
Competition-Based Crowdsourcing Software
Development: A Multi-Method Study

from a Customer Perspective
Klaas-Jan Stol , Bora Caglayan, and Brian Fitzgerald

Abstract—Crowdsourcing is emerging as an alternative outsourcing strategy which is gaining increasing attention in the software

engineering community. However, crowdsourcing software development involves complex tasks which differ significantly from the

micro-tasks that can be found on crowdsourcing platforms such as Amazon Mechanical Turk which are much shorter in duration, are

typically very simple, and do not involve any task interdependencies. To achieve the potential benefits of crowdsourcing in the software

development context, companies need to understand how this strategy works, and what factors might affect crowd participation. We

present a multi-method qualitative and quantitative theory-building research study. First, we derive a set of key concerns from the

crowdsourcing literature as an initial analytical framework for an exploratory case study in a Fortune 500 company. We complement the

case study findings with an analysis of 13,602 crowdsourcing competitions over a ten-year period on the very popular Topcoder

crowdsourcing platform. Drawing from our empirical findings and the crowdsourcing literature, we propose a theoretical model of crowd

interest and actual participation in crowdsourcing competitions. We evaluate this model using Structural Equation Modeling. Among the

findings are that the level of prize and duration of competitions do not significantly increase crowd interest in competitions.

Index Terms—Crowdsourcing, software engineering, multi-method study, case study, sample study

Ç

1 INTRODUCTION

SOFTWARE engineering no longer takes place in small, iso-
lated groups of developers, but increasingly takes place

in organizations and communities involving many people
[1], [2], [3]. There is an increasing trend towards globaliza-
tion with a focus on collaborative methods and infrastruc-
ture [4], [5]. One emerging approach to getting work done is
crowdsourcing, a sourcing strategy that emerged in the
1990s [6], but started to gain significant attention when the
term “crowdsourcing” was coined in 2005 [7]. Driven by
Web 2.0 technologies [8], [9], organizations can tap into a
workforce consisting of potentially anyone with an Internet
connection. Customers, or requesters, can advertise chunks
of work, or tasks, on a crowdsourcing platform, where sup-
pliers (i.e., individual workers) perform those tasks that
match their interests and abilities [10].

Crowdsourcing has been adopted in a wide variety of
domains, such as design of T-shirts [11] and pharmaceutical
research and development [12], and there are numerous

crowdsourcing platforms through which customers and sup-
pliers can find each other [13], [14]. One of the best known
crowdsourcing platforms is AmazonMechanical Turk (AMT)
[15]. OnAMT, chunks ofwork are referred to asHuman Intel-
ligence Tasks (HIT) or micro-tasks. Typical micro-tasks are
characterized as self-contained, simple, repetitive, short,
requiring little time, cognitive effort and specialized skills.
Crowdsourcing has worked particularly well for such tasks
[16], [17]. Examples include tagging images, and translating
fragments of text. As a result, remuneration of work is typi-
cally in the order of a few cents to a fewUS dollars [15].

In contrast to micro-tasks, software development tasks
are often interdependent, complex, heterogeneous, and can
require significant periods of time, cognitive effort and vari-
ous types of expertise [18]. However, there are examples of
crowdsourcing complex tasks; for example, InnoCentive
deals with problem solving and innovation projects, which
may yield payments of thousands of US dollars [11].

A number of potential benefits have been linked to the
use of crowdsourcing in general, and these would also be
applicable in the context of software development:

� Cost reduction [16], [19], [20] through lower develop-
ment costs for developers in certain regions, and also
through the avoidance of the extra cost overheads
typically incurred in hiring developers;

� Faster time-to-market [16], [21], [22], [23] through
accessing a critical mass of necessary technical talent
who can achieve follow-the-sun development across
time zones, as well as parallel development on
decomposed tasks, and who are typically willing to
work at weekends, for example.

� K.-J. Stol is with the Department of Computer Science, University College
Cork, Cork T12 YN60, Ireland, and with Lero—The Irish Software
Research Centre, University of Limerick, Limerick V94 T9PX, Ireland.
E-mail: k.stol@ucc.ie.

� B. Caglayan is with IBM Ireland, Dublin 4, Ireland.
E-mail: bora.caglayan@ibm.com.

� B. Fitzgerald is with Lero—The Irish Software Research Centre, Univer-
sity of Limerick, Limerick V94 T9PX, Ireland. E-mail: bf@lero.ie.

Manuscript received 29 Nov. 2016; revised 18 Oct. 2017; accepted 12 Nov.
2017. Date of publication 23 Nov. 2017; date of current version 21 Mar. 2019.
(Corresponding author: Klaas-Jan Stol.)
Recommended for acceptance by D. Damian.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2774297

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019 237

0098-5589� 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0001-9193-2863
https://orcid.org/0000-0001-9193-2863
https://orcid.org/0000-0001-9193-2863
https://orcid.org/0000-0001-9193-2863
https://orcid.org/0000-0001-9193-2863
mailto:
mailto:
mailto:

� Higher quality through broad participation [20], [24],
[25]: the ability to get access to a broad and deep
pool of development talent who self-select on the
basis that they have the necessary expertise, and
who then participate in competitions where the high-
est quality ‘winning’ solution is chosen;

� Creativity and open innovation [20], [21], [26], [27], [28],
[29]: there are many examples of “wisdom of the
crowd” creativity whereby the variety of expertise
available ensures that more creative solutions can be
explored, which often elude the fixed mindset that
can exist within individual companies. This applica-
tion of skills in a new domain is also referred to as
“near-field repurposing of knowledge” [25, pt. II].

Given that the first three benefits listed above (cost, time
and quality) directly address the three central problems of the
so-called “software crisis” [30], it is not surprising that a num-
ber of authors have argued that crowdsourcingmay become a
common approach to software development [14], [31], [32],
[33]. The fourth benefit, that of tapping into the creative
capacity of a crowd is captured well in a quote attributed to
Sun Microsystems co-founder Bill Joy, namely that, “No mat-
ter who you are, most of the smartest people work for someone else”
[12]. As Lakhani and Panetta [12] pointed out, completing
knowledge-intensive tasks will become increasingly chal-
lenging in traditional closed models of proprietary innova-
tion, if most of the knowledge exists outside an organization.

Crowdsourcing has received considerable interest from
researchers in disciplines such as human-computer interac-
tion and information systems, and more recently in soft-
ware engineering (see Mao et al. [14] for an extensive
overview). Thus far, most studies have presented analyses
of developers and platforms including AMT and Topcoder
[34], [35], [36], [37]. However, very few studies have studied
crowdsourcing from a customer perspective, as a practical
alternative approach to outsourcing software development.
Studying crowdsourcing from this perspective is important
in order to better understand how organizations can engage
with this new and emerging type of “unknown workforce.”
Hence, our research goal was as follows:

Research Goal. To develop a better understanding of crowd-
sourcing as a software development strategy.

With this goal in mind, we first conducted an industry
case study at a company that used Topcoder to crowdsource
a large project, which we reported in our earlier paper pub-
lished at the 36th International Conference on Software Engi-
neering (ICSE’14) [38]. The case study helped us to
understand some of the tension points in crowdsourcing
software development. The case study represents a “rich,
empirical description of a particular instance” [39] of the
phenomenon of competition-based crowdsourcing in a soft-
ware development context. This article revises the ICSE’14
paper and extends it in several ways:

� We extend the case study analysis with a large-scale
quantitative analysis of the Topcoder platform. As
case studies are inherently limited in scope, this
quantitative analysis helps to put the findings of the
case study in perspective.

� Based on the specific findings that arose in the case
study findings as well as the extant literature, we

developed a theoretical model that represents some
of the key factors that affect a crowd’s interest and
participation in crowdsourcing competitions.

� Using a data set of over 13,600 contests held on the
Topcoder platform, we evaluated the model using
structural equation modeling.

The remainder of this article is structured as follows.
Section 2 defines crowdsourcing for software develop-
ment as a distinct form of outsourcing that differs from
peer production (cf. [40]) and opensourcing (cf. [41]). We
contrast crowdsourcing with opensourcing and outsourc-
ing and derive a definition of crowdsourcing in the con-
text of software development. Section 3 outlines our
multi-method research approach. Section 4 presents the
results of the case study and complements the qualitative
findings with analyses of the Topcoder platform. In Sec-
tion 5 we develop and evaluate a theoretical model of
crowd interest in participating and actual participation in
competitions. In Section 6 we discuss implications and
limitations of the study, and we conclude with some sug-
gestions for future work.

2 BACKGROUND

There are a number of crowdsourcing platforms specifically
targeting software development (and related tasks such as
testing [42], [43], [44]). The largest is Topcoder [45], which
has over 1.2 million members. Crowdsourcing is sometimes
considered similar to open source, but we argue there are a
number of key differences between these strategies. To
clearly distinguish these models, we position crowdsourcing
software development in relation to outsourcing and open-
sourcing, and offer a definition in Section 2.1. Section 2.2
identifies a set of key concerns in crowdsourcing that are
specific to software development, and which provide a
framework for the case study presented in Section 4.

2.1 Positioning and Defining Crowdsourcing
Software Development

In earlier work, we positioned crowdsourcing as a separate
strategy from outsourcing and open source [38], [46]; Table 1
extends this positioning, which clearly delineates crowd-
sourcing as a unique form of outsourcing. We conclude this
section with our own definition.

There are numerous definitions for the term
‘crowdsourcing’ [48], [49]. Howe presented the following
definition [7]:

“Crowdsourcing is the act of taking a job traditionally
performed by a designated agent (usually an employee)
and outsourcing it to an undefined, generally large group
of people in the form of an open call.”

A second definition offered by Howe, referred to as
the ‘sound-bite’ version, defines crowdsourcing as the
“application of Open Source principles to fields outside of
software” [50]. Both definitions are ambiguous in the context
of software development. The phrase “outsourcing [...] to an
undefined, generally large group of people” also applies to the
concept of opensourcing [41], and some authors consider
this a form of crowdsourcing [51], [52]. Others argue that
crowdsourcing differs from open source (and thus, open-
sourcing), in that the latter is a public good, whereas the

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

former is focused on extracting economic value [34]. A more
significant distinction between open source and crowdsourc-
ing, is that the locus of control in the former is essentially with
the crowd, and there is no overarching entity that coordi-
nates the overall effort [8]. Open source projects tend to be
self-organizing [53], andwhile a core team can set out a road-
map, there is no “control” in that roadmap tasks are assigned
to the project’s community. Even though many open source
projects are moving more towards formal organization [54],
[55], the locus of control remains largely with the crowd/
open source community.

The nature of participation also differs from opensourc-
ing and outsourcing. While different participation models
exist, a typical feature of many crowsourcing platforms is
the competition-based nature of participation. Topcoder is
the largest platform for crowdsourcing software develop-
ment and uses competitions, whereby a customer advertises
a task that is then taken on by members of the crowd. The
crowd member with the highest-rated submission wins the
competition and receives payment. Thus, the competitive
element and monetary incentive tend to preclude collabora-
tion. Howe characterized crowdsourcing as “outsourcing on
steroids” [11, p.46], suggesting that crowdsourcing is merely
a form of outsourcing. However, the duplication of work
being performed in parallel does not apply to outsourcing.
The nature of the workforce also sets crowdsourcing apart
as an outsourcing strategy with the crowd typically not
known to the customer. A “traditional” outsourcing sce-
nario is characterized by a contractual agreement with a
specific (and thus known) supplier before the work is per-
formed—over time, a relationship may build up between
these two parties. In a crowdsourcing scenario, the crowd
plays the role of “supplier” but it is not known in advance
who will submit, and therefore which member of the crowd
will be paid.

Other dimensions that set crowdsourcing apart from
opensourcing and outsourcing include the duration of
engagement, and the motivations for both the customer and
the ‘supplier’ (i.e., developers that perform the work) (see
Table 1). Based on the characteristics in the table, our defini-
tion of crowdsourced software development is the following:

The accomplishment of specified software development
tasks on behalf of an organization by a potentially large
and typically undefined group of external people with the
requisite specialist knowledge through an open call with
an extrinsic reward.

A variety of platforms exist for crowdsourcing software
development [14], and the model of participation can vary.
Topcoder, the largest platform in terms of number of mem-
bers, organizes tasks as competitions, but others (e.g.,
oDesk) act as online marketplaces rather than “competitive
arenas.” Another variant is ‘microtasking’ [52], for which
tasks tend to be independent. In this article, we focus on
competition-based crowdsourcing.

2.2 Key Concerns in Crowdsourcing Software
Development

In this sectionwe derive a set of key concerns for crowdsourc-
ing software development. While a few research frameworks
have been proposed, these tend to focus on crowdsourcing as
a general topic [56], [57], and not specifically to software
development. A framework helps define the boundaries of a
research area [58]. Drawing on the literature, we synthesized
a set of six key concerns which have particular relevance in a
software development context: (1) Task Decomposition, (2)
Coordination and Communication, (3) Planning and Sched-
uling, (4) Quality Assurance, (5) Knowledge and Intellectual
Property, and (6)Motivation andRemuneration. The remain-
der of Section 2.2 discusses these themes in detail.

TABLE 1
Characterization of Crowdsourcing

Competition-based Crowdsourcing Opensourcing Outsourcing

Locus of
control

Customer prescribes the work to be
done. Limited interaction between
customer and workforce.

Control over an open source project lies
with core team, or benevolent dictator in
some projects. Meritocracy.

Customer decides project strategy
and makes major decisions as to the
work that is performed.

Nature of
participation

Competitive, possibly collaborative
depending on the platform

Collaborative, possibly independent
and differing agendas and interests

Collaborative, all teams serve the
same goal (though not always
without conflicts)

Nature of the
workforce

Usually individual developers who
are unknown to the customer, but
known to intermediary

Mix of individual open source contribu-
tors and potentially organizations that
contribute. Unknown workforce, but
relationships can develop over time.

Customer and supplier may build
up relationship over time through
regular/daily interaction. Supplier
is typically an organization, not an
individual.

Duration of
engagement

Short, ad-hoc commitment for dura-
tion of competition

Typically prolonged commitment by
community developers

Project-specific, contractual commit-
ment. Mid-to long-term commit-
ment

Customer /
Initiator
motivation

Overcoming short-term lack of
resources; opportunity to tap into
creativity of the crowd (innovation);
cost reduction

Driven by trend of commodification of
technology, cost sharing of mainte-
nance effort

Resource saving by exploiting lower
wages (in case of offshoring); strate-
gic decision if software development
not a core activity.

Developer /
Supplier
motivation

Extrinsic motivation (e.g., payments)
or delayed extrinsic motivations
(career prospective), internalized
extrinsic motivations, e.g., learning
[47]

Both intrinsic motivation (e.g., fun,
sense of achievement, creative satisfac-
tion) and extrinsic motivation (money,
career prospective); increasingly devel-
opers employed by companies

Exclusively extrinsic; supplier pro-
vides services as a commercial activ-
ity.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 239

2.2.1 Task Decomposition

A key issue in crowdsourcing is that work is decomposed
into a set of smaller tasks [17], [59], [60]. This issue is highly
relevant in outsourcing scenarios, and Herbsleb and Grinter
[61] reminded us of Parnas’ definition of a module as “a
responsibility assignment rather than a subprogram” [62]. What
is of particular importance, given the interdependencies in
software, is that different developers working on a project
know how their code fits into the resulting software product,
in terms of understanding interfaces and assumptions made.
Whereas in general-purpose crowdsourcing markets, such
as AMT, tasks are typically small and independent [15], soft-
ware development tasks are more complex and interdepen-
dent. Therefore, a key challenge is to find an appropriate
decomposition of the software product into tasks that can be
effectively crowdsourced [63]. Kulkarni et al. [60] termed
this challenge the “workflow design problem.” More effi-
cient decompositions can lead to an increased parallelism
[63]. LaToza et al. [64] proposed a platform (“CrowdCode”)
to support the decomposition of programming work into
microtasks. Furthermore, in decomposing a software project,
there is a fine balance between providing a sufficiently
detailed specification for the task being crowdsourced on the
one hand, and stifling innovation with overly detailed speci-
fications on the other hand [21]. Tajedin and Nevo [65] sug-
gested that projects which can be decomposed into small
modules with clear requirements and limited interdepen-
dencies aremore likely to succeed.

2.2.2 Coordination and Communication

When crowdsourcing complex tasks, as is the case in soft-
ware development, there is a need for coordination [18].
Malone and Crowston [66] defined coordination as “the pro-
cess of managing dependencies among activities.” As such, coor-
dination is concerned with directing efforts of individuals
toward a common and explicitly recognized goal, and linking
different parts of an organization together to achieve a set of
tasks [67]. Although related to task decomposition discussed
above, coordination is specifically concerned with communi-
cation, interdependencies and integrating various parts into
a whole [63], [67], [68]. This characterization of coordination
seems to assume that activities are conductedwithin an orga-
nization. Clearly, in crowdsourcing, participants who submit
‘solutions’ are independent agents and not part of the cus-
tomer organization—in other words, members of the crowd-
sourcing platform cannot be assigned tasks. Instead,
developers self-select tasks to work on; several researchers
have focused on assisting the crowd by making recommen-
dations based on their prior record [36], [69]. Because differ-
ent tasks may be performed by many different workers,
incompatibilitiesmay arise among provided solutions [63].

In a software engineering context, the need for different
developers to communicate is often related to Brooks’ Law
(“adding manpower to a late software project makes it later”), in
that the greater the number of people involved, the greater
the communication overhead [70]. Whether or not this
applies in a crowdsourcing context depends on whether the
work is done in a collaborative or competitive fashion [71].
Several platforms including Topcoder organize tasks as
competitions; a winner (and runner-up) is selected based on
peer-review of the submissions by the community [1].

2.2.3 Planning and Scheduling

In the case of crowdsourcing, tasks are allocated to an
unknown workforce to complete, and as a result an organi-
zation relinquishes control of that particular work. This
may speed up development, as tasks can be completed in
parallel and independently of an organization’s in-house
workforce, particularly when payment is contingent on
timely delivery. One of the promises of crowdsourcing is to
shorten the product development cycle [72], [73]. In order to
achieve this, it is important that the desired schedule of a
crowdsourcing organization can be adhered to by the
crowd. For example, a core challenge is to ensure that suffi-
cient workers are available when needed [18]. While there
may be extensive expertise within the crowd, very specific
domain knowledge may not always be available at the
moment it is needed. Such circumstances introduce a level
of uncertainty as to whether or not the work will be com-
pleted on time [71]. Furthermore, it is important to ensure
that sufficient time is given to developers, relating the issue
of planning to the size and scope of a task.

2.2.4 Quality Assurance

Another suggested benefit of crowdsourcing is the potential
for high quality submissions [20], [24], [25]. At the same
time, there is a risk of ‘noise’ if the majority of submissions
are of low quality [59], [74], making the task of assessing
submission quality more cumbersome. In a software devel-
opment context, the idea that input from a wide variety of
developers helps in finding and fixing defects is better
known as Linus’s Law, or, “given enough eyeballs, all bugs are
shallow” [75]. Linus’s Law refers specifically to testing and
debugging, which is only one type of activity that can be
crowdsourced on Topcoder, but development tasks also
benefit from having a wide variety of expertise within a
developer community. The challenge lies in attracting suffi-
cient contestants, under the assumption that given enough
contestants, the required expertise will be present. Whereas
AMT is non-transparent, in that contestants do not know
how many ‘competitors’ participate in a certain competi-
tion, a platform such as Topcoder is fully transparent. Prior
to participating, contestants must register for a competition,
and registrants can see who else has registered. An experi-
ment on crowdsourcing microtasks suggests, however, that
the greater the number of competition participants, the
lower the quality of the work [76]. One characteristic some-
times ascribed to the crowd is that it consists mostly of ama-
teurs [9], thus suggesting that the resulting quality of
output may not be on par with professional work. However,
Brabham suggested that this might be a myth [77].

Quality assurance is a key concern in software develop-
ment, whether the software is developed in-house or by
external parties. Of particular concern in crowdsourcing is
that a customer has almost no knowledge of the developers
that deliver the software, nor of the process that they might
follow, and therefore has no control over these aspects.
Crowd developers may “satisfice, minimizing the amount of
effort they expend” [18]. Also, there can be disagreement
about a solution; Kittur [16] distinguished ‘subjective’ tasks
for which there is no single right answer, and ‘objective’
tasks that can be easily verified. While software either ful-
fills a set of requirements or not, disagreements may still

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

arise regarding certain functionality, the scope of a task, or
the (subjective) code quality of a submission. Furthermore,
quality attributes of submissions, such as performance and
maintainability of the code may still vary. One approach to
quality control is peer-review. At Topcoder, for example,
experienced members of the community perform peer-
reviews of the submitted software. Similar to peer-reviews
in open source, such reviews are “truly independent” [53]
given that the peer-reviewers would usually not know the
creator of the work, and would therefore be unlikely to be
either positively or negatively biased. A certain level of
‘shepherding’ of the crowd has also been suggested to
improve quality [60], [74]. Kulkarni et al. [60] found that let-
ting the crowd plan amongst themselves without supervi-
sion by a requester was partially successful, but that
intervention by a requester during the workflow could
improve quality significantly. LaToza et al. [78] experi-
mented with two-phased design competitions, allowing the
crowd to “borrow” from initial submissions, which resulted
in improved design quality.

2.2.5 Knowledge and Intellectual Property

Software development is a knowledge-intensive activity,
and knowledge management is therefore an important topic
within the software engineering field [79], [80], [81]. A key
difference with traditional outsourcing is that there is no
single supplier that develops an in-depth understanding of
the problem domain of a crowdsourced project. Rather, the
continuous turnover of workers is an inherent characteristic
of crowdsourcing [82]. A high level of turnover may lead to
schedule and cost overruns [83], which in turn jeopardizes a
successful outcome of a competition.

One type of knowledge of particular concern in crowd-
sourcing software development tasks is intellectual prop-
erty (IP) [21], [84]. IP ‘leakage’ and the consequent loss of
competitive advantage is a challenge in adopting crowd-
sourcing [28]. Organizations may be hesitant to provide too
many details on a certain task (i.e., module or component)
that is crowdsourced, yet sufficient detail in the specifica-
tion is necessary for developers in the crowd to understand
what the crowdsourcing organization is requesting.
Another issue that may arise is ownership of inventions
[85], [86]. Tasks on general purpose platforms such as AMT
are arguably relatively simple (requiring little human intel-
ligence), and thus IP concerns do not loom large. Software
development, however, is a highly creative process, and
organizations will want to ensure they can protect any
potential inventions that emerge with no confusion in rela-
tion to ownership. A third issue can arise when workers
submit solutions that are not theirs [86], for example, if the
solution contains open source code with the restrictive
GNU Public License (GPL) license. These issues expose a
customer to a variety of risks.

2.2.6 Motivation and Remuneration

A final consideration in crowdsourcing is that of motivation
[59], [87], [88] and remuneration [35], [89], [90], [91], [92],
[93], [94]. Motivation is a topic that has received considerable
attention in the software engineering literature, given that it
is reported to be a major factor in project success [95], [96].
Motivational factors can be external or intrinsic. Extrinsic

factors are conditions surrounding a job [97], whereas intrin-
sic factors relate to the job itself (e.g., having fun, gaining a
sense of achievement). The compensation of a certain crowd-
sourcing task should depend on the expected duration and
the complexity of a task. Tasks can vary in complexity; as
mentioned above, tasks on Amazon Mechanical Turk are
often called ‘micro-tasks,’ which can be as simple as tagging
an image taking only a few seconds. Clearly, software devel-
opment tasks are complex and time-consuming, and contest-
ants will expect significant remuneration, as opposed to the
average cost ofmicro-tasks onAMT,most ofwhich are below
one US dollar [15]. One claimed benefit of crowdsourcing is
that it can greatly reduce cost [21]. Yet, determining an
appropriate price is a key challenge for crowdsourcing in
general [90], [98], and also for software development specifi-
cally [21], [35], [92].

3 RESEARCH DESIGN

The goal of our study is to develop an understanding of
crowdsourcing as an outsourcing strategy in the context of
software development.We adopted amulti-method research
approach in this study, consisting of two phases (see Fig. 1).
Using such a multi-method approach helps to ameliorate the
shortcomings of research strategies and is becoming increas-
ingly prevalent [41], [99], [100], [101], [102].

Phase I of our study is an exploratory qualitative industry
case study of a global company who used Topcoder to
crowdsource a software development project. Exploratory
case studies are appropriate to explore contemporary phe-
nomena that have not previously been researched [99], [103].
Indeed, to the best of our knowledge, this is the first qualita-
tive case study that investigates crowdsourcing from an
enterprise customer perspective. (We note that several pub-
lished studies have investigated crowdsourcing from differ-
ent perspectives, or using quantitative methods—these were
discussed in Section 2.) The qualitative case study helps
“bring to life” the crowdsourcing phenomenon from a cus-
tomer’s perspective, something that is often missing in
purely quantitative analyses. While rich in context and
“thick narrative description,” case studies are limited in that
findings are not statistically generalizable to other settings.
However, the goal of “phenomenon-driven” exploratory
case studies is not to test theory—instead, such case studies
are highly appropriate for theoretical rather than statistical
generalization and developing understanding of key con-
cepts [103], and benefit from exploiting “unusual research
access” [39]. Section 4 presents the results of this first phase.

Phase II complements the qualitative study of Phase I
through a theory development strategy combined with an
evaluative quantitative sample study. This phase builds on
some of the key findings of the case study as well as the lit-
erature in a theory development approach, resulting in a

Fig. 1. Design of the two-phased study.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 241

theoretical model consisting of a set of hypotheses, which are
evaluated on a large data set from the Topcoder platform
using Structural Equation Modeling (SEM). Sample studies
typically use cross-sectional data from a large number of
organizations, developers, or other units of analysis—often
these would be collected through a survey. In our study, we
collected data on 13,602 contests from the Topcoder plat-
form. Sample studies such as these facilitate the testing of
hypotheses on a limited number of variables. Such fixed-
design studies are useful to establish relationships, which is
not possible in exploratory qualitative case studies. How-
ever, as Kaplan and Duchon pointed out, the “stripping of
context buys ‘objectivity’ and testability at the cost of a deeper
understanding of what actually is occurring” [104] (as cited by
Gable [99]). Section 5 reports the results of Phase II.

The strengths and weaknesses of the research strategies
employed in the two phases are summarized in Table 2
(please note this table is not exhaustive). The case study and
sample study are alternative and complementary strategies
rather than competing [99], [105]. The remainder of Section 3
presents the design of these two phases in more detail.

3.1 Phase I: Design of the Case Study

The goal of the case study was to investigate crowdsourcing
in a software development context from a crowdsourcing
customer perspective, to better understand this process and
the challenges associated with it. Case study research is par-
ticularly well suited to study real-world phenomena that
cannot be studied separately from their context [103], and
has become increasingly popular as a method in software
engineering research [106] (cf. studies on distributed devel-
opment [61] and open source software development [107]).
This section outlines the setting (Section 3.1.1) and qualita-
tive methods (Section 3.1.2) that we employed in our indus-
try case study. To better understand and interpret the case
study findings, we include comparative quantitative analy-
ses of the Topcoder platform—Section 3.1.3 describes these
analyses in detail.

3.1.1 Setting

TechPlatform Inc. (TPI—a pseudonym) is a Fortune 500
company offering services and solutions in the cloud. The

company employs several tens of thousands of people
worldwide, with 400 sales offices, and partners in more
than 75 countries. In 2012, TPI sought to investigate the use
of crowdsourcing in its software development function at
the instigation of a senior executive.

The platform through which TPI crowdsourced its
software development is Topcoder, which is the largest soft-
ware development crowdsourcing platform and its commu-
nity has grown exponentially, from 50,000 to over 1.2
million members between 2004 and 2017. Topcoder has an
extremely impressive customer list of blue chip companies.
In promoting their services, Topcoder suggests that custom-
ers can “Try more often, Succeed more often, Spend Less” [108].
Topcoder offers a platform which facilitates what is termed
the three pillars of Digital Creation: (1) front-end innova-
tion; (2) software development, and (3) algorithms and ana-
lytics [108]. For this study, we focus on the software
development pillar. Topcoder accomplishes software devel-
opment tasks for customers through a series of competi-
tions. The Topcoder community breaks down customer
projects into atomized units of work that comprise the entire
build, and these work units are accomplished through com-
petitive contests, whereby the Topcoder community com-
pete and submit solutions.

Initially, Topcoder employed Program Managers to over-
see customer projects and assist customers as a project
“liaison,” but several years ago the platform introduced a
“self-service” model to save costs [21]. This direct model
involves “co-pilots” within the Topcoder community to act
as an interface between customers and crowd developers,
and to help choose winners for the various competitions. Co-
pilots are experienced “elite” Topcoder communitymembers
who have proven themselves in the past on the Topcoder
platform [25]. They manage the technical aspects of crafting
and running competitions through to successful delivery.
Topcoder suggests that the co-pilots can do the technical
heavy lifting and process management, allowing the cus-
tomer to be the “conductor of a world-wide talent pool” [109].

3.1.2 Qualitative Data Collection and Analysis

We conducted a number of face-to-face, semi-structured
interviews with key informants at TPI who were involved
with the Topcoder crowdsourcing initiative. These included
the Divisional CTO at the visited location, a software archi-
tect, a software development manager, a program manager
and a project manager. Prior to the study, we developed a
research protocol [110]. The face-to-face interviews were
conducted during three half-day workshops on the prem-
ises of the company. In addition, we conducted two telecon-
ference interviews each involving two TPI staff members
who played key roles in the crowdsourcing process. Inter-
view sessions lasted between one and two hours each. Dur-
ing the research process, we sent several early drafts of this
paper to key participants of the study—a form of member
checking [106]. Member checking is a recommended tactic
to ensure that findings are indeed “experienced” or “felt
by” the participants of a study [111]. This also provided
opportunities to seek clarifications when necessary.

Data were analyzed using qualitative methods as
described by Seaman [112]. All interviews were transcribed,
resulting in 112 pages of text. The analysis consisted of

TABLE 2
Key Strengths and Weaknesses of Employed

Research Strategies

Exploratory case
study

Sample study

Strengths Rich context to facil-
itate understanding

Findings are generalizable
(within certain boundaries
depending on the sample)

Facilitates study of
phenomena in a
natural setting

Suitable to evaluate relation-
ships between a fixed number
of variables

Weaknesses Findings not statis-
tically generalizable

Not amenable for ‘discovery’ of
concepts and understanding

Inability to manipu-
late variables

Inflexible design; analyses lim-
ited to available data; once data
is collected, the research design
does not allow much change

242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

coding the transcripts using the six themes discussed in
Section 2.2 as seed categories or “analytical bins” [113]. The
derivation of these themes took place prior to data collec-
tion, which represents a key difference with Grounded The-
ory studies [114]. The transcripts were analyzed in parallel
by two authors and several analytical memos were written.
The memos established an audit trail of the analysis, and
facilitated a process of peer debriefing for the researchers.
The analysis of the interview transcripts from different
interviews represents triangulation among informants,
which helps to establish dependability of the findings.
Besides drawing from the interview data, we also drew
from a number of internal documents prepared by the com-
pany, which facilitated a process of triangulation among
data sources. These sources included documentation on the
crowdsourcing schedules, project documentation that TPI
stored on an internal wiki, and contest information drawn
from the Topcoder website. Table 3 summarizes the data
sources for the case study.

3.1.3 Quantitative Data Collection and Analysis

In order to contextualize the findings of the case study, we
analyzed data that we collected through Topcoder’s public
API. The goal of the quantitative analyses was to contextual-
ize the case study findings to better understand whether the
TPI contests were ‘atypical’ or exceptional in terms of the
technologies used, range of reward prizes, and duration.
Thus, the quantitative analyses provide comparative back-
ground information. We collected all the publicly available
data inNovember 2016. All datawere stored in a SQLite data-
base, and analyzedwith Python and theR statistical package.

We filtered the data based on a few criteria. First, we
removed the challenges with a first prize of less than 100 US
dollars. The rationale for this is that we considered these
challenges as trivial, and not representative of the competi-
tions that companies normally post. We found that these
challenges usually had very low monetary rewards
(between US $0.00-1.00 prize). During our analysis, we iden-
tified a user named “analysis.” This user made a total of
4,697 submissions, which is ten times as many as the second
most active user, and represents 7.3 percent of the total
number of submissions. Furthermore, whenever this user
submitted, no other submissions were made by anyone else.
As these competitions are not representative, we decided to
remove these. Finally, we only considered competitions that

had successfully finished, which led to a further reduction
of the data set. Our final Topcoder platform sample con-
tained data on 13,602 competitions. During our analysis, we
encountered a small inconsistency in the extracted data.
Approximately 1.5 percent of the (distinct) registrants regis-
tered or participated in a competition before registering as a
member of the platform. We adjusted the registration date
as the date of first activity in the system for these registrants.
Given that this only affected a very small percentage, we
retained these entries in our data set.

3.2 Phase II: A Theoretical Model of Crowdsourcing
Software Development

In the second phase, we drew from the extant literature on
crowdsourcing, and the findings from the first phase to
develop a set of hypotheses which are integrated into a sin-
gle theoretical model to increase our understanding of
crowdsourcing software development. The model is evalu-
ated using Structural Equation Modeling [115] (discussed in
detail below). SEM is a powerful statistical approach but
has been rarely used in software engineering studies to
date. Notable exceptions are a study on quality, effort, and
governance in open source [116], and a study of teamwork
quality and project success [117]. Therefore, one of this
article’s contributions is to illustrate the SEM approach in
developing and evaluating a theoretical model on a phe-
nomenon within the software engineering domain.

SEM is a second-generation statistical approach. In so-
called first-generation statistical methods including multi-
ple regression and ANOVA, parameters are typically esti-
mated using Ordinary Least Squares (OLS). The goal of
OLS is to find coefficients that minimize the average
squared distance between the data points and a regression
line [115]. While the overall goal of SEM is similar, namely
to identify coefficients that represent a best-fit with the
observed data, what is used as “observed data” are the
observed covariances between variables and their variances
[115]. For this reason, this type of SEM is sometimes referred
to as CBSEM (covariance-based SEM), to distinguish it from
Partial Least Squares (PLS) SEM. Instead of OLS, the default
algorithm for estimating coefficients in SEM is Maximum
Likelihood (ML); in our study we use a robust variant of
ML (Section 5.2 provides further details).

In SEM, the researcher specifies a theoretical (hypothe-
sized) model by defining a number of interrelated hypothe-
ses; based on this, a variance–covariancematrix is generated.
A second variance–covariance matrix is generated based on
a set of sample data. The goal of SEM, then, is to test whether
the two matrices are different: if they are, then the sample
data do not support the researcher’s theoretical model. Con-
sequently, a non-statistically significant difference (using x2)
between the twomatrices indicates that the theoreticalmodel
fits the empirical observations. Further details on the mecha-
nisms of SEM are beyond the scope of this article, but we
refer interested readers to several excellent reference works
that are available [115], [118], [119].

All coefficients in the structural equation model are esti-
mated simultaneously. Thus, the significance and strength
of relationships in the structural equation model should be
assessed in the context of the model as a whole. Evaluating
the hypothesized relationships is only valid when the model

TABLE 3
Case Study Data Sources

Interviews during three
site visits and two
teleconference calls

Divisional CTO
Software architect
Software development manager
Program manager
Project manager

Company
documentation

Contest schedule and status
documentation
Internal TPI Wiki documentation
Internal report on key challenges
in the crowdsourcing project

Data from
crowdsourcing
platform

Contest information from
Topcoder platform

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 243

itself represents a good fit, that is, the theoretical model is
not significantly different from the observed model.

The structural equationmodel was developed by defining
a set of constructs and relationships that comprise our theory
[120]. Specifically, we focused on a number of salient con-
cepts identified in the case study, including contest reward,
contest duration, and the degree of “parallelization” of con-
tests. We operationalized our constructs using singular met-
rics. In that sense, our model is a path model [118, p. 5], which
is one type of structural equation model. A path model is
essentially a regression model; however, regression is lim-
ited to a single dependent variable that is predicted or
explained by one or more independent variables. A path
model does not have this constraint and thus allows formore
complexmodels.

The structural equation model was implemented using
the lavaan library for the statistical package R, version 0.5-23
[121]. The structural equation model was then evaluated
using a set of fit criteria. In particular, the theoretical model
is evaluated using three types of criteria [118]:

� Measures of model fit, such as the Root Mean Square
Error of Approximation (RMSEA);

� Statistical significance of individual parameter esti-
mates for the model’s paths;

� Direction and magnitude of parameter estimates; in
particular, evaluating whether or not the direction
(indicated by the parameter’s sign) makes sense.

A more detailed presentation and discussion of the struc-
tural equation model follows in Section 5, but first we pres-
ent our exploratory case study in Section 4.

4 FINDINGS FROM THE CASE STUDY

The application which TPI selected for crowdsourcing was
Titan (a pseudonym), a web application to be used by TPI
field engineers when migrating from one platform to
another as part of a customer engagement. Titan is used to
support IT departments during the migration of machine
contents from one machine to another and consists of sev-
eral components, including legacy components that were
not replaced. The latter implement the core functionality for
migration operations. The part that was crowdsourced is
therefore best characterized as a front-end information sys-
tem which would have to be integrated with the legacy
components. Within TPI a technical decision was taken that
future development should use HTML5, and this was the
technology chosen for the front end, which was replacing

the current desktop application. TPI did not have extensive
experience of HTML5 in-house and were therefore very
keen to innovate by leveraging HTML5 expertise from the
large global Topcoder community. Table 4 lists the Top 10
most used technologies on the Topcoder platform, which
lists HTML5 as the seventh most-used. The table shows sev-
eral other languages and libraries primarily used for the
web such as JavaScript, CSS and Angular.js. TPI’s decision
to use crowdsourcing for front-end development and to
seek HTML5 expertise is therefore quite justifiable given the
characteristics of the Topcoder platform.

Sections 4.1, 4.2, 4.3, 4.4, 4.5, and 4.6 draw on the themes
presented in Section 2 to discuss the key findings of the TPI
case study. For each theme, we provide information from
the Topcoder platform sample data set to put the case study
findings in context. Section 4.7 summarizes the case study
findings.

4.1 Task Decomposition

The choice as to what parts of the product were appropriate
for crowdsourcing was not entirely trivial for TPI. First, the
decision as to what work to crowdsource was primarily
based on internal resources (or lack thereof). Second, code
and executables which were self-contained (without interde-
pendencies) would be easier to merge and hence more suit-
able for crowdsourcing. If code from Topcoder had to be
directly merged with code being developed in-house, this
would be more problematic. The final factor taken into
account was the amount of domain knowledge required for
a certain task. Tasks that required the least amount of domain
knowledgewere deemedmost suitable for crowdsourcing.

In order to minimize themodifications that would need to
be made to the Topcoder code after delivery, TPI made the
header and footer browser code available to crowd develop-
ers. This was to ensure this standard format would be main-
tained by all crowd developers. For the Titan application,
TPI’s policy was to only use HTML5 where a feature was
supported by all browser platforms to increase portability.
Initially, there was an expectation that the Topcoder commu-
nity would deliver some innovative HTML5 code. However,
the TPI requirement that HTML5 features would have to be
supported by all browser platforms resulted in a very small
proportion of all potential HTML5 features being available
for use by crowd developers. The expected innovation from
the “crowd”was thus precluded by the TPI specification.

The TPI project consisted of 44 successful competitions
which fell into different categories. Table 5 lists the numbers
of competitions per category, as well as how the competi-
tions in our overall Topcoder platform sample were distrib-
uted. For example, the most prevalent category in the
sample is “Assembly Competition” with 3,426 competitions,
representing just over 25 percent.

In order tominimize integration effort later on, TPI sought
to have crowd developers work with a real back-end core as
opposed to stub services. However, by the time development
with Topcoder started, the core was not ready and stubs
were used during most development competitions. Conse-
quently, this integration effort was pushed back to a later
stage in the development process, whichwas not ideal.

For traditional in-house development, TPI developers
had internalized a great deal of information in relation to

TABLE 4
Top 10 Most Popular Technologies on the Topcoder Platform

Rank Technology Frequency

1 Java 4,019
2 JavaScript 3,371
3 HTML 2,333
4 CSS 2,181
5 Node.js 1,234
6 Angular.js 1,047
7 HTML5 1,031
8 iOS 772
9 J2EE 653
10 C# 479

244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

coding standards and templates, and technical specifica-
tions. However, many of the coding standards and tem-
plates were documented informally and not stored centrally
on the internal wiki installation. This scattering of informa-
tion and URLs prevented it from being packaged as a deliv-
erable for crowd developers. A great deal of extra work was
necessary to ensure that this information was made explicit
in the requirements specification for the external crowd
developers. A total of 1,061 pages of specification were writ-
ten by TPI for their 44 Topcoder competitions. This con-
trasted with the belief that almost no extra documentation
would have needed to be written if the development was
done in-house. The architect liaising with Topcoder
described the situation as follows:

“It feels like we’ve produced a million specification docu-
ments, but obviously we haven’t. The way we do specifica-
tions for Topcoder is entirely different to how we do them
internally.”

4.2 Coordination and Communication

Table 6 lists the distinct number of registrants and submitters
for both the case study and our overall Topcoder platform
sample. The table shows that the “crowd” registered for all
TPI competitions consists of 182 distinct registrants, though
there were only 37 distinct submitters. We observe that this
low percentage of registrants who eventually submit is fairly
consistent with the overall platform level. The number of dis-
tinct submitters at 4,516 represents a relatively small portion
of the number of developers who registered for at least one of
the 13,602 competitions in our data set. Our data set includes
only the 20,747 Topcoder members who were involved in the
13,602 competitions in our data set. We cannot draw conclu-
sions about the other registered members on Topcoder as we
found no activity to report in our data set.

The Topcoder competition-based approach effectively
represents a waterfall approach to software development.
TPI, however, were using an agile development process
based on Scrum. Combining these different waterfall and
agile development processes was problematic. Develop-
ment contributions from Topcoder had to be assigned to a
Scrum team within TPI, and crowd contributions had to be

subsequently injected into the appropriate sprints. A TPI
architect summarized the central problem as follows:

“We are an agile shop and we are used to changing
our minds. This can be a problem with Topcoder
when we tell them one thing in one competition, but
have changed our mind in the next competition.”

There were also quite a number of layers in the engage-
ment model between Topcoder and TPI. First at the Top-
coder end, a co-pilot liaised between the crowd developer
community on the one hand and TPI personnel on the other
hand. Furthermore, a Topcoder platform specialist was
involved in liaising with TPI and overseeing the co-pilot
and recommending changes at that level.

Within TPI, the choice of personnel to interact with the
Topcoder co-pilot was a difficult decision. While Topcoder
would prefer a single point of contact within the customer
organization, there were significant management and tech-
nical issues involved, thus requiring a great deal of dedi-
cated resources from TPI on both the management and
technical end, some at a very senior (and thus costly) level.
A senior Topcoder Program Manager was appointed within
TPI specifically for all programs being developed with Top-
coder. This program manager ensured that management
were aware of any scheduling issues that could arise, for
example, and also ensured that training was provided. A
specific Titan Program Manager was also appointed in TPI,
and inevitably there was some overlap between this role
and the previous one.

On the technical side, a Senior Architect was allocated at
TPI to coordinate the Topcoder development for the Titan
project. This role of Topcoder liaison who had daily contact
with the Topcoder community was considered to be prob-
lematic within TPI, given the considerable pressure to
answer questions in a timely fashion. There was some con-
cern within TPI about allocating such a senior resource to
this liaison role given the significant cost. The Software
Development Manager described the situation from a
resource allocation perspective:

“To have a single point of contact for the project on our side,
the contact needs to have both technical skills and project
management skills to be able to manage the requirements,
competitions and questions from Topcoder technical com-
munity members. It used a very valuable resource and in
this project they had to use up some time from other devel-
opers to address all the questions coming back from
Topcoder.”

At the initial stage, the liaison role involved answering
questions on the Topcoder Forums. There was significant
time pressure involved since a time penalty applied if
forum questions were not answered in a timely fashion by
TPI, which would mean that the original committed

TABLE 5
Competition Types and Frequency

Competition type Case study Topcoder sample

Architecture 6 791
Assembly Competition 23 3,426
Bug Hunt – 536
Code – 1,581
Conceptualization – 246
Content creation – 104
Copilot posting 1 514
Design – 1,010
Development – 1,042
First2Finish – 2,477
Specification – 237
Test Scenarios – 207
Test suites 7 124
UI Prototype 7 1,212
Other – 95
Total 44 13,602

TABLE 6
Distinct Registrants and Submitters

Case study Topcoder sample

Distinct registrants 182 20,747
Distinct submitters 37 4,516
Submission rate 20.3% 16.3%

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 245

delivery date for crowd development would be pushed out.
Also, it was quite tedious to answer questions using the nar-
row communication channel of the chat forum. The archi-
tect estimated the time answering questions on the
Topcoder Forums to be at least twice as long as would be
the case with internal development:

“There are a lot more questions than with internal devel-
opment. However, there is no informal communication
mechanism. You cannot yell at the person in the next
cubicle and get the answer very quickly.”

Another structural coordination issue arose in that TPI
allocate architects to products, and the desire to get the Top-
coder project completed resulted in two additional archi-
tects working on the project. This was seen as a sub-optimal
resource allocation, given that the architect role was a some-
what scarce and extremely valuable resource.

TPI also had a so-called “tactical” Scrum team that could
be assigned to different tasks more flexibly in that they were
not formally assigned to projects on a long-term basis, as was
the case with the normal Scrum teams at TPI. This tactical
team could deal with crowd contributions when they
arrived.However, in some cases a normal Scrum teamwould
also be assigned to the project, and in these cases involve-
ment of the tactical Scrum teamwould not then be necessary.
Overall, there was significant extra coordination overhead
and duplication of work on the project in that two teams had
to become familiar with the project context and content, and
related deliverables. These two teams also had to communi-
cate with each other. To address this issue, TPI dropped the
use of the tactical team, and instead scheduled time in the
project sprints to integrate the deliveries from the crowd.

In contrast to distributed development which involves
other developers from the same organization, the only rela-
tionship which tended to build over time was that with the
Topcoder co-pilot. There was no real opportunity to build
up a relationship with any of the crowd developers, as inter-
action was filtered through a number of layers.

4.3 Planning and Scheduling

The Titan project comprised more than fifty Topcoder com-
petitions, of which 44 were successfully completed. From
the customer’s perspective, these competitions involved a
total of 695 calendar days during a period of approximately
eight months (for each competition, we counted the number
of days for all competitions, some of which were run in par-
allel, yielding a grand total of 695). The competitions had an
average duration of just over 13 days, which includes the
time needed for review of the submissions. The shortest
completion time for a competition was four days while the
longest competition took 32 days to complete. The actual

competition duration from the developer’s perspective was
considerably shorter, as this would be the difference
between the registration deadline and the submission dead-
line. Fig. 2 presents the distribution of competition duration
in days for the Topcoder platform sample, with a major
peak around a week, and a smaller peak around one month.
The average duration for just the TPI competitions was
5 days and 17 hours (s ¼ 21 h), which is very close to the
mode of the duration (see Fig. 2). This is not significantly
shorter than the average of 9 days and 7 hours for the whole
sample (Mann-Whitney U, p ¼ 0:106).

Some of the specific timings and the granularity of possible
decisions for crowd development were somewhat problem-
atic for TPI. For example, Topcoder allows a customer five
days to accept or reject a deliverable. According to the archi-
tect, this was often not long enough to analyze and fully test
the deliverable, and it was difficult to get these reviews done
on time internally. A further difficulty arose in that deliver-
ables must be accepted as a whole, or rejected as a whole,
with no middle ground, even for submissions with minor
defects. It would be better from TPI’s point of view if more
flexible granularity was possible in that certain parts of deliv-
erables could be accepted and partial paymentmade for these
acceptable parts. Because TPI did not want to deter crowd
developers from bidding on future competitions, there was a
tendency to accept all submissions, even those with some
defects. There was an additional warranty period of 30 days,
but integrating fixes under this warranty would pose consid-
erable overhead in receiving, checking and integrating new
code with an active code base which would more than likely
have undergone significant further modification internally
within TPI in the interim. Furthermore, when issues were
escalated within the 30-day warranty, the resolutions were
generally not satisfactory to TPI. Overall, a single longer initial
acceptance period of 15 days would probably be more benefi-
cial to TPI than the two current periods of five and 30 days,
respectively.

Another issue related to planning and scheduling arose
when TPI had to wait for a competition to finish, while the
main application was evolving, causing possible integration
issues. TPI’s schedulewas also jeopardized as two of its com-
petitions failed due to a lack of submissions.1 These competi-
tions had to be rescheduled thus causing a delay in TPI’s
schedule. When rescheduled, there was only a single sub-
mission in one case, despite more than 30 registrants indicat-
ing an interest. As can be seen from Table 6 above, this
seeming discrepancy between registering for a competition
and actually submitting is not uncommon. Fig. 3 presents a
scatter-plot of the number of registrants versus the number
of submissions for the competitions in our sample.

As already discussed, TPI perceived the need to run mul-
tiple competitions in parallel so as to shorten the develop-
ment time. However, this clearly had implications for
managing and coordinating the handling of submissions by
TPI. For example, there were interdependencies between
the deliverables produced in the various competitions. This
also led to duplication of functionality in some of the code.

Fig. 2. Distribution of competition duration in days for the Topcoder plat-
form sample (x-axis trimmed to improve readability).

1. The reasons are unknown, which was in fact one of the motiva-
tions for conducting the quantitative comparison with other Topcoder
competitions in the first place.

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

Fig. 4 presents the number of active challenges for TPI as
well as the total number of active challenges on the Topcoder
platform. TPI held several competitions in parallel, up to five
competitions during August 2013. The total number of active
challenges on Topcoder varied between 20 and approxi-
mately 75 during the same time period. Running competi-
tions in parallel should allow a customer to get work done
more quickly, but may ‘dilute’ the available workforce for a
specific competition as developersmay have to choosewhich
competition to work on at any given time.

4.4 Quality Assurance

Much research in software engineering has focused on
identifying and eliminating errors as early as possible in
the development process, on the well established basis
that errors cost exponentially more to rectify the later
they are found in the development cycle [96]. However,
the structure of the Topcoder development process made
it difficult to preserve this, as it shifted QA issues
towards the back-end of the development process, after
coding had been completed. As the Development Man-
ager expressed it:

“Crowdsourcing focuses on requirements and relaxes the
quality process at the onset of the project, so now all the
emphasis on managing the quality comes at the QA cycles
later in the project, and that tends to be more expensive.”

There was also a problem with lack of continuity. Crowd
developers do not remain idle at the end of competitions,
and may thus not be available for subsequent TPI competi-
tions. In fact, TPI experienced problemswith bugswhich had
previously been identified and fixed, but were re-introduced
after the code went back for further development with the
crowd, as inevitably different developers would work on the
code and no organizational learning in the usual sense was
taking place. This added to the critical perception expressed
by TPI’s Divisional CTO, when he characterized the interac-
tionwith crowd developers as “a fleeting relationship”:

“there is a limited amount of carry-over knowledge. We
will get a few contestants that will participate in multiple
contests, but they won’t build up domain knowledge in
the way that an internal person would.”

Given that the combination of technical and specific
domain expertise was considered by TPI to be quite rare
(based on experience in recruiting developers), TPI took
some initiatives to improve the quality of crowdsourced
contributions. For example, a virtual machine with a sample
core application was made available as an image that could
easily be downloaded and run. This was used by the crowd
development community both in development and as a
final test or demonstrator for code they developed. Prior to
this, code testing was done with stubbed-out service calls to
the back-end, but there was a concern within TPI that code
delivered by crowd developers would not necessarily run
smoothly when connected fully to the back-end. When the
code for the initial HTML5 high-level panel applications
was produced by the crowd, there were some quality issues,
for example, the same header was repeated in every file. TPI
took this code and further developed it to a “Gold Stand-
ard,” at the level required by TPI. This was delivered back
to the Topcoder community as a template for future devel-
opment. This tactic was extended to prepare sample code
for a web application that could act as a template for the
Topcoder community. This included a parent Project Object
Model (build script), source code compliant with all TPI
code standards, unit and integration tests, automation tests,
and instructions for deployment and setup.

Once a competition’s submission deadline has passed, all
submissions are reviewed and given a rating between zero
and 100. Fig. 5 shows the distributions of the mean score (of
all submissions) and the maximum score for (a) all TPI com-
petitions, and (b) all competitions in our overall sample.
Fig. 5a shows that the maximum score of most competitions
is 100, with a limited tail down to approximately scores of
75. Only three of TPI’s 44 competitions resulted in submis-
sions that scored 100, with the remaining competitions
resulting in submissions with scores between 78 and 100.
When comparing the mean scores, TPI’s competitions do
not differ significantly from our overall sample (Mann-

Fig. 3. Correlation between registrants and submissions for the Top-
coder platform sample.

Fig. 4. Number of active (parallel) TPI challenges during TPI’s project
and all challenges during the same period.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 247

Whitney U test, p ¼ :2335), though they do in terms of maxi-
mum score (Mann-Whitney U test, p ¼ :0005), with the
scores of TPI’s competitions varying to a higher degree.

4.5 Knowledge and Intellectual Property

The “fleeting relationship” mentioned earlier also has conse-
quences for knowledgemanagement and IP. Given that there
is no single supplier as would be the case in a traditional out-
sourcing scenario, any intellectual property relating to speci-
fications and product knowledge is more widely exposed
simply by virtue of its being viewed by the ‘crowd’ of poten-
tial developers. Specifications are typically not available to
Topcoder members unless they register for a competition.
Table 7 shows the total number of registrants, and the total
number of submissions per competition type. The table
shows that there were considerable numbers of potential
participants (each of whomwould have access to the compe-
tition specifications), but that the number of submissions
was significantly lower—almost 90 percent of those regis-
tered for a competition did not actually submit anything to
that competition. In other words, making detailed product
and specification information available, which is necessary
to achieve the benefit of tapping into the crowd’s wisdom
and creativity, seems (in this case) not to be as fruitful as one
would hope given the limited numbers of submissions.

TPI chose a pseudonym to disguise their participation on
the Topcoder platform. This was to obfuscate the fact that
the work was for TPI, who are a major global player in the
ICT sector. TPI suspected that developers from competing
organizations might be working as crowd developers in
their spare time. TPI took advantage of the standard Com-
petition Confidentiality Agreement (CCA) which Topcoder

use with their development community. TPI will not do
business with certain countries, for example, and this can be
policed through the CCAwhich identifies the home location
of crowd developers. However, TPI were still concerned
about the extent to which proprietary information may be
exposed in competitions.

Fig. 6 lists the Top 10 countries based on Topcoder mem-
bership and submissions, that is, which countries host crowd
developers that make most submissions. Most Topcoder
members originate from India, China, and the USA, with
most submissions coming from the same three countries,
though in a different order with most submissions originat-
ing in China. These findings correspond to a study by Dubey
et al. [122], though based on a smaller sample of competi-
tions, they found that most crowd developers originate from
India, with China in second place. Clearly, a ban on develop-
ers from some of these countries would limit the potential
contribution that can be gained from the Topcoder platform.

4.6 Motivation and Remuneration

Given a potential development community of well over one
million members, Topcoder would claim to have broad and
deep enough expertise to ensure a healthy competition rate.
However, TPI had to cancel some competitions due to a
lack of submissions. Furthermore, 10 of the 44 competitions
attracted only a single submission. The fact that TPI used a
pseudonym may have been significant in that well known
companies seem to attract crowd developers more readily
and TPI would certainly be a very well known company
globally. One motivation for crowd developers to partici-
pate is to learn new skills, but also to improve their track
record—the ability to list working with blue chip companies
is likely perceived to be more attractive than anonymous
companies that use pseudonyms.

To investigate a potential cause of the lack of submis-
sions, we also analyzed the number of active members in
the crowd. Defining what an ‘active’ member is, is not

Fig. 5. Comparison of mean (left) and maximum (right) scores for TPI
challenges and all challenges. The scale of figures on the right are
trimmed to improve readability.

TABLE 7
Total Number of Competitions per Type, Registrations,

Submissions, Unique Registrations and Unique Developers, and
Average Submission Rates for TPI Contests

Type No.
comp.

Total
reg.

Total
subm.

Unique
registr.

Unique
devel.

Subm.
rate

Co-pilot 1 13 6 13 6 46%
UI prototype 7 99 22 40 9 22.2%
Architecture 6 90 12 35 5 13.3%
Assembly 23 610 51 119 12 8.4%
Test Suite 7 92 15 44 5 16.3%
Total 44 904 106 182 37 11.7%

Fig. 6. Top 10 countries based on number of TC members and origin of submissions.

248 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

straightforward. Fig. 7 presents data using a number of
threshold values. First, we defined it as all members that
have registered for a competition at a given time. Using this
definition the size of the active crowd varies between
150 and 700 members. A different definition is to count
those members who have submitted in a given past period—
we calculated this using two different time frames: 30 and
60 days. Using the most stringent definition, counting only
those members who submitted in the last month, the size of
the (active) crowd varies between approximately 20 and
just over 1,000.

Fig. 8 plots the cumulative proportion of submissions
against the most active developers (in decreasing order).
This analysis only considers members that have submitted
at least once—our data set includes 4,516 such members.
The figure shows that approximately 80 percent of the sub-
missions were submitted by the Top 15 percent most active
developers, while 50 percent made approximately 95 per-
cent of the submissions. These numbers are somewhat remi-
niscent of the results of a study of the open source Apache
webserver by Mockus et al. [107]. Mockus et al. hypothe-
sized that approximately 80 percent of development in

open source projects was done by the Top 15 contributors.
Those findings pertained to one specific open source project,
which differs from our study as our data set comprises over
13,600 competitions. Thus, while Topcoder has over one
million registered developers who potentially could per-
form work, our study suggests that many of them do
actively participate.

The Topcoder pricing structure was quite elaborate. At
the top level, there was a monthly platform fee to Topcoder.
For TPI this was a monthly fee of $30,000. This allowed
access to the Topcoder component catalog containing more
than 1,500 software solutions. Topcoder estimates that
approximately 60 percent of client projects can be solved
through reusing components from this catalog. However,
TPI were not in a position to leverage this catalog, since a
lot of their IT product stack has already been developed, as
the software development manager explained:

“We have our technology stack built and a lot of our soft-
ware is already written for that. So the Topcoder catalog
is not much use to us. There’s no real bang for the buck
for us there.”

The co-pilot who was the principal liaison between Top-
coder and TPI typically cost $600 per competition. There was
an initial specification review before the competition began,
and this cost $50. The individual competition pricing was
also quite complex. In the case of TPI, first prizes for competi-
tions ranged from $200 up to $2,400, depending on the size
and complexity of a competition. A second prize of
50 percent of the first prize was paid to the runner up in each
competition, but this prize would only be paid if the quality
rating of the submission was at least 75 out of 100. If this
score were less than 75, the runner-up would only receive
Digital Run points (discussed below). There was also a Reli-
ability Bonus which was paid to the winning submission.
The calculation of this bonus is quite detailed, but basically it
can be up to 20 percent of the first prize, depending on the
past successful track record of the winning contestant (i.e.,
his/her reliability—in terms of whether a contestant actually
submits to a competition having registered for it). In addi-
tion, therewas a cost of 45 percent of the first prize to support
the Topcoder Digital Run, an initiative whereby Topcoder
share money with the Topcoder development community
based on the monthly competition revenue and proportional
to the number of points that crowd developers have amassed

Fig. 7. Size of the active crowd based on competition registrations, or submitted in the last 30 and 60 days.

Fig. 8. Cumulative distribution of submissions by developers. Approxi-
mately 80 percent of submissions are made by the Top 15 percent most
active developers.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 249

in competitions. The Digital Run is an additional mechanism
to motivate potential contestants to participate even if they
assess their chance of winning to be low. Following the com-
petitions, reviewers from the crowd community evaluated
submissions at an average cost of approximately $800.
Finally, Topcoder charged a 100 percent commission equal
to the total development costs above. Overall, the total aver-
age cost per competition for TPI was approximately $7,200
(excluding themonthly platform fee).

Fig. 9 presents a distribution of the First Prize reward (to
improve readability, we set the histogram’s bin size to
$300). (As indicated above, many other costs are derived as
a percentage of the First Prize amount, e.g., the prize money
for the Second Prize runner-up is 50 percent of the First
Prize amount).

The remuneration offered does not follow a continuous
distribution, but tends to be concentrated in “round” num-
bers. For example, we found peaks at the $500, $750, and
$1,000 marks, with $1,000 being the most common amount
being offered. The sum of First Prizes of all TPI’s competi-
tions was US $51,425. When including the additional
expenses (to cover Second Prize, Digital Run, Reliability
Bonus, etc.), the total cost to run these competitions was
quite significant. A further significant additional cost arises
in the extra senior development personnel that were allo-
cated to the project. We conducted a x2 test to evaluate the
similarity of the distribution of the First Prizes of TPI con-
tests versus the Topcoder sample; in this case, we found
that the distribution of the first prizes is not similar to the
distribution of the larger Topcoder sample (p < 0:001).

4.7 Summary of the Case Study Findings

The goal of the case study was to gain greater insight into a
customer’s perspective on crowdsourcing software devel-
opment, as this aspect had not featured in previous
research. Table 8 summarizes the key findings.

In comparison with traditional development in-house,
the TPI Program Manager was of the opinion that crowd
development was less effective due to the lack of domain
knowledge of the crowd and the indirect nature of the com-
munication with developers. The primary reason for work-
ing with Topcoder was the need to get development done

more rapidly than would be possible with the existing level
of internal resources. However, given the planning and
schedule statistics above, it is clear that the expectations in
relation to a more rapid development time-frame were not
fully realized. While it is not possible to quantify the mis-
match between expectations and realization, overall, the
TPI staff members involved in the Titan project were not
convinced that crowdsourcing the project had been effective
in terms of their initial goal, namely to speed up develop-
ment and leverage external expertise.

In our presentation above, we included analyses of a large
set of 13,602 competitions from the Topcoder platform in
order to contextualize the case study findings. Based on this
comparison, we conclude that the case study can be consid-
ered a typical and representative case—that is, it used a very
popular technology (HTML5, ranking 7th most popular
technology—see Fig. 4), offered rewards that seem inline
with other competitions, and did not stand out in terms of
the size of the crowd involved in TPI’s project when com-
pared to projects in general. It is important to understand
these contextual factors, as perhaps they could help explain
why TPI’s experiences were disappointing. For example, if
TPI offered rewards that were systematically lower than
other competitions, one could suggest that as a potential
explanation for the limited crowd participation in TPI’s com-
petitions. However, the TPI competitions did not seem to dif-
fer in significant ways from other competitions. In order to
gain a better understanding of crowdsourcing software, we

Fig. 9. Distribution of First Prize amount (bin size $300; x-axes trimmed
to improve readability).

TABLE 8
Summary of Key Findings of the Case Study

Theme Key Findings

Task
Decomposition

44 successful competitions primarily for front-
end development, using HTML5 which is the 7th
most popular technology in our sample of com-
petitions.

Coordination &
Communication

Several layers of communication, making com-
munication very cumbersome. Answering ques-
tions was found to be very time-consuming and
required senior (and thus costly) staff members.
TPI’s competitions attracted over 900 registrants
in total.

Planning &
Scheduling

Challenging to finish internal reviews of submis-
sions in time. Tendency to accept submissions so
as not to deter developers in future competitions.
Up to 5 TPI competitions running in parallel, and
20-75 projects competitions in parallel in our
sample during the same period.

Quality
Assurance

Development process focuses strongly on
requirements, leaving QA activities until later.
Lack of continuity (fleeting relationship) prevents
crowd developers from building up domain
knowledge and experience in the project.

Knowledge &
Intellectual
Property

Competitions may attract considerable interest
from the crowd, but this does not automatically
lead to many submissions. However, 1,061 pages
of detailed specification were available to all
registrants.

Motivation &
Remuneration

Rewards offered in TPI competitions are repre-
sentative of platform sample. Despite consider-
able interest (number of registrations), the actual
participation rate is limited. The size of the active
crowd is very small in practice (37 unique devel-
opers).

250 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

developed a theoretical model, drawing on the key insights
generated through the case study. This is presented next.

5 THEORY DEVELOPMENT AND EVALUATION

Based on the case study findings and the extant literature on
crowdsourcing, in this section we present our theory devel-
opment and evaluation approach using Structural Equation
Modeling [115]. The main steps of SEM are shown in Fig. 10.
The first step is specification, referring to the derivation of a
set of hypotheses, implemented as a structural equation
model– - together they form our theory, and this is presented
in Section 5.1. The second step is estimation of the model
parameters using an estimation algorithm, detailed in
Section 5.2. That section also reports on the third step: evalu-
ation of fit of the model. The structural equation model is
tested on a large quantitative data set from Topcoder. The
last step is to interpret and report the findings (Section 5.3).

5.1 Theory Development and Model Specification

The first step in SEM is to specify a theoretical model, that is,
to define a set of hypotheses. Drawing from both previous
literature on crowdsourcing and our exploratory case study
reported in Section 4, we formulate a number of interrelated
hypotheses (see Fig. 11). Following SEM notation conven-
tions, rectangular boxes represent observed variables, and
arrows represent relations between variables [123]. In par-
ticular, we aim to develop a better understanding of some
of the factors that might affect a crowd’s interest and partici-
pation in competitions. Attracting sufficient people to regis-
ter their interest and submit solutions in a competition is
key to the success of crowdsourcing software development.

When customers advertise competitions on the Topcoder
platform, a competition is part of an overall project that is
owned by that customer. For example, all of TPI’s competi-
tions belonged to the same project which is indicated by a
project identifier in the data set. Customers may choose to
run several competitions in parallel—for example, the case
study company, TPI, ran several competitions in parallel
(see Fig. 4). Decomposition of a project into many smaller
tasks may reduce its complexity [124]. However, when
doing so, the available workforce may be limited, as crowd
workers may not be able to take on several competitions at
the same time. This is exacerbated by the fact that the major-
ity of competitions have a relatively short duration (see
Fig. 2): with a short deadline for a competition, a developer
already working on one competition may not have time to
work on another competition in parallel. Therefore, when a
customer runs several competitions in parallel, we expect a
reduction in the crowd’s interest. Thus, we hypothesize the
following:

HYPOTHESIS 1 (H1). Running competitions in parallel within a
project is negatively associated with the interest from the crowd
for that competition.

In open source contexts, financial incentives have been
found to “crowd out” intrinsic motivations [125]. Although

crowdsourcing shares some similarities with open source, it
is quite different in that the fundamental premise of crowd-
sourcing is that an incentive or prize can elicit potential
solutions to specific problems. This can range from micro-
payments for performing fairly mundane and trivial tasks to
millions of dollars for solving intractable problems in the
bio-medical and pharmaceutical sector [11]. Not surpris-
ingly, a significant amount of research has been conducted
on setting optimal prize levels, and their relationship to the
effort required [60], [126], [127]. Brabham [72] reports the
desire to make money as one of the strongest motivators in
the iStockphoto community. Lakhani and Panetta [12] also
report the significant extrinsic motivator that the cash prize
represents in software development contexts, which is con-
firmed in the specific case of Topcoder [34]. This relationship
was also borne out in our case study as one of the key tasks
of the co-pilots was to estimate the prize level necessary to
attract submissions to a particular challenge. This leads to
the following hypothesis:

HYPOTHESIS 2 (H2). The reward for a competition is positively
associated with an increase in the interest from the crowd for the
competition.

The literature on software development project manage-
ment generally suggests that a longer duration can lead to
greater software development productivity [128]. A number
of research studies have identified competition duration as
an important factor in crowdsourcing [124], [127], [129],
[130], [131]. The allotted duration for a competition on Top-
coder defines themaximumpossible time for software devel-
opment. Clearly, a competition which has a very short
duration may not attract developers as they will not have
time to complete the task. Developers may also work in
weekends. Thus, they will need a certain amount of time to
become aware of competitions and to assess whether they
have the required skills to accomplish the task. This leads to
the following hypothesis:

HYPOTHESIS 3 (H3). Competition duration is positively associ-
ated with crowd interest in the competition

In numerous situations, intention to act has been found
to precede actual behavior, an issue that has been thor-
oughly investigated in the social psychology and behavior
science literature [132]. The Theory of Reasoned Action [133],
[134] suggests intention as a mediating construct between
attitude on the one hand and performance on the other.

Fig. 10. Steps in implementing SEM (adapted from Hoyle [115, pp. 7]).

Fig. 11. Proposed theoretical model.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 251

We therefore suggest that registering for a competition
indicates an intention. Therefore, we posit that registering is
a good predictor of submitting to a competition. Previous
research into the volunteering process in crowdsourcing
also suggests a series of commitment stages which include
registering interest prior to submitting [135]. This is also
borne out in our case study, as co-pilots would suggest an
estimate of the number of potential submissions based on
the number of registrants. This leads to the following
hypothesis:

HYPOTHESIS 4 (H4). Interest from the crowd is positively asso-
ciated with participation in the competition.

Clearly, there will not be a one-to-one correspondence
between the number of registrants and the number of submis-
sions. Some registrantsmay beunable to accomplish the given
task, for example. However, the literature suggests that the
reputation of certain competitors, those who have achieved a
high ranking on Topcoder due to their previous successes,
can deter other registrants who do not actually submit for
competitions in which they have registered because they
believe they have no chance of winning [34]. We label the for-
mer as “crowd killers” in our model as they deter other com-
petitors in the crowd from registering. This phenomenon is
also evident in our case study.We see that runners-up receive
50 percent of the first prize, but even more tellingly, the Top-
coder Reliability Bonus is designed to reward registrants who
have a past history of submitting an entry that passes themin-
imum quality review threshold for competitions in which
they have initially registered. This serves to act as an incentive
to actually submit in competitions where contestants have
registered, even if they think they have no chance of winning
the overall prize. This leads to the following hypothesis:

HYPOTHESIS 5 (H5). “Crowd killers” will be negatively associ-
ated with participation in the competition.

We also include a number of control variables in Fig. 11.
We include a demand type factor (“demand for devel-
opers”) as the number of other active competitions in paral-
lel during a competition, as this will dilute the developer
pool—if there are more competitions to join, this has the
potential to reduce the overall number of registrations and
submissions in individual competitions. Developers who
initially had intended to participate in a given competition
might be distracted by other active competitions.

The growth of the pool of available developers appears to
have dramatically increased over the history of Topcoder,
from 50,000members in 2004 to over onemillionmembers in
2016.Wemodel this as “supply ofworkforce” as it represents
the available developer pool, which can have an impact on the
number of registrations and submissions. A larger pool of
potential developers may lead to a significant increase in
registrations and participation in competitions. While most
members of the community have never registered for any
contest, these members have been referred to as the “ ‘latent
pool’: people who were interested enough in the Topcoder platform
to register and had the potential to provide Topcoder with increased
development under the right conditions” [21, p. 4]. Including this
as a control variable ensures that this effect is considered.

The “number of technologies” might be a factor which
would influence the number of registrants and submissions.
While it is clear that we cannot state anything about
the complexity of competitions without inspection of the

specifications of each competition, the number of technolo-
gies that is involved is a crude indicator of the knowledge
that is required from developers.

Finally, we considered the “workload” of members,
which is the number of contests that registrants are already
working on.2 When a new contest is advertised (i.e., its reg-
istration is opened), members may already be submitting in
other contests, which is to say, they already have a certain
workload. This may reduce their interest in the newly
advertised contest, but it might also shift their attention
from a current contest to the new contest, for example when
the new contest is more attractive.

Table 9 lists the definitions of the variables that are used
to operationalize the constructs in our hypotheses. In the
remainder of this section, we evaluate the fit of our model
to the data (Section 5.2), after which we evaluate the hypoth-
eses (Section 5.3).

5.2 Estimation and Evaluating the Model Fit

After specifying the structural equation model, the next step
is to estimate the model and evaluate its fit; that is, the parame-
ters of the model are estimated by a SEM software program,
and the generated model fit indexes can be evaluated (see
Fig. 10). Estimation is done using an estimation algorithm,
with Maximum Likelihood being the most common estima-
tor by far. However, ML assumes multivariate normality of
the data [119], [136]. Violating this assumption may lead to
incorrect results [137, p. 68]. Therefore, it is important to
examine the distribution of the data. Kitchenham et al. [138]
recommend the use of kernel density plots instead of box
plots—we included kernel density plots for all variables
used in our model in Appendix B, which can be found on

TABLE 9
Variable Definitions

Construct variables Description

Competition
parallelism

The number of competitions that are run simulta-
neously within the same project (where all com-
petitions within a given project belong to the
same customer).

Competition
reward

First Prize money offered for a competition.

Competition
duration

Number of days between the registration dead-
line and the submission deadline (included).

Crowd Killer
registrations

Developers whose previous win count is >
(Mean no. of wins + 3 SD).

Crowd interest Number of registrations for a competition.

Crowd
participation

Number of submissions. Only registered mem-
bers are able to submit

Control variables Description
Demand for
workforce

At a given time, the number of competitions that
are running at the time of a competition being
advertised.

Supply of
workforce

The number of platform members at the time of a
competition’s advertisement; most members are
not active (the “latent pool”).

Number of
technologies

The number of technologies that are specified for
a competition.

Member
workload

For a given contest c, the average number of sub-
missions that developers registered for cmake to
other contests.

2. We thank an anonymous reviewer for this suggestion.

252 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2017.2774297. As the
density plots show, none of the variables have a normal dis-
tribution, which can lead to an inflated Chi-square (x2) statis-
tic, fromwhich many other fit indexes are derived. There are
several alternative techniques to work with non-normally
distributed data in SEM—in our study we have used two
such techniques. First, we used Robust ML estimation [139]
which leads to the same parameter estimates as ML, but the
x2 estimates and standard errors are robust to non-normality
[140]. We used the Satorra-Bentler correction [141] which
adjusts the value of x2 (see Appendix C for details, available
in the online supplemental material). The data set we used
was complete, hence we did not have to consider this in
selecting an appropriate estimator. In addition to using the
Robust ML estimator, we also used an alternative technique
to deal with non-normally distributed data. We used the
default ML estimator, but rather than relying on the default
generated standard errors (which would be incorrect given
the non-normality of the data), we used the Bollen-Stine
bootstrap procedure to calculate standard error values [142].
Instead of the Satorra-Bentler correction, an alternative p
value is calculated, based on the Bollen-Stine bootstrap pro-
cedure. This p value was 0.911, which is well over the cut-off
value of 0.05, and thus the results of this approach also sup-
ported our model. (Appendix C provides further details,
available in the online supplemental material.)

Numerous indexes of fit have been proposed to evaluate
structural equation models. One critique of many studies is
that they report only a single fit index [118]. Following
guidelines on reporting SEM [118], [119], [143], we discuss
several fit indexes that are commonly reported, and also dis-
cuss how our model scores on these indexes. It is important
to note that there is no general consensus regarding the cut-
off points for most of these indexes, a point we address in
more detail below. Table 10 summarizes the fit indexes.

A common method of evaluating goodness-of-fit is x2,
with low values suggesting a good fit. Alternatively, the
ratio of the x2 and the degrees of freedom (df) was sug-
gested by Wheaton [144], with a ratio of smaller than 2 sug-
gesting a good fit. For our model, this ratio is 1.480.

There is growing consensus that one of the most useful
indexes is the Root Mean Square Error of Approximation [145],
proposed by Steiger and Lind [146]. An RMSEA value of 0.05
indicates a “close fit” [147], a value between 0.05 and 0.08 an
“acceptable” [147], [148] fit, and a value of over 0.10 indicates
a poor fit. The RMSEA of our model is 0.048, which suggests
a good fit, with a 90 percent confidence interval (CI) between
0.041 and 0.056. The robust RMSEA scores better at 0.028;
while its 90 percent confidence interval is slightly wider, the
upper limit is still acceptable as it is below the cut-off of 0.10
beyondwhich amodel would be considered a poor fit.

A major issue with the x2 measure is its sensitivity to the
size of the sample [149]. The Comparative Fit Index (CFI) was
developed by Bentler to overcome such limitations [148],
[150]. Recommended cut-off values vary from 0.90 to 0.95
[147], [148]. The CFI for our model is over 0.99 indicating a
very good fit.

The Nonnormed Fit Index (NNFI), also known as the
Tucker-Lewis Index (TLI) is another fit index. Hoe [148, p.
77] recommends a cut-off value of 0.90—our model has an
NNFI of 0.98 suggesting a close fit. The Standardized Root
Mean Square Residual (SRMR) is another recommended
index of fit to report [151]. The SRMR for our model is 0.007,
which indicates a good model fit.

Hu and Bentler suggest the use of combinations of
indexes [147] because no single index can represent all fit
dimensions of a model. In particular, they suggest that a
CFI of 0.96 (or higher) combined with an SRMR of 0.09 (or
smaller) indicates a good fit. Another combination is a TLI
of close to 0.95 in combination with an SRMR cut-off close
to 0.09. Our model complies with both combinations.

As recommended in the technical literature on structural
equation modeling, we reportedmultiple indexes of fit [119].
West et al. suggest that the theoretical model is supported by
the data when “a majority of the fit indices” indicate an accept-
able model [151]. Thus, based on the fit indexes reported
above, we conclude that our theoretical model is supported
by the data. However, it is important to note that our model
is not the only viable model, and that alternative models
may exist; this is a point often overlooked in literature pre-
senting SEM studies. Also, wewish to remind the reader that

TABLE 10
Model Fit Indexes

Model fit index Value Interpretation

x2 131.063 n/a
x2 Satorra-Bentler corrected 5.918 The Satorra-Bentler correction adjusts the x2 test statistic to account for

non-normally distributed data
p value x2 0.205 Non-significant when p > 0:05, indicating the theoretical model sup-

ports the data
Degrees of freedom (df) 4 n/a
Corrected x2 / df 1.4795 Ratio of � 2 suggests a good fit

Root Mean Square Error of Approximation
(RMSEA) (90% CI)

0.048 Values � 0:05 suggests close fit; � 0:08 indicates acceptable fit; � 0:10

suggests poor fit
(0.041, 0.056)

Robust RMSEA (90% CI) 0.028
(NA, 0.072)

p value RMSEA� .05 0.635 Probability that RMSEA� .05; higher is better
Comparative Fit Index (CFI) 0.996 Values over 0.90 or 0.95 indicate a good model fit
Nonnormed Fit Index (NNFI) a.k.a. Tucker-Lewis 0.983 Values � 0:90 indicate a good model fit
Standardized Root Mean Square Residual (SRMR) 0.007 Values � 0:05 indicate a good model fit

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 253

http://doi.ieeecomputersociety.org/10.1109/TSE.2017.2774297
http://doi.ieeecomputersociety.org/10.1109/TSE.2017.2774297

although a good model fit is important, a prerequisite theo-
retical grounding of themodel is equally important.

5.3 Hypothesis Testing and Interpretation

On the basis of the various model fit indexes, we have con-
siderable confidence that our proposed model is a plausible
one. It is important to note that such support does not imply
our model is optimal—it is simply a model. The theoretical
model is a good fit with the data, which is a prerequisite for
being able to interpret the parameter estimates. Following
reporting guidelines for SEM [119], [152], we list the con-
structs of our model, correlations, means, and standard
deviations in Table 11 (as the data were not normally dis-
tributed, we used the non-parametric Spearman’s r correla-
tion coefficient). Fig. 12 presents the research model with
the estimated coefficients and standard errors, and Table 12
provides the full set of parameters, including those for the
control variables, as well as confidence intervals. Ideally,
modeling variables would be uncorrelated, yet the table
shows that several of them exhibit statistically significant
correlation (e.g., parallelism and reward). This is normal in
real domains because many domain phenomena influence
several variables at once. Kenny pointed out such relation-
ships “can vanish” after controlling for other causal varia-
bles, and the belief that “if X does not cause Y, they should be
uncorrelated” is naive [153, p. 80]. A summary of the results
of the hypotheses is presented in Table 12.

We found statistically significant evidence to support
three out of five hypotheses—we discuss the statistical and
practical significance below. The level of parallelism within
a project is statistically significantly negatively correlated
with the crowd’s interest (H1). The standardized coefficient
is -0.022, which suggests a very limited effect. There is no
statistically significant correlation between the offered
reward and the crowd’s interest in a competition (H2). The
confidence interval is quite wide and includes zero, which
is why no statistical significance was found. This is surpris-
ing, but we note that the standardized coefficient is 0.509,
representing a medium effect size. We observe that the sign
of the coefficient is as we hypothesized. Furthermore, we
found no evidence that a competition’s duration is signifi-
cantly positively correlated with the crowd’s interest (H3).
In this case, we found that the standardized coefficient is
only 0.030 which is very modest. Again, we observe that the
sign is positive as we hypothesized. The data do support
H4: a crowd’s interest in a competition is significantly posi-
tively correlated with the level of participation (i.e., number
of submissions). The standardized coefficient is very large
at 0.944. Finally, we also found evidence for the crowd killer

concept (H5): there is a significantly negative correlation
between the top-winning members’ interest in a competi-
tion and the level of participation as a whole in that compe-
tition. While statistically significant, the effect size is quite
limited, with a standardized coefficient of -0.067.

Table 12 also shows the standardized path coefficients of
the correlations of the control variables. In terms of crowd
interest (as reflected by number of registrations) and work-
force demand, we found a significant negative correlation,
that is, the number of other active, “competing” competi-
tions was likely to decrease registrations. However, the
effect size was quite small at -0.051. In relation to workforce
supply, we found a significant positive correlation between
the number of platform members and registrations, with a
moderate effect size at 0.135. However, we found no signifi-
cant correlation between the number of technologies speci-
fied in a competition and the crowd’s interest in that
competition; the effect size was also very limited at -0.011.
We also observed a significant correlation between member
workload and crowd interest; that is, as members were
already working on other submissions, this may have
reduced their interest in other competitions, although this
effect was very small at -0.043.

In terms of crowd participation (that is, actual submis-
sions), we investigated the same control variables. The
demand for workforce (i.e., the number of concurrent active
challenges that “compete” for the available workforce) has a
significant positive correlation with participation in a com-
petition, though the effect size was very small at 0.075. The
data suggest a significant negative correlation between the
supply of workforce and actual participation (with a small
effect size, -0.106). Likewise, we found a significant negative
correlation between the number of technologies and partici-
pation, though with a very small effect size (-0.042). Finally,
we also found a significant correlation between member
workload and submissions (though with a very small effect
size, 0.044). This, in combination with the negative correla-
tion between member workload and interest, could suggest
that some developers are very good at fast delivery or

TABLE 11
Means, Standard Deviations, and Correlations (Spearman)

Mean SD 1 2 3 4 5

1. Parallelism 4.06 16.50
2. Reward 886.30 1,794.34 -0.283*
3. Duration 9.29 9.70 0.246* -0.005
4. Interest 18.37 31.36 -0.258* 0.374* -0.003
5. Participation 2.99 14.66 -0.076* -0.187* -0.109* 0.240*
6. Crowd killer 1.54 1.47 -0.195* 0.220* -0.177* 0.230* 0.002

* p < :001

Fig. 12. Results of the research model, with unstandardized parameter
estimates, standard errors (in parentheses), and standardized estimates
(*p < 0:05, **p < 0:001; dotted lines indicate not statistically significant
relationships).

254 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

perhaps multitasking (these are highly productive develop-
ers), whereas others might focus on whatever contest they
have registered for (these developers might be less produc-
tive). However, no further conclusions can be drawn about
these correlations without further research.

Some of these findings are surprising, as one would
expect that a larger available workforce leads to a higher
level of participation. However, this only seems to lead to a
greater number of registrations which do not follow through
to actual submissions. Likewise, the ‘dilution’ of the avail-
able workforce as there are other challenges concurrently
active would suggest a lower level of participation. Thus, it
is not altogether intuitive to see this associated with a greater
degree of participation.We discuss the results of our hypoth-
eses as well as the limitations of our study in Section 6.

6 DISCUSSION AND CONCLUSION

6.1 Implications for Practice and Research

This article sheds more light on our understanding of partic-
ipation in crowdsourcing software development from a
customer’s perspective, drawing on both qualitative and
quantitative data.

The first finding is that the number of competitions run
in parallel within a project has a significant negative effect
on the crowd’s interest in a competition (H1). This is not
surprising as developers may simply not be able to work on
different competitions in parallel, all the more telling since
the size of the participating crowd of active developers is
lower than possibly anticipated. However, this issue does
have implications for customers who are seeking increased
speed of software development through crowdsourcing.
Due to the perception that the crowd with the requisite
expertise is very large, companies will invariably choose to
run several competitions in parallel. This was the case in
our case study. However, this strategy will not be effective
if the crowd cannot scale for parallel competitions. There is
also the downside that the coordination of parallel competi-
tions through the very narrow chat communication forum
is quite frustrating and time-consuming, all the more prob-
lematic given that this communication tends to require a
senior resource within participating companies.

The second finding is the reward offered for a competi-
tion did not have a statistically significant positive effect on
the interest of the crowd in a competition (not supporting
H2). This is particularly interesting as it seems to fly counter
to the fundamental premise of crowdsourcing, namely that
the crowd does it for a reward. The amount of reward is not
a significant motivator, in so much as developers are not
waiting for the reward to increase before they participate.
Also, the reward amount is suggested by the co-pilot, who
is an experienced member of the crowd community, and
who therefore has a good intuition for the amount the
reward should be set at, so as to be perceived as equitable
and attractive to the crowd.

We found that a competition’s duration did not appear to
significantly affect the crowd’s interest in a competition
(counter to H3). Again, we can argue that this is somewhat
similar to the case for H2. The average duration for competi-
tions on Topcoder is 9 days and 7 hours, with peaks around
5 days and 30 days. In our data set, we found a fairly uni-
form distribution of submissions across all seven days of
the week. The competition duration is decided by the expe-
rienced Topcoder co-pilot and given that Topcoder develop-
ers can also be in full-time employment, the average
competition duration (9 days and 7 hours) allows for week-
end work to be a possibility. One lesson for customers
would be to partition work so as to fit these duration trends
as they appear to be natural to the crowd community.

The crowd’s indication of interest has a significant posi-
tive effect on the crowd’s participation (H4). Obviously this
is in keeping with what one would intuitively expect, and is
also supported by the Theory of Reasoned Action—the
higher the number of registrations, the higher the number
of submissions. However, there is some attrition between
the two. This could be explained by the fact that the devel-
oper only sees the full specification for the competition after
registering, and that may surface some required capability
that the developer does not actually possess. Also, after reg-
istration, developers may become aware of competition in
the form of crowd killers, discussed next.

H5 suggested that what we have termed crowd killers
reduce the participation in a competition. A number of high
performing individuals earn a very good livelihood from

TABLE 12
Parameter Estimations, Confidence Intervals, Standard Errors, and Standardized Coefficients

Paths Unstandardized 95% CI SE p Standardized

H1:Project parallelism! less interest -0.042* (-0.076, -0.008) 0.017 0.016 -0.022
H2: Reward! interest 0.009 (n.s.) (-0.005, 0.023) 0.007 0.225 0.509
H3: Duration! interest 0.096 (n.s.) (-0.224, 0.416) 0.163 0.557 0.030
H4: Interest! participation 0.442** (0.353, 0.531) 0.045 0.000 0.944
H5: Crowd killers! less participation -0.666** (-0.758, -0.574) 0.047 0.000 -0.067

Control variables

Demand for workforce! interest -0.026* (-0.052, -0.001) 0.013 0.041 -0.051
Supply of workforce! interest 0.001** (0.000, 0.001) 0.000 0.000 0.135
No. technologies! interest -0.193 (n.s.) (-1.070, 0.684) 0.448 0.666 -0.011
Member workload! interest -0.219** (-0.317, -0.120) 0.050 0.000 -0.043
Demand for workforce! participation 0.018** (0.014, 0.023) 0.002 0.000 0.075
Supply of workforce! participation -0.000** (0.000, 0.000) 0.000 0.000 -0.106
No. technologies! participation -0.348** (-0.415, -0.282) 0.000 0.000 -0.042
Member workload! participation 0.104** (0.073, 0.136) 0.016 0.000 0.044

* p < 0:05, ** p < 0:001, n.s: not significant; statistically significant hypotheses are set in boldface.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 255

Topcoder—the highest paid crowd developer has received
more than $1m [154]. However, this is not necessarily a bad
thing for customers as they are likely to receive high quality
contributions from such developers. Furthermore, experi-
mental research on microtasks (not software development)
suggests that a high number of participants in a competition
might lead to lower quality. Whether or not this applies to a
software development context remains to be seen and is an
opportunity for further research.

6.2 Limitations

We are aware of a number of limitations of our study which
we discuss below. Phase I of our study comprised an explor-
atory qualitative case study, which are inherently limited in
the generalization of the findings, when considering the
traditional, positivist meaning of the term generalization
because this usually refers to statistical generalization [155],
[156]. Our case study considered one specific project from a
single customer organization, using a specific crowdsourc-
ing platform—as such, the findings are not statistically gen-
eralizable. Walsham suggests a set of alternative forms of
generalization that are more applicable to naturalistic case
studies that aremore appropriate to our case study [157]:

� Development of concepts: For example, our study iden-
tified the concept of “fleeting relationship,” which is
a characterization of the nature of the relationship
between crowd developers and a customer
organization.

� Generation of theory: Our study develops six key con-
cerns for crowdsourcing software development,
which together form a theoretical framework to
study crowdsourcing.

� Drawing of specific implications: Our study identified a
number of specific implications for TPI; for example,
TPI’s in-house development approach is agile,
whereas the Topcoder process resembles a waterfall
model. For TPI, this led to considerable rework, both
in-house and in contests. Also, given TPI’s specific
existing technology stack, the company has been
unable to benefit Topcoder’s catalog of existing soft-
ware components. Both findings have direct implica-
tions for TPI as discussed in Section 4.

� Contribution of rich insight: The case study presented
in Section 4 presents a detailed account through
“thick description” [103] of a customer organization
engaging in crowdsourcing, which helps to brings to
life a real-world phenomenon in a contemporary
software development context.

Phase II of our study adopted a theory development
approach. We derived a set of interrelated hypotheses,
which we evaluated using structural equation modeling.
The structural equation model was implemented in R using
the open source SEM package “lavaan,” which performs the
estimation of the model parameters and generates indexes
of model fit. We used a data set from Topcoder. SEM is a
technique that helps in establishing relationships between
constructs, but not necessarily causal relationships [119].

For our analysis, our data set only includes successful
competitions because the success and failure of competitions
was not the focus of our study. We suggest that future work
can focus on the relation between parallelism, rewards, and
duration on the success (or fail) rate of competitions.

In discussing the external validity or generalizability of
our study results, we distinguish between the theoretical
model and the data set. The theoretical model was devel-
oped by drawing from the crowdsourcing literature and the
case study findings. While the case study was conducted by
two of the authors [38], all three authors were closely
involved in all stages of Phase II of the study. The theoreti-
cal model was discussed in great detail by all three authors.
Two of the authors discussed which data to collect and store
from the Topcoder platform. The data analysis and evalua-
tion of the structural equation model was also conducted by
all three authors and discussed in several meetings.

The generalizability of our findings is limited to the Top-
coder platform, because our theory has not been tested using
data fromother crowdsourcing platforms. However, the theo-
retical model could also be evaluated with data from other
competition-based crowdsourcing platforms that require reg-
istration prior to participation. We have focused specifically
on competition-based crowdsourcing, as indicated by the
“crowd killers” concept. Crowd killers are highly successful
members of the crowd in terms of their win rate. These mem-
bers may have established a reputation for their high success
rate within the crowdsourcing community [154]. Crowd kill-
ers’ interest in a given contest may discourage others from
participating if they believe they no longer have a reasonable
chance of winning. This construct only applies to competi-
tion-based crowdsourcing, and not, for example, to other plat-
forms that act as open marketplaces such as oDesk (whose
participationmodel is not based on competitions).

As reported, many indexes of fit have been proposed for
structural equation models. While the fit indexes suggest
that the model fits well with the data, it is important to note
that these fit indexes should not be seen as absolute indica-
tors of a good model as each fit index has limitations. Fit
indexes may identify issues with a model, but they should
not be seen as evidence of an optimal model. SEM is what
Kline has called a “disconfirmatory procedure that can help us
to reject false models”; we can only conclude that the model is
consistent with the data [119, p. 21]. From this, it follows
that our model is simply a model, and there may be many
equivalent or better models that we have not identified.

6.3 Conclusion and Future Research

Crowdsourcing is an emerging alternative strategy to out-
sourcing software development, which has attracted consid-
erable attention in recent years. Most studies thus far have
focused on analyses of the “crowd” (i.e., developers) and
crowdsourcing platforms (e.g., [35], [37]), but very little
attention has been paid to the customer’s perspective. To
address this gap, this article presents a multi-method study
on competition-based crowdsourcing software develop-
ment from a customer perspective.

The first phase of our study comprised an exploratory
industry case study with one company (TPI) that used the
Topcoder platform for a non-trivial software development
project. In this case study, TPI faced a number of significant
challenges with the crowdsourcing process. First, the com-
pany had to deal with several layers of communication. The
company felt the process of answering the many questions
about their competitions quite cumbersome, and the high
level of involvement of senior staff made this quite costly.

256 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

Another key issue related to planning and scheduling; the
company found it quite challenging to deal with internal
reviews in a timely manner. Furthermore, in order not to
deter developers from future participation, the company
tended to accept submissions even if their quality was less
than acceptable. Although TPI used agile methods inter-
nally, from the company’s perspective the crowdsourcing
process reflected a waterfall process because there was a
very strong focus on establishing and documenting require-
ments at the front-end of the process, while leaving QA
activities until much later in the process. Finally, while Top-
coder reports a very large number of registered developers,
the active participation in TPI’s set of competitions was
quite limited, with only 37 unique developers participating.
Thus, TPI’s experience was that the potential of engaging a
“crowd” was not achieved.

In Phase II of our study, we developed and evaluated a
theoretical model of competition-based crowdsourcing
which consists of a set of five hypotheses that link a number
of factors to crowd developers’ interest (i.e., registration for a
competition that signals an intention to participate in that
competition) and participation in crowdsourcing competi-
tions. We evaluated these hypotheses using structural equa-
tion modeling with a large sample of competitions that we
retrieved from Topcoder’s public API. In this study, we
found that the level of parallelism within a given project
(representing a customer) has a significantly negative corre-
lationwith the level of interest in competitions. Furthermore,
we found a statistically significant correlation between the
interest in a competition and actual participation. We also
found statistical support for the concept of “crowd killers”:
these are top-performing developers in the Topcoder com-
munity who, when they have registered for a competition,
tend to deter other potential developers (hence the term
“crowd killer”). In our studywe did not find a statistical sup-
port for the relationship between the reward offered and the
level of interest for a given competition. Nor didwe find sup-
port for the relationship between a competition’s duration
and the level of interest for a given competition. While these
findings suggest a number of actionable implications (see
Section 6.1) for other companies engaging with competition-
based crowdsourcing, we cautiously remind the reader that
more studies are needed to confirm these findings before we
couldmake clear recommendations with confidence.

In this article we position competition-based crowd-
sourcing as a distinct alternative form of outsourcing to an
unknown workforce. We believe crowdsourcing has great
potential, although as we demonstrated in this article there
are considerable challenges that crowdsourcing customers
may need to overcome. We suggest a number of avenues
for future research:

� With “fleeting relationships” characterizing the
interaction between crowdsourcing customers and
crowd developers, what and how can customers
effectively crowdsource in a software development
context?

� Given the widespread adoption of agile approaches
to software development (in particular Scrum) that
emphasize regular face-to-face communication, how
can the crowdsourcing approach (which resembles a

waterfall-style approach to software development
with an emphasis on documented requirements) be
effectively combined and coordinated?

� How effective is the competition-based approach to
crowdsourcing compared to alternative approaches
to crowdsourcing software development?

� What factors make competitions attractive to the
crowd? A clear understanding of this can prevent
organizations from advertising competitions that are
not attractive and thus may fail due to a lack of
submissions.

� How can the “long tail” of the crowd be mobilized to
participate in crowdsourcing approaches (either
competition-based or otherwise)? That is, while Top-
coder boasts more than 1.2 million members, only a
fraction of its members seem to be actively partici-
pating. How can the “democratization of partic-
ipation” [52] in crowd-based software development
be truly achieved?

Answering these questions will require further research
from all three key perspectives in crowdsourcing systems,
namely crowdsourcing platforms, the crowds, and crowd-
sourcing customers. We believe the answers will imply new
ways to work with unknown workforces such as the crowd.

ACKNOWLEDGMENTS

We thank Lutz Prechelt and the anonymous reviewers for
very thorough feedback which has led to a better article. We
thank TPI for granting us access to the case study data. This
work was supported, in part, by Science Foundation Ireland
grant 15/SIRG/3293 and 13/RC/2094 and co-funded under
the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to
Lero—the Irish Software Research Centre (www.lero.ie).

REFERENCES

[1] A. Begel, J. Bosch, and M. A. Storey, “Social networking meets
software development: Perspectives from GitHub, MSDN, Stack-
Exchange, and TopCoder,” IEEE Softw., vol. 30, no. 1, pp. 52–66,
Jan./Feb. 2013.

[2] D. Tamburri, P. Lago, and H. van Vliet, “Organizational social
structures for software engineering,” ACM Comput. Surveys,
vol. 46, no. 1, 2013, Art. no. 3.

[3] M.-A. Storey, A. Zagalsky, F. Filho, L. Singer, and D. German,
“How social and communication channels shape and challenge a
participatory culture in software development,” IEEE Trans.
Softw. Eng., vol. 43, no. 2, pp. 185–204, Feb. 2017.

[4] B. Boehm, “A view of 20th and 21st century software engineer-
ing,” in Proc. Int. Conf. Softw. Eng., 2006, pp. 12–29.

[5] J. D. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Trans. Softw. Eng., vol. 29, no. 6, pp. 481–494, Jun. 2003.

[6] S. Greengard, “Following the crowd,” Commun. ACM, vol. 54,
no. 2, pp. 20–22, 2011.

[7] J. Howe, “The rise of crowdsourcing,”Wired, vol. 14, pp. 1–4, 2006.
[8] D. C. Brabham, Crowdsourcing. Cambridge, MA, USA: MIT Press,

2013.
[9] E. Schenk and C. Guittard, “Towards a characterization of

crowdsourcing practices,” J. Innovation Economics, vol. 1, no. 7,
pp. 93–107, 2011.

[10] L. Hoffmann, “Crowd control,” Commun. ACM, vol. 52, no. 3,
pp. 16–17, 2009.

[11] J. Howe, Crowdsourcing: Why the Power of the Crowd Is Driving the
Future of Business. New York, NY, USA: Crown Business, 2008.

[12] K. R. Lakhani and J. A. Panetta, “The principles of distributed
innovation,” Innovations: Technol. Governance Globalization, vol. 2,
no. 3, pp. 97–112, 2007.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 257

[13] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing
systems on the world-wide web,” Commun. ACM, vol. 54, no. 4,
pp. 86–96, 2011.

[14] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” J. Syst. Softw., vol. 126,
pp. 57–84, 2016.

[15] P. G. Ipeirotis, “Analyzing the Amazon mechanical turk market-
place,”CrossroadsACMMag. Students, vol. 17, no. 2, pp. 16–21, 2010.

[16] A. Kittur, “Crowdsourcing, collaboration and creativity,” Cross-
roads ACMMag. Students, vol. 17, no. 2, pp. 22–26, 2010.

[17] A. Kittur, B. Smus, S. Khamkar, and R. E. Kraut, “CrowdForge:
Crowdsourcing complex work,” in Proc. ACM Symp. User Inter-
face Softw. Technol., 2011, pp. 43–52.

[18] A. Kittur, et al., “The future of crowd work,” in Proc. ACM Conf.
Comput.-Supported Cooperative Work, 2013, pp. 1301–1318.

[19] N. Kaufmann, T. Schulze, and D. Veit, “More than fun andmoney.
Worker motivation in crowdsourcing—A study on mechanical
turk,” in Proc. 17thAmericas Conf. Inf. Syst., 2011, pp. 1–11.

[20] E. Schenk and C. Guittard, “Crowdsourcing: What can be out-
sourced to the crowd, and why?” Available: http://halshs.
archives-ouvertes.fr/halshs-00439256/, 2009.

[21] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “TopCoder (A):
Developing software through crowdsourcing,” Harvard Business
School 610–032, 2010.

[22] N. Savage, “Gaining wisdom from crowds,” Commun. ACM,
vol. 55, no. 3, pp. 13–15, 2012.

[23] R. L. Saremi, Y. Yang, G. Ruhe, and D. Messinger, “Leveraging
crowdsourcing for team elasticity: An empirical evaluation at
TopCoder,” in Proc. 39th Int. Conf. Softw. Eng., 2017, pp. 103–112.

[24] E. Bonabeau, “Decisions 2.0: The power of collective intelligence,”
MIT SloanManage. Rev., vol. 50, no. 2, pp. 45–52, 2009.

[25] C. Bonner, 10 Burning Questions on Crowdsourcing: Your Starting
Guide to Open Innovation and Crowdsourcing Success, I. Heffan, Ed.
Indianapolis, IN, USA: TopCoder Inc., 2013.

[26] K. J. Boudreau, N. Lacetera, and K. R. Lakhani, “Incentives and
problem uncertainty in innovation contests: An empirical analy-
sis,”Manage. Sci., vol. 57, no. 5, pp. 843–863, 2011.

[27] W. Ebner, M. Leimeister, U. Bretschneider, and H. Krcmar,
“Leveraging the wisdom of crowds: Designing an IT-supported
ideas competition for an ERP software company,” in Proc. 41st
Hawaii Int. Conf. Syst. Sci., 2008, pp. 417–417.

[28] L. B. Erickson, “Leveraging the crowd as a source of innovation:
Does crowdsourcing represent a new model for product and ser-
vice innovation?” in Proc. SIGMIS Comput. People Res., 2012,
pp. 91–96.

[29] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter
Than the Few. Abacus, London, UK, 2005.

[30] B. Fitzgerald, “Software crisis 2.0,” IEEE Comput., vol. 45, no. 4,
pp. 89–91, Apr. 2012.

[31] A. Begel, J. Herbsleb, and M.-A. Storey, “The future of collabora-
tive software development,” in Proc. ACM Conf. Comput. Sup-
ported Cooperative Work Companion, 2012, pp. 17–18.

[32] R. Kazman and H.-M. Chen, “The metropolis model: A new logic
for development of crowdsourced systems,” Commun. ACM,
vol. 52, no. 7, pp. 76–84, 2009.

[33] K. Stol, T. LaToza, andC. Bird, “Crowdsourcing for software engi-
neering,” IEEE Softw., vol. 34, no. 2, pp. 30–36,Mar./Apr. 2017.

[34] N. Archak, “Money, glory and cheap talk: Analyzing strategic
behavior of contestants in simultaneous crowdsourcing contests
on TopCoder.com,” in Proc. 19th Int. Conf. World Wide Web, 2010,
pp. 21–30.

[35] Y. Yang and R. Saremi, “Award vs. worker behaviors in competi-
tive crowdsourcing tasks,” in Proc. ACM/IEEE Int. Symp. Empiri-
cal Softw. Eng. Meas., 2015, pp. 1–10.

[36] Y. Yang,M. Karim, R. Saremi, andG. Ruhe, “Who should take this
task?—Dynamic decision support for crowd workers,” in Proc.
ACM/IEEE Int. Symp. Empirical Softw. Eng.Meas., 2016, Art. no. 8.

[37] H. Zhang, Y. Wu, and W. Wu, “Analyzing developer behavior
and community structure in software crowdsourcing,” in Infor-
mation Science and Applications, K. Kim, Ed. Berlin, Germany:
Springer, 2015.

[38] K. Stol and B. Fitzgerald, “Two’s company, three’s a crowd: A
case study of crowdsourcing software development,” in Proc.
36th Int. Conf. Softw. Eng., 2014, pp. 187–198.

[39] K. Eisenhardt and M. Graebner, “Theory building from cases:
Opportunities and challenges,” Academy Manage. J., vol. 50, no. 4,
pp. 25–32, 2007.

[40] J. Feller, P. Finnegan, B. Fitzgerald, and J. Hayes, “From peer pro-
duction to productization: A study of socially enabled business
exchanges in open source service networks,” Inf. Syst. Res.,
vol. 19, no. 4, pp. 475–493, 2008.

[41] P. A
�
gerfalk and B. Fitzgerald, “Outsourcing to an unknown wor-

force: Exploring opensourcing as a global sourcing strategy,”
MIS Quart., vol. 32, no. 2, pp. 385–409, 2008.

[42] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and
S. Ganguly, “Leveraging the crowd: How 48,000 users helped
improve Lync performance,” IEEE Softw., vol. 30, no. 4, pp. 38–
45, Jul./Aug. 2013.

[43] Y.-H. Tung and S.-S. Tsenga, “A novel aproach to collaborative
testing in a crowdsourcing environment,” J. Syst. Softw., vol. 86,
no. 8, pp. 2143–2153, 2013.

[44] A. L. Zanatta, L. S. Machado, G. B. Pereira, R. Prikladnicki, and
E. Carmel, “Software crowdsourcing platforms,” IEEE Softw.,
vol. 33, no. 6, pp. 112–116, Nov./Dec. 2016.

[45] Topcoder, “Topcoder website.” [Online]. Available: http://
www.topcoder.com

[46] P. A
�
gerfalk, B. Fitzgerald, and K. Stol, Software Sourcing in the Age

of Open: Leveraging the Unknown Workforce. Berlin, Germany:
Springer, 2015.

[47] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots
and rainbows: Motivation and social practice in open source soft-
ware development,”MIS Quart., vol. 36, no. 2, pp. 649–676, 2012.

[48] E. Estell�es-Arolas and F. Gonz�alez-Ladr�on-de-Guevara,
“Towards an integrated crowdsourcing definition,” J. Inf. Sci.,
vol. 38, no. 2, pp. 189–200, 2012.

[49] L. Hetmank, “Components and functions of crowdsourcing sys-
temsa systematic literature review,” in Proc. 11th Int. Conf. Wirt-
schaftsinformatik, 2013, pp. 55–69.

[50] J. Howe, [Online]. Available: http://www.crowdsourcing.com
[51] D. Naparat and P. Finnegan, “Crowdsourcing software require-

ments and development: A mechanism-based exploration of
‘opensourcing’,” in Proc. 19th Americas Conf. Inf. Syst., 2013.

[52] T. D. LaToza and A. van der Hoek, “Crowdsourcing in software
engineering: Models, motivations, and challenges,” IEEE Softw.,
vol. 33, no. 1, pp. 74–80, Jan./Feb. 2016.

[53] J. Feller and B. Fitzgerald, Understanding Open Source Software
Development. London, U.K.: Pearson Education, 2002.

[54] B. Fitzgerald, “The transformation of open source software,”MIS
Quart., vol. 30, no. 3, pp. 587–598, 2006.

[55] M. Germonprez, J. Kendall, K. Kendall, L. Mathiassen, B. Young,
and B. Warner, “A theory of responsive design: A field study of
corporate engagement with open source communities,” Inf. Syst.
Res., vol. 28, pp. 64–83, 2016.

[56] L. B. Erickson, I. Petrick, and E. M. Trauth, “Organizational uses
of the crowd: Developing a framework for the study of
crowdsourcing,” in Proc. Annu. Conf. Comput. People Res., 2012,
pp. 155–158.

[57] H. Simula, “The rise and fall of crowdsourcing?” in Proc. 46th
Hawaii Int. Conf. Syst. Sci., 2013, pp. 2783–2791.

[58] A. Schwarz, M.Mehta, N. Johnson, andW. Chin, “Understanding
frameworks and reviews: A commentary to assist us in moving
our field forward by analyzing our past,” Database Adv. Inf. Syst.,
vol. 38, no. 3, pp. 29–50, 2007.

[59] P. G. Ipeirotis and P. K. Paritosh, “Managing crowdsourced
human computation,” in Proc. 20th Int. Conf. World Wide Web,
2011, pp. 287–288.

[60] A. Kulkarni, M. Can, and B. Hartmann, “Collaboratively crowd-
sourcing workflows with Turkomatic,” in Proc. ACM Comput.-
Supported Cooperative Work, 2012, pp. 1003–1012.

[61] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and
integrating the code: Conway’s Law revisited,” in Proc. 21st Int.
Conf. Softw. Eng., 1999, pp. 85–95.

[62] D. L. Parnas, “On the criteria to be used in decomposing systems
into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[63] T. D. LaToza, W. B. Towne, A. van der Hoek, and J. D. Herbsleb,
“Crowd development,” in Proc. 6th Int. Workshop Cooperative
Human Aspects Softw. Eng., 2013, pp. 85–88.

[64] T. D. LaToza, W. Towne, C. Adriano, and A. van der Hoek,
“Microtask programming: Building software with a crowd,” in
Proc. 27thACMSymp. User Interface Softw. Technol., 2014, pp. 43–54.

[65] H. Tajedin and D. Nevo, “Determinants of success in crowd-
sourcing software development,” in Proc. SIGMIS Comput. People
Res., 2013, pp. 173–178.

258 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

http://www.topcoder.com
http://www.topcoder.com
http://www.crowdsourcing.com

[66] T. W. Malone and K. Crowston, “The interdisciplinary study of
coordination,”ACMComput. Surveys, vol. 26, no. 1, pp. 87–119, 1994.

[67] R. E. Kraut and L. A. Streeter, “Coordination in software devel-
opment,” Commun. ACM, vol. 38, no. 3, pp. 69–81, 1995.

[68] M. Cataldo and J. Herbsleb, “Coordination breakdowns and their
impact on development productivity and software failures,”
IEEE Trans. Softw. Eng., vol. 39, no. 3, pp. 343–360, Mar. 2013.

[69] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer
recommendation for crowdsourced software development
tasks,” in Proc. IEEE Symp. Service-Oriented Syst. Eng., 2015,
pp. 347–356.

[70] F. P. Brooks, The Mythical Man-Month: Essays on Software Engi-
neering. Reading, MA, USA: Addison-Wesley, 1995.

[71] Y. Zhao and Q. Zhu, “Evaluation on crowdsourcing research:
Current status and future direction,” Inf. Syst. Frontiers, vol. 16,
no. 3, pp. 417–434, Jul. 2014.

[72] D. C. Brabham, “Crowdsourcing as a model for problem solving:
An introduction and cases,” Convergence, vol. 14, no. 1, pp. 75–90,
2008.

[73] M. Vukovic, “Crowdsourcing for enterprises,” in Proc. Congr.
Services I, 2009, pp. 686–692.

[74] S. P. Dow, A. Kulkarni, S. R. Klemmer, and B. Hartmann,
“Shepherding the crowd yields better work,” in Proc. ACM Conf.
Comput. Supported Cooperative Work, 2012, pp. 1013–1022.

[75] E. S. Raymond, The Cathedral & the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. Sebastopol, CA, USA:
O’Reilly Media, 2001.

[76] P. Kinnaird, L. Dabbish, S. Kiesler, and H. Faste, “Co-worker
transparency in a microtask marketplace,” in Proc. ACM Comput.
Supported Coordination Work, 2013, pp. 1285–1290.

[77] D. C. Brabham, “The myth of amateur crowds: A critical dis-
course analysis of crowdsourcing coverage,” Inf., Commun. Soc.,
vol. 15, no. 3, pp. 394–410, 2012.

[78] T. LaToza, M. Chen, L. Jiang, M. Zhao, and A. van der Hoek,
“Borrowing from the crowd: A study of recombination in soft-
ware design competitions,” in Proc. 37th Int. Conf. Softw. Eng.,
2015, pp. 551–562.

[79] A. Aurum, R. Jeffery, C. Wohlin, and M. Handzic,Managing Soft-
ware Engineering Knowledge. Berlin, Germany: Springer, 2003.

[80] F. Bjørnson and T. Dingsøyr, “Knowledge management in soft-
ware engineering: A systematic review of studied concepts, find-
ings and research methods used,” Inf. Softw. Technol., vol. 50,
no. 11, pp. 1055–1068, 2008.

[81] K. C. Desouza and J. R. Evaristo, “Managing knowledge in dis-
tributed projects,” Commun. ACM, vol. 47, no. 4, pp. 87–91, 2004.

[82] L. Dabbish, R. Farzan, R. Kraut, and T. Postmes, “Fresh faces in
the crowd: Turnover, identity, and commitment in online
groups,” in Proc. ACM Conf. Comput. Supported Cooperative Work,
2012, pp. 245–248.

[83] T. K. Abdel-Hamid, “A study of staff turnover, acquisition, and
assimilation and their impact on software development cost and
schedule,” J. Manage. Inf. Syst., vol. 6, no. 1, pp. 21–40, 1989.

[84] S. Wolfson and M. Lease, “Look before you leap: Legal pitfalls of
crowdsourcing,” in Proc. ASIST Annu. Meet., 2011, pp. 1–10.

[85] V. Chanal and M. L. Caron-Fasan, “The difficulties involved in
developing business models open to innovation communities:
The case of a crowdsourcing platform,” M@n@gement, vol. 13,
no. 4, pp. 318–341, 2010.

[86] G. Jouret, “Inside Cisco’s search for the next big idea,” Harvard
Bus. Rev., vol. 87, no. 9, pp. 43–45, 2009.

[87] D. Chandler and A. Kapelner, “Breaking monotony with mean-
ing: Motivation in crowdsourcing markets,” J. Econ. Behavior
Org., vol. 90, pp. 123–133, 2013.

[88] Y. C. Zhao and Q. Zhu, “Effects of extrinsic and intrinsic motiva-
tion on participation in crowdsourcing contest: A perspective of
self-determination theory,” Online Inf. Rev., vol. 38, no. 7,
pp. 896–917, 2014.

[89] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay
auctions,” in Proc. 10th ACM Conf. Electron. Commerce, 2009,
pp. 119–128.

[90] S. Faridani, B. Hartmann, and P. G. Ipeirotis, “What’s the right
price? pricing tasks for finishing on time,” in Proc. AAAI Work-
shop Human Comput., 2011, pp. 26–31.

[91] J. J. Horton and L. B. Chilton, “The labor economics of paid
crowdsourcing,” in Proc. ACM 11th Conf. Electron. Commerce,
2010, pp. 209–218.

[92] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing crowdsourc-
ing-based software development tasks,” in Proc. 35th Int. Conf.
Softw. Eng., 2013, pp. 1205–1208.

[93] W. Mason and D. J. Watts, “Financial incentives and the
‘performance of crowds’,” in Proc. ACM SIGKDD Workshop
Human Comput., 2009, pp. 77–85.

[94] D. Pilz and H. Gewald, “Does money matter? Motivational fac-
tors for participation in paid- and non-profit-crowdsourcing
communities,” in Proc. 11th Int. Conf. Wirtschaftsinformatik, 2013,
Art. no. 37.

[95] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in software engineering: A systematic literature
review,” Inf. Softw. Technol., vol. 50, no. 9/10, pp. 860–878, 2008.

[96] B. W. Boehm, Software Engineering Economics. London, U.K.: Pear-
son Education, 1981.

[97] N. Baddoo and T. Hall, “Motivators of software process
improvement: An analysis of practitioners’ views,” J. Syst. Softw.,
vol. 62, no. 2, pp. 85–96, 2002.

[98] Y. Singer and M. Mittal, “Pricing mechanisms for crowdsourcing
markets,” in Proc 22nd Int. Conf. World Wide Web, 2013, pp. 1157–
1166.

[99] G. G. Gable, “Integrating case study and survey research meth-
ods: An example in information systems,” Eur. J. Inf. Syst., vol. 3,
no. 2, pp. 112–126, 1994.

[100] P. A
�
gerfalk, “Embracing diversity through mixed methods

research,” Eur. J. Inf. Syst., vol. 22, no. 3, pp. 251–256, 2013.
[101] J. Mingers, “Combining is research methods: Towards a pluralist

methodology,” Inf. Syst. Res., vol. 12, no. 3, pp. 240–259, 2001.
[102] P. Clarke, R. O’Connor, B. Leavy, and M. Yilmaz, “Exploring the

relationship between software process adaptive capability and
organisational performance,” IEEE Trans. Softw. Eng., vol. 41,
no. 12, pp. 1169–1183, Dec. 2015.

[103] R. Yin, Case Study Research, 3rd ed. Thousand Oaks, CA, USA:
Sage, 2003.

[104] B. Kaplan and D. Duchon, “Combining qualitative and quantita-
tive methods in information systems research: A case study,”
MIS Quart., vol. 12, no. 4, pp. 571–586, 1988.

[105] J. Danziger and K. Kraemer, Survey Research and Multiple Opera-
tionism: The URBIS Project Methodology. Boston, MA, USA:
Harvard Bus. School Press, 1991, pp. 351–371.

[106] P. Runeson, M. H€ost, A. Rainer, and B. Regnell, Case Study
Research in Software Engineering: Guidelines and Examples. Hobo-
ken, NJ, USA: Wiley, 2012.

[107] A. Mockus, R. Fielding, and J. D. Herbsleb, “A case study of open
source software development: The Apache server,” in Proc. Int.
Conf. Softw. Eng., 2000, pp. 263–272.

[108] Topcoder, “The 3 pillars of digital creation at Topcoder - enter-
prise open innovation.” [Online]. Available: https://www.
youtube.com/watch?v=4QVVQdaXnYo, Accessed on: May. 25,
2017.

[109] Topcoder, “How it works: Community driven design, develop-
ment, & data science.” [Online]. Available: https://www.
topcoder.com/community/how-it-works/

[110] K. Stol and B. Fitzgerald, “Research protocol for a case study of
crowdsourcing software development,” Univ. Limerick,
Tech. Rep., Limerick, Ireland.

[111] M. Leininger, Criteria and Critique. Thousand Oaks, CA, USA:
Sage Publications, 1994.

[112] C. B. Seaman, “Qualitative methods in empirical studies of soft-
ware engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4,
pp. 557–572, Jul./Aug. 1999.

[113] M. Miles and A. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, 2nd ed. Thousand Oaks, CA, USA: Sage
Publications, 1994.

[114] K. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in soft-
ware engineering research: A critical review and guidelines,” in
Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 120–131.

[115] R. Hoyle, Ed., Handbook of Structural Equation Modeling. New
York, NY, USA: Guildford Press, 2012.

[116] E. Capra, C. Francalanci, and F. Merlo, “An empirical study on
the relationship among software design quality, development
effort, and governance in open source projects,” IEEE Trans.
Softw. Eng., vol. 34, no. 6, pp. 765–782, Nov./Dec. 2008.

[117] Y. Lindsjørn, D. I. Sjøberg, T. Dingsøyr, G. Bergersen, and
T. Dyba

�
, “Teamwork quality and project success in software

development: A survey of agile development teams,” J. Syst.
Softw., vol. 122, pp. 274–286, 2016.

STOL ETAL.: COMPETITION-BASED CROWDSOURCING SOFTWARE DEVELOPMENT: A MULTI-METHOD STUDY FROM A CUSTOMER... 259

https://www.youtube.com/watch?v=4QVVQdaXnYo
https://www.youtube.com/watch?v=4QVVQdaXnYo
https://www.topcoder.com/community/how-it-works/
https://www.topcoder.com/community/how-it-works/

[118] R. E. Schumacker and R. Lomax, A Beginner’s Guide to Structural
Equation Modeling, 4th ed. Evanston, IL, USA: Routledge, 2016.

[119] R. Kline, Principles and Practice of Structural Equation Modeling, 4th
ed. New York, NY, USA: Guilford Press, 2016.

[120] K. Stol and B. Fitzgerald, “Theory-oriented software engineer-
ing,” Sci. Comput. Program., vol. 101, pp. 79–98, 2015.

[121] Y. Rosseel, “lavaan: An R package for structural equation mod-
eling,” J. Statistical Softw., vol. 48, no. 2, pp. 1–36, 2012.

[122] A. Dubey, et al., “Dynamics of software development
crowdsourcing,” in Proc. IEEE 11th Int. Conf. Global Softw. Eng.,
2016, pp. 49–58.

[123] M.-H. R. Ho, S. Stark, and O. Chernyshenko, “Graphical repre-
sentation of structural equation models using path diagrams,” in
Handbook of Structural Equation Modeling, R. H. Hoyle, Ed. New
York, NY, USA: Guildford Press, 2012.

[124] R. Saremi and Y. Yang, “Empirical analysis on parallel tasks in
crowdsourcing software development,” in Proc. 30th IEEE/ACM
Int. Conf. Automated Softw. Eng. Workshop, 2015, pp. 28–34.

[125] J. Roberts, I.-H. Hann, and S. Slaughter, “Understanding the
motivations, participation, and performance of open source soft-
ware developers: A longitudinal study of the Apache projects,”
Manage. Sci., vol. 52, no. 7, pp. 984–999, 2006.

[126] N. Archak and A. Sundararajan, “Optimal design of crowdsourc-
ing contests,” in Proc. 30th Int. Conf. Inf. Syst., 2009, pp. 1–16.

[127] J. Leimeister, M. Huber, U. Bretschneider, and H. Krcmar,
“Leveraging crowdsourcing: Activation-supporting components
for it-based ideas competition,” J. Manage. Inf. Syst., vol. 26, no. 1,
pp. 197–224, 2009.

[128] B. Boehm, C. Abst, and S. Chulani, “Software development cost
estimation approaches—A survey,” Ann. Softw. Eng., vol. 10,
no. 1–4, pp. 177–205, 2005.

[129] T. Walter and A. Back, “Towards measuring crowdsourcing suc-
cess: An empirical study on effects of external factors in online
idea contest,” in Proc. Mediterranean Conf. Inf. Syst., 2011.

[130] Y. Yang, P.-Y. Chen, and P. Pavlou, “Open innovation: An empir-
ical study of online contests,” in Proc. Int. Conf. Inf. Syst., 2009.

[131] D. Gefen, G. Gefen, and E. Carmel, “How project description
length and expected duration affect bidding and project success
in crowdsourcing software development,” J. Syst. Softw.,
vol. 116, pp. 75–84, 2016.

[132] R. Sorrentino and E. Higgins, Handbook of Motivation and Cogni-
tion: Foundations of Social Behaviour, vol. 1. Hoboken, NJ, USA:
Wiley, 1986.

[133] I. Ajzen and M. Fishbein, “Factors influencing intentions and the
intention-behavior relation,” Human Relations, vol. 27, no. 1, p. 1–
15, 1974.

[134] I. Ajzen and M. Fishbein, Understanding Attitudes and Predicting
Social Behavior. Englewood Cliffs, NJ, USA: Prentice-Hall, 1980.

[135] W. Lei, M. N. Huhns, W.-T. Tsai, and W. Wu, eds., Crowdsourcing:
Cloud-Based Software Development. Berlin, Germany: Springer, 2015.

[136] S. Finney and C. DiStefano, Non-Normal and Categorical Data in
Structural Equation Modeling. Charlotte, NC, USA: Information
Age Publishing, 2006.

[137] R. E. Schumacker and R. G. Lomax, A Beginner’s Guide to Struc-
tural Equation Modeling, 2nd ed. Mahwah, NJ, USA: Lawrence
Erlbaum Associates, 2004.

[138] B. Kitchenham, et al., “Robust statistical methods for empirical
software engineering,” Empirical Softw. Eng., vol. 22, no. 2,
pp. 579–630, 2017.

[139] O. V. Berkout, A. M. Gross, and J. Young, “Why so many arrows?
Introduction to structural equationmodeling for the novitiate user,”
Clinical Child Family Psychology Rev., vol. 17, pp. 217–229, 2014.

[140] J. J. Hox, C. J. Maas, and M. J. Brinkhuis, “The effect of estimation
method and sample size in multilevel structural equation mod-
eling,” Statistica Neerlandica, vol. 64, no. 2, pp. 157–170, 2010.

[141] A. Satorra and P. Bentler, “Corrections to test statistics and stan-
dard errors in covariance structure analysis,” in Latent Variables
Analysis: Applications for Developmental Research, A. von Eye and
C. Clogg, Eds. Thousand Oaks, CA, USA: Sage, 1994, pp. 399–
419.

[142] K. Bollen and R. Stine, “Bootstrapping goodness-of-fit measures
in structural equation models,” in Testing Structural Equation
Models, K. Bollen and J. Long, Eds. Thousand Oaks, CA, USA:
Sage Publications, 1993, pp. 111–135.

[143] R. P. Bagozzi and Y. Yi, “Specification, evaluation, and interpre-
tation of structural equation models,” J. Academy Marketing Sci.,
vol. 40, no. 1, pp. 8–34, 2012.

[144] B. Wheaton, B. Muthen, D. Alwin, and G. Summers, “Assessment
reliability and stability in panel models,” in Sociological Methodol-
ogy, D. Heise, Ed. San Francisco, CA, USA: Jossey-Bass, 1977,
pp. 84–136.

[145] R. L. Matsueda, Key Advances in the History of Structural Equation
Modeling. New York, NY, USA: Guilford Press, 2012.

[146] J. H. Steiger and J. C. Lind, “Statistically-based tests for the num-
ber of common factors,” in Proc. Handout Talk Annu. Meet. Psycho-
metric Soc., 1980.

[147] L. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covari-
ance structure analysis: Conventional criteria versus new alter-
natives,” Structural Equation Model.: A Multidisciplinary J., vol. 6,
no. 1, pp. 1–55, 1999.

[148] S. L. Hoe, “Issues and procedures in adopting structural equa-
tion modeling technique,” J. Appl. Quantitative Methods, vol. 3,
no. 1, pp. 76–83, 2008.

[149] B. Wheaton, “Assessment of fit in overidentified models with latent
variables,” Sociol.Methods Res., vol. 16, no. 1, pp. 118–154, 1987.

[150] P. Bentler, “Comparative fit indexes in structural models,” Psy-
chological Bulletin, vol. 107, no. 2, pp. 238–246, 1990.

[151] R. L. Matsueda, “Model fit and model selection in structural
equation modeling,” in Handbook of Structural Equation Modeling,
R. H. Hoyle, Ed. New York, NY, USA: Guilford Press, 2012.

[152] R. McDonald and R. Moon-Ho, “Principles and practice in
reporting structural equation analyses,” Psychological Methods,
vol. 7, no. 1, pp. 64–82, 2002.

[153] D. A. Kenny, Correlation and Causality, revised ed., 2004.
[154] Topcoder, “Interview with first TC millionaire argolite.”

[Online]. Available: https://community.topcoder.com/tco11/
2011/07/25/interview-with-first-tc-millionaire-argolite/,
Accessed on: May. 25, 2017.

[155] B. Fitzgerald and D. Howcroft, “Towards dissolution of the is
research debate: From polarization to polarity,” J. Inf. Technol.,
vol. 13, pp. 313–326, 1998.

[156] J. W. Creswell and D. L. Miller, “Determining validity in qualita-
tive inquiry,” Theory Practice, vol. 39, no. 3, pp. 124–130, 2000.

[157] G. Walsham, “Interpretive case studies in IS research: Nature
and method,” Eur. J. Inf. Syst., vol. 4, pp. 74–81, 1995.

Klaas-Jan Stol is a lecturer in the Department of
Computer Science, University College Cork, and
a Science Foundation Ireland principal investiga-
tor. He is a member of Lero—the Irish Software
Research Centre, where he was a research fel-
low prior to his position with UCC. His research
interests include research methodology, and con-
temporary software development approaches,
specifically open source software, inner source,
and crowdsourcing.

Bora Caglayan is a researcher with IBM Ireland.
Previously, he was a post-doctoral researcher
with Lero—the Irish Software Research Centre,
University of Limerick. His research interests
include empirical software engineering and rec-
ommender systems in software engineering.

Brian Fitzgerald is director of Lero—the Irish
Software Research Centre. He holds an endowed
chair, the Frederick Krehbiel II Chair in Innovation
in Business and Technology, University of Limer-
ick. His research interests include open source
software, inner source, crowdsourcing, and lean
and agile methods.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 3, MARCH 2019

https://community.topcoder.com/tco11/2011/07/25/interview-with-first-tc-millionaire-argolite/
https://community.topcoder.com/tco11/2011/07/25/interview-with-first-tc-millionaire-argolite/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

