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Abstract—Electronic spreadsheets are widely used in organizations for various data analytics and decision-making tasks. Even

though faults within such spreadsheets are common and can have significant negative consequences, today’s tools for creating and

handling spreadsheets provide limited support for fault detection, localization, and repair. Being able to predict whether a certain part of

a spreadsheet is faulty or not is often central for the implementation of such supporting functionality. In this work, we propose a novel

approach to fault prediction in spreadsheet formulas, which combines an extensive catalog of spreadsheet metrics with modern

machine learning algorithms. An analysis of the individual metrics from our catalog reveals that they are generally suited to discover a

wide range of faults. Their predictive power is, however, limited when considered in isolation. Therefore, in our approach we apply

supervised learning algorithms to obtain fault predictors that utilize all data provided by multiple spreadsheet metrics from our catalog.

Experiments on different datasets containing faulty spreadsheets show that particularly Random Forests classifiers are often effective.

As a result, the proposed method is in many cases able to make highly accurate predictions whether a given formula of a spreadsheet

is faulty.1

Index Terms—Spreadsheets, fault prediction, machine learning

Ç

1 INTRODUCTION

SPREADSHEETS are omnipresent in organizations, where
they are used for various tasks, e.g., accounting, data

analytics, or decision-making [2]. Like any other type
of software, spreadsheets can contain faults leading
to substantial economic losses.2 Numerous academic
approaches for spreadsheet fault prevention, detection,
localization, and repair have been proposed [3]. The
effectiveness of such approaches often depends on their
ability to predict the likelihood that a certain formula of
a spreadsheet is faulty.

Since decades, the necessity for accurate fault prediction
has been widely recognized in general software develop-
ment. Fault predictionmodels can provide a number of bene-
fits when used to, e.g., (i) improve test processes by focusing
on fault-prone modules, (ii) selecting among design alterna-
tives, and (iii) identifying refactoring candidates [4]. Various
fault prediction approaches have been developed which
attempt to generate an oracle that is able to classify a certain
piece of code as either faulty or correct.

A common approach is to frame the prediction task as a
supervised classification problem and to apply machine
learning (ML) techniques to solve this problem [5], [6], [7].
The training data required for these techniques is typically

derived from collections of faulty software artifacts with
explicitly labeled faults. Software metrics are commonly used
as predictor variables (features in ML terminology) in such a
problem formulation. The values of the predictor variables
(observations ) are gained by routines that compute measur-
able characteristics of the faulty programs.

Various metrics were explored for predicting faults in
general software, e.g., the size, complexity, or even the mod-
ification history of a program [8], [9]. Given an output of
metrics for a certain part of an input program (e.g., an indi-
vidual statement), the ML task is then to learn a classifica-
tion model that can make an accurate prediction whether
this part is faulty or not.

As fault probabilities for general software, knowledge
about possible faults in spreadsheet formulas can be used,
e.g., to point the developer to potential problems during
spreadsheet construction [10], to initialize and support
debugging processes [11], [12], [13], or to guide algorithmic
testing techniques [14]. However, only limited research
exists that investigates methods to predict faults in spread-
sheets. A major step in that direction was the adaptation of
code smells to the spreadsheet domain [10], [11], [15], [16],
[17], [18]. Like code smells for general software, spreadsheet
smells point out “smelly” parts of spreadsheets that have an
increased risk of containing faults. The smelly parts are
detected using certain measurable characteristics of spread-
sheets—spreadsheet metrics—such as the number of refer-
enced empty cells, the average length of calculation chains,
and the number of references to other spreadsheets.

One of the first successful applications of smell detection
techniques for fault prediction in spreadsheets is a debug-
ging algorithm that uses detected smells [15]. In our own
recent work [1], we investigated the use of spreadsheet
smells to train an ML-based fault predictor for spreadsheets.
However, the obtained results were preliminary, as we
focused on a limited set of spreadsheet metrics and we did
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not conclusively investigate the choice of an appropriate
learning technique. In this work, we close this research gap
and make the following contributions:

1) We present a catalog of 64 spreadsheet metrics,
which were either proposed in the literature or
designed based on our expertise. When assembling
the catalog we tried to maximize the diversity of the
metrics so that they cover as many faults occurring
in practice as possible.

2) To assess the usefulness of our catalog, we evaluate
the predictive power of each metric in isolation on
three datasets using three learning algorithms. The
results show that many formula faults in our spread-
sheet collections can theoretically be identified
by one of the metrics. However, the performance
of predictors based on individual metrics is not
satisfactory.

3) We therefore suggest an ML-based approach that
uses all metrics of our catalog to train a classifier to
predict faults in spreadsheet formulas. We specifi-
cally explore the use of Random Forests (RF) as a
learning technique for two reasons: (i) RF is known
to perform well on small-sized datasets, and (ii) the
technique has a built-in mechanism for feature selec-
tion. A performance comparison of RF models with
a number of alternative approaches on three spread-
sheet collections shows that RF models represent the
overall best choice across different scenarios in terms
of measured F1 values. Additional experiments dem-
onstrate the importance of RF’s built-in feature selec-
tion mechanism.

The remainder of paper is organized as follows. We over-
view previous work in Section 2 and describe the proposed
method in Section 3. Next, we lay out the general design of
our experiments in Section 4. We then provide details and
results for three experiments: one considering individual
metrics as predictors (Section 5), one providing the results
for the proposed approach (Section 6), and one on the
importance of feature selection (Section 7). Threats to valid-
ity are outlined in Section 8. Section 9 concludes the paper
and provides an outlook on future work.

2 PREVIOUS WORK

We discuss related work from two perspectives: (i) tradi-
tional software engineering and (ii) spreadsheet specific.

2.1 Fault Prediction for Traditional Programs

Software fault prediction attracted many researchers.
Catal [19] discussed 90 papers published between 1990 and
2009 that propose a variety of ML- and statistics-based
approaches to fault prediction in software artifacts. Exam-
ples of common ML techniques range from logistic regres-
sion, over classification trees, to deep neural networks.
Catal indicated that the considered approaches often suf-
fered from insufficient data being available for learning,
which is still a problem in today’s application scenarios.

Radjenovic et al. [8] compared 106 studies related to fault
prediction metrics in software published between 1991 and
2011. One main outcome is that the fault prediction

performance of certain metrics can depend on a number of
factors such as the type of the predicted faults or the used
metrics. The authors found that object-oriented metrics
were more successful fault predictors than traditional size
and complexity metrics, and process metrics seemed to be
more effective in detecting post-release faults in software.

Zeller [9] proposed a method that learns patterns from a
larger pool of software projects and then uses these patterns
to classify individual software components as faulty or cor-
rect. One main goal of this approach is to derive the rules
for software smells from past projects. Similar to this work,
our approach also has a learning step that consists of deriv-
ing classification models that combine multiple metrics in
one prediction function. We do, however, rely on a larger
catalog of pre-defined smells for this purpose.

2.2 Fault Prediction for Spreadsheets

The goal of spreadsheet fault prediction approaches is to
automatically point out likely faulty cells. As in the software
domain, the success of a prediction method depends
strongly on the quality and applicability of the used metrics,
heuristic algorithms or decision procedures.

Early approaches aimed at specific types of faults and
used various heuristic decision procedures to identify
exactly these types of faults. For instance, the fault predic-
tion tools UCheck [12] and Dimension [20] first infer and
assign “data types” to input cells (e.g., cells with numeric
values) and formulas of a spreadsheet. These types are
derived from the text values of header cells that are posi-
tioned in the same row or column as the related input cells.
The tools then iteratively propagate the types of the input
cells to the formulas that refer to those inputs. A formula
cell is reported as possibly faulty if the propagated type
of this cell does not match the derived type obtained
from the header information. Other approaches, such as
AmCheck [21], its successor CACheck [22], and Empty-
Check [23], focus on cell arrays. A cell array is defined as a
set of columns or rows comprising formula cells that are
functionally related and that are surrounded by “borders”
of either empty cells or cells that contain fixed values. The
first two tools predict a cell to be faulty (smelly), if its for-
mula deviates significantly from other formulas of the
same array, whereas EmptyCheck uses a clustering algo-
rithm to identify empty cells that probably should contain
a formula.

A drawback these approaches is that they are designed to
detect specific types of faults such as incorrect data types or
mismatching cells in an array, which can lead to a limited
coverage and applicability [24]. Our method is based on an
extensive set of spreadsheet characteristics, allowing for the
detection of a variety of fault types. Moreover, it is easy to
extend. If a new metric, e.g., for a new fault type, is added
to our catalog, the underlying ML algorithm will automati-
cally incorporate its output into the fault prediction model.

In practice, designing a general heuristic procedure for
fault prediction can be a tedious process. Given enough
training data, ML methods can simplify this problem by
finding a model that approximates such heuristics. A recent
method by Singh et al. [25], called Melford, follows such an
approach and uses ML to train a classifier for the automatic
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prediction of “number-where-formula-expected” faults in
spreadsheets. In particular, Melford trains a neural network
using specific abstract representations of faulty spread-
sheets. An experimental evaluation revealed that the
approach can classify instances in which a number is erro-
neously placed instead of a formula with high precision.

The applicability of Melford is still limited, as it currently
can only recognize one fault type, and extending it to recog-
nize others would require significant effort: first, one would
have to design additional abstractions, which cover other
fault types; second, an optimization of the neural network
structure might also be required to allow for learning of an
accurate classification model. In contrast, our approach does
not rely on structural abstractions of faulty spreadsheets.
Instead, we use the results of applying spreadsheet metrics,
which encode the existing knowledge from research about
possible problems in spreadsheets. As the experiments show,
our set of metrics is able to make highly accurate predictions
for various types of faults.

Abreu et al. [11] proposed to use spreadsheet smells for
fault prediction. Their tool, called FaultySheet Detective
[15], uses the output of spreadsheet smells, such as complex
formulas, missing inputs, or problematic dependencies [10],
[16], [26], [27], to trigger a specific fault localization algo-
rithm. Technically, their approach has two phases. In the
first step, their technique computes two sets of cells: (i) the
set of smelly cells and (ii) the set of output cells. Next, the
algorithm determines calculation chains for all output cells
and triggers a Spectrum-based Fault Localization algorithm
for predicting the likelihood of each cell being faulty.

An advantage of Abreu et al.’s prediction model is that it
does not require any learning phase to predict faults in for-
mulas. An underlying assumption, however, is the avail-
ability of reliable smell detection thresholds, i.e., if for some
cell the value of the metric used for detecting the smell is
above the threshold, then this cell is considered as smelly.
While for certain smells researchers suggested reasonable
thresholds, e.g., [10], [16], the optimal threshold values are
unknown in general and might depend on the given appli-
cation domain. In contrast, our prediction model can deal
with situations where the individual metrics are not neces-
sarily strong predictors for the given domain. In fact, by
combining multiple metrics in one prediction model and by
automatically adjusting the weights through a learning pro-
cedure, we can achieve highly accurate predictions even in
presence of weak individual predictors.

The ExceLint add-in [28] automatically finds faulty for-
mulas using the assumption that spreadsheets follow
“rectangular-like” patterns, i.e., formulas in the same row or
column are very likely to have the same semantics. There-
fore, any formula that does not fit into a rectangular-like lay-
out is probably faulty. To find such layouts, ExceLint first
transforms all formulas into a two-dimensional vector repre-
sentation, called fingerprints. The value of each coordinate is
defined by the sum of the relative column/row distances
from the formula cell to other cells referred in the formula.
Next, a binary decomposition algorithm finds regions of fin-
gerprints by recursively dividing the spreadsheet into two
parts such that each split minimizes the normalized Shannon
entropy of the fingerprints in both subdivisions. Lastly, the
tool generates repair suggestions for deviating formulas.

Suggestions are generated that would lead to a moderate
reduction of the overall entropy of the spreadsheet, which is
typical for genuine fixes of faults.

ExceLint detects various fault types that occur due to
erroneous formulas. However, since the approach does not
take the structure of the formulas into account, it is unable
to identify certain types of faults occurring, e.g., due to
incorrectly applied functions (wrong order of arguments) or
operators (“+” instead of “-”). Our approach, in contrast,
can include these and other fault types by adding new met-
rics to the catalog that are indicative of the specific faults.

Of the described approaches only FaultySheet Detective
and ExceLint are directly comparable with ourmethod, since
they are also designed to detect various fault types regarding
formula cells of a spreadsheet. The other discussed techni-
ques either focus on detecting a single fault type or detect
faults in cells that do not contain formulas.

3 METRIC-BASED FAULT PREDICTION

The main idea of our approach is to use a given collection of
spreadsheets containing labeled faults to train an ML model
for fault prediction. The predictor variables of the ML prob-
lem correspond to an extensive set of metrics. The learning
dataset is obtained by computing the values for the metrics
(i.e., the observations) for the labeled spreadsheets.

Thus, formally, the inputs of our approach are (i) a set of
training spreadsheets containing faults in which all formulas
are either labeled as faulty/correct, and (ii) a set of metrics,
where each metric takes a spreadsheet as input and returns a
value (real number) for each formula of the spreadsheet. The
output is a fault predicting classifier that, given a set of obser-
vations computed by our metrics for a formula of a previ-
ously unseen spreadsheet, returns the likelihood that this
formula is faulty. The general schema to produce this classi-
fier includes threemain steps:

� Generation of a training and evaluation dataset from
labeled spreadsheets using metrics from the catalog.

� Selection of a learning algorithm.
� Training (optimization) and evaluation.
Before we discuss the technical aspects for each step, we

first present the details of a catalog of spreadsheet metrics,
which we designed for the purpose of this work and which
we use as a basis for our experimental evaluations later on. To
support the reproducibility of our work, we share all used
datasets and source code implementing spreadsheet metrics,
ML optimization & training, and evaluation procedures for
the trainedMLmodels in an onlineAppendix.3

3.1 Catalog of Metrics

We designed the catalog of 64 metrics shown in Table 1
based both on existing work from the literature and our
expertise. We selected the metrics to provide a broad range
of different measurements to cover a wide variety of faults
occurring in practice. We first scanned previous research
that discussed possible characteristics for assessing the
quality of spreadsheets and extracted those ideas that

3. https://spreadsheet-research.github.io/Metric-based-Fault-
Prediction-for-Spreadsheets/
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TABLE 1
Proposed Catalog of Spreadsheet Metrics
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seemed likely to be correlated with certain types of faults in
spreadsheets. Not all identified characteristics could be
applied directly. In such cases, the general idea of the metric
was adapted so that it can be measured with a numeric
value. For example, Metric 2 is conceptually based on the
Pattern Finder [26] spreadsheet smell. The original heuristic
checks if any other cell of the same type can be found within
a certain range of the cell, whereas our implementation
counts the number of cells that separate a given cell from
the next cell of the same type in the same row. In addition,
we designed novel metrics that either (i) cover basic spread-
sheet features (e.g., Metric 1), (ii) extend on established
ideas (e.g., Metric 29), or (iii) are based on personal experi-
ence from our previous research (e.g., Metric 4).

All metrics of the catalog can be divided into four catego-
ries, according to the spreadsheet part for which they are
calculated: (i) cell metrics focus on characteristics of individ-
ual cells, (ii) formula cell metrics consider features derived
from the content and the position of formula cells, (iii) for-
mula metrics analyze formulas in isolation, and (iv) worksheet
metrics take properties of the entire worksheet into account.
Some of these metrics implicitly consider structural aspects
of the spreadsheet, e.g., Metrics 9 or 10, which look for pos-
sible outliers in rows or columns, or Metric 61, which con-
siders how a spreadsheet is organized in worksheets.
Additional metrics, which specifically focus on structural
aspects like the organization of calculations into blocks, can
easily be added to our catalog.

Since our method aims to train fault predicting classifiers
and many ML algorithms perform best with numeric inputs,
we require every metric to output a real value for each for-
mula cell in a given spreadsheet. Correspondingly, we modi-
fied the worksheet metrics which by definition return one
value per worksheet, to assign this value to each cell of the
worksheet. Overall, the provided metrics cover a wide range
of faults, as will be shown in our experiments. However, the
catalog can also be extended depending on the specific prob-
lem, e.g., to include metrics that consider formulas using cus-
tom functions declared in Visual Basic. A description of the
underlying intuition of each metric of our catalog can be
found in the online Appendix. Generally, the metrics in our
and related approaches serve as heuristics that are considered
indicative of a fault. Therefore, a detected smell does not nec-
essarily mean that a fault actually exists.

3.2 Preparing the Learning Dataset

Dataset preparation follows a straightforward process. The
inputs of the process are a collection of faulty spreadsheets
and a set of metrics. Each formula cell of every spreadsheet
has a designated label (correct or faulty), and is provided as
input to every metric of the catalog. We compute 64 values
for each labeled formula cell. The results are stored in a
table, where each row corresponds to a labeled formula cell,
and each column corresponds to one of the 64 metrics. An
additional column contains each formula cell’s label. There
are no missing entries in the table. This might be required
by the learning algorithm. Accordingly, when alternative or
additional metrics that have no defined value for some sit-
uations should be used with our approach, one can use data
imputation techniques to fill eventually occurring gaps. We

use this table to create labeled feature vectors. Fig. 1 shows
the general schema of the resulting dataset.

The absolute values returned by the metrics of our cata-
log have largely different ranges. One metric might, for
example, return values between 0 and 1, whereas another
one returns positive integers between zero and 1000. There-
fore, before training a classifier, we re-scale all values of
every feature (Metrici) in the training set using a widely
adopted standardization procedure: from each valuei;j we
subtract the mean Metrici of all observations and then
divide by their standard deviation Si (z-scores).

3.3 Selecting a Learning Algorithm

Numerous algorithms can be applied for the described
learning problem, from Logistic Regression, over Support
Vector Machines, to recent Deep Learning techniques. Since
it is challenging to predict the relative performance of dif-
ferent ML algorithms for specific datasets, we evaluate algo-
rithms from different families. Some general considerations
should, however, be taken into account when choosing an
algorithm. First, regarding the dataset sizes, the number of
labeled spreadsheets might be low in some applications.
The chosen algorithm should therefore be stable also in
cases when only limited data is available. Furthermore, the
algorithm should scale well for cases where data is abun-
dant. Second, the importance of features can vary across data-
sets. Our metric catalog is designed to cover a broad variety
of fault types. However, if a specific spreadsheet collection
does not contain certain fault types, then the learning algo-
rithm should disregard the corresponding metrics.

Consequently, the used learning algorithm should (i) be
known to perform well on small to medium learning data-
sets, and (ii) have an explicit or implicit mechanism to auto-
matically select or emphasize the most informative metrics
(feature selection). Taking these considerations into account,
the Random Forests (RF) algorithm represents a suitable
choice for the given learning problem [34]. RF is an ensem-
ble approach, which uses the concept of bagging to train N
decision trees on N randomly selected subsets of the train-
ing set. The final classification model is then determined as
an average of the results obtained by the individual trees.
Besides variance reduction through bagging, RF uses only a
specifically sampled subset of features for each of the
underlying decision trees during their construction. This
leads to a better representation of the various features in dif-
ferent trees and to a reduction of the correlation between the
features.

3.4 Training and Evaluation Aspects

Most machine learning algorithms have a number of
hyper-parameters that can be fine-tuned to achieve the
best performance. In case of RF, for example, the number
of trees N to use during learning is such a parameter. In
the context of our experimental evaluation described

Fig. 1. Structure of the training data.
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below, we therefore applied grid search in combination
with a 10-fold cross valuation procedure for all tested
algorithms and for all datasets to determine the best
parameters.4

As optimization goal we use the F1 measure, i.e., the har-
monic mean of precision and recall. Precision shows how
many of the formula cells that were predicted to be faulty are
actually faulty. Recall, in contrast, represents the proportion
of true faults, which were correctly recognized as such. Since
obtaining perfect recall can be accomplished by predicting
that every formula is faulty, recall and precision are, as usu-
ally, combined in the F1measure.

Like in many other learning scenarios, the distribution of
the labels in the learning data is very imbalanced. The large
majority of the observations in our training datasets are
labeled as “correct” whereas only a fraction of the formu-
las—below 4 percent—is actually faulty. We therefore apply
a random oversampling method [35] to counter this imbalance
problem before training and evaluation. After the oversam-
pling procedure, both classes (faulty and correct) appear
equally often in the training data. The test dataset, however,
remains unchanged.

Lastly, the parameter-optimized models are evaluated
using a 10-time, 10-fold cross-validation procedure to avoid
overfitting [36]. In this procedure, the dataset is randomly
partitioned into ten chunks, and ten models are built based
on this partitioning. Each model is built using nine chunks
as training set, and one as testing set. The F1 performance of
each model as measured on the testing set is averaged to
balance for randomness. Moreover, to account for a poten-
tial random influence of the initial partitioning, the whole
process is repeated with ten different random initial parti-
tions, and the results of all models are averaged. As usual,
parameter optimization, training, and evaluation are done
independently for each dataset.

4 EMPIRICAL EVALUATION

To assess the effectiveness of our metric-based fault predic-
tion method, we designed and conducted a number of stud-
ies, focusing on the following research questions:

RQ1 What is the predictive performance of the individual
metrics listed in Table 1? Are they suited to uncover
the various types of faults in spreadsheets?

RQ2 What is the predictive performance of the combined
model as proposed in this work? How do RF models
compare to alternative ML techniques?

RQ3 What is the importance of an algorithm’s capability
to emphasize individual metrics for a given dataset
(feature selection)?

4.1 Research Datasets

We made experiments with three collections of faulty
spreadsheets covering different application scenarios: (i)
unrestricted, represented by Enron Errors, (ii) restricted,

demonstrated by INFO1, and (iii) synthetic, portrayed by
a modified version of the EUSES corpus. Spreadsheets in
these collections contain at least one faulty formula and
all known faulty formulas of each spreadsheet are
labeled as such. We assume all remaining formulas to be
correct.

Enron Errors [37] is a subset of the Enron spreadsheet cor-
pus [38] containing real-world faults. The Enron corpus
itself consists of over 15,000 spreadsheets that were found
in emails of Enron employees after the bankruptcy of the
company in 2001. From this larger corpus, researchers
extracted 26 faulty spreadsheets in a tool-supported process
[37]. Since the spreadsheets of the corpus cover various
application problems, we consider this case as unrestricted.

INFO1 [39] contains spreadsheets developed by civil
engineering students during an Excel course. The students
had to solve two tasks (construction-related calculations) by
modeling spreadsheets. Consequently, the collection
includes spreadsheets with similar, albeit long and complex
computations, which is why we regard it as a restricted case.

The modified EUSES [13] corpus contains artificial faults
that were injected into spreadsheets of the original EUSES
corpus [40], such that each spreadsheet contains exactly one
faulty formula. Faults were injected by randomly selecting
one formula cell of each spreadsheet and modifying it using
a randomly chosen mutation operator. The authors consid-
ered only operators from [41], which correspond to the
introduction of mechanical faults, i.e., typos. Examples of
the operators include alternations of arithmetic or logical
connectives, replacement of formulas by constants, etc.
Thus, while the dataset comprises real-world spreadsheets
augmented with injected faults, the synthetic case represents
a simulation of real-world scenarios occurring due to
typos.5

The dataset statistics are presented in Table 2. In the
Enron Errors dataset, the structure of individual formulas
can deviate significantly from one spreadsheet to another;
in the INFO1 collection, in contrast, similar formulas are not
uncommon; in the EUSES corpus, finally, the mutations
often lead to what one could consider an accidental typo
when the formula is entered. Since the percentage of faults
for the EUSES corpus is lower than for the other datasets,
we can use this dataset to investigate the performance of
algorithms when there are only few faults.

TABLE 2
Statistics of the Research Datasets

Corpus Scenario Spreadsheets Formulas Faulty

Enron Errors unrestricted 26 16,790 2.9 %
INFO1 restricted 119 174,493 3.0 %
EUSES synthetic 576 284,109 0.2 %

4. Grid search systematically explores a defined range of possible
parameter values.

5. To check whether the mutations and, thus, the resulting dataset are
realistic, we manually analyzed howmany of the real-world faults in the
Enron Errors corpus could be the result of the (repeated) application of
the mutations. The analysis showed that 20 of the 31 Enron Errors faults
could in theory be created through the mutations, which we see as a pos-
itive indicator regarding the usefulness of the synthetic dataset. The
detailed results of this analysis can be found in the online Appendix.
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4.2 Overview of the Performed Studies

We conducted three distinguished studies:

� Study 1 (Section 5) addresses 4 and evaluates the per-
formance of classification models that are based on
one singlemetric (feature).

� Study 2 (Section 6) investigates 4. Corresponding to the
approach presented in Section 3, we trained and optimized
various classificationmodels for each of the datasets. In par-
ticular, we compared the fault prediction performance
achieved by a Random Forest model with the single-metric
models (Study 1) and commonly used alternative models
trained by Support Vector Machines, Adaptive Boosting,
andDeepNeuralNetworks.

� Study 3 (Section 7) considers 4 and examines the
importance of feature selection. Since feature selec-
tion is an implicit functionality of RF, we determined
the impact of feature selection by combining a
related algorithmic nearest-neighbor method [42]
with an explicit feature selection technique.

5 INDIVIDUAL METRICS AS FAULT PREDICTORS

5.1 Experiment Setup – Prediction Models

We investigated three models to assess the prediction per-
formance of classifiers that are built on one single metric:

� Threshold-based models (TB). Similar to [11], TB takes a
training dataset, ametric, and a specific threshold value
T as input. A previously unseen formula is considered
faulty if the computed metric value for this formula is
above T . The optimal threshold for each classifier is
determined by a grid search procedure among a set of
candidate values based on the training set.

� Logistic regression (LR). LR [36] is a popular and well
studied method to train classifiers with binary output
on numerical data. Given a learning dataset, the train-
ingmethod optimizes the coefficients of a linearmodel

to fit the given data. Provided with only one feature,
the LR procedure determines a single threshold value
to classify previously unseen formulas as either correct
or faulty. In contrast to theTB approach, no predefined
candidate values are needed for the LR approach.

� Decision trees (DT). Given the same inputs as the pre-
vious models, decision trees [43] can be used to
derive a set of rules for fault prediction of the form:
If for a given formula cell a value v of the metric is in
the interval (L � v � U), then return label
X 2 ffaulty; correctg. The interval bounds L and U ,
as well as the corresponding labels are inferred auto-
matically during training.

5.2 Evaluation Results and Analysis

Among the different single-metric classifiers, the ones based
on decision trees (DT) performed best on all datasets. Fig. 2
shows the results of these classifiers for the three datasets in
terms of precision (horizontal axis), recall (vertical axis),
and the F1 measure (radial lines). For example, the DT clas-
sifier learned for Metric 4 (Range references to cell) for the
Enron Errors dataset in Fig. 2a has a precision of 35 percent,
a recall of 28 percent, and an F1 score of 31 percent, accord-
ing to its position in relation to the radial lines.

The evaluation of DT models using individual metrics
inmany cases lead to a comparably high recall, often with val-
ues above 80 percent. The performance in terms of precision
is consistently low across all datasets, with the best score at
around 35 percent for the Enron Errors dataset. In most cases,
however, the precision scores remained below 10 percent.We
thus conclude that classifiers based on individual metrics are
able to recognize genuine faults, but also return many false
positives, i.e., they predict a fault even though there is none.

In terms of recorded F1 measures, DT models performed
best on the Enron Errors dataset. This dataset represents the
unrestricted scenario and contains a variety of different
spreadsheets and fault types. Looking at individual metrics,

Fig. 2. Precision-recall performance for decision tree classifiers using single metrics on the Enron Errors, INFO1 and EUSES corpora. The numbers
in the legend correspond to the indices given in Table 1 and radial lines indicate F1 measure values. Hexagons represent classifiers using metrics
computed per cell, triangles represent formula cell-based metrics, inverted triangles are formula metrics, and bars indicate worksheet-based metrics.
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metrics 61 and 4 are strong fault predictors for this dataset.
Overall, there are 16 single-metric classifiers with F1 values
between 0.2 and 0.3, indicating that several metrics are some-
what relevant for this collection. The F1 results for the INFO1
and EUSES datasets are generally worse than those for Enron
Errors. This is likely due to the restricted and synthetic nature
of those datasets. The spreadsheets of INFO1 were created
by students for a given task and thus contain formulas that
are structurally similar. The applied mutations to introduce
faults into the EUSES corpus changed only small parts of
given formulas. Therefore, for both datasets the differences
between faulty and correct formulas tend to be small, which
makes it difficult to learn a classification rule. For the EUSES
corpus, a lower formula error rate (0.2 percent) might have
reduced the prediction performance.

5.3 Discussion

While there is a clear indication that many metrics are actu-
ally able to recall faults in most cases, the precision of pre-
dictions returned by DT is low. With respect to 4, we
conclude that the overall prediction performance of DT
models based on individual metrics is mostly inadequate
for practical purposes. Consequently, we explore the combi-
nation of multiple metrics in the next section.6

6 FAULT PREDICTION WITH MULTIPLE METRICS

6.1 Experiment Setup – Prediction Models

Our stated hypothesis is that Random Forests (RF) algo-
rithms are well-suited for the given problem. To validate
this hypothesis, we compared the performance of predictors
trained using RF and three alternative learning methods:7

� Support Vector Machines (SVM) [44]. SVMs have
shown to be effective in a various domains, which is
why we included them as baseline approach. Since

training SVMs with traditional methods can be slow
for larger datasets, we also use the faster but sometimes
less accurate gradient descent method in its learning
phase (SVM SDG). Training of SVMs depends highly
on the value of the regularization parameter C, that
determines the degree of importance to which the
model might miss-classify the training data. Choosing
an appropriate value for this parameter is important
since it directly influences the ability of a model to gen-
eralize beyond the training dataset.

� Adaptive Boosting (AB) [45]. Similar to RF, this algo-
rithm is awell-known ensemble technique.AB sequen-
tially trains N “weak learners” (in our case decision
trees) on weighted variants of the dataset. Thus, the
algorithm corrects weaknesses of previously trained
weak classifiers by emphasizingmisclassified observa-
tions of the last iteration. Every newly trained weak
learner tries to find a model that correctly classifies the
most highly ranked observations first. Given an obser-
vation, an AB model determines a classification result
as the weighted sum of the results of the underlying
weak models, where the weights are determined by
the prediction performance of the individualmodels.

� Deep Neural Networks (DNN) [46]. DNNs have been
successfully applied to a wide range of classification
problems. Theywere also used inMelford for the pre-
diction of “number-where-formula-expected” faults
[25]. In this study, we use a network architecture that
is similar to the one used by Melford. In particular,
our feed-forward neural network has N hidden
layers, comprising 128 neurons each, and uses a recti-
fied linear unit activation function. Instead of feeding
abstractions to the network as inMelford, we provide
our computedmetric values to the 64 input neurons.

6.2 Evaluation Results and Analysis

The classification performance results for the three datasets
are shown in Fig. 3. With the exception of the SVM models,
the F1 score results of the combined predictors are consis-
tently higher than those of the predictors using individual
metrics (Fig. 2), even being consistently above 90 percent
for the Enron Errors case. In particular, the performance

Fig. 3. Precision-recall results for different classifiers based on multiple metrics. Radial lines indicate F1measure values.

6. Since the best results, i.e., those obtained for DT classifiers,
already sufficiently support the investigation of possible avenues for
improvement, we omit a detailed discussion of the results of the TB
and LR classifiers here. We refer the interested reader to the related
plots and data in the provided online Appendix.

7. Optimal values of hyperparameters found by the grid search for
each algorithm are listed in the online Appendix.
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results in terms of precision, which were always below 40
percent (and in most cases even lower) for the single metric
classifiers, are largely improved on all datasets.

While the SVMmethod finished in reasonable time on the
Enron Errors dataset, it exhibited unexpectedly long training
times on the others.8 Therefore, we switched to the SVM
SGD variant of the algorithm that uses stochastic gradient
descent instead of a complete optimization technique. As a
result, we could train SVM models within an acceptable
timeframe, but the performance of the obtained models
decreased. However, given the results of both SVM variants
on Enron Errors and of SVM SGD on the other datasets, we
can exclude both variants from further discussion because of
their low performance in comparison to the othermethods.

6.3 Discussion

As highlighted above, all three of the more advanced mod-
els, RF, AB, and DNN, achieved very high F1 scores for the
Enron Errors dataset, with RF performing slightly better than
the others. This indicates that combining different metrics as
proposed in thiswork is beneficial and leads to a highly accu-
rate predictions of faults (4). Moreover, the results demon-
strate that the success of our proposed method is not tied to
one particular learning technique.

Similarly to the Enron Errors case, RF, AB, and DNN
methods showed very good precision and recall on the
other datasets. The ranking of the algorithms is not consis-
tent over all experiments. For instance, RF performed best
on the EUSES dataset and led to the second best results for
the INFO1 case. However, as presented in Table 3, on aver-
age RF outperformed all other learning methods. Therefore,
we conclude that RF is an overall good algorithmic choice,
providing stable performance across all tested datasets (4).

Closer analysis shows that the DNN method excelled in
terms of precision and recall on the INFO1 dataset. On the
EUSES dataset, in contrast, its precision score (27 percent)
was far below the values of RF (87 percent) and AB
(71 percent). This indicates that the performance of DNN,
while being generally good, largely depends on the charac-
teristics of the dataset and/or fault types. More research is
required to better understand the observed phenomena.
From a practical perspective, the DNN method also has the
disadvantage that it can be computationally complex. While
training the RF classifier in our evaluation typically
required a few hours on a single CPU, training a DNN usu-
ally required over a day for the bigger datasets. Differently
from our expectation, however, we observed that the perfor-
mance of DNN models does not depend on the amount of

input data, and it was among the best-performing methods
for the smallest dataset.

Finally, comparing results across all datasets reveals gen-
erally lower accuracy results for the synthetic EUSES data-
set. This trend was also observed for the single-metric
models in the first study. We thus assume that the specific
types of artificially injected faults in EUSES are difficult to
capture by the metrics of our catalog. However, our catalog
is open for extension to include metrics that are tuned to
such fault types. Generally, the accuracy results for the syn-
thetic dataset also depend on the chosen fault injection strat-
egy, which can lead to easier or more difficult problems.
Nevertheless, in presence of randomly injected faults, our
approach proved its usefulness, as the combination of mul-
tiple metrics led to significant increases in accuracy.

6.4 Evaluation on Combined Dataset

In previous experiments, the models were evaluated on
spreadsheets with the same origin as the training data. The
results confirmed that fault prediction on organization-
specific data/corpora is effective. To test the effectiveness of
our approach when the training data includes spreadsheets
from other sources, we created a combined dataset by merging
all datasets from Table 2. We then made four measurements
in which we trained classifiers on a training set derived from
this combined dataset. The trained models were evaluated on
four test datasets (i) three sampled from the three individual
corpora, and (ii) one sampled from the combined dataset.

The first three experiments led to F1 scores of 97 , 77 , and
59 percent for the Enron Errors, INFO1, and EUSES datasets
resp.9 In comparison with the results from Table 3, the fault
predictors were able to mostly maintain their performance
levels even when the training sets comprise additional and
possibly irrelevant data from other sources. The RF method
therefore seems robust enough to learn classification models
that can effectively discriminate between faults of different
origin. The fourth experiment also supports this observation
as the fault predictor scored an F1 value of about 77 percent.

These results indicate that our method is suitable for two
deployment scenarios: First, it can be used in organization-
specific settings, where the fault predictor is trained on a col-
lection of domain-specific spreadsheets. Second, providers
of debugging toolsmight includemodels that are pre-trained
on general spreadsheet collections in their products.

6.5 Comparison with Previous Work

To provide a point of reference for the proposed approach,
we compared the evaluation results with our own previous
work and with related efforts by other researchers. In com-
parison to our previous work in which our models were
based on a smaller catalog of smell metrics [1], using the
extensive metric catalog proposed in our current work led
to large improvements in terms of prediction performance.
In particular, using the new catalog in combination with an
ABmodel led to an improvement of the F1 value from 43 to
95 on the Enron Errors dataset. Furthermore, in this work

TABLE 3
F1Measure Values Observed in the Study

Algorithm Enron Errors INFO1 EUSES Average

RF 0.98 0.77 0.61 0.79
AB 0.96 0.73 0.56 0.75
DNN 0.95 0.85 0.36 0.72
SVM SDG 0.35 0.21 0.03 0.19

8. The optimization procedure did not finish within several weeks
for the INFO1 and EUSES datasets.

9. See the online appendix, available in the online supplemental
material for detailed results.
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we explored using RF models for predicting faults, which
further improved classification performance.

As pointed out in Section 2, we mainly regard Faulty-
Sheet Detective [15] and ExceLint [28] as comparable with
our approach. For the sake of comparison, we applied both
tools to identify potentially faulty cells in the spreadsheets
of the Enron Errors dataset.10 We then compared the
detected faults with the ground truth data consisting of 630
known faulty formulas that were used in our experiments.
According to this evaluation, FaultySheet Detective high-
lights 3,586 cells as potentially faulty, revealing 179 of the
known true faults for an F1 value of 8 percent. Likewise,
ExceLint highlights 99 cells as potentially faulty, revealing
20 of the known true faults for an F1 value of 5 percent. A
further manual application of the two tools to randomly
drawn samples of the INFO1 and EUSES datasets yielded
similar results.

While the prediction performance of FaultySheet Detec-
tive in our analysis seems low, this is actually expected as
the tool is not designed to directly pinpoint faulty cells.
Instead, its goal is to reveal those cells that are the most rele-
vant ones to all detected smelly cells. Likewise, ExceLint can
only reveal faults where cells diverge from proper rectangu-
lar spreadsheet layouts. While this approach can reveal
highly relevant cases, not all existing faults fall into this cat-
egory. In conclusion, the comparison shows that our pro-
posed approach provides a clear benefit in scenarios that
require the detection of diverse fault types in spreadsheets.

7 THE IMPORTANCE OF FEATURE SELECTION

7.1 Experiment Setup – Prediction Models

The main hypothesis of 4 is that learning approaches like
RF, which implicitly perform some form of feature selection,
are favorable for the given fault prediction task. In our case,
this means that the learning technique would, depending
on the specifics of the dataset, only consider the most rele-
vant features in the training phase. Metrics that are not
suited for a given collection of faulty spreadsheets are auto-
matically disregarded. Feature selection (or elimination) is
usually applied to reduce noise in the data, which subse-
quently leads to a performance increase of the learned
models.

To validate this hypothesis, we performed a study on the
Enron Errors dataset, which used k-Nearest-Neighbors (k-
NN) in combination with recursive feature elimination (RFE)
[47], a feature selection method that is conceptually similar
to the RF method [42], [48]. K-NN assigns the label to a new
learning example that is the most common one among the k
nearest neighbors with respect to Minkowski distance. The
RFE process works as follows. In the first iteration of the
process, the k-NN method is evaluated in terms of the aver-
age F1 measure using a feature set that encompasses all
available features (metrics). RFE then evaluates all feature
subsets that can be constructed by removing one of the fea-
tures. From these subsets, the one with the best F1 score is
selected and the process is continued recursively until no

more improvement can be made. If our hypothesis is true
and feature selection is important, we expect a significant
performance difference when comparing the results for the
k-NNmethod with and without applying RFE.

7.2 Evaluation Results and Analysis

7.2.1 Value of Feature Selection

Fig. 4 shows the performance of the plain k-NN method, the
k-NN method with feature selection using RFE, and the RF
model for the Enron Errors dataset. In this experiment,
hyper-parameter optimization for k-NN revealed 3 to be the
best value for k. The results indicate that feature selection
has a significant positive effect on the prediction perfor-
mance of k-NN (according to a Wilcoxon test with p <
0:001). The same observation was made for the INFO1 data-
set.11 Regarding 4, we conclude that an algorithm’s ability
to focus on a subset of the available features through feature
selection is important to obtain a high F1 score.

Generally, the scalability of k-NNwith feature selection is
however low, which is why we did not make the measure-
ment for the EUSES dataset. In practice, one would there-
fore rather only rely on the RF model and not use the RFE
procedure that we used here for the analysis of the impor-
tance of feature selection.

7.2.2 Analysis of Selected Features

An analysis of the feature importance weights, as produced
by the RFmodel, led to the following main insights.12

Distribution of Importance Weights. We observed that
RF was very successful in identifying key metrics in
each dataset. For the Enron Errors and EUSES datasets,
the 15 most important features accumulated more than
two thirds of the total importance weight (slightly more
for INFO1). Likewise, one third to one half of the metrics
obtained very low weights, as they were identified to be
not relevant for the corpus. Nonetheless, according to
additional experiments, retaining only a small number—
e.g., 10—of the most important metrics and removing the
rest is detrimental to prediction performance, i.e., metrics
with comparably low weights also contribute to high preci-
sion and recall results.

Fig. 4. F1 measure for the Enron Errors dataset for k-NN (with and with-
out RFE) and the RFmodel.

10. Since tool application and result analysis have to be processed by
hand for both, FaultySheet Detective and ExceLint, we limited the
exhaustive analysis to the Enron Errors dataset.

11. For this dataset, k-NN was even slightly better than the RF
model.

12. The exact values per dataset as well as additional charts are pro-
vided in the online appendix.

2204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 10, OCTOBER 2021



Ranking of Metrics. The relative importance of the metrics
varies across datasets, and there is no distinct set of gener-
ally “best” metrics. This observation emphasizes both the
value of having an extensive catalog of metrics and the need
of using learning techniques that identify the important
metrics automatically. In addition, the outcome of the met-
ric selection process can also be helpful to provide explana-
tions for the fault predictions. Another analysis showed that
all types of metrics (e.g., worksheet metrics) appeared in the
set of the most important metrics for each dataset. This,
again, speaks for having a broad catalog of metrics. A side
observation here was that worksheet metrics were consis-
tently among the most important ones for all datasets. In
fact, six of ten worksheet metrics led to significantly higher
average readings for the worksheets of Enron Errors that
contain faults. This confirms a common conjecture that
larger and more complex worksheets are more likely to con-
tain faults. A final observation is that in a global ranking of
the metrics by RF weights over all datasets using the Borda
count method, 7 of the top 10 metrics were novel and intro-
duced in this work: 56, 1, 34, 63, 60, 58, 30, 55, 10, 57. Most
of the successful novel metrics were worksheet-related,
which confirms the importance of considering this types of
metrics that capture complexity-related aspects.

8 THREATS TO VALIDITY

One possible threat to the internal validity of our research lies
in the correctness of the used software for data preparation
and the implementation of spreadsheet metrics, learning,
and evaluation procedures. To minimize these risks, we
mostly relied on existing software libraries provided for the
Python programming language. Furthermore, we provide
all source code of our metrics implementation, learning and
evaluation scripts, as well as the datasets online for inspec-
tion and reproduction by other researchers.

As for threats to external validity, the main concern is the
representativeness of the faults in the used datasets with
respect to the overall population of spreadsheet faults. To
minimize this risk, we relied on three different datasets in
our experiments. The spreadsheets of the Enron Errors collec-
tion have been used in several empirical studies, and the spe-
cific set of recorded faults was obtained in a systematic and
reproducible manner [37]. We therefore consider the risk
that these faults are not representative as low. The spread-
sheets of the INFO1 collection contain faults that were intro-
duced by students performing routine computations for civil
engineering. While the situation in which the spreadsheets
were created was artificial, the problem setting and develop-
ment task itself was one that could also happen in the real
world in an architectural firm. Consequently, we are confi-
dent that the resulting faults are also representative to a cer-
tain extent. Lastly, the EUSES dataset contains artificially
injected faults that often resemble potential mechanical
errors (typos) that usersmakewhen creating a spreadsheet.

The performance measures that we use for evaluating our
approach, pose another potential threat to the external valid-
ity, as improvements in terms of generic performance meas-
ures might not necessarily translate into tangible benefits for
end users. However, as presented above, there exists ample
evidence of fault prediction methods providing various

benefits in the domain of general software development [4],
as well as in the spreadsheet domain [10], [11], [12], [13], [14].
Many of the fault prediction methods that are used by those
approaches were evaluated using generally accepted perfor-
mance measures like precision and recall, as is common in
contemporary research on fault prediction techniques. We
are thus confident that our chosen evaluation approach is
suitable to assess of the benefit of our method and facilitates
comparison with existing research.

9 SUMMARY, APPLICATIONS AND FUTURE WORK

In this work, we have investigated how spreadsheet metrics
can be successfully used for automated fault prediction
based on machine learning. Two main insights of our
research are that it is essential to (i) consider a combination
of various metrics to achieve high prediction accuracy and
(ii) that the choice of the learning technique can matter.

Generally, accurate fault prediction models can serve as a
basis for a variety of quality assurance tools. One possible
immediate application of our approach lies in an extension
of the existing “Smart Tag” functionality of MS Excel. Smart
Tags are small cell markers in MS Excel that point users to
potential problems in their formulas, e.g., when a range ref-
erence seems incomplete. A future version of Smart Tags
could also highlight cells that have a high fault probability
according to the learned model. Once such a cell is
inspected, the system can present a limited set of user-ori-
ented explanations for those metrics that surpass a certain
threshold for the given formula. A main advantage of
such an approach would be that users of MS Excel are
already familiar with the provided interaction mechanism.
Alternatively, fault probabilities can also be used in more
complex debugging environments to provide tangible user
benefit. Specifically, our goals include the implementation
of our approach within our debugging frameworks [49],
[50], and to evaluate its usefulness through a user study.

From an algorithmic perspective, we plan further investiga-
tions regarding the use of neural approaches, which per-
formed well on some of the datasets. We also plan to
investigate the usefulness of the presented method for finding
faults in non-formula cells such as the “number-where-for-
mula-expected” fault considered by Melford. Finally, we see
our catalog of spreadsheet metrics as a solid starting point that
leads to satisfying accuracy results. Further extensions of the
catalog, including variants of the proposed metrics, are possi-
ble to further increase the practical usefulness of our approach.
Moreover, an in-depth analysis of the contribution of specific
metrics and metric types will prove useful for understanding
and improving prediction results.
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