolve-test-
suite framework, the Replace technique could be a more
time efficient choice.

4.4 Failure Revelation Ability (RQ3)

The last question concerns the failure revelation ability that
can be achieved by different combinations of test suite gen-
eration algorithms and constraint handling techniques.
From Tables 6, 9, and Fig. 4, we can see that test suites of
comparable sizes usually exhibit similar effectiveness in
terms of failure revelation. Specifically, Verify and Solver are
the two techniques that produce test suites of comparable
sizes, and their proportions of failures detected are also sig-
nificantly indistinguishable in at least 29 out of 35 cases (for
any value of k).

The Replace technique is identified as the best choice to
produce small 2-way covering arrays, especially for AETG,
DDA, and PSO (the one-test-at-a-time based algorithms).
But for failures that are triggered by k > 2 parameters, we
find that there are only up to two cases where Replace can
lead to significantly higher failure revelation ability for
these three generation algorithms. Moreover, the number of
cases where Replace performs significantly worse increases
with the increase of k, achieving the maximal value when
k ¼ 5. For example, for AETG, the proportion of failures
detected by Replace is significantly lower than that of Verify
in 19, 24, 26 and 23 cases for k ¼ 3; 4; 5 and 6, respectively.
Similar findings can also be observed for other algorithms
and the Tolerate constraint handling technique.

However, despite the fact that constraint handling tech-
niques that produce smaller test suites tend to detect
smaller number of failures, the magnitude of difference in
failure revelation is not as big as that in the test suite size.
Overall, for all combinations of generation algorithms and
constraint handlers, we can observe large difference (bA12

effect size higher than 0.8 or lower than 0.2) in test suite size
in 41 percent of cases. Whereas, the average chance that the
larger test suite detects more failures is only 0.68 among
those cases; and the large differences in detecting failures of
strengths 3, 4, 5 and 6 are only observed in 5, 11, 14 and 11
percent of cases, respectively.

Summing up, the experimental results in this section
(RQ3) reveal that the constraint handling technique that
minimises the size of t-way covering arrays will also lower
its ability of detecting failures triggered by k > t parame-
ters, and this impact will increase with the increase of k.
But for the cases where one constraint handler has a proba-
bility of higher than 0.8 to produce a smaller test suite, its

average chance of detecting a lower proportion of failures
is relatively low, only 0.68.

5 THREATS TO VALIDITY

As far as internal threats to validity are concerned, the effi-
ciency of test suite generation algorithms and constraint han-
dling techniques depends on their particular implementations
and the constraint solver used. Although there are available
tools for some of the test suite generation algorithms studied,
they are implemented by different developers with different
programming languages, and the substitution of constraint
handlers is not supported. In order to avoid the potential bias,
we developed a uniform CCAG framework as the reference
implementation. As such, all algorithms used in this study are
implemented from scratch using the same framework (the
same programming language, tools, platform, and develop-
ment environment). It is possible that slightly different results,
especially different computational costs, might be observed
by using different programming languages, or constraint solv-
ers. In particular, we acknowledge that the Solver technique
can run faster with a more powerful constraint solver. Never-
theless, it will not influence the obtained sizes of test suites,
because the constraint solver is only used to determine the
validity of each value assignment.

Another internal threat to validity derives from the param-
eter settings of the algorithms (especially for the search-based
algorithms). Improved efficiency might be achieved by
exploring themost appropriate settings, but the default values
suggested in the literature might be also good enough to
assess search-based algorithms [53]. We thus chose to follow
the same settings of all algorithms, as reported in their previ-
ous studies [22], [23], [24], [25], [26], [27]. While there are two
exceptions for SA (number of iterations) and PSO (penalty
weight), because their original settings tend to lead to poor
efficiencywhen the Tolerate technique is used.

As far as external threats to validity are concerned, in this
study, we only evaluated the efficiency of algorithms under
35 test models. The algorithms thus may exhibit different
behaviours when different subject test models are used.
Nevertheless, we have used a well-known benchmark of
constrained covering array generation [22], which has been
widely used in CT literature [17], [18], [22], [26], [27]. We
believe that these test models are representative to investi-
gate the impact of different constraint handling techniques.

6 CONCLUSION

In this study, we provide a comparative analysis that inves-
tigates the impact of four common constraint handling tech-
niques (Verify, Solver, Tolerate, and Replace) on six widely
used greedy and search-based combinatorial test suite (cov-
ering array) generation algorithms (AETG, DDA, IPO, PSO,
SA, and TS). Our experimental results reveal that the con-
straint handler is, indeed, a crucial factor that influences the
efficiency of the test suite generation algorithm into which it
is developed.

Specifically, we find that the Verify technique imple-
mented with the Minimal Forbidden Tuple approach is the
fastest choice to handle constraints. The Replace technique
that resolves constraints as a post-processing phase tends to

2560 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

produce smaller constrained covering arrays than the cur-
rently widely used Verify and Solver techniques, especially
for test suite generation algorithms of the one-test-at-a-time
framework. Our results also show that it is important to
choose a constraint handler that is specifically well-suited to
the algorithm and specific goal (test suite size, computa-
tional cost, or failure revelation ability). For example, in
order to generate the smallest constrained covering arrays,
Replace is the best choice for AETG, DDA, and PSO; while
Tolerate could be more promising for SA and TS.

The study we report here could provide insights for the
choice of the ‘optimal’ constraint handler, so that the effi-
ciency of both existing and newly-designed test suite gener-
ation algorithms can be improved. In particular, as a simple
implementation of the Replace technique is shown to be
promising for achieving small test suites, it is desirable to
explore that category to develop improved constraint han-
dling technique and generation algorithms. We hope and
believe that this paper can offer a better understanding of
strengths and weaknesses of constraint handling techniques
for CT, so that more studies can be conducted to further
improve the area of constrained combinatorial testing.

ACKNOWLEDGMENTS

The authorswould like to thankYanWang andLejinWang for
their help in implementing the algorithms. This workwas par-
tially supported by the National Key Research and Develop-
ment Plan of China (No. 2018YFB1003800), National Natural
Science Foundation of China (No. 61902174), and Natural
Science Foundation of Jiangsu Province (No. BK20190291).
This work was also partially supported by the DAASE EPSRC
Grant (No. EP/J017515/1) and EPSRC Fellowship (No. EP/
P023991/1).

REFERENCES

[1] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[2] R. Mandl, “Orthogonal latin squares: An application of experi-
mental design to compiler testing,” Commun. ACM, vol. 28, no. 10,
pp. 1054–1058, 1985.

[3] International Organization for Standardization, “ISO/IEC/IEEE
29119 software testing standard,” 2013. [Online]. Available:
http://www.softwaretestingstandard.org

[4] K. Tatsumi, S. Watanabe, Y. Takeuchi, and H. Shimokawa,
“Conceptual support for test case design,” in Proc. Int. Comput.,
Softw. Appl. Conf., 1987, pp. 285–290.

[5] K. Tatsumi, “Test case design support system,” in Proc. Int. Conf.
Quality Control, 1987, pp. 615–620.

[6] G. Sherwood, “Effective testing of factor combinations,” in Proc.
Int. Conf. Softw. Testing, Anal. Rev., 1994, pp. 1–16.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial
design,” IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[8] M.Grindal, J. Offutt, and J.Mellin, “Handling constraints in the input
space when using combination strategies for software testing,”
SchoolHumanities Inform., Tech. Rep.HS-IKI-TR-06-001, 2006.

[9] M. B. Cohen, M. B. Dwyer, and J. Shi, “Interaction testing of
highly-configurable systems in the presence of constraints,” in
Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 129–139.

[10] B. S. Ahmed, K. Z. Zamli, W. Afzal, and M. Bures, “Constrained
interaction testing: A systematic literature study,” IEEE Access,
vol. 5, pp. 25 706–25 730, 2017, doi: 10.1109/ACCESS.2017.2771562.

[11] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “A survey of con-
strained combinatorial testing,” CoRR, vol. abs/1908.02480, 2019.
[Online]. Available: https://arxiv.org/abs/1908.02480

[12] H. Nakagawa and T. Tsuchiya, “Towards automatic constraint
elicitation in test design: Preliminary evaluation based on collec-
tive intelligence,” in Proc. Int. Conf. Autom. Softw. Eng. Workshop,
2015, pp. 58–61.

[13] R. Tzoref-Brill and S. Maoz, “Syntactic and semantic differencing
for combinatorial models of test designs,” in Proc. Int. Conf. Softw.
Eng., 2017, pp. 621–631.

[14] A. Gargantini, J. Petke, M. Radavelli, and P. Vavassori, “Validation
of constraints among configuration parameters using search-based
combinatorial interaction testing,” in Proc. Int. Symp. Search Based
Softw. Eng., 2016, pp. 49–63.

[15] A. Gargantini, J. Petke, and M. Radavelli, “Combinatorial interac-
tion testing for automated constraint repair,” in Proc. Int. Workshop
Combinatorial Testing, 2017, pp. 239–248.

[16] S. K. Khalsa and Y. Labiche, “An orchestrated survey of available
algorithms and tools for combinatorial testing,” in Proc. Int. Symp.
Softw. Rel. Eng., 2014, pp. 323–334.

[17] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combina-
torial interaction test generation strategies using hyperheuristic
search,” in Proc. Int. Conf. Softw. Eng., 2015, pp. 540–550.

[18] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, “TCA:An efficient
two-mode meta-heuristic algorithm for combinatorial test gener-
ation,” in Proc. Int. Conf. Autom. Softw. Eng., 2015, pp. 1–12.

[19] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi,
“Greedy combinatorial test case generation using unsatisfiable
cores,” in Proc. Int. Conf. Automated Softw. Eng., 2016, pp. 614–624.

[20] M. Bazargani, J. H. Drake, and E. K. Burke, “Late acceptance hill
climbing for constrained covering arrays,” in Proc. Int. Conf. Appl.
Evol. Comput., 2018, pp. 778–793.

[21] K. Fogen and H. Lichter, “Combinatorial testing with constraints
for negative test cases,” in Proc. Int. Workshops Combinatorial Test-
ing, 2018, pp. 328–331.

[22] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction
test suites for highly-configurable systems in the presence of
constraints: A greedy approach,” IEEE Trans. Softw. Eng., vol. 34,
no. 5, pp. 633–650, Sep./Oct. 2008.

[23] R. C. Bryce and C. J. Colbourn, “A density-based greedy algo-
rithm for higher strength covering arrays,” Softw. Testing, Verifica-
tion Rel., vol. 19, no. 1, pp. 37–53, 2009.

[24] Y. Lei, R. N. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG/IPOG-D: Efficient test generation for multi-way combina-
torial testing,” Softw. Testing, Verification Rel., vol. 18, no. 3,
pp. 125–148, 2008.

[25] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli,
“Handling constraints in combinatorial interaction testing in the
presence of multi objective particle swarm and multithreading,”
Inf. Softw. Technol., vol. 86, pp. 20–36, 2017.

[26] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating
improvements to a meta-heuristic search for constrained
interaction testing,” Empir. Softw. Eng., vol. 16, no. 1, pp. 61–102,
2010.

[27] P. Galinier, S. Kpodjedo, and G. Antoniol, “A penalty-based tabu
search for constrained covering arrays,” in Proc. Genetic Evol. Com-
put. Conf., 2017, pp. 1288–1294.

[28] M. B. Cohen and S. Ur, “Combinatorial test design in practice,” in
Proc. Int. Conf. Softw. Eng., 2010, pp. 495–496.

[29] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “An empirical
comparison of combinatorial testing, random testing and adaptive
random testing,” IEEE Trans. Softw. Eng., to be published,
doi: 10.1109/TSE.2018.2852744.

[30] IEEEStandard Classification for Software Anomalies, IEEE Std 1044–2009
(Revision of IEEE Std 1044-1993), pp. 1–23, 2010.

[31] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[32] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for
pair-wise coverage with seeding and constraints,” Inf. Softw. Tech-
nol., vol. 48, no. 10, pp. 960–970, 2006.

[33] J. Petke, S. Yoo, M. B. Cohen, and M. Harman, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in Proc. Int. Symp. Found. Softw. Eng., 2013,
pp. 26–36.

[34] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical combina-
torial interaction testing: Empirical findings on efficiency and
early fault detection,” IEEE Trans. Softw. Eng., vol. 41, no. 9,
pp. 901–924, Sep. 2015.

WU ETAL.: COMPARATIVE ANALYSIS OF CONSTRAINT HANDLING TECHNIQUES FOR CONSTRAINED COMBINATORIALTESTING 2561

http://www.softwaretestingstandard.org
http://dx.doi.org/10.1109/ACCESS.2017.2771562
https://arxiv.org/abs/1908.02480
http://dx.doi.org/10.1109/TSE.2018.2852744

[35] A. W. Williams and R. L. Probert, “A practical strategy for testing
pair-wise coverage of network interfaces,” in Proc. Int. Conf. Softw.
Rel. Eng., 1996, pp. 246–254.

[36] M. Grindal, J. Offutt, and J. Mellin, “Managing conflicts when
using combination strategies to test software,” in Proc. Australian
Softw. Eng. Conf., 2007, pp. 255–264.

[37] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Constraint
handling in combinatorial test generation using forbidden
tuples,” in Proc. Int. Workshop Combinatorial Testing, 2015, pp. 1–9.

[38] L. Yu, Y. Lei, M. N. Borazjany, R. N. Kacker, and D. R. Kuhn, “An
efficient algorithm for constraint handling in combinatorial test
generation,” in Proc. Int. Conf. Softw. Testing, Verification Validation,
2013, pp. 242–251.

[39] A. Hartman and L. Raskin, “Problems and algorithms for cover-
ing arrays,”Discrete Math., vol. 284, no. 1–3, pp. 149–156, 2004.

[40] X. Yuan, M. B. Cohen, and A. M. Memon, “GUI interaction testing:
Incorporating event context,” IEEE Trans. Softw. Eng., vol. 37,
no. 4, pp. 559–574, Jul./Aug. 2010.

[41] B. Hnich, S. D. Prestwich, and E. Selensky, “Constraint-based
approaches to the covering test problem,” in Proc. Joint Annu.
Workshop ERCIM/CoLogNet Constraint Solving Constraint Logic Pro-
gram., 2005, pp. 199–219.

[42] A. Yamada, T. Kitamura, C.Artho, E.-H. Choi, Y.Oiwa, andA. Biere,
“Optimization of combinatorial testing by incremental sat solving,”
in Proc. Int. Conf. Softw. Testing, Verification Validation, 2015, pp. 1–10.

[43] T. Nanba, T. Tsuchiya, and T. Kikuno, “Using satisfiability solving
for pairwise testing in the presence of constraints,” IEICE Trans.
Fundamentals Electron., Commun. Comput. Sci., vol. 95, no. 9,
pp. 1501–1505, 2012.

[44] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Generating combinato-
rial test suite using combinatorial optimization,” J. Syst. Softw.,
vol. 98, no. C, pp. 191–207, 2014.

[45] W. Wang, S. Sampath, Y. Lei, and R. N. Kacker, “An interaction-
based test sequence generation approach for testing web
application,” in Proc. Int. Conf. High Assurance Syst. Eng., 2008,
pp. 209–218.

[46] E. Salecker, R. Reicherdt, and S. Glesner, “Calculating prioritized
interaction test sets with constraints using binary decision dia-
grams,” in Proc. Int. Conf. Softw. Testing, Verification Validation
Workshops, 2011, pp. 278–285.

[47] P. Danziger, E. Mendelsohn, L. Moura, and B. Stevens, “Covering
arrays avoiding forbidden edges,” Theor. Comput. Sci., vol. 410,
no. 52, pp. 5403–5414, 2009.

[48] F. Duan, Y. Lei, L. Yu, R. N. Kacker, and D. R. Kuhn, “Optimizing
IPOG’s vertical growthwith constraints based on hypergraph color-
ing,” in Proc. Int.Workshop Combinatorial Testing, 2017, pp. 181–188.

[49] V. J. M. Man�es et al., “The art, science, and engineering of fuzzing:
A survey,” IEEE Trans. Softw. Eng., to be published, doi: 10.1109/
TSE.2019.2946563.

[50] H. Wu and C. Nie, “An overview of search based combinatorial
testing,” in Proc. Int. Workshop Search-Based Softw Testing, 2014,
pp. 27–30.

[51] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. Int. Conf. Softw. Eng., 2011, pp. 1–10.

[52] M. Harman, P. McMinn, J. T. De Souza , and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empir.
Softw. Eng. Verification, 2012, pp. 1–59.

[53] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,”
Empir. Softw. Eng., vol. 18, no. 3, pp. 594–623, 2013.

Huayao Wu received the PhD degree in computer
science and technology from Nanjing University, in
2018. He is currently an assistant researcher with
the Department of Computer Science and Technol-
ogy, Nanjing University. His research interests
include combinatorial testing, search based soft-
ware testing, and fault injection testing.

Changhai Nie is a professor of software engi-
neering with State Key Laboratory for Novel Soft-
ware Technology and Department of Computer
Science and Technology, Nanjing University. His
research interests include software analysis, test-
ing and debugging, especially in combinatorial
testing, and search based software testing.

Justyna Petke received the doctorate degree in
computer science from the University of Oxford in
the area of constraint solving. She is a principal
research fellow and a proleptic senior lecturer
(associate professor) with the University College
London. She is supported by an Early Career
EPSRC Fellowship (No. EP/P023991/1). Her
expertise lies in the areas of combinatorial inter-
action testing, genetic improvement, and con-
straint solving.

Yue Jia is a software engineer with Facebook UK
and a part-time lecturer of software engineering
with the Department of Computer Science, Univer-
sity College London. His research interests include
software testing, app store analysis, and search-
based software engineering. He was the cofounder
and the director of MaJiCKe Ltd., an automated test
data generation start-up and the cofounder of
Appredict Ltd., an app store analytics company,
spun out fromUCL’s UCLappA group.

Mark Harman works full time with Facebook Lon-
don as a research scientist in the London Probable
Team. The team seeks to incubate and deploy
research that has potential to transform
approaches to reliability, integrity, and privacy using
machine learning. He also holds a part-time profes-
sorship with UCL. Previously, he was the manager
of the Facebook team that deployed Sapienz to test
mobile apps, leading to thousands of bugs being
automatically found and in multimillion line commu-
nications and social media apps in daily use by

more than 1.4 Bn people worldwide. Sapienz grew out of Majicke, a start up
cofounded by Mark Harman, Yue Jia and KeMao, acquired by Facebook in
2017. In his more purely scientific work, Mark cofounded the field Search
Based Software Engineering (SBSE), a research area with more than
1,000 authors spread over more than 40 countries worldwide. He is also
known for scientific research on source code analysis, software testing, app
store analysis and empirical software engineering. He received the IEEE
Harlan Mills Award and the ACM Outstanding Research Award in 2019 for
this work. In addition to Facebook itself, his scientific work is also supported
by the European Research Council (ERC), with an advanced fellowship
Grant, and has also been supported by the UK Engineering and Physical
Sciences Research Council (EPSRC), for example, with larger, longer-term
platform, and programmeGrants.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2562 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 11, NOVEMBER 2021

http://dx.doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/10.1109/TSE.2019.2946563

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

