948

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

Reusing Solutions Modulo Theories

Andrea Aquino, Giovanni Denaro™, and Mauro Pezze, Senior Member, IEEE

Abstract—In this paper we propose an approach for reusing formula solutions to reduce the impact of Satisfiability Modulo Theories
(SMT) solvers on the scalability of symbolic program analysis. SMT solvers can efficiently handle huge expressions in relevant logic
theories, but they still represent a main bottleneck to the scalability of symbolic analyses, like symbolic execution and symbolic model
checking. Reusing proofs of formulas solved during former analysis sessions can reduce the amount of invocations of SMT solvers,
thus mitigating the impact of SMT solvers on symbolic program analysis. Early approaches to reuse formula solutions exploit
equivalence and inclusion relations among structurally similar formulas, and are strongly tighten to the specific target logics. In this
paper, we present an original approach that reuses both satisfiability and unsatisfiability proofs shared among many formulas beyond
only equivalent or related-by-implication formulas. Our approach straightforwardly generalises across multiple logics. It is based on the
original concept of distance between formulas, which heuristically approximates the likelihood of formulas to share either satisfiability or
unsatisfiability proofs. We show the efficiency and the generalisability of our approach, by instantiating the underlying distance function
for formulas that belong to most popular logic theories handled by current SMT solvers, and confirm the effectiveness of the approach,

by reporting experimental results on over nine millions formulas from five logic theories.

Index Terms—Symbolic program analysis, symbolic execution, SMT solver, solution reuse

1 INTRODUCTION

SYMBOLIC program analysis determines the validity of
program properties by reasoning on symbolic expres-
sions. Program analyzers that rely on symbolic analysis,
like symbolic executors [12] and symbolic model check-
ers [25], extensively use Satisfiability Modulo Theories (SMT)
solvers to solve symbolic expressions and drive the analysis
sessions.

State-of-the-art SMT solvers can efficiently handle huge
expressions in some relevant logic theories, namely Booleans,
Integers, Reals, the Mixed Theory of Integers and Reals,
Strings, Fixed Size Bit-vectors, Arrays, Uninterpreted Func-
tions and Uninterpreted Sorts [8], [9], [14], [15], [17], [19], and
largely contribute to the industrial applicability of symbolic
program analysis [5]. Despite the maturity of theories and
tools, SMT solvers still represent a main bottleneck to the scal-
ability of symbolic program analysis [24], [26], [28].

The intrinsic complexity of the problem of determining the
satisfiability of a formula [16] indicates the need to investigate
solutions to reduce the SMT bottleneck, beyond improving
the intrinsic efficiency of the solvers themselves. Current
research work moves along some promising research lines
that include executing different solvers in parallel to mitigate
the weaknesses of the individual solvers [26], augmenting

o A. Aquino is with the Universita della Svizzera italiana (USI), Lugano 6900,
Switzerland. E-mail: andrea.aquino@usi.ch.

o G. Denaro is with the Universita di Milano - Bicocca, Milano 20126, Italy.
E-mail: giovanni.denaro@unimib.it.

e M. Pezze is with the Universita della Svizzera italiana (USI), Lugano
6900, Switzerland, and also with the Universita di Milano - Bicocca,
Milano 20126, Switzerland. E-mail: mauro.pezze@unimib.it.

Manuscript received 8 Feb. 2018; revised 10 Dec. 2018; accepted 27 Jan. 2019.
Date of publication 4 Apr. 2019; date of current version 14 May 2021.
(Corresponding author: Giovanni Denaro.)

Recommended for acceptance by V. Braberman.

Digital Object Identifier no. 10.1109/TSE.2019.2898199

SMT solvers with external techniques, like concrete and
dynamic symbolic execution [18], and reducing the queries to
SMT solvers by reusing solutions of formulas solved during
the analysis session [2], [11], [20], [31].

In this paper, we move along the research line that has
been early drafted within the preliminary caching frame-
works that Cadar et al. introduced in Klee [11], refined in the
seminal paper of Visser et al. who define Green [31], and fur-
ther investigated with the GreenTrie, Recal and Recal+ caching
frameworks [2], [20]. The Klee cashing framework avoids
repeated invocations of SMT solvers by simply searching for
formulas that contain or are contained into formulas that are
already solved in the ongoing analysis sessions. The Green
framework normalises formulas to widen the reuse of for-
mulas beyond the simple cases originally addressed in Klee.
The GreenTrie, Recal and Recal+ caching approaches define
mature frameworks to handle inter-formula relationships
beyond the simple equivalences and inclusions captured
with Klee and Green.

All current frameworks work within the context of struc-
turally similar formulas, and are strongly tighten to the spe-
cific target logics that each of them addresses. Thus they
miss the opportunity of identifying reusable solutions
shared among both structurally dissimilar formulas and for-
mulas that are neither equivalent nor related by implication.

In this paper, we propose Utopia, an approach to efficiently
identify formulas that likely share solutions independently
from the structural similarities among formulas, and beyond
formulas that are either equivalent or mutually contained.
We introduce a concept of distance among formulas that
approximates the similarities among solution spaces, and we
provide efficiently computable instances of the distance func-
tion for the most popular logics that current SMT solvers
address. We show that the Utopia distance does indeed widen
the reusability of solutions across formulas, by comparing the

0098-5589 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires |IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7566-8051
https://orcid.org/0000-0002-7566-8051
https://orcid.org/0000-0002-7566-8051
https://orcid.org/0000-0002-7566-8051
https://orcid.org/0000-0002-7566-8051
mailto:
mailto:
mailto:

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

Utopia reuse rate with the reuse rate of the most promising
competing approaches. We also show that the Utopia distance
is generalisable across multiple logics by experimenting with
the distance function instantiated for the most common logic
theories that state-of-the-art SMT solvers address, namely
Booleans, Integers, Reals, the Mixed Theory of Integers and
Reals, Strings, Fixed Size Bit-vectors, Arrays, Uninterpreted
Functions and Uninterpreted Sorts.

The main contribution of this paper is an original appr-
oach to identify a wide set of solutions reusable across formu-
las that may occur while symbolically analysing software
programs. In details, this paper (i) proposes an original con-
cept of distance between formulas that approximates the
similarity of the solution spaces of both satisfiable and
unsatisfiable formulas, (ii) implements the distance function
for Booleans, Integers, Reals, Mixed Integers and Reals,
Strings, Bit-vectors, Arrays, Uninterpreted Functions and
Uninterpreted Sorts, (iii) presents a prototype implementa-
tion of the approach, and (iv) discusses the results of a set of
experiments that show the improvement in reusing formulas
in the context of symbolic program analysis.

We introduced a preliminary version of Utopia in [3],
where we outline an approach to reuse solutions of only satis-
fiable formulas and only within the Quantifier-Free Integer
and Real Arithmetic Logics. This paper presents (i) the gen-
eral approach Utopia for a wide spectrum of logics, beyond
the two only logics that we were able to address in our pre-
liminary work, (ii) an original and general heuristic to effi-
ciently reuse unsatisfiability proofs, while the ICSE paper
discussed only the initial version of the heuristic that Utopia
uses to address satisfiable formulas, and (iii) an extensive
experimental evaluation of Utopia on over nine million for-
mulas from five logic theories.

This paper is organised as follows. Section 2 recalls the ter-
minology used in the paper, discusses the limitations of cur-
rent approaches, and introduces the general solution that we
propose in this paper. Section 3 defines Sat-delta, the heuristic
distance between formulas that approximates the similarities
of the solution spaces of the formulas, and instantiates Sat-
delta for the theories of Booleans, Integers, Reals, Mixed The-
ory of Integers and Reals, Fixed Size Bit-Vectors, Strings,
Arrays, and Uninterpreted Functions and Sorts. Section 4
defines Unsat-footprint, the heuristics that we propose to iden-
tify formulas that likely share unsatisfiability proofs. Section 5
presents the prototype implementation, and discusses in
details a large set of experiments that answer the main
research questions about effectiveness and efficiency of Uto-
pia. Section 6 overviews the main characteristics of the related
approaches to reuse formula solutions. Section 7 summarises
the main contribution of this paper, and remarks the novelty
with respect to the paper that we presented at the Interna-
tional Conference on Software Engineering in Buenos Aires
in 2017 [3].

2 REUSING SOLUTIONS OF FORMULAS

This paper introduces a caching framework to improve
the scalability of symbolic program analysis techniques. The
framework stores formulas and corresponding solutions com-
puted during the analysis of a program, and then reuses
the solutions to determine the satisfiability of new formulas

949

met at future stages of the analysis of that program. Our
caching framework overcomes the limitations of other
recently proposed caching frameworks that only target spe-
cific logics and can reuse solutions only across specific classes
of equivalent formulas or formulas related by implication.
We first survey the characteristics and the main limitations of
the state-of-the-art formula caching frameworks, and then
illustrate the unique characteristics of the caching framework
proposed in this paper.

2.1 Terminology

In this paper we use the term solution to refer to either the
model of a satisfiable formula or the (possibly minimal)
unsatisfiable core of an unsatisfiable formula.

A model of a satisfiable formula is an assignment of val-
ues to the variables of a formula that makes the formula
hold true. For instance, both assignments {[z = 11,y = 12|}
and {[z =100,y = 200]} are models of the formula z >
10A Ny > x.

An unsatisfiable core (in short unsat-core) of an unsatisfi-
able formula in conjunctive form is a subset of the conjuncts
of that formula whose conjunction is itself unsatisfiable. For
instance, there are three possible unsat-cores for the formula
r=0Nx#0ANz > 0: {x=0,2#0}, {x=0,2 > 0} and
{r =0,z #0,z > 0}.

2.2 Structural Matching of Formulas

The caching frameworks proposed so far rely on matching
the structure of two formulas to determine whether one for-
mula is equivalent or related by implication to the other [2],
[11], [20], [31]. These frameworks are all based on three
main observations or a subset thereof: (i) two equivalent for-
mulas share all solutions, (ii) a formula implied by a satisfi-
able formula shares all solutions with the latter, and (iii) a
formula that implies an unsatisfiable formula is itself unsat-
isfiable. Based on these observations, these frameworks gua-
rantee that if a formula matches another formula, then the
solution of one formula can be reused to determine the satis-
fiability of the other one.

These frameworks have been applied mainly in the context
of symbolic execution with promising results. However, their
effectiveness strictly depends on the way in which they iden-
tify the equivalence or implication relations between two for-
mulas. Currently, they exploit simple structural and mostly
logic-dependent matching rules to determine whether a for-
mula is equivalent to or implies another formula.

For instance, the frameworks that target formulas belon-
ging to the linear integer arithmetic logic [2], [20], [31] include
a rewrite rule that consists in normalising the linear inequal-
ities in a formula from the form

cry + -+ e, <k

to the form
cari+ -+, <k—1.

This rule is based on the observation that the expression
2z < k has the same semantics of the expression = <k —1,
under the assumption that z is an integer value. While this
assumption holds for the linear integer arithmetic, it does
not hold for other logics, like the linear real arithmetic, where

950

close formula
solution space

target formula
solution space

far formula
solution space 3

()

=0

o %
D =iy
« =
= D

2 &

2]

=

12 96 98

Fig. 1. Utopia polygon metaphor.

x is a real value. The mere presence of this rule tightens the
applicability of this framework exclusively to the linear inte-
ger arithmetic logic.

Moreover, modern caching frameworks apply simple
rules that cannot deduce the equivalence of many structur-
ally different albeit equivalent formulas. For instance, the
formulas

r>0Ay>0Az+y=10, (1)

and
r=5Ay=25, (2)

belonging to the quantifier-free linear integer arithmetic
logic, share exactly the same set of solutions (that is, only
the model {[z =5,y = 5]}), but no current approach can
deduce their equivalence.

2.3 Beyond Structural Matching of Formulas
We build on the observation that the solution of a formula
can be reused to determine the satisfiability or unsatisfiabil-
ity of other formulas that share that solution, regardless of
how different the structures or the solution spaces of the for-
mulas are.

Let us consider for instance to have proved the satisfiabil-
ity of formula

fix+y#0, (3)

with model [z = 1,y = 1], and to need to determine the sat-
isfiability of formula

g:2x—y < 3. 1)

Current approaches cannot determine the satisfiability of
g from f, since the two formulas are neither equivalent nor
related by implication. However, the model [z =1,y = 1]
built to solve f satisfies also g, thus we could deduce that g
is satisfiable by referring to the model derived for f.

Likewise, let us consider to have proved the unsatisfiabil-
ity of formula

fre>1Az#9Nx <0,

with the unsat-core {z < 0,z > 1}, and to need to deter-
mine the satisfiability of formula

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

gz < 0Nz >1ANz+k=0ANEk=1.

Current approaches cannot determine the unsatisfiability
of g from f, since the two formulas are neither equivalent
nor related by implication. For example, the approach [11]
embodied in the symbolic executor Klee, would check whe-
ther all clauses of f are included in g, which is not the case.
However, the unsat-core of f is contained in g, thus we could
deduce that g is unsatisfiable by referring to the unsat-core
derived for f.

Our approach, Utopia, is based on the intuition that it is
possible to determine the satisfiability of a target formula by
directly reusing the solution of another formula that shares
some solutions with the target formula, and has been already
solved in the past. Utopia works by selecting a set of candi-
date solutions from the available ones, and directly testing
these solutions on the target formula. Utopia simply tests the
solution of a solved formula on a not-yet-solved one, without
requiring any specific relation between the structures of the
involved formulas.'

Testing solutions among millions of candidates may
quickly turn to be more expensive than solving the formula
directly with an SMT solver, however, testing only few candi-
date solutions is rather inexpensive, and can be an excellent
way for reusing solutions across formulas. Utopia heuristi-
cally selects a small set of candidate solutions from a large set
of solutions of formulas solved in the past, by introducing a
distance function that approximates the relation between for-
mulas that share solutions.

Ideally, the Utopia distance function d between two formu-
las estimates the likelihood that a solution of the first for-
mula is shared by the second formula:

d:FxF—R,

where F' denotes a set of formulas. Thus, Utopia can use the
distance d to rank already solved formulas according to the
likelihood that they share a solution with a target formula f,
and identify a small set of candidate solutions to test
against f: the solutions of the formulas closest to f.

Utopia exploits d by defining an approximation d that
works based on hash-codes computed on the formulas. The
approximation d allows Utopia to effectively identify the for-
mulas closest to a target one by simply comparing the hash-
codes of the formulas, without requiring to directly com-
pare all pairs of formulas.

Intuitively, Utopia uses the easily-computable approxi-
mation d to position formulas in a numeric space, and refers
to such simplified space to identify the formulas whose sol-
utions are the closest to the target formula. Fig. 1 illustrates
the Utopia intuition with the metaphor of distances of poly-
gons that represent the solution spaces of formulas. In the
figure, the solution spaces of formulas f2 and f3 are

1. Utopia pairs the variables in the formulas with the variables in the
solutions according to the positional mapping induced by the order in
which the variables appear in the formulas and in the solutions, inde-
pendently from the variable names. Thus, Utopia is independent from
variable names. Utopia reuses a solution for formulas with less variables
than the solution by dismissing the additional variables in the solution,
and for formulas with more variables than the solution by using default
values, for instance the constant '0” for integer variables.

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

mutually close, while the solution space of formula f1 is far
away. Thus, the distances among the solution spaces sug-
gest that a previously computed solution for formula f2 can
be a good candidate for solving formula f3, while a previ-
ously computed solution for formula f1 is not. As illus-
trated in the figure, Utopia works by mapping formulas f2
and f3 to hash-codes close each-other, and f1 to a far-away
hash-code. Therefore, to prove f3 after proving formulas f1
and f2, Utopia would compute the hash-code of f3, identify
f2 as the closed already-proved formula, and try to reuse
the solution of f2 for f3.

Formally, Utopia computes the distance d with respect to
a hash-function h that represents a suitable mapping from
formulas to elements of a numerical set /. For two formulas
fand g, Utopia relies on the heuristic that

d(f,9) = d(h(f), h(9)),

where

h:F— Handd: Hx H— R.

Based on this approach, Utopia computes the h-value of
each formula only once, and efficiently identifies the formu-
las that are more likely to share solutions with a new for-
mula f by choosing the solutions of the previously-solved
formulas with h-value closest to the h-value of f, and can
do it efficiently by relying on d.

In Section 3 we present Sat-delta, a concrete implementa-
tion of the hash-function A that numerically captures the
behaviour of a satisfiable formula by evaluating the formula
with respect to a set of pre-defined reference models. We
then define the distance function d as the absolute difference
of the Sat-delta values of two formulas. In this setting, Ufopia
keeps the stored formulas ordered by their Sat-delta values
and can thus efficiently retrieve the stored formulas that are
the closest to a given target formula by means of a k-near-
est-neighbours search. Similarly, in Section 4 we present
Unsat-footprint, a concrete implementation of h that captures
the behaviour of an unsatisfiable formula with a hash-code
based on Bloom filters [4]. In this case, the distance function
d corresponds to the bitwise-and of the Unsat-footprint val-
ues of associated with the formulas, which yields zero for
the unsat-cores that could be shared with a given target for-
mula, and is different than zero otherwise.

Utopia can cope with many logics, provided it is instanti-
ated with hash functions h that do not rely on any logic-
specific transformations of the formulas.

2.4 Utopia Algorithm for Reusing Solutions
Algorithm 1 presents the Utopia algorithm that efficiently
retrieves a reusable solution for a formula, given:

the formula f to be solved;

two repositories S and U of already solved formulas
paired with the corresponding solutions, where S
contains satisfiable formulas each paired with a cor-
responding solution, being the solutions represented
as formula models, and U contains unsatisfiable for-
mulas each paired with a corresponding solution,
being the solutions represented as unsat-cores of the
formulas, respectively;

951

e twodistance functions d sand (]U, and two correspond-
ing hash-functions hg and hy, respectively, which
instantiate the technique described in Section 2.3 for
the efficient selection of candidate solutions out of
each repository, where ds and hs are specialised to
estimate the (solution sharing) distance between
satisfiable formulas, and dyy and hy for the distance
between unsatisfiable formulas, respectively;

e two positive integers ng and ny that bound the (small)
amount of candidate solutions that the algorithm is
allowed to select out of each repository;

e abackend SOLVER that the algorithm uses to com-
pute the solution of the formula f when it fails to
find any reusable solution.

We present concrete instances of the distance functions

ds and dy, along with the corresponding hash-functions hg
and hy, in the next sections.

Algorithm 1. The Utopia Algorithm

Require:
f the target formula to be solved.
S a repository of (formula, model) pairs.
U a repository of (formula, unsat-core) pairs.
ds the distance function for satisfiable formulas.
&U the distance function for unsatisfiable formulas.
hg the hash-function for the computation of <:f§.
hy the hash-function for the computation of dy.
ng the maximum amount of candidate models.
ny the maximum amount of candidate unsat-cores.
SOLVER the SMT solver.
: fs = hs(f) }
: models «— CLOSEST(S, ds, fs,ns)
for m € models do
if 1sSoLuTIoN(f, m) then
return m
end if
: end for
o = ho(f))
9: unsat — cores < CLOSEST(U, dy, fu, ny)
10: for u € unsat — cores do

> m is a reusable solution

PN TR

11: if 1ISSoLUTION(f, u) then

12: return u > u is a reusable solution
13: end if

14: end for

15: solution «— SOLVER(f)

16: if 1sSMODEL(solution) then

17: STORE(S, f, solution, fs)

18: return solution

19: else if 1SUNSATCORE(solution) then
20: STORE(U, f, solution, fir)

21: return solution
22: else

23: return None
24: end if

> The solver did not yield solutions.

Given a formula f, Utopia identifies either a model satisfy-
ing f or an unsat-core proving that fis unsatisfiable, by search-
ing two repositories that contain satisfiable formulas paired
with their models (lines 1-7) and unsatisfiable formulas
paired with their unsat-cores (lines 8-14), respectively. In
detail, Utopia selects a small set of candidate solutions for a
target formula by computing the values of hg and hy; for the

952

close formula
reference solution space

model

target formula
solution space

far formula
solution space

Fig. 2. Metaphor of how Utopia uses the Sat-delta heuristic.

target formula (lines 1 and 8, respectively), and retrieving the
set of ng and ny formulas with the hg and A values closest to
the ones of the target formula, according to the distance func-
tions dg and dy, respectively (lines 2 and 9). Finally, Utopia
checks if any of the identified solutions can be reused to deter-
mine the satisfiability of the target formula (with the loops
starting at lines 3 and 10, respectively). If this is not the case,
Utopia relies on an external SMT solver to solve the target for-
mula (line 15) and updates the relevant repository with the
generated solution (lines 17 and 20).

Utopia is parametric with respect to ng and ny, the num-
bers of candidate solutions retrieved from each repository.
As discussed in Section 5, in the experiments reported in
this paper we configured Utopia setting both ng and ny to
10. In this configuration, Utopia selects and tries to reuse 10
models and 10 unsat-cores to solve a target formula.

Utopia may be subject to both false-negatives and false-
positives. A false-negative is an available solution-sharing
formula whose hash-code is farther from f than other formu-
las in the corresponding repository, leading Utopia to miss
this solution. The false-positives are solutions that Utopia
first selects as candidate and then verifies that are not solu-
tions. Both false-positives and false-negatives are primarily
due to the intrinsically heuristic nature of the hg and hy
approximations. Some false positives may depend on for-
mulas that share many solutions with the target formula,
but not the currently available one. Utopia safely handles
false-positives by design, since it discards them by directly
evaluating the target formula on the candidate solutions.
The experiments that we discuss later in the paper indicate
that false-negatives have a negligible impact.

3 THE SAT-DELTA HEURISTIC

Algorithm 1 requires efficient instantiations of the general
hash and distance functions (hg and dg, respectively), to effi-
ciently retrieve a set of solutions likely reusable for the tar-
get formula. Utopia instantiates the general hash-function
hg with Sat-delta, a heuristic hash-function that maps formu-
las on numbers by (i) evaluating the variables in the formu-
las with respect to a common set of reference models, and
(ii) exploiting the structure of the formula to characterise
the extent by which the reference models miss the solution
space of the formula. The underlying intuition is that, by

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

characterising the formulas with respect to a common set of
reference models, Utopia increases the chances of assigning
similar values to formulas that share some models. Thus
Utopia computes d as the difference of Sat-delta values. The
experimental results reported in Section 5 confirm that Sat-
delta is indeed an efficient concretization of hg.

Fig. 2 illustrates Sat-delta with the polygon metaphor
introduced In Fig. 1. The black dots represent the reference
models, and the distance of the polygons from three refer-
ence points (the dashed lines from the black points) repre-
sent Sat-delta. As polygons with similar distances from the
reference points have higher chance to overlap, formulas
with similar distances from the reference models have
higher chance to have closer solution spaces, and thus solu-
tions reusable across them.

Given a target formula f3 the satisfiability of which has to
be determined (the blue polygon in the figure), Sat-delta
identifies the models of the closest formula f2 (the orange
polygon in the figure) as the most likely reusable models for
the target formula: those models might indeed belong to the
intersection of the two polygons in the Euclidian space.

We define the Sat-delta value of a formula f with respect to
a reference model m as the least change to transform model
m into a model that satisfies f. For instance, the Sat-delta value
of formula = < 1 with respect to the model [z = 3] is 2, since
the least change of the model [z = 3] to obtain a model [z = 1]
that satisfies the formula is to subtract 2 from the model

Sat — delta(r <1 wrt. [z =3]) =27

We generalise the Sat-delta value of a formula f with
respect to a set of reference models {m,,...,m,} as the
average of the Sat-delta values of f with respect to each
model m; in the set.

Utopia exploits the heuristically-grounded hypothesis
that the similarity of the Sat-delta values of formulas is a
proxy of the similarity of the behaviour of the formulas
with respect to a set of reference models, which in turn is a
proxy of the similarity of the solution spaces of the two for-
mulas. Formulas with similar distances from the reference
models have higher chance to have closer (and thus more
likely overlapping) solution spaces than formulas with very
different distances from the same reference models. Because
of this, given a target formula the satisfiability of which has to
be determined (for example, formula f3 in Fig. 2), Sat-delta
suggests that it is more convenient to try to reuse first the
models that are available for close formulas (for example, for-
mula f2 that shares many solutions with formula f3) rather
than the ones that are available for far formulas (for example,
formula f1 that share no solution with formula f3).

In this section, we define a Sat-delta heuristic that targets
formulas belonging to many popular quantifier-free logics.
Our definition of Sat-delta applies to most of the quantifier-
free logics defined by the SMT-LIB standard, which is the
reference standard supported by many state-of-the-art SMT

2. In this simple example, the value of Sat-delta induces a satisfying
model of the formula (as a change of the reference model). This is not
the general case, since Sat-delta works by arithmetically aggregating the
Sat-delta values of the atomic formulas across the boolean structure of
the formula. Section 3.1 resents the complete algorithm.

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

0 if m(er) ® m(ez)
‘m(el) - m(€2)| if © G{S v:72}
Im(e1) —m(ex)| +1 if © € {<,#, >}

Sat-delta(e; © ea,m) =

Fig. 3. Sat-delta of atomic formulas in the theory of integers.

solvers. Formulas belonging to quantifier-free SMT-LIB
standard logics are propositional compositions of atomic
formulas over expressions in different reference theories,
such as the theory of integers and the theory of strings;
Atomic formulas are boolean function relating expressions
in the theory, and expressions are combinations of func-
tions, variables and constants defined in the theory.

For instance, the formula z <0Ay+ 1 > z, where z and
y denote two integer variables, belongs to the quantifier-free
linear integer arithmetic logic, a logic that allows reasoning
on quantifier-free formulas over linear inequalities over
integer variables and constants. The formula is the logical
conjunction of the two atomic formulas = <0 and
y+ 1 > x, where each atomic formula is a linear inequality
over integer expressions.

Similarly, the formula

prefix — of ("hello”, s) V suffix — of ("world”, s),

belongs to the theory of strings, and is the logical disjunc-
tion of two atomic formulas, where each atomic formula is a
boolean function (prefix —of and suffix — of), evaluated
with respect to string expressions.

Sat-delta targets quantifier-free logics over atomic formu-
las in any of the following reference theories:

booleans, also known as the core theory,
integers,

reals,

mixed integers and reals,

fixed size bit-vectors,

strings,

arrays,

uninterpreted functions and sorts.

In the next sections, we first recall the definition of Sat-
delta for the theory of integers, by referring to the computa-
tion algorithm that we presented in [3]. Then we properly
extend the definition of Sat-delta to the other theories, by
discussing the details related to the construction of the refer-
ence models and the rules to compute Sat-delta with respect
to the other theories. Finally, we discuss how Utopia exploits
Sat-delta to efficiently retrieve reusable models for new for-
mulas by searching in a large repository containing formu-
las solved in the past paired with their models.

3.1 Sat-Deltafor the Theory of Integers

We define Sat-delta by specifying (i) the reference models
used to compute Sat-delta, (ii) the rules for computing the
Sat-delta value of the atomic formulas in the theory, and (iii)
the rules for computing the Sat-delta value of the proposi-
tional composition of several atomic formulas in the theory.

3.1.1 Reference Models

In the theory of integers, a reference model is a con-
crete assignment of integer values to the variables of the

953

considered formulas. To compute Sat-delta on arbitrary for-
mulas, we need reference models that are total with respect
to the variables that may occur in the formulas, that is, a
model that assigns a concrete integer value to each variable
that may appear in any formula, so that, when a formula is
evaluated on such model, it is always possible to decide
whether or not the model satisfies the formula. For instance,
the model [z = 0], which assigns value 0 to all occurrences
of variable x in a formula is not total, since it does not enable
to evaluate formula x 4y > 0, because it does not assign
any value to variable y. Conversely, a model that assigns
value 0 to all integer variables in a formula, which hereon
we denote as [Vv|m(v) = 0], is total with respect to all for-
mulas defined in the theory of integers.

All models of the form [Vv | m(v) = k], where k € Z is any
integer constant, are total in the theory of integers, and can
be used as reference models for calculating Sat-delta.

The choice of the reference models can impact the preci-
sion of the approximation of Saf-delta. In our current proto-
type of Utopia (Section 5.3) we experimented Sat-delta with
different reference models, and confirmed the intuition that
in general computing Sat-delta by averaging the distance
from a set of reference models approximates the distance of
the solution spaces more accurately than computing Sat-
delta with respect to a single reference model. Intuitively,
the distance from a single model cannot distinguish the dif-
ferent relation between small and large solution spaces
(small and large polygons in Fig. 2), while referring to a set
of models can better capture the relation between spaces of
different size. Our experiments also indicate that oddly dis-
tributed reference models better approximate the distance
among solution spaces that evenly distributed ones, and
that a small set of reference models already suffices to
improve the precision of the approximation, while the addi-
tional improvement that derives from considering large sets
of reference models is often negligible.

In the experiments reported in Section 5, we compute
Sat-delta for formulas in the theory of integers as the aver-
age of the Sat-delta values with respect to the following three
oddly distributed models:

[Vv|m(v) = 0]
[Vo | m(v) = 100]
[Vu|m(v) = —1000]

3.1.2 Sat-Delta of Atomic Formulas

In the theory of integers, atomic formulas are either equa-
tions or inequalities over integer expressions, that is, formu-
las in the form e; ® ey, where e; and es are arithmetic
expressions over integer variables and constants, and © is a
comparison operator in the set {=,#, <,<, >,>}. For
instance, the formula z +y > 0 is an atomic formula con-
sisting of a single linear integer inequality.

We define the Sat-delta value of an inequality with respect
to a total reference model as the smallest positive integer
value that must be added to either side of the inequality to
make the model satisfy it. As shown in Fig. 3, the Sat-delta
value of an atomic formula is 0 if the model satisfies the for-
mula, a positive value otherwise, consistently with the poly-
gon metaphor illustrated in Fig. 2. For instance, the Sat-delta
value of the inequality 2z + 3 < y with respect to the model

954
TABLE 1

Sorts and Atomic Formula Operators by Theory
Theory Sorts Operators
Booleans Bool C
Integers Int CUA
Reals Real CUA
Mixed Integer/Reals Int, Real CUAU {is — int}
Strings® String cus
Fixed Size Bit-vectors BitVec, CU (A x {s,u})
Uninterpreted Sorts USort, C
Arrays Array[I — V| 0

Uninterpreted Functions AP,...,P, =V 1]

In the table above,

C={=#}
A={>,>< <}, and
S = {match, contains, prefix — of, suffix — of }.

[Vv|m(v) = 0] is 4, since 4 is the smallest positive integer that
when added to the formula, in this case to the right side of the
inequality, produces a new inequality, in this case 2z + 3 <
y + 4, which is satisfied by the model.

3.1.3 Sat-Delta of Formulas

We compute the Sat-delta value of general formulas with
respect to a total reference model, by aggregating the Sat-
delta values of the atomic formulas contained in the formula,
thus exploiting the propositional structure of the formulas.
We discuss the algorithm for the functionally complete set
of connectives of the logical operators — (negation), A (con-
junction) and V (disjunction).

The algorithm for computing Sat-delta for a formula f
works as follows:

i) It transforms the formula f into an equivalent for-
mula that does not contain negation operators, by
removing the negations from f;

ii) it computes the Sat-delta values of the atomic formu-
las that compose the obtained formula, and substi-
tutes the the atomic formulas with the computed
Sat-delta values;

iii) It transforms the formula into an arithmetic exp-
ression by mapping conjunctions and disjunctions
in the formula on sum and minimum operations,
respectively;

iv) It computes the Sat-delta value of the original formula
as the result of the obtained arithmetic expression.

The algorithm removes the negations in the formula
(Step (1)) by safely pushing the negation operators down in
the formula and transforming the negated atomic formulas
into equivalent non-negated one. It pushes the negation
operators down in the formula by repeatedly applying the
De Morgan'’s laws, until the only negated sub-formulas are
atomic formulas. It transforms the negated atomic formulas
into equivalent non-negated formulas by applying elemen-
tary equivalences among formulas. For instance, the algo-
rithms transforms formula =(z <0V y > 1) the equivalent
formula —~(z < 0) A =(y > 1) by applying De Morgan’s law,
and then into the equivalent formula z > 0 Ay < 1, which
does not contain negation operators.

3. We refer to the theory of strings proposed by Liang [23].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

The algorithm maps the formula into an arithmetic
expression over the Sat-delta values corresponding to the
atomic formulas contained in the original formula, by
replacing conjunctions of atomic formulas with the sum of
the Sat-delta values of the atomic formulas, and disjunctions
of sub-formulas with the minimum of the Sat-delta values
the atomic formulas. The mapping follows the intuition that
satisfying conjunctions requires satisfying all conjuncts, and
thus every non-satisfied conjunct contributes a missed
amount, that is, its Sat-delta value, to the total by which the
given reference model does not satisfy the overall conjunc-
tion, while satisfying a disjunction requires satisfying either
of the disjuncts, and thus it would suffice to satisfy the least
missed one, that is, the one with minimum Sat-delta value.
For instance, the algorithm computes the Sat-delta value of
the formula (x > 0Vy > 1) A =(z +y < 2) with respect to
the reference model [Vv | m(v) = 0], by

i) inverting the last atomic formula to remove the
corresponding negation, obtaining the formula (z >
OvVy > DHAz+y > 2,

ii) computing the Sat-delta values of the atomic formu-
las with respect to the reference model:
o Sat-delta (x > Ow.r.t. Vv|m(v) =0]) =
e Sat-delta (y > 1w.rt. [Vv|m(v) =0]) =
o Sat-delta (z +y > 2w.rt [Vv|m(v) =

iii) ~ replacing the atomic formulas with their correspond-
ing Sat-delta values, and the logical operators A and
V with the arithmetic operators + and min, respec-
tively, obtaining the arithmetic expression min(1,

2) + 3 that evaluates to 4.
In summary, given the model [Vv | m(v) = 0], it holds that

1
2
D=3

Sat —delta((x > 0Vy >) A=(z+y < 2))
= Sat — delta((zx > OVy > 1)Az+y > 2)
=min(1,2) + 3

=4.

As discussed earlier in this section, we define the Sat-delta
value of a formula with respect to a set of total reference
models as the average of the Sat-delta values computed with
respect to each reference model in the set.

The algorithm to compute Sat-delta for propositional for-
mulas can be easily generalised to other theories by defining
Sat-delta for the atomic formulas of the theory, and introduc-
ing appropriate rules to remove negations in such theories.
In the next section we describe a generalisation of Sat-delta
to cope with most standard theories.

3.2 Generalised Sat-Delta
We generalise Sat-delta to the theories in Table 1: Column The-
ory indicates the name of the theory; Column Sort indicates
the sorts of the variables in each theory; Column Operators
indicates the operators that can be used to build atomic for-
mulas in each theory. We extend the definition of Sat-delta to
these theories by defining (i) the total reference models that
we use to assign concrete values to the variables in these theo-
ries, and (ii) the rules for computing the Sat-delta values of the
atomic formulas that can be defined in these theories.

For example, the second row of the table indicates that
the definition of Saf-delta for the formulas in the theory of

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

integers shall include both total reference models that
assign constants to integer variables, and computation rules
for atomic formulas built with the comparison operators
{=.#, >, >, <, <}, consistently with the definition that we
discussed in the previous section.

Below, we present the reference models and the rules to
compute Sat-delta for formulas in the theories listed in
Table 1. We recall that the computation rules that aggregate
the Sat-delta values of the atomic formulas across the propo-
sitional structure of the formulas, presented in the previous
section with reference to the theory of integers, are the same
for all theories.

3.2.1 Reference Models

For each theory, the reference models map variables of the
sorts that characterise the theory to constant values. We
define the mapping of variables to concrete values first for
primitive and then for structured sorts. Primitive sorts are
sorts for which we can identify a concrete constant that can
be assigned to all variables of that sort; Structured sorts cor-
respond to parametric and recursive data types.

With reference to column Sorts in Table 1, primitive sorts
include the sorts Bool, Int, Real and String. The simple map-
ping of integer variables to integer constants that we defined
in the former section can be straightforward generalized to all
primitive sorts: for the theory of integers, we built reference
models that cover all variables of Int sort by simply mapping
all variables of such sort to an integer constant £ € Z chosen
as a concrete representative value. In line with this approach,
we build reference models for sort Bool by mapping all varia-
bles of boolean sort to either the constant true or false, for sort
Real by mapping all variables of real sort to a chosen real
number, and for sort String by mapping all variables of string
sort to a chosen string constant.*

Structured sorts can be instantiated in infinitely many
ways by varying the values of either the parameters or the
inner sorts that they depend on, and thus they represent
families of primitive sorts. The structured sorts in the table
are fixed size bit-vectors (sort BicVec,), Arrays (sort
Array[I — V]) and Uninterpreted Functions (sort APy, ...,
P, — V). Sort BicVec, is parametric with respect to the size
(the number of bits) of the bit-vector it describes. Thus, a
formula in the theory of fixed size bit-vectors can include
expressions that refer to bit-vectors of different size, such
as bit-vectors of eight, sixteen and sixty-four bits. Sort
Array[I — V] is parametric with respect to the types of both
the indexes and the elements of the array. Thus a formula in
the theory of arrays can include expressions that refer to
arrays defined over different types, such as arrays with
both indexes and elements of integer type, and arrays with
indexes of string type and elements of boolean type. Sort
APy, ..., P, — V is parametric with respect to the types
specified in the signature of the function it describes. Thus a
formula in the theory of uninterpreted functions can include
expressions that refer to functions with different signatures.

For structured sorts there exists no single constant that can
be assigned to all variables of the sort, since distinct variables

4. The reference models for the mixed theory of integers and reals,
include both a reference model for sort Int and a reference model for
sort Real.

955

can be instantiated with respect to different parameters, and
thus require different constants. For example, a formula in
the theory of fixed size bit-vectors can include variables that
represent bit-vectors of distinct sizes, and thus shall be
assigned with constant bit-vectors of appropriate size each.
Thus, we build reference models for structured sorts by defin-
ing parametric functions that return constants based on the
parameters of the sort.

We define total reference models for fixed size bit-vectors
as functions that return a constant bit-vector for each possible
bit-vector size, thus providing a compatible literal for any bit-
vector variable of any possible size. For example, a total refer-
ence model may assign any bit-vector variable of size i to the
constant bit-vector obtained by extracting the first ¢ bits of an
arbitrarily chosen infinite sequence of zeros and ones. As a
concrete case, by choosing an infinite sequence of zeros, we
build a total reference model that assigns all bit-vector varia-
bles to a bit-vector of the appropriate size representing the
value zero.

The sorts of arrays and uninterpreted functions are recur-
sively defined by means of sorts they take as parameters:
The array sort defines a data structure that maps indexes of
sort I to values of sort V; The theory of uninterpreted func-
tions is defined with respect to the function term, a mathe-
matical function that maps parameters of sorts P, ..., B, to
values of sort V. Formulas in this theory include expressions
describing functions and their properties. For instance, the
formula f(5) = 0, where f is a function with integer domain
and range, asserts that there exists some function that maps
the integer value 5 to 0.

We define total reference models for the recursive sorts
as functions that assign the variables of the sorts to compati-
ble constants, building these constants on top of the refer-
ence models that correspond to the (sort) parameters
referred in the variables. In particular, for the array and the
uninterpreted function sorts, we specify reference models
that associate (i) each array variable with a concrete array
that maps all indexes to a constant value of the sort of the
values contained in the array, and (ii) each uninterpreted
function variable with a concrete function that always
returns a constant value of the sort of the values returned
by that function, respectively.

Formally, we assign all array variables of sort Array[l —
V] to the constant array that maps any index of sort I to a
(possibly recursively built) reference model of sort V, and we
assign all uninterpreted function variables of sort (P, ...,
P,) — V to the constant function that maps all inputs of the
appropriate sorts P, ..., P, to a reference model of sort V.
For instance, to define a reference model that assigns all varia-
bles of sort Array[String — Int], we refer to the reference
model [Vv | m(v) = k] defined for variables of sort Int, to build
the constant associative array that maps any (string) index to
the constant k. Similarly, to define a reference model that
assigns all uninterpreted function variables of sort A(Real) —
Int, we build the constant function that returns the constant k
for any input.

The theory of uninterpreted functions also introduces the
concept of uninterpreted sorts, which represent sets of unin-
terpreted objects identified purely by their name. For
instance, the sort A and the sort B denote sets of uninter-
preted objects of type A and B, respectively. Uninterpreted

956

TABLE 2
Rules to Remove Negations

Negated atomic formulas Corresponding inverted formulas

e; # e

€] = €3

first — index(ez,€1) < 0

first — index(ey, e2) # 0

last — index(ey, e2) # len(ez) — len(ey)
ite(ematchre, e # e, e =€)

e — to — real(to — int(e)) # 0

—(e1 = e2)
—(e1 # e2)
—(ejcontainses)
—(eprefix — ofes)
(
(
(

J

esuffix — ofes)
—(ematchre)
—(is — int(e))

sorts support formulas that predicate on the equality or dis-
tinctness of the values of some uninterpreted sort returned by
some functions. For these formulas, we assign all uninter-
preted functions returning values of a given uninterpreted
sort to the constant function that always returns an arbitrarily
chosen constant object of that type.

3.2.2 Computing Sat-Delta

The algorithm presented in Section 3.1 computes the Sat-
delta value of generic formulas expressed as propositional
combinations of multiple atomic formulas, starting from the
Sat-delta values of the atomic formulas. In this section, we
define Sat-delta of the atomic formulas that can be expressed
in the theories listed in Table 1, by referring to the operators
reported in the table. We define Sat-delta for the new kinds
of formulas following the core principle that we introduced
in Section 3.1 for the theory of integers: The Sat-delta value
of a formula f with respect to a reference model m is the
minimal amount of modifications of the model m that pro-
duce a model that satisfies f.

Below, we present the formal definitions of Sat-delta for
all the operators in Table 1, that is, the inequalities (opera-
tors =, #, >, >, <, <), which are shared among most theo-
ries (Booleans, Integers, Reals, Mixed Integer/Reals, Fixed
Size Bit-Vectors, Unint. Sorts), the operators specific for the
String theory, and the operator is-int of the Mixed Integer/
Reals theory.

Inequalities. In the theories of Booleans, Integers and Reals,
inequality atomic formulas are expressed over arithmetic
expressions denoting booleans, integer numbers and real
numbers, respectively. In the theory of Fixed Size Bit-Vectors,
inequalities are expressed over expressions denoting bit-vec-
tors of the same size. The Fixed Size Bit-Vectors expressions
can be interpreted as either signed or unsigned numbers,
as explicitly indicated with subscripts s (signed) and u
(unsigned) of the operators: <, <., <, <y, >4, >4, =5, >0

We define Sat-delta for inequality atomic formulas by
extending the definition in Fig. 3: The Sat-delta value of an
inequality atomic formula with respect to a reference model
is the smallest non-negative integer value that must be
added to either side of the formula to make the model sat-
isfy it. In the theory of Fixed Size Bit-Vectors, we compute
Sat-delta consistently with the signed or unsigned interpre-
tation of the values, according to the comparison operator
used in each specific formula.

Operators for Strings. Atomic formulas in the theory of
strings are expressions either of the form s ® ¢, where s and ¢
are expressions denoting strings and © € {=, #, contains,
prefix — of, suffix — of }, or of the form smatchre, where s is an

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

expression denoting a string, and re is a regular expression.
Expressions s ® t assert that the string s equals, is different
from, contains, is a prefix of or is a suffix of the string ¢, respec-
tively. Expressions smatchre asserts that the string s is part of
the regular language defined with the regular expression re.

We compute the Sat-delta value of s ® ¢t atomic formulas
with respect to a reference model m, by evaluating the expres-
sions s and ¢ on the model m to obtain two constant strings
m(s) and m(t). We compute the Sat-delta value of a formula of
the form s = ¢ by calculating the minimum number of charac-
ters that must be added, removed or modified in the string
m(s) to obtain the string m(t). This measure is commonly
known as the edit distance of the strings m(s) and m(¢) [22].
For example, the Sat-delta value of the formula zconcaty =
gooda fternoon with respect to the model m = {z = good,y =
noon} is the edit distance dist(goodafternoon, goodnoon) =5,
since we need to add 5 letters to goodnoon to obtain
goodafternoon.

We compute the Sat-delta value of s # ¢t formulas with
respect to a model m by comparing the concrete strings
m(s) and m(t) obtained instantiating s and ¢ on m: Sat-delta
=0 if m(s) # m(t), 1 otherwise, since changing a character in
either strings turns equal strings into different ones.

We compute the Sat-delta value of a formula of the form
scontainst with respect to a model m as the edit distance
between m(t) and m(s), if m(s) is shorter than m(¢), or the
minimum edit distance between m(t) and any substring of
m(s) with the same length of m(t), otherwise, the computed
distance being in both cases the minimum amount of
actions needed to reduce m(s) to a string that contains m(t).

We compute the Sat-delta value of a formula of the form
sprefix — oft with respect to a model m by calculating the
number of pairwise different characters in m(s) and m(t)
up to the length of the shortest of the two strings, and then
adding the number of characters (if any) by which m(s)
exceeds the length of m(t).

We compute the Sat-delta value of a formula of the form
ssuffix — oft with respect to a model m by reversing both
m(s) and m(t), and then referring to the computation defined
for the operator prefix — of.

We compute the Sat-delta of a formula of the form
smatchre with respect to a model m by instantiating the con-
crete string m(s): Sat-delta =0 if m(s) matches the regular
expression re, 1 otherwise. We also experimented with a
version of Sat-delta that exploits the agrep command [32] to
measure the extent by which the string s does not match the
regular expression re, and we found the approach to expen-
sive to be of practical use.

Operator isint for Mixed Integer/Reals. Formulas in the mixed
theory of integers and reals can predicate on integer, real and
a combination of both integers and real variables. The theory
introduces the is — int(e) that returns true if the value of the
real expression e is an integer value, false otherwise. We com-
pute the Sat-delta value of a formula of the form is — int(e)
with respect to a model m as m(e) — |m(e)], where |m(e)|
represents the integer truncation of m(e). Thus, Sat-delta is
zero if m(e) is a real number that represents an exact integer,
and corresponds to the decimal part of m(e) otherwise.

Table 2 summarises the rules that Sat-delta applies to
remove negations in the atomic formulas that depend on
the operators in Table 1.

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

3.3 Sat-Deltain Utopia

The hash-function Sat-delta provides a straightforward way
for Utopia to sort formulas and efficiently retrieve the candi-
date formulas that are the closest (in terms of their Sat-delta
values) to a target formula, the satisfiability of which has to
be determined. Utopia simply computes the Sat-delta value
of the target formula, and uses the computed Sat-delta value
as the index to identify the & formulas with closest Sat-delta
values to that of the target. Our current prototype of Utopia
sets k to 10, that is, it selects and tries to reuse the 10 formu-
las with Sat-delta values closest to the target. In line with the
metaphor illustrated in Fig. 2, Utopia hypothesises that these
10 formulas are the ones that most likely share solutions
with the target formula. Utopia then crosschecks the retri-
eved solutions against the target formula, to determine the
satisfiability value of that formula.

4 REUSING UNSAT-CORES

This section presents the hash-function Unsat-footprint that
Utopia exploits to efficiently search a repository of previ-
ously solved unsatisfiable formulas for an unsat-core that
proves the unsatisfiability of a new formula. Unsat-footprint
instantiates the hash-function hy; of the general definition of
the Utopia algorithm given in Algorithm 1. Utopia builds on
the common practice that popular SMT solvers return a
proof of unsatisfiability of an unsatisfiable formula in the
form of an unsat-core, which is a subset of the clauses of the
formula whose conjunction is unsatisfiable. Utopia stores
and reuses unsat-cores to prove that new formulas are
unsatisfiable, by retrieving a previously computed unsat-
core that proves the unsatisfiability of the new formula.
Unsat-footprint heuristically maps the clauses of each avail-
able unsat-core to a fixed size bit vector. It maps each clause to
a specific bit, which is then set to 1, while all remaining bits
are set to 0. The computation of the hash-function guarantees
that the same clauses always map to the same bits, thus allow-
ing Utopia to check the containment of an unsat-core in a for-
mula by comparing the Unsat-footprint value of the unsat-core
with the Unsat-footprint value of the formula. For instance, if
we have an unsat-core u and two formulas f; and f5 such that:

Unsat — footprint(u) = 0101...(with zeros as bit suffix),
Unsat — footprint(fi) = 0001 ... (with any bit suffix),
Unsat — footprint(fs) = 1101 ... (with any bit suffix),

then we can deduce that the formula f; does not contain
the unsat-core u, because u includes a clause that maps to the
second bit of the corresponding Unsat-footprint, while f; does
not. Conversely, f, might contain u, because f> includes two
clauses that map to the second and fourth bits of the corre-
sponding Unsat-footprint, exactly as the two clauses of u, and
thus the two clauses of f, might be also in u.

Following the general approach that we illustrated in
Section 2, Utopia uses the Unsat-footprint heuristic to effi-
ciently identify the unsat-cores close to a new formula, that is,
the unsat-cores composed only of clauses that the formula
might contain as well, distinguishing these from the unsat-
cores far from the formula, because they contain clauses that
do not belong to the formula. The experiments reported in
Section 5 indicate that the set of unsat-cores close to a formula
according to the hash-function Unsat-footprint is often very

957

small, thus indicating that Unsat-footprint can efficiently
identify the reusable unsat-cores, if any exists.

The definition of Unsat-footprint exploits the Bloom filter
data structure [4]. In the remainder of this section we for-
malise the definition of the hash-function Unsat-footprint,
and present how Utopia exploits Unsat-footprint to efficiently
search reusable unsat-cores throughout large repositories of
previously solved unsatisfiable formulas.

4.1 Unsat-Footprint

Function Unsat-footprint heuristic is a Bloom filter ([4]) that
uses a single hash-function to represent the set of clauses of
an unsat-core. Each bit set to 1 in the Bloom filter represents
a clause that belongs to the unsat-core.

The Unsat-footprint function maps the abstract syntax tree
of a clause to an integer number between 0 and N — 1, where
N is the Bloom filter size, by visiting the abstract syntax tree
of the clause in depth-first order, and processing the nodes in
post-order during the visit. At each node of the abstract syn-
tax tree, the Unsat-footprint function (i) computes a local hash
code that depends on the entity represented by the node, and
(ii) recursively combines the local hash code with the hash
codes computed at the children nodes. We compute the local
hash-function code depending on the nature of the nodes:

Leaf nodes that represent constants: We hash the
value of the constant: For integer constants, we apply
the Knuth multiplicative hashing scheme (hash(n) =
n * 2%) to the value of the constant [21]. For all other
constants, we rely on the hashCode method of the
Java standard library, such as String.hashCode for
string constants.
Leaf nodes that represent variables: We apply the
Knuth multiplicative hashing scheme to the value of
the positional index associated with the variable
according to the order in which the distinct variables
appear in the current clause.
Non-leaf nodes that represent operators: The local
hash code is a predefined prime number that is dis-
tinct across the nodes that represent distinct operators
and operands of distinct types.
The hash-function combines the local hash codes with the
hash codes computed for the children nodes, by relying on
the hash_combine algorithm implemented in the Boost C++
library [29].

>At the end of the visit, the hash-function returns the
hash value of the root node of the abstract syntax tree mod-
ulo N (the size of the Bloom filter): This is the value in the
range [0, N — 1] that indicates the Bloom filter position that
Unsat-footprint sets to 1 to represent the visited clause.

This hash-function is efficiently computed by exploiting
only additions and bit shifting operations, guarantees that
identical clauses are always mapped to the same bit of the
Bloom filter, and maps different clauses to different bits
with high probability.

We use clause-local positional indices to represent the var-
iables, to increase the probability of matching the clauses of
an unsat-core with the ones of formulas that may use
different variable names, may list the same clauses in a differ-
ent order, and may include many other variables in clauses
other than the ones that match with the unsat-core. Thus, the
hash-function enumerates the distinct variables of the current

958

clause in the order in which they appear in the clause, and
renames each variable as v; where i is the index of the variable
in the enumeration. For instance, the formula y > z is
renamed to vy > vy.

In the current implementation, Utopia builds the Unsat-
footprint Bloom filter that represents the set of clauses in an
unsat-core from an initially empty 512-bit Bloom filter (a
vector of 512 bits all initially set to zero), by mapping each
clause of the unsat-core into a number n € [0, 511] computed
with the hash-function described above, and by setting the
nth bit of the Bloom filter to 1. This process produces a
Bloom filter in which the bits set to one represent the clauses
in the unsat-core. Our experiments indicate that this hash
function produces approximately one colliding pair of
hashes per group of a hundred clauses.

4.2 Unsat-Foolprintin Utopia

The heuristic Unsat-footprint provides a straightforward way
for Utopia to efficiently select a small set of candidate unsat-
cores that are the closest (in terms of their Unsat-footprint val-
ues) to some new formula, out of large repositories of unsat-
cores of unsatisfiable formulas solved in the past. To this end,
Utopia associates the unsatisfiable formulas in the repository
with a dictionary that maps the unsat-cores of the formulas to
their corresponding Unsat-footprint values.

Utopia checks whether a target formula might contain an
available unsat-core, by calculating the Unsat-footprint value
of the target formula, and by comparing this value with the
Unsat-footprint values of the unsat-cores in the repository.

Utopia efficiently scans the repository of unsat-cores by
obtaining the bitwise complement of the Unsat-footprint
value of the target formula, and then computing the bitwise-
and between this complemented Unsat-footprint and the
Unsat-footprint of the unsat-cores in the repository.” When
this operation yields zero, indicating the presence of a candi-
date unsat-core for the new formula in the repository, Utopia
adds the corresponding unsat-core to a list of candidate
unsat-cores that it will later check against the target formula,
up to selecting a maximum number (ny;) of candidate unsat-
cores. Our current prototype of Utopia sets ny to 10, that is, it
always selects and tries to reuse the 10 unsat-cores closest to
a new formula in terms of their Unsat-footprint values.

The selection requires only bitwise comparisons of inte-
gers to filter the candidate unsat-cores. The experimental
results reported in Section 5 indicate an overhead below 1
ms for selecting 10 candidate unsat-cores. The experiments
reported in Section 5 were conducted on repositories with

5. By complementing the Unsat-footprint value of a formula, that is,
by switching each zero to one and each one to zero, we obtain a Bloom
filter that represents all the clauses that are not in the set represented
by the original Bloom filter. It follows that a set of clauses A represent-
ing a formula likely contains another set of clauses B representing an
unsat-core, if and only if the bitwise-and of the complement of the sig-
nature of A and the signature of B yields zero. Consider for instance a
formula containing four clauses for which our hash function yields the
hashes {2,3,5,8} and an unsat-core for which our hash function yields
the hashes {2,5}. The Unsat-footprint of the formula and unsat-core
would be [01101001000...0] and [01001000...0], respectively. In this
case, the complement of the signature of the first set is the bit vector
[10010110111...1], which compactly represents all clauses that do not
yield the hashes {2, 3,5,8}. The bitwise-and of such bit vector and the
Unsat-footprint of the unsat-core returns zero indeed, confirming that
the clauses with hashes {2, 5} might be contained in the set of clauses
with hashes {2, 3,5, 8}.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

up to several tens of thousands of unsat-cores. It is possible
to efficiently deal with repositories with millions of unsat-
cores by suitably indexing the Bloom filters of the unsat-
cores in the repository, for example, by using a prefix trie as
done in the algorithms of Papalini et al. [27].

Once selected a set of candidate unsat-cores, Utopia
checks if any of the candidate unsat-cores is contained in
the target formula. If so, Utopia reports a cache hit and
returns a reusable solution that proves that the target for-
mula is unsatisfiable; Utopia reports a cache miss otherwise.

4.3 Bloom Filters

A Bloom filter is a fixed-size bit vector that represents a set
of elements by relying on a collection of hash functions,
each mapping an element of the set to a position in the bit
vector [4]. Determining if an element e belongs to a set S
amounts to computing the Bloom filter of e, and comparing
it to the Bloom filter of S. Hash collisions produce false posi-
tives, whose frequency depends on the amount of both bits
and hash-functions.

In the specific case of Unsat-footprint, large Bloom filters
support fine mappings between formula clauses and Bloom
filter bits, and large sets of hash-functions further disperse the
mapping of distinct sets of clauses on different combinations
of the available bits, thus reducing the likelihood that the
Unsat-footprint of an unsat-core may collide with the Unsat-
footprint of a formula that does not contain that unsat-core.
The advantage of large filters and large sets of hash-functions
comes with memory cost for storing the Bloom filters and
overhead of computing the hash functions.

Our current implementation of Unsat-footprint uses 512-
bit Bloom filters and relies on the single hash-function of
Section 4.1. With this implementation we observed a false
positive rate of 0.41 across the experiments that we report in
this paper. Utopia is designed to tolerate many false posi-
tives: by design it can tolerate up to 9 false positives when
selecting 10 candidate solutions for a formula for which
there exists a reusable solution indeed. This is why the
experiments that we discuss in the next section indicate that
Unsat-footprint effectively finds a reusable unsat-core for
most formulas for which a reusable unsat-core was avail-
able indeed, despite an observed false positive rate of 0.41.

The overall false positive rate of 0.41 is due not only to
hash collisions in the Bloom filters, but also to the heuristic
nature of Unsat-footprint. Unsat-footprint produces false posi-
tives regardless of hash collisions in the Bloom filter,
because it indicates potential correspondence between the
clauses of formula and unsat-cores independently of the
possible mutual relations between the variables referred in
the clauses. For example, Unsat-footprint would indicate a
(one by one) matching between the clauses of the unsat-core
x>y ANy>z Az > 3z and the clauses of the formula
a>bAc>dANe > 3f, because the renaming of the varia-
bles of each clause as vy and v; indicates that the three
clauses of the formulas individually match the three clauses
of the unsat-core. Utopia would discard this solution in the
checking phase, because the unsatisfiability of the unsat-
core depends on the mutual relations between variables z, y
and z in the three clauses, while variables a, b, ¢, d, e and f
are mutually independent in the three clauses of the for-
mula (which in fact is satisfiable in this example).

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

TABLE 3
Experiment Summary

Atomic predicates
per formula:

Logic Experiments Formulas min ql med g3 max Sat Unsat
QFLIA 22 798171 1 20 24 39 530 67% 33%
QFNRA 16 28 570 2 12 19 31 50 74% 26%
QFABV 99 181899 1 3 3 5 1799 70% 30%
QFMIX 2 8120835 1 2 4 7 121 20% 80%
QFS 1 57 525 1 2 5 21 1452 78% 21%

Disaggregating the false positives that are or are not due to
hash collisions requires a non-trivial comparison between
the formula and the unsat-core, which is not implemented
in the current prototype of Utopia.

In our experiments, we experimented with Bloom filters
greater than 512 bits without observing significant improve-
ments, possibly because using a single hash-function does not
suffice to optimally exploit the additional bits. Experimenting
with multiple hash-functions would require simply extending
the hash-function presented in Section 4.1 with a parametric
seed value, as computing the function for different values of
the seed would produce different bit mappings of the formula
clauses. Experiments with multiple hash-functions would
make sense only with a parallel implementation that avoids
the overhead of serially computing the hash-function multiple
times for a formula. Investigating the impact of multiple hash
functions computed in parallel is part of our future plans.

5 [EVALUATION

In this section we discuss the results of a set of 140 experi-
ments that assess the effectiveness of Utopia to improve the
efficiency of different types of symbolic analysis that rely on
constraint solving. In each experiment, we consider a pro-
gram and a symbolic analyser, collect the set of formulas that
the analyser submits to the constraint solver during the anal-
ysis of the program, and evaluate the effectiveness of Utopia
to improve the efficiency of the constraint solving step by
reusing the solutions across those formulas. All experiments
include both satisfiable and unsatisfiable formulas, to evalu-
ate the mutual contributions of the heuristics Sat-delfa and
Unsat-footprint that Utopia uses to identify the reusable mod-
els and the reusable unsat-cores, respectively. The set of
experiments as a whole encompasses formulas produced
with program analysers that refer to several different logics,
thus allowing us to control for the potential sensitivity of Ufo-
pia with respect to formulas expressed in the different logics.

Overall, the results of the experiments provide empirical
evidence that Utopia succeeds in identifying reusable solu-
tions for significant portions of the formulas considered in
the experiments, and that, by doing so, it results in relevant
improvements of the efficiency of the overall constraint solv-
ing phase. The experiments show the effectiveness of Utopia
both in absolute terms and in comparison with the other
existing approaches that exploit the structure of the formulas
to reuse solutions across formulas that are either equivalent
to each other or related by implication.

Below we introduce the subjects that we used in the
experiments, discuss the research questions addressed in the
experiments, present the prototype implementation of Utopia
and the experimental setting that we used in the experiments

959

to address the research questions, comment on the results for
each research question, and discuss the threats to the validity
of our experiments and the countermeasures that we adopted
to mitigate the impact of those threats.

5.1 Subjects

We experimented with a total of 140 subjects that encom-
pass sets of formulas from (i) quantifier-free linear integer
arithmetic logic, hereafter QFLIA, (ii) quantifier-free non lin-
ear real arithmetic logic, QFNRA, (iii) quantifier-free logic
over the theory of bit-vectors and bit-vector arrays, QFABV,
(iv) quantifier-free logic over the mixed theory of integers
and reals, QFMIX, and (v) quantifier-free logic over the the-
ory of strings, QFS.°

Table 3 indicates the considered logics (column Logic),
the number of experiments that refer to that logic (column
Experiments), the number of formulas involved in the experi-
ments (column Formulas), the distribution of the atomic
predicates per formula (columns Atomic predicates per for-
mula) that includes minimum (column min), first quartile
(column gq1), median (column med), third quartile (column
g3) and maximum (column max), and the relative amounts
of satisfiable and unsatisfiable formulas (columns Sat) and
Unsat, respectively).

We experimented with (i) 798,171 QFLIA formulas that we
produced with the symbolic executors Crest [10] and JBSE
[7] during the analysis of 22 C and Java programs, with size
from 32 to 10,000 lines of code [13], (ii) 28,570 QFNRA formulas
that we produced with the invariant generator Gk-tail during
the analysis of 16 Java classes of the GraphStream and Guava
libraries, with size from 22 and 418 lines of code [25], (iii)
8,120,835 QFMIX formulas generated with the symbolic exec-
utor |BSE during the analysis of two Java programs, Gantt
and Closure, with 404 and 7,766 lines of code, respectively,
that are distributed in the replication package of [6], (iv)
181,899 QFABV formulas generated be running the symbolic
executor Klee for one minute on each of the 99 Coreutils pro-
grams of the Linux kernel, with size from 3,307 and 5,217
lines of code [11] (we considered only the formulas that
escape the solution caching component included in Klee itself,
to investigate if Utopia can extend the reuse of formulas
beyond Klee) (v) the 57,525 QFS formulas of the Kaluza bench-
mark, a benchmark of formulas generated with the Javascript
symbolic executor Kudzu to detect vulnerabilities in web
applications [30], for which we do not have information on
the size of the programs used to extract these formulas.

The 38 QFLIA and QFNRA experiments were part of the
experimental evaluation that we presented in a previous
paper [3], while the other 102 experiments are an original
contribution of this paper, and aim to assess the preliminary
evidence reported in [3].

5.2 Research Questions
Our experiments address three main research questions.

6.In the paper we report the cumulative results for the groups of
experiments that refer to formulas in each logic. We provide a data rep-
lication package that includes the detailed results of each single experi-
ment as supplementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2019.2898199. Our publicly distributed tool, Julia [1], allows to rep-
licate the experiments.

http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2898199
http://doi.ieeecomputersociety.org/10.1109/TSE.2019.2898199

960

RQ: To what extent does Utopia identify reusable solutions
for the formulas generated during the analysis of a program?

RQ; addresses our hypothesis that the Sat-delta and
Unsat-footprint heuristics identify reusable solutions for sat-
isfiable and unsatisfiable formulas. The larger the amount
of formulas for which Utopia successfully identifies a reus-
able solution, the more we may expect to benefit from Uto-
pia by reusing those solutions in place of executing the
constraint solver to solve those formulas.

We answer R();, by measuring the amount of formulas for
which Utopia identifies a reusable solution among the formu-
las submitted to the constraint solver during the analysis of a
program, repeating such measurement across our experi-
ments with that consider sets of formulas that were synthe-
sized for many different programs and with program
analyzers that refer several different logics. We evaluate the
effectiveness of Utopia by comparing the reuse data obtained
with Utopia with respect to the best possible reuse data that
could be achieved with the optimal (though inefficient)
approach of testing each new formula against all currently
available solutions. We consolidate the statistical evidence
that there is indeed a causal link between the observed reuse
data and the heuristics Sat-delta and Unsat-footprint, by
repeating the experiments with a placebo version of Utopia.
The placebo version selects the same amount of candidate
solutions as Utopia at random from the set of available solu-
tions. We refer to the (paired, one tail) Wilcoxon test to con-
firm our hypothesis that Utopia can reuse more solutions than
the placebo version across our experiments.

RQy: Does Utopia improve the efficiency of program analysis?

RQ, addresses our hypothesis that Utopia decreases the
constraint solving costs in program analysis. We answer
RQ» by quantifying the time saved by reusing solutions.

The time spent for reusing a solution with Utopia comes
from the time spent for calculating the heuristics Sat-delta and
Unsat-footprint for the formula, the time spent for selecting a
set of candidate solutions out of the available ones, and the
time spent for testing the formula against the candidate solu-
tions to validate if any of them can be reused indeed. The sav-
ing of Utopia (with respect to always invoking a constraint
solver) depends on the ratio between the formulas for which
Utopia identifies a reusable solution, thus saving solver calls,
and the formulas for which Utopia does not identify reusable
solutions, for which it pays both the overhead of the reuse
process and the cost of having to call the solver anyway. In
the best case, Utopia always finds a reusable solution, thus
reducing the time spent to invoke a solver to the time needed
to identify the solution and check that is it a valid solution
indeed. In the worst-case, Utopia does not identify any reus-
able solution, thus wasting the overhead of searching candi-
date solutions and proving that they are not valid solutions
for the target formulas indeed.

R@Q)y aims to disprove the null-hypothesis that Utopia
results in penalising the efficiency of the program analysis,
because it is either slower than computing the solutions
directly with the solver, or results in too high overhead on
the overall constraint solving time.

We answer R()» by measuring and comparing the time to
complete all the constraint solving tasks issued by a pro-
gram analyzer with and without Utopia. When working
with Utopia, we measure the time of the constraint solving

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

task as the sum of the time spent to execute Utopia, and the
time spent to solve the formulas for which Utopia cannot
identify any reusable solution.

RQs: Does Utopia outperform its competing approaches?

RQ)3 addresses the hypothesis that Utopia identifies more
reusable solutions than state-of-the-art approaches. The
distinctive characteristic of Utopia is that it does not depend
on the logical structure of the formulas, but evaluates the
formulas against the reference solutions, and explicitly tests
them against a heuristically selected set of available solu-
tions, while state-of-the-art approaches exploit the logical
structure of the formulas to identify formulas that are either
equivalent or related by implication. This distinctive charac-
teristics widen the range of reuse opportunities of Utopia
with respect to state-of-the-art approaches, because Utopia
can reuse solutions also among formulas that are neither
equivalent nor related by implication. On the other side, as
discussed in Section 2, Utopia may suffer from false nega-
tives, thus the effectiveness of Utopia with the respect to
approaches based on structural equivalence of formulas
shall be studied empirically rather than demonstrated
analytically.

Additionally, while Utopia is to a large extend logic inde-
pendent, and we have instantiated approach for the logics
listed in Table 1, state-of-the-art approaches strongly
depend on the logic, and target only quantifier-free linear
integer arithmetic logic. Thus we answer R()3 by comparing
the reuse rate of Utopia with respect to the reuse rate of
state-of-the-art approaches in the context of quantifier-free
linear integer arithmetic logic, which involves 22 out of our
140 experiments.

5.3 Prototype

We executed the experiments with Julia, a prototype version
of Utopia [1]. Julia is implemented in Java, and works as the
front-end layer of a back-end constraint solver set at config-
uration time. From the caller viewpoint, Julia acts as a con-
straint solver, that is, it takes as input a formula, and
returns either a model proving that it is satisfiable, or an
unsat-core proving that it is unsatisfiable. From the internals
viewpoint, Julin caches the solutions that the back-end
solver computes, and exploits the Utopia technique to reuse
them when possible.

When called with a formula, Julia separates the input for-
mula into mutually independent conjunctive sub-formulas,”
and then it (i) applies the Utopia technique to determine
either the satisfiability or the unsatisfiability of the individ-
ual sub-formulas by reusing either models or unsat-cores
identified with the Utopia approach, (ii) calls the constraint
solver for the sub-formulas for which it does not find a reus-
able solution, and (iii) aggregates the results of the sub-for-
mulas to produce a solution of the original formula.

Julia first determines the satisfiability of each sub-formula
by (i) calculating the Sat-delta value of the formula as the
average Sat-delta with respect to the reference models
presented in Table 4, (ii) selecting the ten models that

7. The process of decomposing a conjunctive formula into the set of its
mutually independent sub-formulas is known as formula slicing [11], and
is generally adopted by state-of-the-art formula caching approaches. Two
sub-formulas are mutually independent if they include conjuncts of the
original formula that do not have common variables.

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

TABLE 4
Reference Models in the Prototype Julia

Logic Reference models
e QFLIA, e [Vu|m(v) =0]
QFNRA [Vo|m(v) = 100]

[Vo|m(v) = —1000]

e QFABV Vo|m(v) =0...0
Vo |m(v) =0...01]

e QFMIX Vo |m(v) = 0]
[Vo|m(v) = —2%]
Vo |m(v) = 2% — 1]

e OQFS Vo |m(v: str) ="",m(v: int) = 0]
Vo |m(v: str) ="ad",m(v: int) = 1]

Julia computes the Sat-delta value of a formula in a logic (column Logic) as
the average of the Sat-delta values with respect to a set of reference models
(column Reference models) for that logic.

correspond to the (previously solved) satisfiable formulas
whose Sat-delta values are the closest to the one of the target
formula, and (iii) testing the target formula against such
models to determine whether any of them can be reused to
prove the target formula satisfiable.

If Julia finds a reusable model, it logs a cache hit and
returns the identified solution, otherwise, Julia repeats the
search procedure with the Unsat-footprint heuristic to iden-
tify the ten available unsat-cores that are most likely con-
tained in the target formula, and tests whether any of these
unsat-cores is contained in the target formula. If Julia finds
an unsat-core for the formula, it logs a cache hit, and returns
the identified unsat-core as a solution that proves that the
target formula is unsatisfiable. Otherwise, Julia reports a
cache miss, solves the formula with the chosen SMT solver,
and caches the solution in the relevant repository.

Sat-delta works with any set of reference models. To
chose the reference model in the Julia protoype, we experi-
mented with different sets of models, composed of one,
three, five and ten models for each of the considered logic,
and we did not notice significative differences in the results.
We adopted the models that result in the best trade-off
between reuse opportunities and efficiency.

Julia can be used with a variety of back-end SMT solvers.
In our experiments, we used Microsoft Z3 version 4.5.1, the
latest version of Z3 available at the time of our experi-
ments [15]. In the QF S experiment, we used Z3-5tr, an exten-
sion of Z3 which specifically addresses formulas from the
theory of strings [33] because Z3-Str is more efficient of
these formulas.

5.4 Experimental Setting
In our experiment, we compute the solutions of each given
set of formulas both with Julia, instantiated with Z3 (Z3-Str
for formulas on strings), and directly with Z3 (Z3-Str), to
measure the improvement of Utopia over the plain use of a
constraint solver. We conducted a total of 140 experiments
with sets of formulas from five logics, as summarised in
Table 3.

We executed the QFMIX experiments with the [BSE sym-
bolic executor that uses Z3 as default solver, and that we

961

extended with Julia. We symbolically analysed the subject
programs Gantt and Closure with JBSE, with and without
Julia, thus we directly quantify the impact of Utopia on sym-
bolic execution. We executed the QFLIA, QFNRA, QFABV
and QFS experiments with Crest, Gk-tail, Klee and Kudzu,
respectively. Since none of these tools is integrated with
Julia, we collected the formulas produced while analysing
the subject programs, and processed these formulas offline
with both Julia and Z3. Thus we quantify the impact of Uto-
pia with respect to the constraint solving activities in the
program analysis sessions.

In the experiments, [ulia incrementally populates an ini-
tially empty repository with the solutions computed with
the constraint solver after each cache miss. Since we use a
deterministic version of Z3, which always returns the same
solution for the same formula, the results of the experiments
are deterministic.

In the experiments, we quantify the efficiency of Julia and
Z3 in terms of their execution time, that is, the time to complete
the whole constraint solving task, and compare the running
time of Julia and the running time of calling Z3 directly.

We quantify the effectiveness and relevance of the Sat-
delta and Unsat-footprint heuristics by measuring the reuse-
ratio, that is, the number of formulas that Julia solves by
identifying a reusable solution by means of the heuristics
(the cache hits) over the total number of formulas consid-
ered in each experiment (which include both cache hits and
cache misses). We compare the reuse-ratio of Julia, with the
reuse-ratio of [-exhaustive and J-random, two versions of Julia
that substitute the heuristics Sat-delta and Unsat-footprint
with simple selection strategies that we refer to as baseline.

J-exhaustive tests the target formulas against all solutions
currently available in the repositories of satisfiable and
unsatisfiable formulas. Thus, J-exhaustive identifies all solu-
tion of all formulas that can be solved by reusing the solu-
tion of some formulas solved beforehand. J-exhaustive is
very inefficient, but provides an upper bound to evaluate
the effectiveness of the heuristics Sat-delta and Unsat-foot-
print. The closer the reuse-ratios of Julia are to the ones of J-
exhaustive across the experiments, the stronger the evidence
that the heuristics Sat-delta and Unsat-footprint approximate
the optimal effectiveness.

J-random tests the target formulas against ten models and
ten unsat-cores selected at random out of the models and the
unsat-cores currently available in the repositories. Thus,
J-random represents the palcebo alternative of Julia with respect
to using the heuristics Sat-delta and Unsat-footprint. We can
claim that the heuristics Sat-delta and Unsat-footprint are effec-
tive only if we gain statistical evidence that the reuse-ratios of
Julia significantly outperform the ones of J-random.

We run all the experiments on a MacBook Pro equipped
with a 2.5 GHz Intel Core i7 processor and 16 GB of RAM.
To control for bias due to the execution environment, we
execute each run of each experiment on a freshly rebooted
machine, repeat each execution ten times, and average the
results. This also allows us to account for the intrinsic non-
determinism of J-random. We set a timeout of 10 seconds for
Z3 to solve each formula. The timeout never expired in any
of our experiments.

The results depend on the order in which Julia processes
the formulas considered in the experiments. In all but Kudzu

962

[J-exhaustive

100%
90%
80%
70%
60%

50%

reuse-ratio
|
I

40%
30%

20%
10%

0%

QFLIA QFNRA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

[Julia [J-random
QFABV QFMIX QFS
benchmark

Fig. 4. Reuse-ratio of Julia, J-exhaustive and J-random for both satisfiable and unsatisfiable formulas.

experiments, we process formulas in the order in which they
were originally produced, to match a realistic scenario for the
application of our approach. Since Kudzu does not process
formulas in a specific order, we executed the Kudzu experi-
ments by both reversing and randomly rearranging the order
of formulas, to study the impact of the order of evaluation,
without observing any significant difference in the results.

5.5 RQ, - Effectiveness

RQ, addresses the effectiveness of Utopia in identifying reus-
able solutions by means of the underlying heuristics Sat-delta
and Unsat-footprint. We answer this research question by com-
paring the reuse-ratios that we measured with the prototypes
Julia, J-exhaustive and J-random in 140 experiments.

Fig. 4 shows the box-plot charts that summarise the dis-
tribution of the reuse-ratios across all experiments for the
different logics. Figs. 5 and 6 show the box-plots for satisfi-
able and unsatisfiable formulas, respectively, to illustrate
the individual contributions of the heuristics Sat-delta and
Unsat-footprint. The figures show three box-plots that corre-
spond to the reuse-ratios of Julia, J[-exhaustive and J-random,
respectively, for each of the five logics considered in our
experiments, QFLIA, QFNRA, QFABV, QFMIX and QFS. The
box-plots highlight the minimum, first quartile, median,
third quartile and maximum value of the reuse-ratios
observed in the corresponding group of experiments.”

The box-plots in Figs. 4, 5 and 6 show that the reuse-
ratios of Julia consistently outperform the reuse-ratios of the
random (placebo) strategy, and are extremely close to the
reuse-ratios of the (ideal) exhaustive strategy.

8. We remark that the minimum of 48 percent that Julia achieves for
the experiments with all QFLIA formulas (Fig. 4) is indeed consistent
with the minimum of 0 percent that it achieves with reference to only
either satisfiable or unsatisfiable QFLIA formulas (Figs. 5 and 6). In fact,
the minimum reuse of satisfiable (resp. unsatisfiable) formulas is
achieved for a program for which the considered formulas include a
small set of satisfiable (resp. unsatisfiable) formulas that do not share
solutions among them, whereas for the same program there are many
unsatisfiable (resp. satisfiable) formulas among which Julia successfully
identifies a good portion of reusable solutions.

We gather statistical evidence that Julia is considerably bet-
ter than [-random and very close to J-exhaustive with the
(paired, one tail) Wilcoxon test. The Wilcoxon test supports
the claim that the reuse-ratio of Julia outperforms the reuse-
ratio of J-random by 38, 42 and 24 percent when considering
all formulas, only satisfiable formulas and only unsatisfiable
formulas, respectively, with p-values of 0.016, 0.007 and 0.02
in the three cases, respectively. It supports the claim that the
reuse-ratio of Julia differs by less than 0.6, 0.5 and 1.5 percent
from the best values computed with J-exhaustive in the three
cases, respectively, with p-values of 0.009, 0.022 and 0.026,
respectively.

The limited difference between Julia and J-random box-
plots in some QFLIA experiments depends on the charac-
teristics of the case study. In fact, many of the 22 QFLIA
experiments contain large sub-sets of equivalent formulas
that share solutions, as evident from the upper bound of the
reuse-ratio that is very close to 100 percent as median value
in the boxplot of J-exhaustive in Fig. 4. As a consequence,
these experiments tend to experience few cache misses, and
thus the solution repositories of these experiments contain
small amounts (few tens) of formulas, since in each experi-
ment we populate repositories from scratch with the solu-
tions computed with the solver upon the cache misses, thus
making random sampling possibly effective.

Nevertheless, the variance of the box-plots witnesses the
steadily effectiveness of Julia across all the QFLIA experi-
ments, in contrast with the large variability of J-random that
performs badly for the subset of the experiments with many
formulas and few equivalent formulas. The results of the
QFMIX and QFS experiments repotted in Fig. 4 further
strengthen this observation: In these experiments the limita-
tions of J-random are evident, while Julia is indeed effective
even though the upper bound of the reuse-ratio measured
with J-exhaustive is also very close to 100 percent.

The data in Table 5 indicate that the reuse rate of Utopia
does not depend on the size of the formulas. The table reports
the reuse-ratio of Julia across the formulas in the different log-
ics, for (i) the entire sets of satisfiable and unsatisfiable

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

[J-exhaustive

L

100%
90%
80%
70%
60%

50%

reuse-ratio

40%
30%
20%

10%

0% -+ L+ L

QFLIA QFNRA

963
[Julia [J-random
QFABV QFMIX QFS
benchmark

Fig. 5. Reuse-ratio of Julia, J-exhaustive and J-random with only satisfiable formulas.

formulas (columns Reuse-ratio for satisfiable/unsatisfiable formu-
las, considering: all formulas), (ii) the set of formulas with no
more and (iii) the set of formulas with more atomic predicates
than the median number of atomic predicates in the corre-
sponding set (columns Reuse-ratio for satisfiable/unsatisfiable
formulas, considering: only small/large formulas).

The even reuse ratio across the sets of formulas for all log-
ics indicates that the reuse of Utopia does not depend on the
size of the formulas: We do not observe significant differences
in the reuse rate of Utopia for small and large formulas across
all logics, but satisfiable QFABV formulas, for which Julia
found a reusable solution for the 84 percent of the small for-
mulas, but only for the 59 percent of the large formulas.

Overall, our experiments support a positive answer to
research question RQ), confirming the ability of the Utopia
approach to successfully steer the identification of reusable
solutions both for satisfiable and unsatisfiable formulas.

[1 J-exhaustive

100%
90% i i
80%
70%
60%

50%

reuse-ratio

40%
30%
20%
10%

QFLIA

0%
QFNRA

5.6 RQ- - Efficiency

RQ» addresses the impact of Utopia on the efficiency of pro-
gram analysers. We answer this research question by com-
paring the execution time of Julia with respect to both the
execution time of Z3 (version 4.5.1) and J-random, across 140
experiments. The first set of results (Julia with respect to Z3)
evaluates the impact of Utopia on the efficiency of state-of-
the-art program analysers, which rely on suitable constraint
solvers. The second set of results (Julia with respect to J-ran-
dom) evaluates the contribution of the Utopia heuristics to
achieve the efficiency gain.

Fig. 7 compares the execution time of Julia, [-random and
73, plotting the cumulative execution time of all the exp-
eriments for each logic. The bars in the figure report the run-
ning time as a portion of the running time of Z3, which is the
100 percent reference, and are annotated with the running
time in seconds.

1 Julia [J-random
QFABV QFMIX QFS
benchmark

Fig. 6. Reuse-ratio of Julia, J-exhaustive and J-random with only unsatisfiable formulas.

964 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021
TABLE 5
Sensitivity of Utopia with Respect to the Size® of the Formulas
Reuse-ratio for satisfiable formulas, considering: Reuse-ratio for unsatisfiable formulas, considering;:
Logic all formulas only small formulas only large formulas all formulas only small formulas only large formulas
QFLIA 99,99 99,99 99,93 99,87 99,96 99,70
QFNRA 91,48 89,18 93,79 37,15 33,73 41,08
QFMIX 99,98 99,99 99,96 99,74 99,94 99,53
QFABV 72,83 84,19 59,12 32,59 32,51 32,68
QFS 96,85 98,51 94,73 98,25 98,35 98,15

5Small and large formulas are formulas with no more or more atomic predicates than the median number of atomic predicates across all the formulas in the corre-

sponding set, respectively.

[Julia [Jrandom [solver
1541s 32s 2348s 3379s 7204s
= 100% 31s 2243s
o 90% 30965
©
w
=y 80% 5524s
g
o 70% 15225
T 60%
=
2 50%
ot
] o
% 40/6 12s 1210s
£ 30%
o —
=
= 20% 2525
g —_— 771s
= 14
=
0%
QFLIA QFNRA QFABV QFMIX QFsS
benchmark

Fig. 7. Execution time of Julia and J-random with respect to Z3.

Fig. 7 indicates that Julia reduces the constraint solving
time from 32 to 99 percent with respect to Z3. The saving
time ranges from 20 seconds for the fast experiments with
QFNRA, to 1 hour and 47 minutes for the experiments with
formulas in the QFS logic, where Julia solves all formulas in
approximately 13 minutes, while Z3 takes 2 hours. In the
particular case of the QFMIX experiments, where we exe-
cuted JBSE with either Julin or Z3 as backend constraint
solver, Julia reduces the analysis time from 56 to 20 minutes
with respect to simply using Z3, thus Julia improves the exe-
cution time of JBSE by 64 percent.

The comparison with J-random further highlights the con-
tribution of Utopia. [-random produces negligible improve-
ments on Z3 in all other experiments but the QFLIA and
QFS experiments, and is consistently slower than Julia in all
experiments, including the QFLIA and QFS ones, thus con-
firming the usefulness of effective heuristics.

Table 6 presents the execution time for solving satisfiable
and unsatisfiable formulas with Z3 and Julia (columns Time
(sec) with Z3 and Time (sec) with Julia, sub-columns Sat. for-
mulas and Unsat. formulas, respectively), and the overhead
that Julia pays over a direct call to the solver (column Ufopia
overhead). The data reported in the table indicate that Utopia
considerably reduces the time required to solve both satisfi-
able and unsatisfiable formulas, at the cost of a generally

acceptable overhead that ranges between 7 and 117 seconds
for the benchmarks considered in our experiments.

Overall, our experiments support a positive answer to
research question R(Q),, by confirming that Utopia can suc-
cessfully reduce the costs of constraint solving in program
analysis, and showing the impact of the Utopia heuristics on
the improvements.

5.7 RQ;- Competing Approaches
RQ; addresses the improvement of Ufopia over state-of-the-
art approaches. We answer this research question by compar-
ing both the reuse-ratio and the running time of Julia, with
the reuse-ratio and the running time of the state-of-the-art
approaches Green ([31]), GreenTrie ([20]), Recal and Recal+
([12]).° We execute the experiments with the QFLIA formulas
only, since the state-of-the-art approaches are strongly related
to the logics and deal mainly with QFLIA formulas.

Fig. 8 shows the box-plots of the reuse-ratios of the differ-
ent approaches on all QFLIA experiments. Each box-plot
shows the minimum, first quartile, median, third quartile

9. We used the version of Green available at https://github.com/
green-solver/green-solver, commit 3e2ce94, the latest available at the
time of writing. GreenTrie, Recal and Recal+ have no official releases: we
obtained GreenTrie by contacting the authors [20], and used the version
of Recal maintained at our own lab [2].

https://github.com/green-solver/green-solver
https://github.com/green-solver/green-solver

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES 965
TABLE 6
Execution Time and Overhead for Satisfiable and Unsatisfiable Formulas
Time (sec) with Z3 Time (sec) with Julia
Logic Sat. formulas Unsat. formulas Sat. formulas Unsat. formulas Utopia overhead
QFLIA 1,277 264 1 <1 13
QFNRA 27 5 2 4 7
QFABV 760 1,588 299 1,107 117
QFMIX* 441 1,529 1 7 17
QFS § 5,612 953 208 16 3

“We computed the QFMIX data when executing Julia integrated in JBSE. The sum of the time of the QFMIX row is less than the total time indicated in Fig. 7 for
the corresponding experiments, because the total time reported in Fig. 7 includes the execution time of the whole JBSE symbolic execution procedure, while the

time reported in this table is only the time required for solving the constraints.

The QFS dataset includes a small amount of formulas for which Z3 is not able to compute the solution, that is, constraints for which Z3 returns unknown. The
sum of the time of the QFS row is less than the totals indicated in Fig. 7 for the corresponding experiments, in fact, the time spent on the unknown-solution for-

mulas is slightly greater than 600 seconds in both experiments.

100% ==

90%

80%

70%
60%
50%

reuse-ratio

40%

30%
20%

10%
0% L

Green

GreenTrie Recal+

approach

Recal Julia

Fig. 8. Reuse-ratio of Green, Recal, GreenTrie, Recal+ and Julia on the
QFLIA experiments.

and maximum reuse-ratios for each approach across the
experiments. The Green approach presents the lowest reuse-
ratios (with a median 37 percent), and Utopia the highest
ones (with a median greater than 99 percent).

Fig. 9 shows the execution time of all approaches, nor-
malised with respect to the running time of the solver Z3,
the underlying solver for all considered approaches in these
experiments. Different approaches rely on different strate-
gies to invoke Z3, either creating a new Z3 process instance
for every formula, or communicating with a single process
instance of Z3 all along an experiment, with the former
strategy being in general less efficient than the latter. We
carefully addressed this issue by repeating the measure-
ment of the running time of standalone-Z3 with both invo-
cation strategies, and normalising the execution time of
each approach with respect to the time of Z3 invoked with
the strategy that the approach uses."’

The data in Fig. 9 confirm that Julia is the most efficient
approach, with a saving of over 99 percent of the solving
time, while the second best approach GreenTrie saves
approximately 87 percent of the solving time. Green, Recal

10. In the experiments we used Z3 in the standard configuration,
without considering the incremental-mode, in which Z3 attempts to save
partial artefacts of the inference process to reuse those artefacts while
solving future formulas.

100%

90%
80%

70%
60%
50%

40%
30%
20%

10%

time with respect to underlying solver

0%
GreenTrie Recal+

approach

Green Recal Julia

Fig. 9. Running time of Green, Recal, GreenTrie, Recal+ and Julia with
respect to Z3 on the QFL.IA experiments.

and Recal+ save only 53, 22 and 6 percent of the solving
time, respectively.

Overall our experiments indicate that Utopia outperforms
the competing approaches for the QFLIA logic, and is the
only approach that extends to multiple logics.

5.8 Threats to Validity
In this section we discuss the main threats to the validity of
the results reported in the paper:

Prototype implementation. We extensively tested our pro-
totype, and verified the correctness of the produced solu-
tions by checking their validity with the Microsoft Z3 SMT
solver. We executed the prototype on all the formulas used
in the experiments, and verified that the solutions identified
as reusable are indeed solutions for the candiate formulas
with the Microsoft Z3 SMT solver.

Structure of the formulas. We experimented with formulas
produced by analysing a large set of programs with JBSE,
Crest, Klee and Kudzu symbolic executors and the Gk-tail
program analyser. The formulas produced with the sym-
bolic executors share similar structures: They are large con-
junctions of homogeneous expressions, that is, expressions
in the same logic being it integer, bit-vector or string. The
formulas produced with Gk-tail are all implications
betweens non-linear real expressions. Although we have no
elements that suggest the dependence of Utopia on specific

966

structures of formulas, generalising the results to formulas
with different structures requires new experiments.

Impact on program analysis. We conducted the QFMIX
experiments with the symbolic executor [BSE integrated
with Julia, thus the results indicate the full efficiency gain of
Utopia on [BSE. We conducted all other experiments by stor-
ing the formulas computed while analysing the benchmarks
with the corresponding analyzers, and processing these for-
mulas offline with our prototype Julia, Z3 and (in the case of
the QFLIA experiments) the other tools. Thus the results
indicate the efficiency gain in the formula evaluation, but
only approximate the full gain in a realistic usage scenario.
As a further observation, we collected the QFABV formulas
by executing the symbolic executor Klee for a minute on the
99 Coreutils programs (Section 5.1), thus we cannot claim
that our results with these formula datasets witness the
quantitative efficiency gain that our Utopia approach may
have in long analysis sessions with Klee.

Order of formula evaluation. In our experiments, we fed
Utopia with formulas in the order they were originally pro-
duced by the corresponding program analysis technique to
match a realistic scenario for the application of our
approach. We investigated the impact of feeding Utopia with
the same formulas in different order by re-executing the
experiments feeding Utopia with formulas in both reversed
order and rearranged randomly, and we did not reveal
noticeable differences in the results. This indicates that the
order in which formulas are given to Utopia does not impact
the results.

6 RELATED WORK

Despite the remarkable progresses of SMT solvers, they still
remain one of the main bottlenecks to the scalability of pro-
gram analysis techniques that rely on them. In the last
decade, many different techniques have been developed to
cope with this bottleneck, including (i) using many solvers
concurrently to mitigate the weaknesses of individual solv-
ers, (ii) complementing SMT solvers with external optimisa-
tions, and (iii) reducing the number of queries of symbolic
program analysis techniques to SMT solvers.

Palikareva et al. proposed to concurrently execute multi-
ple heterogeneous solvers to improve the running time of
symbolic execution. They observed that modern SMT solv-
ers have different strengths and weaknesses and that it is
impossible to identify in advance the solver that perform
better for each formula [26]. Palikareva et al.’s framework
executes multiple solvers in parallel on the same formula,
and returns the earliest produced solution. They success-
fully augmented the Klee symbolic executor with their
framework, largely improving its scalability.

A different research thread focused on complementing
SMT solvers with external optimisations. Erete and Orso
proposed a technique that exploits the concrete values pro-
duced during dynamic symbolic execution to iteratively
simplify the formulas to solve [18], and show that the
approach can speed up the verification, but may also be
inefficient when iterating too many times.

The approaches most closely related to Utopia are techni-
ques that reduce the number of queries of symbolic execu-
tors to SMT solvers by reusing solutions across formulas.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

The Klee symbolic executor includes two caching frame-
works, called the branch cache and counterexample cache, that
target formulas in the quantifier-free theory of bit-vectors and
bit-vector arrays [11]. The branch cache simply “remembers”
formulas and their solutions. The counterexample cache
determines whether a target formula contains or is contained
in other formulas solved in the past. If the target formula is
contained in a satisfiable, respectively unsatisfiable, formula,
then it is also satisfiable, respectively unsatisfiable.

Green is a caching framework that targets formulas belong-
ing to the quantifier-free linear integer arithmetic logic [31].
Green simplifies a target formula by exploiting a predefined
set of simplification rules, and checks if the simplified for-
mula belongs to a database of formulas solved in the past. If
the target formula matches a satisfiable, respectively unsa-
tisfiable, formula in the database, then it is also satisfiable,
respectively unsatisfiable.

GreenTrie extends the Green caching framework by target-
ing formulas belonging to the quantifier-free linear integer
arithmetic logic [20]. GreenTrie can identify some particular
cases of logical implication between two formulas. GreenTrie
checks if a target formula implies or is implied by other for-
mulas already solved in the past. If the target formula is
implied by a satisfiable formula, then it is also satisfiable. If
the target formula implies an unsatisfiable formula, then it
is also unsatisfiable.

Recal is a caching framework that targets formulas belong-
ing to the quantifier-free linear integer arithmetic logic [2].
Recal simplifies a target formula by exploiting a predefined
set of simplification rules, encodes the simplified formula as a
matrix, and produces a unique canonical form of the matrix
representation to efficiently check if the target formula
belongs to a database of solved formulas. Recal+ extends Recal
by identifying some particular cases of logical implication
between two formulas, similarly to GreenTrie [20].

With its distinctive elements Sat-delta and Unsat-footprint,
Utopia differs substantially from state-of-the-art approaches,
since Utopia looks for formulas that share solutions with the
given target formula, while the above approaches look for
formulas equivalent to or contained in the target formula. In
this way, Utopia extends reusability beyond equivalent or
contained formulas, to a much wider set of formulas that
share some solutions, independently from their structural
relationships.

Li et al. designed a technique that exploits machine learn-
ing to identify a solution (a model) for a formula. Li et al.’s
fitness function quantifies the distance of candidate from
satisfying models. Li et al.’s fitness function is defined for
formulas in the QF-LIA logic, and is indeed compatible
with our distance function Sat-delta for the QF-LIA logic.
The work described in this paper defines Sat-delta for many
other logics, and could be thus potentially used to extend
the technique proposed by these authors to all the logics
supported by our approach.

7 CONCLUSION

In this paper we present Utopia, a novel approach that stores
and reuses solutions of formulas from many popular logics
to determine the satisfiability or the unsatisfiability of new
formulas. Contrarily to existing approaches that rely mostly

AQUINO ET AL.: REUSING SOLUTIONS MODULO THEORIES

on syntactical rules and pattern matching to identify logi-
cally related formulas to reuse solutions, our approach
exploits two heuristics to identify a small set of likely reus-
able solutions for a formula out of a potentially large set of
solutions belonging to formulas solved in the past.

Our experimental evaluation shows that our approach
outperforms vanilla solvers and its competing approaches
both in terms of the quantity of solutions it can reuse and in
terms of the time required to solve large sets of formulas.
Moreover, our approach is the only one which can currently
deal with formulas from most SMT-LIB theories, while
most other approaches are tuned to work with formulas
from only one (or very few) logics.

In our previous work we defined the Sat-delta heuristic
exclusively for the quantifier-free integer and real arithmetic
logics. In this paper, we extended the Sat-delta heuristic to
cope with most standard SMT-LIB theories and proved its
effectiveness on a much larger set of benchmarks. We also
introduced the novel Unsat-footprint heuristic to enable the
reuse of unsatisfiable cores and proved both its effectiveness
and efficiency.

Our future plans include developing a distributed version
of the Utopia approach described in this paper to serve the
research community. The solutions of the formulas solved by
some research groups could then be used to solve the formu-
las produced by other groups in a fraction of the time
required to solve them in the very first place. We believe that,
in the long run, this could largely improve the scalability of
modern symbolic program analysis techniques.

ACKNOWLEDGMENTS

This work is partially supported by the Swiss SNF project
CloSE (200021_149997/1) and by the Italian MIUR PRIN
project GAUSS (Contract 2015KWREMX).

REFERENCES

[1] A. Aquino, Julia. [Online]. Available: https://bitbucket.org/
andryak/julia. Accessed on: Sep. 11, 2017.

[2] A. Aquino, F. A. Bianchi, M. Chen, G. Denaro, and M. Pezze,
“Reusing constraint proofs in program analysis,” in Proc. Int.
Symp. Softw. Testing Anal., 2015, pp. 305-315.

[3] A. Aquino, G. Denaro, and M. Pezze, “Heuristically matching
solution spaces of arithmetic formulas to efficiently reuse sol-
utions,” in Proc. Int. Conf. Softw. Eng., 2017, pp. 427-437.

[4] B. H. Bloom, “Space/time trade-offs in hash coding with allow-
able errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[5] E.Bounimova, P. Godefroid, and D. Molnar, “Billions and billions
of constraints: Whitebox fuzz testing in production,” in Proc. Int.
Conf. Softw. Eng., 2013, pp. 122-131.

[6] P. Braione, G. Denaro, A. Mattavelli, and M. Pezze, “Combining
symbolic execution and search-based testing for programs with
complex heap inputs,” in Proc. Int. Symp. Softw. Testing Anal.,
2017, pp- 90-101.

[7] P. Braione, G. Denaro, and M. Pezze, “Symbolic execution of pro-
grams with heap inputs,” in Proc. Eur. Softw. Eng. Conf. Held Jointly
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2015, pp. 602-613.

[8] R. Brummayer and A. Biere, “Boolector: An efficient SMT solver
for bit-vectors and arrays,” in Proc. Int. Conf. Tools Algorithms Con-
struction Anal. Syst., 2009, pp. 174-177.

[9] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The

openSMT solver,” in Proc. Int. Conf. Tools Algorithms Construction

Anal. Syst., 2010, pp. 150-153.

J. Burnim and K. Sen, “Heuristics for scalable dynamic test

generation,” in Proc. Int. Conf. Automated Softw. Eng., 2008,

pp. 443-446.

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

967

C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems pro-
grams,” in Proc. Symp. Operating Syst. Des. Implementation, 2008,
pp. 209-224.

C. Cadar and K. Sen, “Symbolic execution for software testing:
Three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82-90,
Feb. 2013.

M. Chen, “Reusing constraint proofs in symbolic analysis,” Phd
Thesis, Universita della Svizzera Italiana (USI), 2018.

A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
MathSAT5 SMT solver,” in Proc. Int. Conf. Tools Algorithins Con-
struction Anal. Syst., 2013, pp. 93-107.

L. De Moura and N. Bjorner, “Z3: An efficient SMT solver,” in
Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2008,
pp. 337-340.

L. De Moura and N. Bjorner, “Satisfiability modulo theories: Introduc-
tion and applications,” Commun. ACM, vol. 54, no. 9, pp. 69-77, 2011.
B. Dutertre, “Yices 2.2,” in Proc. Int. Conf. Comput. Aided Verifica-
tion, 2014, pp. 737-744.

I. Erete and A. Orso, “Optimizing constraint solving to better sup-
port symbolic execution,” in Proc. Int. Conf. Softw. Testing Verifica-
tion Validation, 2011, pp. 310-315.

S. Jha, R. Limaye, and S. A. Seshia, “Beaver: Engineering an effi-
cient SMT solver for bit-vector arithmetic,” in Proc. Int. Conf. Com-
put. Aided Verification, 2009, pp. 668-674.

X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint solu-
tions to improve symbolic execution,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 177-187.

D. E. Knuth, The Art of Computer Programming: Combinatorial
Algorithms. Reading, MA, USA: Addison-Wesley, 2011.

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, 1966.

T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters, “A
DPLL(T) theory solver for a theory of strings and regular
expressions,” in Proc. Int. Conf. Comput. Aided Verification, 2014,
pp- 646-662.

T. Liu, M. Araujo, M. d’Amorim, and M. Taghdiri, “A compara-
tive study of incremental constraint solving approaches in sym-
bolic execution,” in Proc. Haifa Verification Conf., 2014, pp. 284-299.
L. Mariani, M. Pezze, and M. Santoro, “Gk-Tail+ an efficient
approach to learn software models,” IEEE Trans. Software Eng.,
vol. 43, no. 8, pp. 715-738, Aug. 2017.

H. Palikareva and C. Cadar, “Multi-solver support in symbolic
execution,” in Proc. Int. Conf. Comput. Aided Verification, 2013,
pp- 53-68.

M. Papalini, K. Khazaei, A. Carzaniga, and D. Rogora, “High
throughput forwarding for ICN with descriptors and locators,” in
Proc. Symp. Archit. Netw. Commun. Syst., 2016, pp. 43-54.

D. M. Perry, A. Mattavelli, X. Zhang, and C. Cadar, “Accelerating
array constraints in symbolic execution,” in Proc. Int. Symp. Softw.
Testing Anal., 2017, pp. 68-78.

M. V. Ramakrishna and J. Zobel, “Performance in practice of
string hashing functions,” in Proc. Int. Conf. Database Syst. Adv.
Appl., 1997, pp. 215-224.

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song, “A symbolic execution framework for JavaScript,” in
Proc. IEEE Symp. Secur. Privacy, 2010, pp. 513-528.

W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
reusing and recycling constraints in program analysis,” in Proc.
ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2012, pp. 1-11.

S. Wu and U. Manber, “Agrep—A fast approximate pattern-
matching tool,” in Proc. USENIX Tech. Conf., 1992, pp. 153-162.

Y. Zheng, V. Ganesh, S. Subramanian, O. Tripp, M. Berzish,
J. Dolby, and X. Zhang, “Z3str2: An efficient solver for strings,
regular expressions, and length constraints,” Formal Methods Syst.
Des., vol. 50, no. 2/3, pp. 249-288, 2017.

Andrea Aquino received the master’'s (honours)
degree in computer science from the University
of Bologna, Italy, and the PhD degree from the
Universitéd della Svizzera ltaliana (USI), Lugano,
Switzerland on distributed caching frameworks
for formulas from many logics.

https://bitbucket.org/andryak/julia
https://bitbucket.org/andryak/julia

968

Giovanni Denaro received the PhD degree in
computer science and engineering from Politec-
nico di Milano. He is associate professor of soft-
ware engineering with the University of Milano-
Bicocca. His research interests include software
testing and analysis, formal methods for software
verification, distributed and service-oriented
systems, and software metrics. He has been
investigator in several research and development
projects in collaboration with leading European
universities and companies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 5, MAY 2021

Mauro Pezze is a professor of software engineer-
ing with the University of Milano-Bicocca and with
the Universita della Svizzera Italiana (USI). He is
editor in chief of the ACM Transactions on Soft-
ware Methodologies, and has served as an asso-
ciate editor of the IEEE Transactions on Software
Engineering, as general chair of the ACM Interna-
tional Symposium on Software Testing and Anal-
ysis in 2013, program chair of the International
Conference on Software Engineering in 2012 and
of the ACM International Symposium on Software
Testing and Analysis in 2006. He is known for his work on software test-
ing, program analysis, self-healing, and self-adaptive software systems.
He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

