
Automated Refactoring of OCL
Constraints with Search

Hong Lu, Shuai Wang , Tao Yue , Shaukat Ali ,Member, IEEE, and Jan F. Nyga
�
rd

Abstract—Object Constraint Language (OCL) constraints are typically used to provide precise semantics to models developed

with the Unified Modeling Language (UML). When OCL constraints evolve regularly, it is essential that they are easy to understand

and maintain. For instance, in cancer registries, to ensure the quality of cancer data, more than one thousand medical rules are

defined and evolve regularly. Such rules can be specified with OCL. It is, therefore, important to ensure the understandability and

maintainability of medical rules specified with OCL. To tackle such a challenge, we propose an automated search-based OCL

constraint refactoring approach (SBORA) by defining and applying four semantics-preserving refactoring operators (i.e., Context

Change, Swap, Split and Merge) and three OCL quality metrics (Complexity, Coupling, and Cohesion) to measure the

understandability and maintainability of OCL constraints. We evaluate SBORA along with six commonly used multi-objective search

algorithms (e.g., Indicator-Based Evolutionary Algorithm (IBEA)) by employing four case studies from different domains: healthcare

(i.e., cancer registry system from Cancer Registry of Norway (CRN)), Oil&Gas (i.e., subsea production systems), warehouse (i.e.,

handling systems), and an open source case study named SEPA. Results show: 1) IBEA achieves the best performance among all

the search algorithms and 2) the refactoring approach along with IBEA can manage to reduce on average 29.25 percent Complexity

and 39 percent Coupling and improve 47.75 percent Cohesion, as compared to the original OCL constraint set from CRN. To further

test the performance of SBORA, we also applied it to refactor an OCL constraint set specified on the UML 2.3 metamodel and we

obtained positive results. Furthermore, we conducted a controlled experiment with 96 subjects and results show that the

understandability and maintainability of the original constraint set can be improved significantly from the perspectives of the

96 participants of the controlled experiment.

Index Terms—Constraints, metrics/measurement, methodologies, CASE

Ç

1 INTRODUCTION

IT is well recognized that constraints play a critical role
and require to be specified in various contexts to facilitate

different software engineering activities such as model-
based test case generation [30], [31] and automated product
configuration [32], [59]. Object Constraint Language (OCL)
[34] is well known as a formal language based on the first
order logic to impose additional semantics on Unified
Modeling Language (UML) models [6], [7]. The existing lit-
erature has shown that UML and OCL have been success-
fully applied for solving diverse software engineering
problems [7], [8], [30], [32].

In certain contexts, hundreds and thousands of con-
straints have to be specified/formalized manually by
domain experts to constraint a domain model for the
purpose of reducing ambiguity (therefore improving under-
standability) and enabling automation. For instance, we
started a research project in 2015 with the Cancer Registry

of Norway (CRN)1 that began to collect cancer data in
Norway since 1953. CRN is developing systematic app-
roaches to facilitate maintenance of their automated cancer
registry system andmedical rules. In their current practice, a
large number of medical rules should be specified/formal-
ized by Chief Medical Officers as constraints on a domain
model capturing concepts, e.g., Cancer Case, Cancer Message
and Cancer Patient, such that a rule engine at a certain level of
extent is able to make intelligent decisions. Some examples
of these decisions include determining cancer cases based on
collected data from various sources such as pathology labo-
ratories andmedical hospitals. Another aspect is that in such
contexts, manually specified constraints (e.g., medical rules)
evolve regularly, as new rules are constantly introduced;
existing rules frequently revised due to e.g., new medical
research findings and obsolete rules are deleted. As pointed
out in literature, maintenance may consume up to 70 percent
of cost during a system development life cycle [2], of which
understandability is responsible for almost half of the cost
[1]. Therefore, it is essential to ensure that OCL constraints,
e.g., for specifying medical rules have a good understand-
ability and maintainability, which requires an effective
method to refactor a given set of OCL constraints.

Refactoring is often known as code refactoring, defined
as “a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external

� H. Lu, S. Wang, T. Yue, and S. Ali are with Simula Research Laboratory,
Martin Linges vei 25, Fornebu 1364, Norway.
E-mail: {honglu, shuai, tao, shaukat}@simula.no.

� J.F. Nyga
�
rd is with Cancer Registry of Norway, Ullernchausseen 64, Oslo

0379, Norway. E-mail: Jan.Nygard@kreftregisteret.no.

Manuscript received 20 Oct. 2016; revised 27 Sept. 2017; accepted 12 Nov.
2017. Date of publication 16 Nov. 2017; date of current version 21 Feb. 2019.
(Corresponding author: Tao Yue.)
Recommended for acceptance by T. Xie.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2774829 1. Cancer Registry of Norway: http://www.kreftregisteret.no

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

0098-5589 � 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3164-7002
https://orcid.org/0000-0003-3164-7002
https://orcid.org/0000-0003-3164-7002
https://orcid.org/0000-0003-3164-7002
https://orcid.org/0000-0003-3164-7002
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0001-9655-7003
https://orcid.org/0000-0001-9655-7003
https://orcid.org/0000-0001-9655-7003
https://orcid.org/0000-0001-9655-7003
https://orcid.org/0000-0001-9655-7003
mailto:
mailto:
http://www.kreftregisteret.no

behavior” [3]. Nowadays, due to the presence of the increas-
ing number of computerized models designed for various
purposes such as enabling automation or handling com-
plexity, model refactoring is becoming necessary and
important [4]. However, automated OCL refactoring is
rarely found in the literature. Correa et al. conducted con-
trolled experiments [5] to study the usefulness of refactoring
on improving the understandability of OCL constraints,
which forms the first piece of evidence showing the useful-
ness of refactoring OCL constraints. Cabot et al. [6] pro-
posed an automated solution to generate equivalent
alternatives of OCL constraints. However, the solution gen-
erates a large number of alternatives without providing a
way to select the “best” ones in terms of any quality metric,
e.g., Understandability.

Considering the fact that an OCL constraint can have a
large number of alternatives with equivalent semantics [6],
an OCL refactoring solution should be scalable, efficient
and take into account specific quality metrics. In this paper,
we propose a search-based OCL refactoring approach
(SBORA) to automatically find optimal OCL equivalent
alternatives by applying three OCL quality metrics: Com-
plexity (to minimize), Coupling (to minimize) and Cohesion
(to maximize) as heuristics. Moreover, we applied one OCL
refactoring operator (Context Change) from [6] and defined
three newly introduced refactoring operators (Swap, Split,
and Merge), which are encoded as potential solutions for
search algorithms. A solution is an optimal sequence of
refactoring operators, which are sequentially applied to
the original set of OCL constraints to automatically obtain a
semantically equivalent set of OCL constraints with better
understandability and maintainability in terms of Complex-
ity, Coupling, and Cohesion.

We evaluated SBORA from two complementary aspects.
The first evaluation is through four case studies including a
real case study from CRN from the healthcare domain, sub-
sea production systems from the Oil&Gas domain, handling
systems for warehouses from the logistics and manufactur-
ing domain, and an open source case study. We evaluated
six commonly used multi-objective search algorithms
including random search (RS) as the comparison baseline
for assessing their performance. The aim is to select the best

search algorithm for our refactoring approach. We also com-
pared the refactored OCL constraint sets with the original
set to evaluate to what extent our approach can reduce Com-
plexity and Coupling and enhance Cohesion. Results show
that the indicator-based evolutionary algorithm (IBEA)
achieves the best performance, with which SBORAmanages
to reduce on average 29.25 percent Complexity, 39 percent
Coupling, and enhance 47.75 percent Cohesion, as compared
to the original OCL constraint set. To further test the perfor-
mance of SBORA, we also applied it together with IBEA to
refactor an OCL constraint set specified on the UML meta-
model corresponding to the UML 2.3 specification [7]. We
obtained positive results as expected; SBORA reduced Com-
plexity and Coupling by 0.12 and 4.2 percent respectively,
and improved Cohesion by 15.7 percent.

Furthermore, we conducted a controlled experiment with
in total 96 graduate students (as experiment subjects) from
the school of Computer Science and Engineering, Nanjing
University, China, who were divided into six groups for the
experiment. One group was given the original constraint set
of a simplified CRN case study, while the other five groups
were given five constraint sets refactored by SBORA. Results
show that the understandability and maintainability of the
original constraint set can be improved significantly.

Themain contributions of the paper are that: 1) we formu-
lated theOCL constraint refactoring as amulti-objective opti-
mization problem; 2) we proposed a novel way of encoding a
sequence of four refactoring operators (three of which are
newly proposed) as search solutions; 3) we empirically eval-
uated six multi-objective search algorithms with four case
studies from different domains; and 4) we evaluated SBORA
by conducting a controlled experiment involving 96 subjects.

The rest of the paper is organized as follows. Section 2
describes a running example. Section 3 presents our refac-
toring approach. Section 4 presents the evaluation of
SBORA with case studies and Section 5 presents the evalua-
tion via controlled experiment. The evaluation results are
discussed in Section 6. The related work is presented in
Section 7. Last, Section 8 concludes the paper.

2 RUNNING EXAMPLE

In this section, we present a running example from CRN to
illustrate SBORA. As shown in Fig. 1, a CancerMessage cap-
tures all the necessary information of a patient from a
specific medical procedure, including fields such as message-
Type. A CancerCase is an aggregation of information con-
tained in cancer messages by applying medical rules. Note
that in the context of CRN, each cancer message must be
associated with one and only one cancer case while each
cancer case can be associated with one or more cancer mes-
sages. As an example, the date of diagnosis for a cancer case
is the date of the first diagnostic procedures found in all the
cancer messages associated with the cancer case. The cancer
case is then used for public health surveillance for estimat-
ing incidence rates, survival rates as well as other medical
research studies. Notice that cancer messages and cancer
cases share common fields; hence class CommonField is
defined to capture those common fields. In the full-scale
domain model of CRN, in total, there are 48 fields for a can-
cer case, and 64 fields for a cancer message.

Fig. 1. Running example.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 149

We also provide four OCL constraints in Fig. 1. CON1

indicates that if a messageType of a cancerMessage is ‘H’ and
the value for surgery, i.e., an attribute in class CommonField
is 96, then the value for basis, i.e., an attribute in Common-
Field should be greater than 32. All the other constraints,
i.e., CON2, CON3, and CON4, define invalid values for attrib-
utes basis and surgery for both cancer cases and messages.

3 SEARCH-BASED REFACTORING

This section presents SBORA by discussing: problem repre-
sentation (Section 3.1), three OCL quality metrics (Section
3.2), four OCL refactoring operators (Section 3.3), the solu-
tion encoding mechanism for search (Section 3.4), and the
applicability of SBORA (Section 3.5).

3.1 Problem Representation

Given an original set of OCL constraints, i.e., CSO ¼
fc1; . . . ; cncg, where nc is the total number of constraints in
CSO and we assume that all the constraints in CSO are con-
junctive when applied for evaluation. There can potentially
exist thousands of refactoring solutions [5], [6], i.e., RefS ¼
fRefS1; . . . ; RefSnrsg, where RefSi is a sequence of refac-
toring operators (Section 3.3) and nrs represents the total
number of potential solutions. In our context, one refactor-
ing solution (RefSi) can be applied to CSO and generate a
set of semantics-preserving OCL constraints RefSiðCSOÞ.
Though being semantically equivalent, the understandabil-
ity and maintainability of the original set and refactored
sets may be very different [5]. Thus, it is critical to seek
optimal refactoring solutions to be applied to the original
constraint set, such that refactored OCL constraint sets can
have high understandability and maintainability.

To assess understandability and maintainability, we
apply three well-known quality metrics: Complexity, Cou-
pling, and Cohesion (Section 3.2). Accordingly, we define a
set of measures, i.e., Measure ¼ {Complexity, Coupling, Cohe-
sion}, where Measurei (C) denotes the value for the ith qual-
ity metric for the set of OCL constraints C.

Our optimization problem can be represented as: For an
original set of constraints CSO, search for optimal refactoring sol-
utions RefSOP from nrs number of total solutions RefS, such
that any refactoring solution from RefSOP can achieve a better
result for each measure than solutions not belonging to RefSOP :

8 RefSi � RefS \ RefSi =2 RefSOP \ 8 RefSk 2 RefSOP

8 Measurej 2 Measure : Measurej RefSk CSOð Þð Þ
� Measurej RefSi CSOð Þð Þ

3.2 Quality Metrics for OCL Constraint Set

Understandability of OCL constraints mainly depends on
their syntactic structures such as navigation, nesting, and
constructs used (e.g., iterators) [17]. For maintainability, on
one hand, complex constraints are hard to understand,
thereby difficult to maintain. On the other hand, a change in
one OCL constraint may impact other ones because of com-
monly constrained UML properties and thus increasing the
maintenance cost. To capture the understandability and
maintainability of an OCL constraint set, we applied three
metrics, i.e., Complexity (Section 3.2.1), Coupling (Section
3.2.2) and Cohesion (Section 3.2.3).

3.2.1 Complexity

There are few works in the literature for measuring the com-
plexity of OCL constraints (Section 7.1), one of which [18]
proposes seven quality metrics for measuring the under-
standability and maintainability of individual OCL con-
straints. In this paper, we adopt the seven quality metrics
[18] listed in Table 1 and integrate them as one quality met-
ric to calculate the overall Complexity of a set of OCL con-
straints, which is defined below.

Definition 1. CY ¼ PN
i¼1

P7
j¼1 norðcyijÞ=ð7 �NÞ, where N

refers to the total number of constraints included in an OCL con-
straint set and cyij indicates the value for the jth quality metric
in Table 1 of the ith OCL constraint in the constraint set. To
make different quality metrics comparable, the normalization
function, i.e., nor ðxÞ ¼ x=ðxþ 1Þ [16], is used to normalize
values of quality metrics between 0 and 1. The normalization
function is needed because maximum values produced by the
quality metrics cannot be determined. Note that a lower value of
CY indicates a set of OCL constraints with less complexity.

3.2.2 Coupling

From the literature, we did not find a metric coupling for an
OCL constraint set (Section 7.1). Thus, we defined our own
quality metric for measuring coupling among the con-
straints of a given set of OCL constraints. The interconnec-
tion between two OCL constraints is because of common
UML properties constrained by the two constraints. Sup-
pose, a set of UML properties involved in an OCL constraint
ci can be defined as V ðciÞ. Hence, the Coupling of a set of
OCL constraints is defined as:

Definition 2. CP ¼ 2 �PN�1
i¼1

PN
j¼iþ1 CPij=ðN � ðN � 1ÞÞ,

where N is the total number of OCL constraints in the entire
OCL constraint set and CPij refers to the coupling between two
OCL constraints ci and cj. CPij ¼ jðV ðciÞ \ V ðcjÞj=jV ðciÞ [
V ðcjÞj, where jV ðciÞ \ V ðcjÞj means the number of UML prop-
erties constrained by both ci and cj, and jV ðciÞ [V ðcj) j means
the number of UML properties constrained by at least one of
these two OCL constraints. Taking CON2 and CON3 as an
example, the number of UML properties constrained by both of
them is 2 (CommonField::basis and CommonField::sur-
gery), and the number of UML properties constrained by at
least one of the two constraints is also 2 (CommonField::basis
and CommonField::surgery), hence the coupling between
these two constraints is CP23 ¼ 2=2 ¼ 1. Based on the defini-
tion, a lower value of CP denotes looser coupling, which means
better understandability as well as maintainability.

TABLE 1
OCL Quality Metrics Reported in [18]

Number of Navigated Relationships (cy1)
Weighted Number of Navigations (cy2)
Depth of Navigations (cy3)
Number of Attributes referred through Navigations (cy4)
Weighted Number of Collection Operations (cy5)
Number of Navigated Classes (cy6)
Number of Explicit Iterator Variables (cy7)

150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

3.2.3 Cohesion

To achieve tight cohesion of a given OCL constraint set,
first, relevant model elements should be constrained in as
few constraints as possible. For a UML property, it is impor-
tant to constrain it in the least number of OCL constraints.
Therefore, when constraints related to this UML property
are changed, a minimum number of OCL constraints can be
affected. Taking property CommonField::basis in CON2 and
CON3 (Fig. 1) as an example, to achieve a better Cohesion,
refactoring is needed to restrict this property into one
constraint instead of two. The second aspect of improving
Cohesion of OCL constraints is that non-related UML prop-
erties should be constrained in different OCL constraints to
the maximum extent. For instance, when an OCL constraint
constrains two non-related UML properties using and,
the constraint then should be refactored into two OCL con-
straints. For example, for CON2 in Fig. 1, two non-related
properties, i.e., CommonField::basis and CommonField::
surgery, are specified in one constraint, which should be
refactored into two to enhance the overall cohesion of the
OCL constraint set.

Based on the above discussion, we define two indicators
for Cohesion, i.e., positive cohesion CHP and negative cohe-
sion CHN. Suppose that a set of OCL constraints that con-
strains an UML property vi is defined as C(vi). For vi, the
positive Cohesion is defined as CHPi ¼ 1� jCðviÞj=N , where
jCðviÞj means the number of OCL constraints that constrain
vi, and N refers to the total number of OCL constraints of
the whole set. For example, the UML property Common-
Field::basis is constrained by all the four constraints, i.e.,
CON1 to CON4. Hence the positive Cohesion for this property
is 0 ð1� 4=4 ¼ 0Þ.

For the negative Cohesion, we define it based on the num-
ber of non-related UML properties existing in an OCL con-
straint. For constraint cj, all the UML properties constrained
by it can be denoted as V ðcjÞ. Suppose for constraint cj,
there are L ðL � 0Þ sub-expressions combined with operator
and, and the UML properties constrained by each sub-
expression (Gth) can then be represented as VG(cj) (1 �
G � L). For constraint cj, the negative Cohesion is defined as
CHNj ¼ jVHðcjÞ 6¼ VG ðcjÞj, where H 6¼ G (1 � H � L,
1 � G � L) and jVHðcjÞ 6¼ VG ðcjÞj means the total number
of pairs of sub-expressions with different element sets.
Taking CON4 as an example, it has three sub-expressions.
UML properties that are constrained by the three sub-
expressions are V1 ðc4Þ ¼ fCommonField::basisg, V2 ðc4Þ ¼
fCommonField::surgeryg, and V3 ðc4Þ ¼ CommonField::surgeryg.
Hence the negative Cohesion for CON4 is 2 since there are
two pairs of different property sets, i.e., V1ðc4Þ 6¼ V2 ðc4Þ
and V1ðc4Þ 6¼ V3 ðc4Þ.

For an OCL constraint set, the overall Cohesion combining
the two indicators is defined as:

Definition 3. CH ¼ ðPM
i¼1 CHPi=M þ ð1� nor ðPN

j¼1 CHNjÞÞÞ=
2, where M means the total number of UML properties in the
whole constraint set, i.e., jV ðc1Þ [. . . [V ðcNÞj and N refers to
the total number of OCL constraints in the set. The normaliza-
tion function nor ðxÞ ¼ x=ðxþ 1Þ is applied for CHNj, as
shown in the formula. For CHPi, its value is already between 0
and 1 and therefore there is no need to normalize it. Since we
aim at maximizing positive cohesions and minimizing negative

cohesions, a higher value of CH shows a better degree of Cohe-
sion for a given set of OCL constraints. Note that since we for-
mulated our problem as a multi-objective minimization
problem, we used (1� CH) when integrating into the search
algorithms to align with the other two objectives: Complexity
and Coupling. To facilitate the results analyses (Section 4.2),
we still use values of CH when interpreting the results, which
is more intuitive.

3.3 Refactoring Operators

In this section, we define four semantics-preserving refactor-
ing operators. We adapted one operator from the literature
[6]: Context Change (Section 3.3.1). We also defined three new
operators named Swap (Section 3.3.2), Split (Section 3.3.3)
and Merge (Section 3.3.4). Moreover, we provide discussion
to show that the four refactoring operators are semantics-
preserving, which is an inherent property of our approach
(Section 3.3.5).

3.3.1 Context Change

AnOCL constraint is composed of two parts: context and body
[6]. The context refers to an UML class and the body includes
the invariant specified amongUML elements associatedwith
the context class. The same OCL constraint can be specified in
a different way when choosing different contexts [6]. Refac-
toring an OCL constraint by changing the context may influ-
ence the complexity of the constraint since the corresponding
navigationsmay changewith different contexts [6].

Cabot et al. [6] proposed an approach to rewrite one OCL
constraint with a different context by formalizing the prob-
lem of context change as a reachability problem, i.e., finding
a reachable path over a directed graph representing a UML
model. Our refactoring operator of Context Change is built
on top of the approach introduced in [6]: String ChangeCon-
text (String newContext, String originalConstraint), where the
first input is the new context and the second input is the
original constraint to be refactored. Note that there exist
restrictions for applying the Context Change operator based
on [6] for the sake of semantic preservation, which are sum-
marized in Table 2. The Context Change operator returns a
refactored OCL constraint if any of the four restrictions
(Table 2) is satisfied, and keeps the original constraint if
none of the restrictions are satisfied. Taking CON1 in Fig. 1
as an example, its context can be changed to CancerMessage
as it satisfies the first restriction (No. 1) in Table 2 and the
refactored constraint after the context change can then be:

context CancerMessage inv:
self.messageType ¼ ‘H’ implies (self.commonField.surgery
¼ 96 implies self.commonField.basis > 32)

3.3.2 Swap

A Swap operator is defined to exchange two sub-expressions
from two different OCL constraints. First of all, the Swap
operator can affect the complexity of an OCL constraint
because different sub-expressions can cause different com-
plexity; second, the Swap operator is used to re-structure a
set of OCL constraints, which may influence the presence of
UML properties in each OCL constraint and lead to the
change of coupling and cohesion of the OCL constraint set.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 151

Note that the Swap operator can only be applied to con-
straints with the same context.

There are two ways for the Swap operator to work on a
pair of OCL constraints for generating new semantics-pre-
serving pairs of OCL constraints. To be more specific, sup-
pose two constraints (c1 and c2) are constructed as: c1: “m
and n” and c2: “p and q”. The Swap operator can either 1)
swap m and p that result in two new OCL constraints (c3: “p
and n” and c4: “m and q”) or 2) swap m and q that produce a
new pair of OCL constraints, i.e., c5: “q and n” and c6: “p and
m”. To illustrate how the Swap operator works, we use
CON2 and CON3 in Fig. 1 as an example. Applying the Swap
operator can produce two semantically equivalent sets of
OCL constraints A and B:

OCL constraint set A:
context CommonField inv: self.basis <> 71 and
self.basis <>68
context CommonField inv: self.surgery <> 21 and
self.surgery <>98
OCL constraint set B:
context CommonField inv: self.basis <> 71 and
self.surgery <>98
context CommonField inv: self.basis <> 68 and
self.surgery <>21

We define the Swap operator in the context of refactoring a
set of OCL constraints all together as: String [] Swap (Sequence
constraints, int flag). The first input of Swap is a sequence of
OCL constraints to swap and the second one is a flag that is
an integer value indicating theway for swapping, i.e., the first
swapping way is chosen when the flag value is an even num-
ber and the second way for swapping is selected when the
flag value is an odd number. Notice that we have defined a
strategy to choose the flag value when encoding a solution
(Section 3.4.2). Moreover, it is possible for an OCL constraint
to have more than one “and” when swapping and thus we
define a strategy to determine how to perform swapping, i.e.,

the Swap operator will be always applied from the dN=2eth
“and” in the constraint, where N is the total number of “and”
included in the constraint and de means rounding up the
nearest integer of N/2. For instance, if an OCL constraint
includes five “and”, the Swap operator will be applied from
the 3rd “and”. Note that, to preserve the semantics, only one
“and” is selected at once for swapping.

Furthermore, swapping is done according to the sequence
in the first input until all the constraints in the original set
have been swapped once. For example, {CON2, CON3,
CON4} is a sequence of OCL constraints and is given as the
input to the Swap operator. According to the sequence, CON2

and CON3 should be first swapped to produce two newOCL
constraints CON5 and CON6, resulting in an intermediate
sequence of OCL constraints {CON5, CON6, CON4}. After-
wards, CON6 and CON4 will be swapped to obtain a final set
of refactored constraints: {CON5, CON7, CON8}. Note that an
integer value for the flag will be chosen (Section 3.4.2) at the
beginning to determinewhich swapping strategy to use.

3.3.3 Split

Splitting an OCL constraint into several can reduce its Com-
plexity and have an impact on the Coupling and Cohesion of
OCL constraints since the originally grouped UML proper-
ties are reallocated into different constraints after splitting,
which consequently provides an opportunity for Merge
(Section 3.3.4). More specifically, splitting an OCL constraint
constraining non-related UML properties may reduce the
negative cohesion and loose the coupling of the constrained
UML properties.

Suppose that an OCL constraint with L sub-expressions
connected with and is to be split into NST ð1 � NST � LÞ
new constraints, it can be proven that there could be in total

ð L�1
NST�1Þ possible candidate solutions. Hence Split can be

defined as: String [] Split (String originalConstraint, int NST,
int flag). There are three inputs for Split: the original OCL
constraint to be split (originalConstraint), the number of
constraints after the split (NST) and the flag (ð L�1

NST�1Þ) that
indicates how to perform the split. Specifically, given partic-

ular values for L and NST, there is a maximum of ð L�1
NST�1Þ

ways of splitting. A value of flag refers to a particular split-

ting way that should be applied to split an OCL constraint.
Taking CON4 in Fig. 1 as an example, which has in total 3

(L ¼ 3) sub-expressions that are connected with and. Sup-
pose that the value for NST is 2, then CON4 should be split
into two new constraints. Thus, there should be in total two

ways (ð3�1
2�1Þ ¼ 2) to split CON4, i.e., the value of flag can be

either 1 or 2. When the flag value is taken as 1, CON4 is split
from the first “and”, which produces the following two new
OCL constraints:
context CommonField inv: self.basis <>78
context CommonField inv: self.surgery <> 30 and
self.surgery <> 40

When the value of the flag is 2, CON4 is split from the sec-
ond “and”, resulting in the following two constraints.

context CommonField inv: self.basis <>78 and
self.surgery <> 30
context CommonField inv: self.surgery <> 40

TABLE 2
Restrictions of Applying Context Change

No. Restriction

1 For two directly associated classes, A and B, the
constraints with context being A can be changed to
constraints with context B (denoted as: A!B) if the
multiplicity of the association from A to B is at least
one, i.e., A! B (1..�).

2 For two indirectly associated classes, A and B, context
change (A!B) is feasible when there exists a
navigation path between A and B through a set of
classes: C1, . . ., Cn. In this case, context change can
occur consecutively between two directly associated
classes, i.e., A!C1, . . ., Cn!B.

3 If the above restrictions are not satisfied, which means
some instances of A are not linked to any instance of B,
a context change from A to B may also be possible
when the body of the original constraint only affects
those instances of A that are related with instances
of B.

4 If constraints with context being A can be changed to
constraints with context B, then constraints with
context being subtypes of A (e.g., Ai) can also be
changed to constraints with context B (Ai!B).

152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

3.3.4 Merge

The merge operator is defined as an operator for combining
several OCL constraints into one, which can also influence
all the three quality metrics defined in Section 3.2. Same as
for Split, Merge can only be applied on constraints with the
same context. The Merge operator can be defined as: String
Merge (Sequence constraints), where the operator takes a
sequence of original OCL constraints as input and generates
a new constraint by connecting them with and. For example,
{CON2, CON3} is a sequence of OCL constraints to be
merged. Accordingly, the newly merged constraint should
be “CON2 and CON3”.

3.3.5 Semantics Preservation

The four refactoring operators of our approach ensure that a
refactored OCL constraint set is semantically equivalent to
the original set. To be more specific, we adapted the opera-
tor Context Change from [6], where a proof is provided to
show that Context Change can preserve the semantics of an
OCL constraint when the restrictions (presented in Table 2
in Section 3.3.1) are satisfied.

As for the other three refactoring operators, we defined
(i.e., Swap, Split and Merge), we provide theoretical discus-
sion on the semantic-preservation below.

Definition. Semantics Preservation of OCL Constraint Set.
Let DC be a domain model and DO be any instance of the
domain model. Suppose the original OCL constraint set
CSO for DC has NO constraints: CSO ¼ fConO1; ConO2; . . . ;
ConONOg, and the refactored constraint set CSR hasNR con-
straints CSR ¼ fConR1; ConR2; . . . ; ConRNRg. The refactor-
ing is called semantic-preserving if and only if

8Do : evaluate CSO; DOð Þ ¼ evaluate CSR;DOð Þ

where evaluate (CS, DO) refers to the evaluation of a con-
straint set on the model instanceDO.

As mentioned in Section 3.1, one of the preconditions of
applying SBORA is that all the constraints in CSO are con-
junctive, thus:

evaluate CSo;DOð Þ
¼ evaluate ConO1 and ConO2 . . . and ConONO; DOð Þ

evaluate CSR;DOð Þ
¼ evaluate ConR1 and ConR2 . . . and ConRNR; DOð Þ

Discussion on Semantics Preserving of Swap. Recall that
Swap chooses an “and” for each of the two constraints when
swapping (Section 3.3.2). Thus, each OCL constraint to be
swapped can be seen as a set of expressions/clauses com-
bined with one or more “and”, i.e., Coni ¼ Ei1 and Ei2

and . . . and Eik, where Eij is an expression/clause in Coni.
Therefore,

evaluateðCSo;DOÞ
¼ evaluateðConO1 and ConO2 . . . and ConONO; DOÞ
¼ evaluateðEO11 and EO12 . . .EO21 and EO22 . . . and

EONO1 . . . and EONOk;DOÞ:

evaluateðCSR;DOÞ
¼ evaluateðConR1 and ConR2 . . . and ConRNR; DOÞ
¼ evaluateðER11 and ER12 . . .ER21and ER22 . . . and

ERNR1 . . . and ERNRk;DOÞ:

Notice that our Swap only swaps the expressions/clauses
before or after “and” between two constraints without modi-
fying any of the expressions/clauses. Thus, any clauses/
expressions included in the original constraint set are also
contained in the refactored constraint set and vice versa,
i.e., 8EOij 2 CSo; 9ERab 2 CSR that EOij ¼ ERab while 8ERcd

2 CSR; 9EOmn 2 CSo that ERcd ¼ EOmn. Therefore:
EO11 and EO12 . . .EO21 and EO22 . . . and EON1 . . . and EONOk ¼

ER11 and ER12 . . .ER21 and ER22 . . . and ERN1 . . . and ERNRk

thereby evaluateðEO11 and EO12 . . .EO21 and EO22 . . . and
EONO1 . . . and EONOk;DOÞ¼ evaluateðER11 and ER12 . . .ER21

and ER22 . . . and ERNR1 . . . and ERNRk;DOÞ:
According to the above discussions, we can conclude that

our Swap operator can preserve the semantics since
evaluateðCSo;DOÞ ¼ evaluateðCSR;DOÞ.

Discussion on Semantics Preservation of Split and Merge.
With respect to Split, we only split one OCL constraint
when the two sub-constraints are connected with “and”
(Section 3.3.3) without modifying any expressions/clauses.
Thus, it is true that 8EOij 2 CSo; 9ERab 2 CSR that EOij ¼
ERab while 8ERcd 2 CSR; 9EOmn 2 CSo that ERcd ¼ EOmn,
which imply that EO11 and EO12 . . .EO21 and EO22 . . . and
EONO1 . . . and EONOk¼ER11 and ER12 . . .ER21 and ER22 . . . and
ERNR1 . . . and ERNRk. Therefore, we can conclude that
evaluateðCSo;DOÞ ¼ evaluateðCSR; DOÞ indicating that Split
preserves semantics when it is applied.

In terms of Merge, since we only merge two constraints
with the same context into one using “and” without chang-
ing the expressions/clauses (Section 3.3.4), the equation
EO11 and EO12 . . .EO21 and EO22 . . . and EONO1 . . . and EONOk¼
ER11 and ER12 . . .ER21 and ER22 . . . and ERNR1 . . . and ERNRk

holds truewhen evaluating the refactored constraint set and
the original constraint set. Therefore, applying Merge can
preserve semantics of constraints.

Based on the above discussions, the mechanism of refac-
toring OCL constraints using the three newly defined refac-
toring operators (i.e., Swap, Split, andMerge) can ensure that
refactored OCL constraint sets preserve their semantics.
Note that any combination of applying the four refactoring
operators (including Context Change [6]) can also preserve
semantics as applying each individual refactoring operator
is semantics-preserving.

3.4 Solution Encoding

For a set of OCL constraints, there exists a huge number of
semantically equivalent constraint sets with different Com-
plexity, Coupling, and Cohesion since there are many different
ways of applying the refactoring operators (Section 3.3).
Applying a unique sequence of refactoring operators on the
original set of OCL constraints leads to a refactored set of
OCL constraints. To improve the understandability and
maintainability of a given OCL constraint set, we aim to
search for the optimal sequence of refactoring operations,
using search algorithms guided by the three quality metrics
as search heuristics.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 153

A set of solutions in the search problem will be generated
with search operators in each generation and the solutions
will evolve towards the optimal ones guided by the three
quality metrics through a number of generations. As shown
in Fig. 2, a solution for the search in our context is encoded
as an array of Integer-typed variables, representing a
sequence of the four operators defined in Section 3.3, which
can be applied to the original OCL constraint set. We also
show one concrete example of the solution in Fig. 2, which
is generated during the search process. Context Change is in
the first place because it has an impact on the context as
well as the structure of an OCL constraint, which subse-
quently affects the feasibility of applying the other opera-
tors. For example, Swap and Merge can only be applied on
OCL constraints with the same context. Swap should be
applied right after Context Change for the convenience of
encoding, as it doesn’t affect the total number of constraints
in the set. The Split should be applied before Merge, consid-
ering that after constraints in a set are split into more con-
straints, there would be more opportunities forMerge.

Taking the four OCL constraints in Fig. 2 as the original
constraint set, where the total number of constraints N is 4
and the total number of sub-expression R is 8, for a solution,
the total length of the Integer-typed array is 28 (4 for Context
Change, 8 for Swap, 8 for Split and 8 for Merge). As shown
in Fig. 2, one refactoring solution for the original constraint
set of the running example is: ð1CC; 3CC; 3CC; 3CC ; ð1; 2ÞSPSP ;
ð2; 4ÞSPSP ; ð2; 3ÞSPSP ; ð3; 3ÞSPSP ; ð1; 2ÞSTST ; ð1; 4ÞSTST ; ð1; 3ÞSTST ; ð2; 1ÞSTST ;
1MM; 2MM; 3MM; 2MM; 4MM; 1MM; 1MM; 1MMÞ, where C, SP, ST and M in
the superscripts refer to the encoding for the four refactor-
ing operators (i.e., Context Change, Swap, Split and Merge),
respectively. Notice that we use a semicolon to distinguish
the encoding for each refactoring operator.

3.4.1 Context Change

For the context change part, each variable (from VCC 1 to
VCC N) corresponds to one OCL constraint in the whole set
and the value for each variable corresponds to the unique
identification for a class in the model, which refers to the
new context to be applied for the corresponding original
constraint. Hence the lower bound for each variable is 1 and
the upper bound for each variable is the total number of
classes in the UML model.

For example, suppose the identification values for classes
CancerMessage, CancerCase, and CommonField in Fig. 1 are 1,
2 and 3, respectively, which makes the values of the contexts
for the original constraint set as (2, 3, 3, 3). Therefore, in
Fig. 2, the context change solution ð1CC; 3CC; 3CC; 3CCÞ indicates
only changing the context of CON1 to the class of

CancerMessage, which is taken as step 1 for refactoring the
given set of OCL constraints in Fig. 1.

3.4.2 Swap

As shown in Fig. 2, the second part (from VSP 11 to VSP N2) of
refactoring is Swap as the second step for refactoring a given
OCL constraint set, where each pair of variables, i.e., VSP i1

and VSP i2, encodes the input for the Swap operator for the
ith (i is from 1 to N) constraint in the original set. Recall that
the first input for the Swap operator is a sequence of con-
straints to be swapped (Section 3.3.2). Variables VSP i1 are
used to determine which subset of the set of OCL con-
straints should be swapped and VSP i2 are used to order
those constraints in the set. To be more specific, the original
constraints with the same value of VSP i1 are identified as a
set of constraints to be swapped and then could be ordered
according to their values of VSP i2 and inputted to the Swap
operator. The lower bound of both variables (VSP i1 and
VSP i2) is 1 and their upper bound is the total number of the
original constraints (N). Note that the second input for Swap
is a flag indicating either of the two ways to do swapping
(Section 3.3.2). Note that the flag for this operator is chosen
using the value of VSP i1 of the constraints with the same
context to be swapped.

Taking the solution in Fig. 2 as an example, the swapping
solution as step 2 for refactoring the given OCL constraint
set in Fig. 1 is ðð1; 2ÞSPSP ; ð2; 4ÞSPSP ; ð2; 3ÞSPSP ; ð3; 3ÞSPSP Þ, where
each pair of VSP i1 and VSP i2 of each constraint is associated
using brackets. For instance, for CON1, the values of VSP i1

and VSP i2 are 1 and 2, respectively. For this solution, CON2

and CON3 should be swapped since their values of VSP i1

are the same (i.e., 2) and the sequence of constraints input-
ted to the Swap operator is defined as {CON3, CON2},
because VSP 32 ¼ 3 (CON3) and VSP 22 ¼ 4 (CON2) and there-
fore VSP 32 < VSP 23 and consequently CON3 is ordered
before CON2.

Furthermore, to determine which swapping way is
chosen (Section 3.3.2), we defined a strategy to obtain the
flag value, i.e., setting the flag value as the VSP i1 value of
the constraints to be swapped. Note that the constraints
to be swapped should have the same VSP i1 values. For
instance, CON2 and CON3 (to be swapped) have the same
VSP i1 values (i.e., 2). Thus, the flag value is set as two that is
an even number indicating that the first swapping way
should be chosen (Section 3.3.2).

3.4.3 Split

After Swap, the Split operator should be applied as the third
step for refactoring an OCL constraint set. Notice that there

Fig. 2. Search solution encoding with an example.

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

are two other input parameters besides the original con-
straint (Section 3.3.3), i.e., the number of sub-expressions
(NST) to be split and the flag representing how to split the
constraint since there usually exist multiple ways. Hence in
the encoding for Split (from VST 11 to VST N2 in Fig. 2), for
constraint i, there exists a pair of variables, i.e., VST i1 and
VST i2, encoding the solution for Split.

VST i1 represents the number of new constraints to be
split into, whose lower bound is 1 indicating that the orig-
inal constraint will not be split and upper bound (K) is
the maximum number of sub-expressions of the refac-
tored constraint after Swap. Suppose the sub-expressions
of the original constraint i is x, and the maximum number
of sub-expressions of all the OCL constraints in the origi-
nal constraint set is y. Then the upper bound (K) of VST i1

can be calculated as xxþ yy=2. Suppose the actual number
of sub-expressions in constraint i after Swap is Q, where
Q <¼ K. Hence it is possible for VST i1 to be greater
than Q, in which case it is not feasible to split a constraint
with Q sub-expressions into VST i1 new constraints
(VST i1 > Q). VST i1 is then updated as the remainder,
i.e., VST i1 ¼ VST i1% Q.

VST i2 denotes theway to split theOCL constraint.With the
number of new constraints after split being VST i1, the total

number of potential ways is ð QQ�1
VV STST ii1�1Þ, which is less than the

maximum number (C) of VST i2: C ¼ ð KK�1
ðKK�1Þ=2Þ. Similarly, if

VST i2 is greater than ð QQ�1
VV STST ii1�1Þ, then VST_i2 is also updated by

getting the remainder: VST i2 ¼ VST i2% ð QQ�1
VV STST ii1�1Þ.

The split solution in Fig. 2 is ðð1; 2ÞSTST ; ð1; 4ÞSTST ;
ð1; 3ÞSTST ; ð2; 1ÞSTST Þ as step 3 for refactoring the given OCL con-
straint set in Fig. 1. Thus, only CON4 should be split into 2
new constraints since the VST i1 value of CON4 is 2 indicat-
ing that this constraint should be split into two new con-
straints, while the VST i1 values of the other three constraints
(i.e., CON1, CON2 and CON3) are 1 meaning that there is no
need to split these constraints. Note that the new constraint
from the second part of CON4 can be denoted as CON5. The
flag for splitting is 1 (the VST i2 value of CON4) for this solu-
tion, which means that the constraint CON4 will be split
from the position with the first “and” conjunction.

3.4.4 Merge

As shown in Fig. 2, the fourth part of the solution is encoded
for theMerge operator (VME 1 to VME R). Notice that the Con-
text Change and Swap operators do not change the number
of the OCL constraints in a refined constraint set. In other
words, the refined set has the same size as the original con-
straint set. However, after applying the Split operator, there
could be more OCL constraints in the refined set than the
original set. The maximum number of constraints refactored
by applying the Split operator is the total number (R) of sub-
expressions in the whole original constraint set. Suppose
after applying Split operator, the number of the constraints
turns to be S ðS � RÞ, and thus the variables (Integer type)
VME i ð1 � i � SÞ should be interpreted as the encoding
for theMerge operator (Fig. 2).

Note that the input for Merge is a sequence of OCL con-
straints (Section 3.3.4) to be merged. The OCL constraints
with the same value of VME i could be grouped and

ordered according to their order (i.e., the value of i) in the
OCL constraint set refactored after Split, which forms the
input for Merge. Note that for Merge, the sequence of OCL
constraints for the input does not influence values of qual-
ity metrics Complexity, Coupling, and Cohesion. For exam-
ple, the merge solution for the current constraint set as step
4 for refactoring (Fig. 2) is ð1MM; 2MM; 3MM; 2MM; 4MM; 1MM; 1MM; 1MMÞ.
Note that there are five constraints after Split and thus
only the first five variables need to be taken into account
in the merge solution, i.e., ð1MM; 2MM; 3MM; 2MM; 4MMÞ. As for this
solution, CON2 and CON4 should be merged since they
have the same values (i.e., 2). The newly merged constraint
for constraints CON2 and CON4 could be either “CON2 and
CON4” or “CON4 and CON2”, which are the same in terms
of the three quality metrics. Hence there is no need to
encode the sequence in the solution and the sequence is
determined according to the order in the constraint set in
our context, i.e., {CON2, CON4} for the example above.
Recall that only OCL constraints with the same context can
be merged.

Taking the four constraints in Fig. 1 as an example, an
optimal refactored constraint set produced by SBORA is
shown as below, which include three constraints CON’1,
CON’2 and CON’3.

CON’1: context CancerMessage inv:
self.messageType ¼ ‘H’ implies (self.commonField.surgery
¼ 96 implies self.commonField.basis > 32)
CON’2: context CommonField inv:
self.basis <>71 and self.basis <> 68 and self.basis <>78
CON’3: context CommonField inv:
self.surgery <> 21 and self.surgery <> 98 and self.surgery
<> 30 and self.surgery <> 40

3.5 Application Context of SBORA

SBORA can be applied in three ways. First of all, it can be
applied to refactor a set of OCL constraints constraining
metamodels (e.g., UML Metamodel). Second, a set of con-
straints defined on a UML profile can be refactored by
applying SBORA. Third, SBORA can be used to refactor sets
of constraints constraining UML models, details of which is
discussed below.

OCL Constraint Types. By adding extra restrictions on
semantics of UML models, OCL constraints can be
employed for distinct purposes such as serving as invari-
ants or being defined as operation contracts [7], [8], [34].
Based on the OCL specification [34], we classify OCL con-
straints into six types according to the purposes they serve,
as shown the OCL Constraint Type column of Table 3. Note
that this classification is by no means complete. In the previ-
ous sections, we chose the Invariant type of OCL constraints
defined on classes for motivating and illustrating SBORA.
However, as we will discuss in the rest of the section,
SBORA can also be applied for refactoring OCL constraints
serving as preconditions and postconditions of operations
(i.e., Operation Contracts).

Table 3 details the six OCL constraint types by character-
izing their key characteristics from the aspects of Keyword
and # of Constraints, which, respectively, denote the OCL
keyword corresponding to a particular OCL constraint
type, and the number of constraints with a particular type

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 155

that can be specified on a contextual element. For instance, it
is possible to specify more than one OCL constraints of the
Invariant type on a UML classifier, e.g., a class, state or an
interface, while at most one constraint can be specified to
initialize/derive a property, i.e., the type of Initialization and
Derivation of Properties (Table 3).

The Need to Apply column indicates if there is a need for
applying SBORA to refactor a set of OCL constraints of a
particular type. For example, for the Initialization & Deriva-
tion of Properties type, there is no need to apply SBORA as
the maximum number of OCL constraints of this type that
can be specified on a property is 1 and SBORA aims at refac-
toring a given set of OCL constraints with more than one
constraints (Section 3.1). Similarly, refactoring with SBORA
is also needless for the other OCL types with the # of Con-
straints being 0 or 1. Thus we conclude that SBORA is rec-
ommended to be applied for OCL constraint types that
allow specifying multiple constraints on a particular contex-
tual element, e.g., Invariants (Table 3).

OCL Logical Operators. Except for the context change opera-
tor, the other three refactoring operators, i.e., swap, split and
merge can be directly applied without pre-processing, when
clauses in a constraint are connected with the and logical
operator (e.g., the constraint c1 ¼ a and b where a and b are
two clauses) for preserving equivalent semantics of a refac-
tored OCL constraint set with the corresponding original
one (Section 3.3.5).

However, SBORA can also be applied for other OCL
logical operators, i.e., or, implies, not and xor, through a
pre-processing process, which transforms each OCL con-
straint whose clauses are not connected with and into a
semantically equivalent one with clauses connected via
and. Note that the pre-requisite for such a transformation is
the number of clauses of one constraint is greater than 1 as
it is infeasible to transform a constraint with only one
clause. Table 4 lists all the five situations that are suitable
for performing such a transformation. These five situations
cover four other logical operators, i.e., or, implies, not and
xor. For instance, for a given constraint that is connected
with the and and or logical operators (e.g., No. 1 and No. 2
in Table 4). SBORA first transforms the constraint (e.g., a
or (b and c)) into an equivalent one (e.g., (a or b) and
(b or c)). Notice that (a or b) and (b or c) will be considered
as two clauses during the process of refactoring. The trans-
formed constraint, which satisfies the prerequisite of
applying SBORA, can be then taken as the input by
SBORA for refactoring (Section 3.1). Notice that SBORA is

also applicable for any combination of the five situations
listed in Table 4.

Furthermore, if an OCL constraint includes stacked
collection operators, the Context Change operator can be
applied, which can produce two kinds of refactored con-
straints. The first kind of constraints still contains one or
more “and” combining several expressions/clauses, on
which it is still possible to apply the other three refactor-
ing operators (i.e., Swap, Split and Merge). The second
kind of constraints after applying Context Change con-
tains only one single clause that cannot be further split
or swapped with other constraints. But it is possible to
apply the Merge operator for merging them with other
constraints.

Relations of OCL Constraints in a Set. As mentioned in
Section 3.1, SBORA is currently able to refactor a given OCL
constraint set whose constraints should be evaluated and
satisfied in a conjunctive manner. This prerequisite of
applying SBORA requires that OCL constraints with the
types of Invariants or Operation Contracts or Profile Con-
straints (Table 3) should be applied in a conjunctive way
when they are evaluated (as mentioned in Section 3.1).
However, when the constraints in a set are not fully con-
junctive (e.g., disjunctive), SBORA can also be applied.
More specifically, suppose that there is a given OCL con-
straint set CSO ¼ fc1; c2; c3; . . . ; cncg (Section 3.1), which
includes CSnoc ¼ fci1; ci2; . . . ; cnnocg where the constraints
are not conjunctive and CSconj ¼ fcj1; cj2; . . . ; cnconjg where
the included constraints are conjunctive. Notice that the
evaluation of CSnoc is conjunctive with the evaluation of
the constraints in CSconj. For instance, an OCL constraint
set consists of four constraints: fc1; c2; c3; c4g, where c1
and c2 are applied in a disjunctive manner while c3 and
c4 are to be evaluated with c1 and c2 conjunctively. The
entire constraint set evaluates to be true iff both c3 and
c4 evaluate to be true at the same time at least one of c1
and c2 evaluates to be true.

To tackle such cases, SBORA has a pre-processing pro-
cess to create a new constraint set CSO’ by treating the con-
straints that are not conjunctive when applied as one single
constraint i.e., CS0

O ¼ ffci1; ci2; . . . ; cnnocg; cj1; cj2; . . . ;
cnconjg where fci1; ci2; . . . ; cnnocg is considered as one single
constraint when applied for evaluation. By doing so, all the
constraints in the new set are conjunctive and thereby
SBORA can be applied. Regarding the above-mentioned
example, SBORA first transforms the original constraint
into a new one, i.e., fðc1 or c2Þ; c3; c4g where ðc1 or c2Þ, c3
and c4 are to be evaluated conjunctively. The four refactor-
ing operators are then applied to the new constraint set for
refactoring. Note that SBORA cannot be applied when all

TABLE 3
Summary of Various OCL Constraint Types

OCL Constraint Type Keyword # of
Constraints�

Need to
Apply?

Invariants inv 0 or more Yes
Initialization and Derivation
of Properties

init derive 0 or 1 No

Query Operations body 0 or 1 No
Operation Contracts pre/post 0 or more Yes
Guard Conditions N/A 0 or 1 No
Target for Messages /Actions N/A 0 or 1 No

�# of Constraints: The number of OCL constraints of a particular constraint
type that can be specified on a conceptual element.

TABLE 4
Pre-Processing Transformations

No. Original Constraint Transformed Constraint

1 a or (b and c) (a or b) and (b or c)
2 (a and b) or (a and c) a and (b or c)
3 a implies (b and c) (not a or b) and (not a or c)
4 not (a or b) (not a) and (not b)
5 a xor b (a or b) and (not (a and b))

a, b, and c represent any three clauses.

156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

the constraints in CSO are not conjunctive for evaluation
(i.e., the number of constraints in CSconj is 0).

Generally speaking, SBORA can be applied as long as an
original OCL constraint set can be transformed into a con-
straint set where the included constraints can be applied in
a conjunctive manner.

4 EVALUATION VIA CASE STUDIES

This section presents the evaluation for assessing SBORA
with different case studies, which includes: experiment
design (Section 4.1), experiment results (Section 4.2), discus-
sion (Section 4.3) and threats to validity (Section 4.4).

4.1 Experiment Design

4.1.1 Research Questions

RQ1: Which search algorithm can assist SBORA to achieve
the best performance?

We chose the following multi-objective search algorithms
NSGA-II [10], Multi-objective Cellular (MOCell) [11],
Improved Strength Pareto Evolutionary Algorithm (SPEA2)
[12], PESA2 [13], CellDE [14], IBEA [15] and Random Search
(RS) that is commonly used as a baseline for evaluation [16].
Notice each selected algorithm covers one category classi-
fied in [52]. Answering this research question helps us to
determine the best multi-objective search algorithm, which
will be integrated into SBORA.

RQ2: With the sequences of refactoring operators pro-
duced by the best algorithm, to what extent the original
OCL constraint set can be improved in terms of Complexity,
Coupling, and Cohesion? This research question helps to
know if refactored OCL constraint sets can indeed improve
the understandability and maintainability.

4.1.2 Case Studies

For the evaluation, we used four case studies from different
domains summarized in Table 5: Healthcare (i.e., cancer
registry system from CRN); Oil&Gas (i.e., subsea produc-
tion systems); Logistics and Manufacturing (i.e., Handling
system). An open source case study named SEPA was also
employed for evaluating SBORA. We detail each case study
as below.

CRN’s Case Study. We employed a real case study from
CRN, which includes: 1) 218 cancer messages from differ-
ent medical entities (e.g., clinic departments and pathol-
ogy laboratories); 2) 95 cancer cases from the CRN
database; 3) an original rule set with 469 medical rules
that were applied to validate the 218 cancer messages and
95 cancer cases. Notice that this rule set (469 medical
rules) has been specified as a set of OCL constraints. For
example, a simple medical rule with “M.DS requires 1-9”

means that the value of DS2 in a cancer message should
be Integer that ranges from 1 to 9. DS is used to determine
cancer if its value is greater than 3 and lower values of
DS denote pre-cancers3. This medical rule can be speci-
fied as the OCL constraint below:

context CancerMessage inv: self.DS > ¼ 1 and self.DS < ¼ 9

Subsea Production Systems. Subsea production systems in
the Oil&Gas domain consist of topside and subsea of hard-
ware and software components that are connected via sub-
sea umbilical’s fiber optic networking cable [43]. In our
earlier projects, we have conducted more than five year’s
industry-oriented research on CPS Product Line Engineer-
ing (PLE) in this domain [43], [44], [45], [49]. For evaluating
SBORA, the case study we used has an architecture model
of Subsea Production Systems with 71 classes and 50 OCL
constraints. Detailed information about the architecture
model can be consulted in [44].

Handling Systems. Handling Systems are automated sys-
tems used worldwide in warehouses for handling material
of different natures such as Food and Beverages, and Stor-
age [46]. Each handling facility forms a physical unit and
together they are deployed to one handling system applica-
tion. Material Handling System (MHS) is a system of sys-
tems containing conveyors, Automatic Storage Retrieval
System (ASRS), Automatic Guided Vehicle (AGV), Auto-
matic Identification and Data Collection (AIDC). We
selected the three subsystems of MHS, i.e., ASRS, AIDC,
and AGV. Based on existing information available in [47],
[48], we constructed a variability model using SimPL [44] to
capture various aspects of a handling system product line.
The model has 129 classes and 99 OCL constraints.

SEPA Case Study. Cabot et al. created the open source
SEPA case study, based on an online demo from Nomos
Software [53]. More specifically, SEPA has an XML schema
(XSD) model with 49 classes and 79 OCL constraints speci-
fied with Dresden OCL [51]. For the purpose of evaluating
SBORA, we employed these 79 constraints as the original
constraint set.

4.1.3 Experiment Tasks and Evaluation Metrics

Experiment Tasks. To tackle RQ1, As shown in Table 6, T1 is
performed to compare each search algorithm (i.e., NSGA-II,
SPEA2, MOCell, CellDE, PESA2 and IBEA) as well as RS for
evaluating their performance for each case study. For RQ2,
T2 is performed to measure how much percentage can be
improved by refactored constraint sets (returned by the best
search algorithm), in terms of the three metrics, when com-
paring with the original OCL constraint set.

Evaluation Metrics. Metrics to Address RQ1: To evaluate
the performance of the search algorithms, we used two
ways, as shown in Table 6 i.e., 1) comparing the algorithms
based on the three objectives (i.e., Complexity, Coupling and
Cohesion, Section 3.2) and 2) choosing the commonly used
quality indicator [20]: HyperVolume (HV) to compare the
overall performance of the algorithms in terms of both

TABLE 5
Statistics of the Four Case Studies

Case Study Number of Classes Number of Constraints

CRN 4 469
Subsea 71 50
Handling 129 99
SEPA 49 79

2. DS: Diagnostisk Sikkerhet (in Norwegian) means Diagnostic
Certainty.

3. Pre-cancer refers to a patient who has a high chance to get a cancer.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 157

convergence and diversity [54]. More specifically, HV rep-
resents the volume of the objective space that is covered
by produced solutions (i.e., Pareto front PFc) of a search
algorithm, and assess the convergence and diversity of
PFc. HV can be calculated using HV ¼ volume ð[P

i¼1 viÞ
[20]. For each solution i 2 P , vi refers to diagonal corners
of the hypercube between solution i and a reference point
that is a vector of worst objective function values. For
example, (1,1,1) in our case represents the worse values
of Complexity, Coupling and Cohesion (Section 3.2). Note
that a higher HV value demonstrates a better performance
of a solution.

Metrics to Address RQ2: We define three metrics (Table 6)
to measure to what extent an algorithm can improve the
original OCL constraint for understandability and maintain-
ability (RQ2): ComImp, CouImp and CohImp. Notice that
we aim to reduce the complexity and coupling of the origi-
nal OCL constraint set while improving its cohesion. Recall
that we used the metric CH to interpret cohesion here rather
than (1 - CH) that was used when integrated into the search
algorithms (Section 3.2.3). Suppose we run each algorithm
for M times and the population size is set as N and thus in
total M �N solutions can be obtained. Thus, ComImp can be
calculated by:

ComImp ¼ comori �
PM�N

i
comi

M�N
comori

� 100%;

where comi refers to the value of Complexity for solution i
and comori means the value of Complexity for the original
constraint set. Similarly, CouImp can be calculated as:

CouImp ¼ couori �
PM�N

i
coui

M�N
couori

� 100%;

where couori means the value of Coupling for the original con-
straint set and coui refers to the value of Coupling for solution
i.CohImp is measured as:

CohImp ¼
PM�N

i
cohi

M�N � cohori

cohori
� 100%;

where cohori and cohi refer to the values of Cohesion for the
original constraint set and solution i, respectively.

4.1.4 Statistical Tests and Parameter Settings

Statistical Tests. To address RQ1, the Vargha and Delaney
statistics and Mann-Whitney U test are applied based on
the guidelines in [16] to assess the performance of the search
algorithms (Table 6). The Vargha and Delaney statistics is

used to calculate Â12, a non-parametric effect size measure.
In our context, Â12 is used to compare the probability of yield-
ing higher values for each objective (complexity, coupling
and cohesion) for two algorithms A and B. If Â12 is 0.5, the
two algorithms are equivalent. If Â12 is greater than 0.5, the
algorithm A has higher chances to obtain better solutions
than the algorithm B. Each pair of algorithms is further com-
pared using the Mann-Whitney U test (p-value) to determine
the significance of the results with the significance level being
0.05. To be more specific, for HV, A outperforms B if Â12 is
greater than 0.5 (higher value, better performance) and the
performance is statistically significant if the p-value is less
than 0.05.

Parameter Settings. We implemented SOBRA by employ-
ing jMetal [20] in terms of the selected multi-objective
search algorithms and the three quality indicators (Section
4.1.3). We chose the default parameters from the jMetal
library for parameterizing the selected algorithms. More-
over, the population size is set as 100 and the maximum
number of fitness evaluations is set to be 50000 as a termina-
tion condition. As suggested in [16], each algorithm was
run 50 times to account for random variations. All the
experiments were run on the Abel cluster at the University
of Oslo.4

4.2 Experiment Results

RQ1: Table 7 reported the average values of each objective
(i.e., Complexity, Coupling and Cohesion) achieved by each
algorithm (task T1). Based on the results, we can observe
that for each objective, IBEA (A5 in Table 7) outperformed
all the other algorithms (including RS). We further per-
formed the statistical tests (Section 4.1.4) between IBEA
and the other algorithms to determine whether such
results are statistically significant. The results showed that
IBEA achieved significantly better performance than the
other algorithms in terms of each objective since all the
values of Â12 are greater than 0.5 and all the p-values are
less than 0.05.

Table 8 summarized the results of comparing each algo-
rithm (including RS) for each case study (task T1) based on
the quality indicator HV (Section 4.1.3). The results showed
that IBEA always achieved significantly better performance
than the other algorithms (including RS) for each case study
since all the values of Â12 are greater than 0.5 for HV (higher
value, better performance) and all the p-values are less than
0.05. In addition, we reported the average time for running
each search algorithm to obtain the sequences of refactoring

TABLE 6
An Overview of the Experiment Design

4. Abel cluster: http://www.uio.no/english/services/it/research/
hpc/abel/

158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

http://www.uio.no/english/services/it/research/hpc/abel/
http://www.uio.no/english/services/it/research/hpc/abel/

operators and apply the operators for refactoring the origi-
nal OCL constraint set for the four case studies, i.e., 240.56
seconds for NSGA-II, 285.43 seconds for SPEA2, 308.87 sec-
onds MOCell, 340.35 seconds for PESA2, 331.26 seconds for
IBEA, 290.40 seconds for CellDE and 280.19 seconds for RS.
From the results, we can observe that there is no large prac-
tical difference between the six algorithms and RS in terms
of the time used. For example, there is only less than one
minute difference (51.07 seconds) between IBEA (the slow-
est one) and RS.

Thus, we answer RQ1 as: IBEA achieves the best perfor-
mance in terms of finding optimal sequences of refactoring
operators without largely sacrificing the time performance
as compared with the other algorithms and RS, indicating
that IBEA should be integrated into SBORA.

RQ2: Recall that we ran each algorithm 50 times and the
population sizewas set as 100 and thus in total 5000 solutions
were obtained for each algorithm. We evaluated them for
the best algorithm IBEA in terms of ComImp, CouImp and
CohImp (task T2) and the results are shown as Table 9. For
instance, the results ofComImp,CouImp andCohImp are 40,
43 and 95 percent for the CRN’s case study, respectively,
which indicates that SBORA (with IBEA) can reduce on aver-
age 40 percent of Complexity and 43 percent of Coupling at the
same time increasing on average 95 percent of Cohesion as
compared with the original constraint set. When considering
all the case studies together, the refactored constraint sets
were able to reduce on average 29.25 and 39 percent for Com-
plexity and Coupling and improve 47.75 percent for Cohesion
when compared with the original ones. We also calculated
the standard deviation values for the 5000 solutions obtained
by IBEA in terms of Complexity, Coupling and Cohesion for the
four case studies and the results showed that all the values
for standard deviation were less than 0.1 showing that
SBORA with IBEA can manage to produce solutions with
stable performance.

Moreover, to determine the statistical significance of
results, we conducted one sample Mann-Whitney U test (p-
value) [16] for each case study by comparing the results of
5000 solutions obtained by IBEA with the value of original
OCL constraint set in terms of Complexity, Coupling, and
Cohesion, respectively. The significance level is set as 0.05.
The results show that there are statistically significant dif-
ferences for Complexity, Coupling, and Cohesion between the
solutions produced by IBEA and the original OCL

constraint set since all the p-values are much less than
0.0001 with respect to each case study.

Thus, we can answer RQ2 as: SBORA can significantly
reduce the Complexity and Coupling and enhance the Cohe-
sion as compared with the original OCL constraint sets.

4.3 Discussion

Based on the results of the experiment, we can see that the
four operators can effectively help to largely reduce
Complexity and Coupling and enhance Cohesion of an OCL
constraint set (RQ2). Moreover, we observed that IBEA
always achieved the significantly better performance than
the other search algorithms (as well as RS), which can
largely improve the understandability and maintainability
of OCL constraints in terms of Complexity, Coupling, and
Cohesion (RQ1). This can be explained as when finding opti-
mal solutions, IBEA employs the quality indicator HV
towards finding optimal solutions, which takes both conver-
gence and diversity into account.

TABLE 7
Results of Each Objective of the Algorithms

for Each Case Study�

A
CRN Subsea

Handling
Systems

SPEA

Com Cou Coh Com Cou Coh Com Cou Coh Com Cou Coh

A1 0.25 0.16 0.42 0.28 0.19 0.30 0.32 0.15 0.31 0.29 0.20 0.38
A2 0.26 0.14 0.39 0.32 0.16 0.34 0.33 0.16 0.28 0.30 0.14 0.40
A3 0.30 0.19 0.35 0.35 0.20 0.41 0.28 0.14 0.32 0.32 0.18 0.37
A4 0.27 0.16 0.49 0.27 0.19 0.42 0.34 0.20 0.39 0.28 0.17 0.40
A5 0.17 0.02 0.65 0.19 0.01 0.51 0.21 0.01 0.49 0.18 0.01 0.52
A6 0.23 0.15 0.50 0.30 0.25 0.33 0.36 0.14 0.40 0.29 0.12 0.41
RS 0.38 0.42 0.27 0.40 0.36 0.22 0.46 0.57 0.15 0.52 0.39 0.17

�A: Search Algorithm, A1: NSGA-II, A2: SPEA2, A3: MOCell, A4: PESA2,
A5: IBEA, A6: CellDE. Com: Complexity. Cou: Coupling. Coh: Cohesion. The
results for the best algorithm has been marked as bold.

TABLE 8
Results of Comparing the Algorithms for Each

Case Study Using HV�

HV CRN Subsea Handling SEPA

P Â̂A12 p Â̂A12 p Â̂A12 p Â̂A12 p

P1 1 8E-10 1 8E-10 1 8E-10 1 8E-10
P2 1 8E-10 1 8E-10 1 8E-10 1 8E-10
P3 1 8E-10 1 8E-10 1 8E-10 1 8E-10
P4 0.73 0.001 1 8E-10 1 8E-10 1 8E-10
P5 1 8E-10 1 8E-10 1 8E-10 1 8E-10
P6 1 8E-10 1 8E-10 1 8E-10 1 8E-10
P7 0.85 8E-05 0.77 1E-04 0.64 0.038 0.74 9E-05
P8 0.78 4E-06 0.63 4E-03 0.61 0.120 0.38 0.036
P9 1 8E-10 1.00 8E-10 0.99 8E-10 0.98 1E-09
P10 0 8E-10 0.37 0.156 0.48 0.714 0.31 6E-03
P11 0.3 0.007 0.99 8E-10 0.98 9E-10 1.00 8E-10
P12 0.58 0.415 0.36 3E-03 0.48 0.562 0.25 1E-04
P13 1 8E-10 0.98 1E-09 0.97 1E-11 0.96 1E-09
P14 0 8E-10 0.30 2E-03 0.34 0.005 0.38 0.005
P15 0.03 2E-08 0.96 9E-10 0.96 9E-10 1.00 8E-10
P16 1 8E-10 0.99 8E-10 0.96 2E-09 0.97 8E-10
P17 0 8E-10 0.44 0.301 0.37 0.001 0.39 2E-03
P18 0.1 8E-09 0.98 8E-10 0.94 5E-09 1.00 8E-10
P19 0 8E-10 0.01 1E-11 0.01 8E-10 0.04 3E-09
P20 0 8E-10 0.38 5E-03 0.23 9E-06 0.53 0.543
P21 1 8E-10 0.98 9E-10 0.99 1E-11 1.00 8E-10

�P: Algorithm Pair, P1: NSGA-II versus RS, P2: SPEA2 versus RS, P3:
MOCell versus RS, P4: PESA2 versus RS, P5: IBEA versus RS, P6: CellDE
versus RS. P7: NSGA-II versus SPEA2, P8: NSGA-II versus MOCell, P9:
NSGA-II versus PESA2, P10: NSGA-II versus IBEA, P11: NSGA-II versus
CellDE, P12: SPEA2 versus MOCell, P13: SPEA2 versus PESA2, P14:
SPEA2 versus IBEA, P15: SPEA2 versus CellDE, P16: MOCell versus
PESA2, P17: MOCell versus IBEA, P18: MOCell versus CellDE, P19:
PESA2 versus IBEA, P20: PESA2 versus CellDE, P21: IBEA versus CellDE.

TABLE 9
Quality Improvement for Each Case Study

Case Study ComImp CouImp CohImp

CRN 40% 43% 95%
Subsea Production Systems 27% 34% 36%
Handling Systems 30% 42% 29%
SEPA 20% 37% 31%
Average 29.25% 39% 47.75%

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 159

For the CRN’s case study, we observed that SBORA was
able to largely increase on average Cohesion of the original
OCL constraint set by 95 percent, implying that the original
medical rules in CRN have a large potential for refactoring
in terms of cohesion. One reason is that the original set of
medical rules were specified by chief medical officers,
applied by medical coders and developed by medical pro-
grammers without having intentions to improve their
understandability and maintainability [50]. Moreover, the
three roles in CRN were played by different people with
distinct medical domain expertise of the medical rules,
which is another reason why the original rule set has low
understandability and maintainability.

To further test the performance of SBORA, we also
applied it together with IBEA (the best algorithm) to refac-
tor a set of the OCL constraints specified on the UML meta-
model corresponding to the UML 2.3 specification [7]. We
first constructed an original constraint set by randomly
selecting in total 49 constraints from the UML specification
[7] with a Java program, followed by applying SBORA to
refactor the constraint set. Note that we set up an upper
limit on how many constraints to be selected from the speci-
fication for the study as 50, which we believe to be a reason-
able number of constraints for manually checking the
overall quality of the refactored constraints. In the end, the
Java program randomly selected 49 from the specification
for the study. Results5 showed that SBORA was able to
reduce Complexity and Coupling by 0.12 and 4.2 percent
respectively, and improve Cohesion by 15.7 percent. Though
the improvement is not impressive as compared with the
results of the four case studies (Table 9), we are however
not surprised. The plausible explanation is that the UML
specification, including all the constraints, were docu-
mented by experts with rich modeling experience. Thus, we
believe that these OCL constraints already possess good
understandability and maintainability, which leaves limited
space for improvement. This is however not a case for any
typical industrial application context, e.g., the CRN context,
where domain experts are rarely well trained for specifying
constraints with OCL.

4.4 Threats to Validity

A threat to internal validity is that we have experimented
with only one-default configuration setting for parameters
of the search algorithms, which is however recommended
by [16] and has been proven being effective. One conclusion
validity threat in the experiments involving randomized
algorithms is due to random variations. To tackle this threat,
we repeated the experiments 50 times to reduce the possibil-
ity that results were obtained accidentally. We reported the
results using the Vargha and Delaney statistics (to measure
the effect size) and Mann-Whitney U test (to determine sta-
tistical significances).

An observed construct validity threat is that the measures
used are not comparable across the search algorithms.
In our context, we used the same stopping criteria for all
the algorithms, i.e., the number of fitness evaluations (i.e.,
50000). As for external validity threat related with

generalization of results, the four case studies from diverse
domains were employed for evaluating SBORA and the
results obtained are consistent. It is also worth mentioning
that such a threat to external validity is common to all
empirical studies [16], [33].

5 EVALUATION VIA CONTROLLED EXPERIMENT

We first present the experiment planning (Section 5.1) and
experiment execution (Section 5.2) followed by results and
the discussion (Section 5.3). Last, Section 5.4 discusses
threats to validity.

5.1 Experiment Planning

In this section, we present the experiment planning based
on the procedure suggested by Wohlin et al. [35]. The proce-
dure includes the experiment definition and hypotheses for-
mulation in Section 5.1.1, participants and the training
(Section 5.1.2), the materials (Section 5.1.3), independent
and dependent variables (Section 5.1.4), and the experiment
design in details (Section 5.1.5).

5.1.1 Experiment Definition and Hypotheses

The controlled experiment aims to evaluate the effective-
ness of SBORA via subjects’ manual inspections of original
and refactored OCL constraints. The effectiveness is
assessed in two ways: 1) Objective Way: assessing subjects’
performance regarding understanding and maintaining
OCL constraint sets, and 2) Subjective Way: collecting sub-
jects’ subjective opinions via five-point Likert scaling ques-
tions covering aspects of complexity, coupling, cohesion,
understandability and maintainability of OCL constraint
sets. The ultimate goal is to assess if SOBRA can signifi-
cantly improve an OCL constraint set with respect to under-
standability and maintainability. However, before the
controlled experiment, none of the expected differences can
be certain in a specific direction. Therefore, we formulate
our test as a null hypothesis:Hypotheses H0: there is no sig-
nificant differences between the original constraint set and
the refactored constraint sets in terms of understandability
and maintainability. Hence the alternative is a two-tailed
hypothesis: Hypotheses H1: the subjects’ performance with
a refactored constraint set is significantly different with that
on the original one.

5.1.2 Participants and Training

In total, 96 graduate students from the school of Computer
Science and Engineering, Nanjing University, China partici-
pated in the controlled experiment. Notice that all the par-
ticipants were enrolled in either the Master or Ph.D
programs of the department and had taken at least one soft-
ware engineering courses.

Right before the experiment was conducted, a one-hour
lecture was given by the third author of the paper to all the
subjects about OCL as well as the three metrics of an OCL
constraint set, i.e., complexity, coupling, and cohesion. Fur-
thermore, all the participants were asked to fill a pre-ques-
tionnaire (Appendix B) before the experiment session to
learn their background on UML/OCL. The results of the
pre-questionnaire were used as a measure of the5. http://www.zen-tools.com/SBORA/SBORA.html

160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

http://www.zen-tools.com/SBORA/SBORA.html

randomized block design to divide the subjects into six
groups to ensure that the background of UML/OCL of
each group is closely equivalent. Among the divided six
groups, one was involved in the task related with the
original constraint set and the other five groups were for
the tasks of the constraint sets refactored by SBORA. The
number of the participants in each group is reported in
Table 10 (the first row).

5.1.3 Case Study and Materials

The controlled experiment employs a simplified but rep-
resentative version (see Appendix A) of the case study
from CRN (Section 4.1.2), by considering that the case
study is real and simple enough to be used in the con-
trolled experiment. Notice that the simplification of the
case study aims to ensure that the subjects were able to
understand the context of the case study within a limited
period of time. As mentioned in Section 4.1.2, the original
constraint set of the case study contains 469 medical rules,
which is impossible to be used for the experiment within
an affordable time. Therefore, we carefully selected 10
representative constraints (out of the 469 constraints) of
varying complexity, which formed the original constraint
set for the controlled experiment and was taken as the
input by SBORA for refactoring. The maximum number
of refactoring solutions produced by SBORA is deter-
mined by the population size of a search algorithm,
which was set as 100 in our experiments (Section 4.1) and
can be customized if needed. Out of the 100 solutions pro-
duced by SBORA, we randomly selected five refactored
constraint sets for the controlled experiment. The number
of constraints in each constraint set is reported in the sec-
ond and third rows of Table 10.

We designed a comprehension questionnaire to objec-
tively evaluate the performance of the subjects on under-
standing and maintaining a given constraint set (Section
5.1.3) and a post-questionnaire to collect their subjective
opinions (Section 5.1.3).

Comprehension Questionnaire. The aim of the comprehen-
sion questionnaire is to study to what extent the subjects
can correctly understand or maintain a given constraint set.
The comprehension questionnaire is composed of 12 multi-
ple choice questions and eight open-ended questions
(Appendix C). The multiple choice questions include: 1) one
question for choosing valid values for a specific property of
a cancer message/case (i.e., Question 1); 2) nine questions
for choosing a sentence that describes a valid cancer mes-
sage/case without violating any constraint in the constraint
set (e.g., Questions 2) or an invalid message/case violating

one or more constraints in the constraint set (e.g., Questions
5); 3) two questions for choosing a valid change of the con-
straint set and does not introduce any violations of the con-
straints after maintenance (i.e., Questions 15).

In the open-ended questions, the subjects were asked to
answer questions without any predefined choice. An open-
ended question is for writing down which constraint(s)
would be affected when introducing or removing certain
relationships between some properties of the cancer mes-
sages/cases (e.g., Questions 16). Notice that we didn’t
distinguish questions for understandability and maintain-
ability since evidence shows that understandability is a sub-
characteristic of maintainability [38].

Post-Questionnaire. The post-questionnaire was designed
to solicit views from the subjects on a given constraint set,
with respect to the five aspects: understandability, main-
tainability, complexity, coupling, and cohesion. The post-
questionnaire (Appendix D) is composed of a set of five-
point Likert scale questions. One question is for the subjects
to specify a numeric score (ranging from 1 to 5) for coupling
(cohesion) of a whole constraint set. For understandability
and complexity, one question to collect a numeric score (1
to 5) indicating the subject’s opinion on understandability
and complexity, was further designed for each constraint.
Considering the challenge of maintaining a set of con-
straints is due to shared properties (e.g., topography), we
designed four questions for maintainability based on four
sets of properties corresponding to four groups of con-
straints in a constraint set. The four questions are to mea-
sure to which extent the four groups of constraints related
to corresponding property sets can be maintained.

5.1.4 Variables and Measurement

There is one independent variable named SBORA Applied,
which results in two variants, applying SBORA to obtain
refactored constraint sets and keeping the original con-
straint set without applying SBORA.

A data point in our context is defined as the response of a
subject to a particular question in the questionnaires. We
define six dependent variables, corresponding to the six
evaluation aspects (Section 5.1.1): correctness rate (Section
5.1.4) and understandability, maintainability, complexity, cou-
pling and cohesion (Section 5.1.4).

Correctness Rate. The correct answers for the 20 questions
that are served as the evaluation criterion. For the compre-
hension questionnaire, we define the metric of Correctness
Rate (CRg) for group g from two angles, where g takes a
value from 1 to 6, representing Group 1 to Group 6. From
the angle of the subjects, the correctness rate for subject i in
group g (SCRgi) is defined as: SCRgi ¼ NoQgi=TotalQ,
where NoQgi indicates the number of correctly answered
questions by subject i and TotalQ refers to the total number
of questions (20 in our case). From the angle of the ques-
tions, the correctness rate for question j in group g (QCRgj)
can be measured as: QCRgj ¼ NoSCg=NoSg, where NoSCg

refers to the number of the subjects in group gwho correctly
answered question j while NoSg is the total number of the
subjects in this group.

Notice that no matter from which angle (subjects or ques-
tions), the average correctness rate for group g can be mea-
sured in two equivalent ways as:

TABLE 10
Experiment Design

Group G1 G2 G3 G4 G5 G6

Number of Subjects 17 17 17 14 16 15
Constraint Set Original Ref. 1 Ref. 2 Ref. 3 Ref. 4 Ref. 5
Number of
Constraints

10 6 10 7 8 9

Comprehension
Questionnaire

20 20 20 20 20 20

Post-questionnaire 26 18 26 20 22 24

Ref.: refactored constraint set.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 161

ACRg ¼
XNoSg

i¼1

SCRgi=NoSg; or
XTotalQ

j¼1

QCRgj=TotalQ:

Dependent Variables for the Post-Questionnaire. For the
post-questionnaire, we define five dependent variables to
measure the subjective opinions of the subjects. For cou-
pling (CPG) (or cohesion (CHN)), there is one data point for
each variable per subject. Hence, for subject i in group g,
coupling (CPGgi) (or cohesion (CHNgi)) can be measured by
a numeric value ranging from 1 to 5 indicating from very
tight coupling to very loose coupling (CPG) (or from very
loose cohesion to very tight cohesion (CHN)). For maintain-
ability (MTY), four data points (numeric values) were col-
lected from each subject for each constraint set, which
ranges from 1 (very poor maintainability) to 5 (very good
maintainability) indicating the level of maintainability for
four subsets of constraints in a constraint set. Hence, we
define MTYgi for subject i in group g as the mean value of
the four numeric values.

As discussed in Section 5.1.3, the number of data points
for complexity and understandability may be different for
each constraint set (6 sets in total). For both complexity and
understandability, one question was designed for each con-
straint and therefore the size of data points is equal to the
number of constraints in each constraint set. Each data point
is a numeric value from 1 to 5 indicating from very complex
(or very poor) understandability to very easy (or very good)
complexity (or understandability). Thus, we define complex-
ity (CPY) and understandability (UDY) for each constraint
set from the angle of subjects, i.e., complexity (CPYgi) and
understandability (UDYgi) are measured with the average of
the numeric values collected from subject i in group g.

Therefore, for the post-questionnaire, we define each
dependent variable for each group and each constraint set
as the mean value of all the subjects. That is, for group g, the
value of each dependent variable can be calculated as:

SDV g ¼
PNoSg

i¼1 SDVgi=NoSg, where SDV represents values

of CPG, CHN, CPY, MTY or UDY and NoSg is the total num-
ber of subjects in group g.

5.1.5 Experiment Design

We chose the between-subject design [35], as we enrolled a
sufficient number of subjects (in total 96) for the controlled
experiment. As mentioned in Sections 5.1.2 and 5.1.3, we
have divided all the subjects into six groups and one group
was randomly chosen for the treatment with the original
constraint set and each of the remaining five groups was
given a refactored constraint set as treatment.

Table 10 summarizes the design of the controlled experi-
ment. It first presents the number of involved subjects in
each group and the number of constraints in each constraint
set. For example, group 1 (G1) with 17 subjects performed
the tasks with the given original constraint set with 10 con-
straints. Notice that the numbers of subjects are slightly dif-
ferent, as six students, who answered the pre-questionnaire
and were grouped into G4-G6, did not show up for the con-
trolled experiment. Second, Table 10 also summarizes the
number of questions in both the comprehension and post
questionnaire. Note that for the post-questionnaire, the
numbers of questions are different across the six groups as

for complexity and understandability one question was
designed per constraint.

The authors collected and analyzed all the data points.
As the first step of analyzing the results, we used the
Shapiro–Wilk test [42] to test the normality of the data
points with a significance level of 0.05. Results show that
the distributions of the data points strongly depart from
normality since all the p values are less than 0.05. Therefore,
we used the non-parametric Mann-Whitney U test to test
the significance of differences between paired groups as our
data meets all the assumptions for the Mann-Whitney U
test. Furthermore, we used Vargha and Delaney statistics
(Â12) to measure the stochastic superiority of the original set
(refactored sets) over the refactored sets (original set) if
there are any differences between the original and refac-
tored ones. To be more specific, for the comprehension
questionnaire, we compared the performance (in terms of
SCR and QCR (Section 5.1.4)) of Group 1 with each of the
other groups using the Vargha and Delaney statistics (Â12)
for comparison and the Mann-Whitney U test [16] to deter-
mine the significance of the results with the significance
level of 0.05 (p-value). As discussed in Section 5.1.4, for the
post-questionnaire, we derived one numeric value for
each of the dependent variables: coupling (CPG), cohesion
(CHN), complexity (CPY), maintainability (MTY) and
understandability (UDY) per subject. Hence, we analyzed
the results of scores for each subject in Group 1 with each of
the remaining groups using Vargha and Delaney statistics
(Â12) for comparison and the Mann-Whitney U test with the
significance level of 0.05.

5.2 Experiment Execution

One day before the experiment, the students were asked to
fill a pre-questionnaire related with UML/OCL (Appendix
B), results of which were used to divide the students into
six groups (Table 10). The training was given right before
the experiment, during which the knowledge of OCL was
revised and the three metrics of OCL constraints were also
introduced.

The experiment started with distributing the UML
domain model and short descriptions of the medical termi-
nologies of the case study to all the subjects (Appendix A).
They were given 10 minutes to go through the domain
model to get familiar with the domain and were also
encouraged to ask questions. After that, the constraints for
each group together with the comprehension questionnaire
were distributed to all the subjects, who were given in total
45 minutes to answer the comprehension questionnaire
(Appendix C). After that, the post-questionnaire (Appendix
D) was distributed and the subjects were given 10 minutes
to finish the post-questionnaire.

5.3 Results and Discussions

When the experiment was finished, we collected all the data
points and Table 11 gives a summary of both designed and
actually collected data points.

By design, the number of designed data points for each
group in the comprehension experiment (CR in Table 11) is
calculated as TotalQ � NoSg, where TotalQ refers to the
number of comprehension questions (20 in our case) and

162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

NoSg indicates the total number of subjects in this group g.
The sizes of designed data points for each group for both
coupling (CPG) and cohesion (CHN) are equal to the num-
ber of the subjects in each group. The numbers of designed
data points for complexity (CPY) and understandability
(UDY) for each group are measured as NoCg � NoSg,
where NoCg refers to the number of constraints in the con-
straint set for group g. For maintainability (MTY), the num-
ber of designed data points for each group is identical to
four times of the number of subjects in each group. There-
fore, in total 782 data points (340 from the comprehension
questionnaire and 442 from the post-questionnaire) were
designed for G1.

One can notice that some subjects did not provide
answers to some questions and hence there are some miss-
ing data as it can be seen from the number of collected data
points in Table 11, especially for coupling, cohesion, and
maintainability of the given constraint sets for G4, G5, and
G6. As it is unclear to us why these data were missing. We,
therefore, used the Little’s MCAR test [39] to check if the
data for coupling, cohesion, and maintainability are missing
completely at random (MCAR). Results show that MCAR
holds as the p-value is 0.847, which is greater than 0.05.
Though the absence of data points is at random, the num-
bers of the data points in G4, G5 and G6 are quite small.
Therefore, we only performed the statistical test to compare
G1 with G2 and G3, to ensure certain levels of statistical
power (Section 5.3.2).

In the rest of the section, we report the experiment results
for the comprehension questionnaire (Section 5.3.1) and the
post-questionnaire (Section 5.3.2). The overall discussion is
provided in Section 5.3.3.

5.3.1 Results of Comprehension Questionnaire

As discussed in Section 5.1.3, the comprehension question-
naire was designed to learn how well the subjects under-
stand or maintain a constraint set through a set of multiple
choice or open-ended questions. Correctly answering the
questions indicates good understandability and maintain-
ability of a constraint set. As discussed in Section 5.1.4, we
defined a dependent variable (i.e., ACR) to measure the
understandability and maintainability of a constraint set.
The average correctness rates for the five groups enrolled
for the five refactored constraint sets (G2: 54%, G3: 50%, G4:
52%, G5: 55%, G6: 51%) are all higher than G1 (48 percent)
that was given the original constraint set. The differences
range from 2 to 7 percent and this reveals that all the

refactored constraint sets possess better understandability
and maintainability than the original one. One may argue
that the improvement is very small. However, we want to
mention that the case study used in the controlled experi-
ment is a simplified version (Section 5.1.3) and the con-
straint set is quite small and simple, so there may be no
much space for optimization. When the constraints get
more complex and less understandable and maintainable,
the refactored constraint sets might be much better.

To further investigate the significance of the differences,
we conducted the Vargha and Delaney statistics (Â12) and
Mann-Whitney U test to compare G1 with the other groups
in terms of QCR and SCR for each group (Section 5.1.4).
Results are reported in Table 12, where Â12 indicates the
chances of obtaining higher correctness rates (QCR and SCR)
and p-value denotes statistical significances of the differences
between two groups (the significance level is set as 0.05). Tak-
ing the first row (G2 versus G1) as an example, the questions
answered by G2 have the same chance with those answered
by G1 to acquire a higher correctness rate (QCR) since Â12 is
0.5. In terms of SCR, the subjects in G2 performed signifi-
cantly better than those in G1 since Â12 (0.739) is greater than
0.5 and p-value (0.016) is less than 0.05. Note that when com-
paring two groups, the significant difference for QCR does
not imply a significant difference for SCR and vice versa. Tak-
ing G5 and G1 for example (Table 12), p value (0.039) for SCR
indicates that significantly more subjects in G5 tend to have
better results than those in G1. However, from the angle of
the question, the differences between two groups occurred in
a smaller proportion of questions (Â12 ¼ 0:536 for QCR) and
the difference is not significant (p ¼ 0:170 for QCR), which
may be because of a higher number of total observations (20
for questions and 17/15 for subjects).

From Table 12 we can conclude that G4 and G6 perform
significantly better than G1 in terms of QCR, i.e., correctly
answered questions from G4 and G6 were significantly
more than ones from G1. In addition, G3 and G5 performed
better than G1 but not significantly. In terms of SCR, G2, G4
and G5 performed significantly better than G1. Moreover,
G3 and G6 also performed better than G1 but not
significantly.

Concluding Remarks. In general, we can summarize that
the refactored constraint sets produced by SBORA have bet-
ter understandability and maintainability, which indicates
that the refactoring is effective. Most of the refactored ones
(i.e., sets for G2, G4, G5, and G6) are significantly better
than the original set, indicating that there is a high chance
to obtain a solution from our approach that is significantly
better than the original constraint set.

TABLE 11
Summary of Collected/Designed DP

G1 G2 G3 G4 G5 G6

CR 324/340 327/340 325/340 266/280 311/320 294/300
CPG 15/17 17/17 14/17 5/14 5/16 9/15
CHN 15/17 17/17 14/17 5/14 5/16 9/15
CPY 170/170 102/102 150/170 98/98 128/128 135/135
UDY 170/170 102/102 150/170 98/98 128/128 135/135
MTY 60/68 63/68 56/68 20/56 24/64 36/60

Total 754/782 628/646 709/782 492/560 601/672 618/660

CR: correctness rate; CPG: coupling; CHN: cohesion; CPY: complexity;UDY:
understandability; MTY: maintainability; DP: Data Points.

TABLE 12
Statistical Results for Comprehension Questionnaire

CR By Question (QCR) By Subject (SCR)

Group Â̂A12 p-value Â̂A12 p-value

G2 vs. G1 0.500 1 0.739 0.016
G3 vs. G1 0.570 0.087 0.626 0.201
G4 vs. G1 0.570 0.013 0.725 0.027
G5 vs. G1 0.536 0.170 0.706 0.039
G6 vs. G1 0.619 0.001 0.569 0.515

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 163

5.3.2 Results of Post-questionnaire

As discussed in Sections 5.1.3 and 5.1.4, the post-
questionnaire was designed to collect the subjects’ subjec-
tive opinions towards the five dependent variables.

Table 13 presents the average value of each dependent
variable (SDV defined in Section 5.1.4) for each group. The
highest value of SDV of each row is marked as bold. Notice
that a higher value is preferred. For Complexity, G1, G3,
and G6 achieved the highest value (3.9) implying that the
subjects in G1, G3 and G6 considered the constraints given
to them are not complex when comparing with the results
obtained from the other groups. For Coupling, G5 achieved
the highest value (3.2), indicating that the subjects in G5
thought that the constraints in the constraint set given to
them are loosely coupled when comparing with the results
obtained from the subjects of the other groups. With respect
to Cohesion, the subjects in G1 considered that the con-
straints given to them are tightly coherent since the task per-
formed by G1 obtained the highest value (3.4), when
compared with the other groups. For both understandabil-
ity and maintainability, G1 and G6 scored equally best.
Based on the results from Table 13, we observe that it is
challenging to make conclusions on which constraint set
(original one or refactored ones) obtained better results
since there is no constraint set better than all the others for
every dependent variable in the post-questionnaire.

As reported in Table 11, numbers of the data points for G4,
G5 and G6 are very small. Hence, we performed the Vargha
and Delaney statistics (Â12) and Mann-Whitney U test to
compare G1 with only G2 and G3 in terms of the five depen-
dent variables (Section 5.1.4), i.e., SDV for each group.
Results show that there were no significant differences
between the original constraint set and the refactored ones
(given to G2 and G3) since all the p-values are greater than
0.05. However, note that feedbacks from the subjects after
the controlled experiment reveal that most of the subjects
deemed that the domain knowledge was difficult to master
and they had difficulty to understand domain concepts, ter-
minologies and abbreviations, such as DS (Section 4.1.2),
during the experiment and had hard time to relate them to
given OCL constraints. This was an unknown factor at the
experiment design time and therefore uncontrolled, which
might have masked the effect of the five variables (Section
5.1.4). Therefore, based on the limited observations, we can-
not draw conclusion on this aspect. Further investigation
and dedicated controlled experiments are needed.

5.3.3 Discussion

As concluded in Section 5.3.1, all the groups working on
the refactored constraint sets obtained a better correctness
rate than G1 (working on the original set). Among the

comparisons, there is a high chance for the groups working
on the refactored sets achieved significantly different per-
formance comparing with G1. The results indicate that
hypothesis H0 should be rejected and hence H1 holds. To
further evaluate the direction of the difference, we can con-
clude from Â12 (Table 12) that the understandability and
maintainability of the original constraint set was improved
through refactoring, and there was a high chance for the
improvement to be significant.

From the results of the post-questionnaire (Section 5.3.2),
there are no significant differences between the original
constraint set and the refactored ones for G2 and G3. Thus,
there is no sufficient evidence to reject H0. As discussed in
Section 5.3.2, the subjects had limited knowledge of the
domain concepts, terminologies and abbreviations used in
the CRN case study, which might have masked the real
effect of the dependent variables. Moreover, cognitive
biases of humans [40], [41] might be another reason why we
observed inconsistent results from the responses to the com-
prehension questionnaire (objective) and the post-question-
naire (subjective).

5.4 Threats to Validity

Regarding conclusion validity threats, there are two main fac-
tors that may contribute to such threats: the sample size of
the constraints and the selection of refactored constraint
sets produced by SBORA. For the first factor, we randomly
chose the maximum number of constraints, i.e., 10 in our
case) that a subject could handle within a predetermined
time, i.e., 45 minutes in our case. To deal with the second
factor, we randomly picked five refactoring solutions from
the many solutions generated by SBORA.

Internal validity threats are concerned with confounded
internal factors that may influence the experiment outcome.
One main threat to the internal validity is due to the indi-
vidual variance. To eliminate this threat, we divided all the
subjects into six groups based on the results of a pre-
questionnaire related with their background with the aim
to ensure each group has closely equivalent knowledge.
However, the subjects’ limited knowledge of the domain
terminologies may pose difficulties for them to understand
and maintain the constraints although we provided them a
description of the domain concepts and gave them 10
minutes to get familiar with the domain before the experi-
ment (Section 5.2). Furthermore, one may argue that the
designed answer sheets could be ambiguous, which may
influence the quality of the subjects’ answers. However, all
the subjects were provided with the same answer sheet and
thus we don’t expect a significant impact on the comparison
of paired groups.

The main external validity threat in the controlled experi-
ment is whether the subjects can represent real domain
experts. Note that all the subjects enrolled in the experiment
are graduate students (Section 5.1.2). Some existing studies
have shown that there were no significant differences when
comparing the performance of graduate studentswith profes-
sionals for conducting particular controlled experiments [36],
[37], [58]. Another concern about the external validity may be
thatwe just used one case study,whichmay hinder the gener-
alization of the results. However, we argue that constraints in

TABLE 13
Average Values for Post Questionnaire

Groups G1 G2 G3 G4 G5 G6

Complexity 3.9 3.5 3.9 3.6 3.7 3.9
Coupling 3 2.9 2.9 3 3.2 2.6
Cohesion 3.4 3.3 3.2 3 3 3.2
Understandability 4.1 3.9 3.9 3.9 3.8 4.1
Maintainability 3.5 3.3 3.2 2.5 3.0 3.5

164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

each domain have its own characteristics and the reason we
chose the case study of CRN is that the constraints in the CRN
are real and relatively simple for human cognition.

6 OVERALL DISCUSSION

We conducted an evaluation of SBORA from two comple-
mentary ways, i.e., evaluation via four case studies (i.e.,
CRN, subsea production systems, handling system and
SEPA case study) (Section 4) and evaluation via the con-
trolled experiment with human involvement based on a
simplified version of the CRN case study (Section 5).

Results from the evaluation via case studies show that
SBORA, our search-based solution together with the four
refactoring operators, can effectively improve an OCL con-
straint set in terms of threemetrics (i.e., complexity, coupling
and cohesion) defined to measure the understandability and
maintainability of a constraint set. Furthermore, to evaluate
whether SBORA can achieve the ultimate goal—improve
understandability and maintainability of an OCL constraint
set, we conducted a controlled experiment with 96 subjects.
The results of the controlled experiment show that SBORA
does improve the understandability and maintainability of
an OCL constraint set with a high chance of significant
improvement.

The evaluations via case studies and controlled experi-
ment complement each other in the sense that the results
from the case studies provide evidence showing that the
effectiveness and scalability of SBORA in terms of the three
metrics (complexity, coupling and cohesion) that are used
as heuristics during search, while the results of the con-
trolled experiment confirmed the validity of the three met-
rics in measuring the understandability and maintainability
of smaller scales of OCL constraint sets. The results of the
evaluations both in Sections 4 and 5 are positive and we
can, therefore, conclude that SBORA can effectively
improve the understandability and maintainability of an
OCL constraint set with large scales.

Furthermore, there are existing studies related with mea-
suring the understandability and maintainability of UML
models, such as [38], [55]. There are also some works related
to refactoring UML models to improve understandability
and maintainability, e.g., [56], [57]. However, evaluating/
refactoring UML models in our context (i.e., class diagrams)
is not important, because these class diagrams capture
domain concepts and their relationships in a real applica-
tion domain, and they are relatively stable and don’t evolve
as frequently as OCL constraints. Therefore, improving the
understandability and maintainability of OCL constraints is
the key requirement in our context and therefore the main
focus of this paper. There also exist some works on identify-
ing OCL smells (e.g., long navigations) [5], [24], [25] but
none of the identified OCL smells were caused by the low
understandability and maintainability of UML models,
implying that there is no evidence showing that the under-
standability and maintainability of UML models have direct
relationships to the understandability and maintainability
of OCL constraints.

At last, we used the same UML class diagram when con-
ducting the controlled experiment (Section 5). Note that the
UML class diagramwas from a simplified but representative

version of the case study from CRN (Section 4.1.2), by con-
sidering that the case study is real and simple enough to be
used in the controlled experiment. The simplification of the
case study aims to ensure that the subjects were able to
understand the context of the case study within a limited
period of time. In addition, based on the results we collected
from the pre- and post-questionnaires, the participants
didn’t have any problems in understanding the provided
UML class diagram.

7 RELATED WORK

7.1 OCL Refactoring

As we investigated, only the works reported in [18] provide
OCL quality metrics that are relevant for our context. The
authors proposed a set of quality metrics for the compre-
hensibility and modifiability of OCL constraints. These
quality metrics were evaluated with a controlled experi-
ment in terms of their comprehensibility and modifiability.
Results show that seven metrics affect the comprehensibility
OCL constraints as shown in Table 1. Detailed explanation
about these measures can be referred to [18]. Cabot et al.
proposed a quality metric of OCL expressions based on the
number of objects involved in the evaluation of the expres-
sion, which they claimed a precise measure of their com-
plexity [17]. The complexity in their context, however, is a
property during runtime and not concerned with under-
standability of OCL expressions as those based on OCL syn-
tactic structures [18].

Coupling is a well-known concept that was first pro-
posed for object-oriented design in [21] to measure the
degree of interdependency between different parts of a
design. In this paper [21], they also proposed the concept of
cohesion to indicate the internal consistency within parts of
a design. The impact of coupling and cohesion on maintain-
ability has been explored a lot in various software design
paradigms [22], [23]. However, to the best of our knowl-
edge, there is no work in literature aiming to measure the
OCL coupling and cohesion.

Correa et al. [24] defined a list of OCL “smells”—indicat-
ing that OCL constraints or underlying models should be
refactored to make them easier to understand and maintain.
A number of refactoring operations were also proposed in
the paper to deal with OCL smells. Both manual and auto-
mated refactoring are briefly discussed in the paper. The
authors suggested that (but with no tool provided) for auto-
mated refactoring of OCL constraints an action language
based on OCL named as OCL-Script can be used to specify
refactoring operations such that automation can be enabled.
A controlled experiment was also reported by Correa et al.
in [25] to evaluate the usefulness of the refactoring on
improving the understandability of OCL constraints.
Results of the controlled experiment show that OCL smells
might have a negative impact on OCL understandability.

An approach was proposed in [6] to refactor OCL
constraints by generating equivalent alternatives. UML
class diagrams on which OCL constraints are specified are
transformed into graphs by following a number of transfor-
mation rules. The problem of generating equivalent alterna-
tives of OCL constraints is formalized as a path problem
over a graph representation. A slightly adapted depth-first

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 165

searching algorithm should then be applied to compute
alternatives. The authors of the paper pointed it out there
exist a huge number of equivalences among different OCL
constructs. Therefore, their proposed approach is not able
to generate all equivalent alternatives.

Reimann et al. [26] conducted a literature survey, col-
lected 28 refactoring types and categorized them into four
categories, which were implemented as a tool named as
Refactory on top of Dresden OCL [51]. Refactory supports a
catalog of refactorings, such as renaming and removals/
materialization. However, users should be involved in the
refactoring process.

Built on the theoretical foundation of context changes in
[6] and being aware of the literature on OCL refactoring, we
propose in this paper an automated, search-based (thereby
scalable) solution to generate semantically equivalent OCL
constraints that are considered the best in terms of Complex-
ity, Coupling, and Cohesion.

7.2 Search-Based Refactoring

Harman et al. reported an extensive survey on SBSE [9],
which states that SBSE has been applied to solve a variety of
software engineering problems.

An empirical study has been reported in [27], in which
a prototype search-based refactoring tool was proposed
to facilitate the empirical study. Four search techniques
(e.g., Multiple ascent hill-climbing (HCM), GA) were
evaluated in the study for refactoring Java source code
with three out of the four case studies being open source.
The fitness function is an implementation of the Under-
standability quality metric of the hierarchical Quality
Model for Object-Oriented Design (QMOOD) [28], includ-
ing e.g., cohesion and number of methods (contributing
to the Complexity of a design) with N weights. Results of
the study show HCM performed the best. Jensen et al.
[29] proposed genetic programming based software
design (represented as UML class diagrams) refactoring
solution (named as REMODEL), based on QMOOD met-
rics. The proposed solution was evaluated via four
experiments and applied to a case study of a Web-based
software system. Results show that REMODEL can
improve the quality of a software design (with respect to
the QMOOD metrics) and automatically introduce design
patterns simultaneously.

Though search-based techniques and genetic program-
ming have been used to refactor code and UML class dia-
grams, to our best knowledge, SBORA is the very first one
for applying search to refactor OCL constraints.

8 CONCLUSION

This paper proposed a search-based refactoring approach
named as SBORA to improve the overall understandability
and maintainability of a give OCL constraint set. More
specifically, we defined and applied four semantics—
preserving refactoring operators (Context Change, Swap,
Split, and Merge), which were encoded as search solutions,
and defined three OCL quality metrics (Complexity, Coupling
and Cohesion) to guide the search towards finding optimal
solutions.

Six multi-objective search algorithms were empirically
evaluated by employing four case studies from different
domains including healthcare (i.e., cancer registry system
from Cancer Registry of Norway), Oil&Gas (i.e., subsea pro-
duction systems), manufacturing and logistics (i.e., han-
dling systems) and an open source case study named SEPA.
Results show that Indicator-Based Evolutionary Algorithm
(IBEA) managed to improve the understandability and
maintainability of the original constraint set by reducing on
average 29.25 percent of Complexity and 39 percent of Cou-
pling, and enhancing 47.75 percent of Cohesion. Moreover,
we applied SBORA together with IBEA to refactor an OCL
constraint set specified on the UML metamodel correspond-
ing to the UML 2.3 specification and the results are also
promising, i.e., with 0.12 and 4.2 percent reduction on Com-
plexity and Coupling respectively, and 15.7 percent improve-
ment of Cohesion. As a complementary evaluation, we also
conducted a controlled experiment to evaluate SBORA with
the involvement of 96 subjects and results of the compre-
hension questionnaire show that the understandability and
maintainability of the original constraint set including 10
OCL constraints from a simplified version of CRN case
study can be improved significantly.

APPENDIX A

Simplified Domain Model: the domain model designed for
the simplified version of the CRN case study and used in
the controlled experiment.

166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

APPENDIX B

Pre-questionnaire: Levels of agreement: 1- Strongly agree,
2- Agree, 3- Neither agree nor disagree, 4- Disagree,
5- Strongly disagree.

Questions:

1. I have good knowledge on UML class diagram
modeling.

2. I have good knowledge on reading OCL expressions.
3. I have good knowledge on writing OCL expressions.
4. How many courses you have taken that taught UML?

What are these courses?
5. How many courses you have taken that taught OCL?

What are these courses?
6. How many OCL and UML related courses you have

taken in the past? What are they?
7. What other kinds training on UML and/or OCL have

you received in the past?
8. Have you applied OCL and/UML for some projects,

assignments, etc.? Please specify them.

APPENDIX C

Comprehension questionnaire:

1. Which are the possible values for the type of a cancer
message (i.e., messageType)?
a. O, P, H, K, R
b. O, H, K, R, D
c. O, H, A, K, R
d. O, K, R, D, P
e. Other answers:

Where did you get the information?

2. Which of the following explains correctly about the rela-
tionship between basis and message type for a cancer
message?
a. If the basis value for a cancer message is 90, then the

value for messageType of it can be O
b. If the basis value for a cancer message is 98, then the

value for messageType of it can be O
c. If the basis value for a cancer message is 33, then the

value for messageType of it can be O
d. If the basis value for a cancer message is 83, then the

value for messageType of it can be O
e. Other answers:

Where did you get the information?

3. Which of the following cancer message is correct accord-
ing to the constraints related to basis and message type?
a. The basis value is 83 for a message with messageType

being H
b. The basis value is 34 for a message with messageType

being K
c. The basis value is 35 for a message with messageType

being O
d. The basis value is 70 for a message with messageType

being H
e. Other answers:

Where did you get the information?

4. Which of the following explains correctly according to
the constraints related to surgery and basis of a cancer
case?

a. If the basis for a cancer case is 57, then the value for
surgery can be 14

b. If the basis for a cancer case is 57, then the value for
surgery must be 14

c. If the basis for a cancer case is 83, then the value for
surgery can be 99

d. If the basis for a cancer case is 2, then the value for sur-
gery cannot be 10

e. Other answers:

Where did you get the information?

5. Which of the following cancer case is not correct accord-
ing to the constraints related to surgery and basis?
a. A cancer case whose basis is 2 and surgery is 14
b. A cancer case whose basis is 83 and surgery is 98
c. A cancer case whose basis is 82 and surgery is 99
d. A cancer case whose basis is 2 and surgery is 99
e. Other answers

Where did you get the information?

6. Which of the following explains correctly according to
the constraints related to surgery and basis of a cancer
message?
a. If the basis for a cancer message is 57, then the value

for surgery cannot be 14
b. If the basis for a cancer message is 99, then the value

for surgery cannot be 95
c. If the basis for a cancer message is 83, then the value

for surgery can be 99
d. If the basis for a cancer message is 2, then the value for

surgery can be 10
e. Other answers:

Where did you get the information?

7. Which of the following cancer message is correct
according to the constraints related to surgery and
basis?
a. A cancer message whose basis is 2 and surgery is 10
b. A cancer message whose basis is 57 and surgery is 99
c. A cancer message whose basis is 95 and surgery is 98
d. A cancer message whose basis is 95 and surgery is 99
e. Other answers

Where did you get the information?

8. Which of the following explains correctly according to
the constraints related to surgery, basis and message
type of a cancer message?
a. If the message type for a cancer message is H, then the

value for basis must be 60
b. If the surgery for a cancer message is 99, then the

value for message type must be D or O
c. If the basis for a cancer message is 99, then the value

for surgery cannot be 7 or the value for message type
cannot be H

d. If the surgery for a cancer message is 7 and the mes-
sage type is H, then the value for basis can be 98 or 60

e. Other answers:

Where did you get the information?

9. Which of the following explains correctly according to
the constraints related with surgery and topography?
a. If the surgery for a cancer message is 11, then its value

for topography can be ‘C58’

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 167

b. If the surgery for a cancer message is 1, then its value
for topography can be ‘C70’

c. If the surgery for a cancer case is 1, then its value for
topography can be ‘C58’

d. If the surgery for a cancer message is 11, then its value
for topography cannot be ‘C70’

e. Other answers:

Where did you get the information?

10. Which of the following cancer case/message is correct
according to the constraints related to surgery and
topography?

a. A cancer message whose surgery is 11 and topography
is ‘C58’

b. A cancer case whose surgery is 1 and topography is
‘C70’

c. A cancer message whose surgery is 1 and topography
is ‘C71’

d. A cancer message whose surgery is 11 and topogra-
phy is ‘C72’

e. Other answers:

Where did you get the information?

11. Which constraints shall be affected if ‘O’ is not a valid
value for the type of a cancer message (i.e., message-
Type)? Please list it/them.

12. Which constraints shall be affected if the relationship
between basis and message type for a cancer message
doesn’t exist? Please list it/them.

13. Which constraint shall be modified if the combina-
tion of basis and message type for a cancer message
can be: basis ¼ 36 and messageType ¼ H. Please list
it/them.

14. Which constraints shall be violated if adding a new
constraint: context Message: self.commonFields.basis ¼
34 implies self.messageType ¼ O. Please list it/them.

15. Which of the following constraint related with basis
and message type can be added into the whole con-
straint set without violating existing constraints?

a. context Message: self. commonFields.basis ¼ 70
implies self.messageType ¼H

b. context Message: self. commonFields.basis ¼ 80
implies self.messageType ¼ O

c. context Message: self. commonFields.basis ¼ 70
implies self.messageType ¼ O

d. context Message: self. commonFields.basis ¼ 80
implies self.messageType ¼H

e. other answers

Where did you get the information?

16. Which constraints shall be violated if adding a new
constraint: context CancerCase: self.commonFields.
basis ¼ 2 implies self.commonFields.surgery ¼ 10.
Please list it/them.

17. Which constraints shall be affected if the relationship
between basis and surgery for a cancer message doesn’t
exist? Please list it/them.

18. Which constraint shall be modified if the combination
of basis and surgery for a cancer case can be: basis ¼ 2
and surgery ¼ 10. Please list it/them.

19. Which of the following constraint related with basis
and surgery can be added into the whole constraint set
without violating existing constraints?

a. context Message: self. commonFields.basis ¼ 98
implies self. commonFields.surgery ¼ 95

b. context CancerCase: self. commonFields.basis ¼ 2
implies self. commonFields.surgery ¼ 10

c. context CancerCase: self. commonFields.basis ¼ 83
implies self. commonFields.surgery ¼ 98

d. context Message: self. commonFields.surgery ¼ 98
implies self. commonFields.basis ¼ 57

e. other answers

Where did you get the information?

20. Which constraints shall be affected if the relationship
between topography and surgery for a cancer message
doesn’t exist? Please list it/them.

APPENDIX D

Post-questionnaire:
Scores for

� Understandability: 1- Very Poor Understandability, 2- Poor
Understandability, 3- Normal Understandability, 4- Good
Understandability, 5- Very GoodUnderstandability

� Complexity: 1- Very Complex, 2- Complex, 3- Normal
Complex, 4- Easy, 5- Very Easy

� Coupling: 1- Very Tight Coupling, 2- Tight Coupling,
3- Normal Coupling, 4- Loose Coupling, 5- Very Loose
Coupling

� Cohesion: 1- Very Loose Cohesion, 2- Loose Cohesion,
3- Normal Cohesion, 4- Tight Cohesion, 5- Very Tight
Cohesion

� Maintainability: 1- Very Poor Maintainability, 2- Poor
Maintainability, 3- Normal Maintainability, 4- Good
Maintainability, 5- Very Good Maintainability

Constraint No. Understandability Complexity Coupling Cohesion

1

2

3

. . .

10

Grouped Constraints related with Maintainability

basis, messageType

basis, surgery

basis, surgery, messageType

surgery, topography

ACKNOWLEDGMENTS

This research was funded by the RFF Hovedstaden funded
MBE-CR project (grant no number. 239063). Hong Lu is also
supported by the RCN funded Zen-Configurator project
(grant no. 240024/F20). Shuai Wang is also supported by
the RCN funded Certus SFI (grant no. 203461/O30). Tao
Yue and Shaukat Ali are also supported by the RCN funded
Zen-Configurator project, MBT4CPS project (grant no.
240013/O70), Certus SFI, and EU Horizon 2020 funded U-
Test project (grant no. 645463).

REFERENCES

[1] IK Larsen, et al., “Data quality at the cancer registry of Norway:
An overview of comparability, completeness, validity and time-
liness,” Eur. J. Cancer, vol. 45, no. 7, pp. 1218–1231, 2009.

[2] M. P. O’Brien and J. Buckley, “Inference-based and expectation-
based processing in program comprehension,” in Proc. IEEE 9th
Int. Workshop Program Comprehension, 2001, pp. 71–78.

168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

[3] M. Fowler, Refactoring: Improving the Design of Existing Code.
Noida, UP, India: Pearson Education, 1999.

[4] M. Misbhauddin, et al., “UML model refactoring: A systematic lit-
erature review,” Empirical Softw. Eng., vol. 20, pp. 206–251, 2013.

[5] A. Correa, C. Werner, and M. Barros, “An empirical study of the
impact of OCL smells and refactorings on the understandability
of OCL specifications,” in Proc. Int. Conf. Model Driven Eng.
Languages Syst., 2007, pp. 76–90.

[6] J. Cabot and E. Teniente, “Transformation techniques for OCL con-
straints,“ Sci. Comput. Program., vol. 68, no. 3, pp. 179–195, 2007.

[7] OMG, “UML 2.3 Specification,” Object Management Group Adopted
Specification (formal/2010-05-05). (2010). [Online]. Available: http://
www.omg.org/spec/UML/2.3

[8] T. Clark and W. Jos, eds., “Object Modeling With the OCL: The
Rationale Behind the Object Constraint Language,” vol. 2263,
Springer Science & Business Media, 2002.

[9] M. Harman, P. McMinn, J. de Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Proc.
Empirical Softw. Eng. Verification, 2012, pp. 1–59.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolu.
Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.

[11] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba,
“Mocell: A cellular genetic algorithm for multiobjective opti-
mization,” Int. J. Intell. Syst., vol. 24, no. 7, pp. 726–746, 2009.

[12] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm,” in Proc. EUROGEN
Evolu. Methods Des. Optim. Control Appl. Ind. Problems, 2001,
pp. 95–100.

[13] D. W. Corne, et al., “PESA-II: Region-based selection in evolution-
ary multiobjective optimization,” in Proc. Genetic Evolu. Comput.
Conf., 2001, pp. 283–290.

[14] J. Durillo, A. Nebro, F. Luna, and E. Alba, “Solving three-objective
optimization problems using a new hybrid cellular genetic algo-
rithm,” in Proc. Int. Conf. Parallel Problem Solving Nature, 2008,
pp. 661–670.

[15] E. Zitzler and S. K€unzli, “Indicator-based selection in multiobjec-
tive search,” in Proc. Int. Conf. Parallel Problem Solving Nature,
2004, pp. 832–842.

[16] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,”
in Proc. 33rd Int. Conf. Softw. Eng., 2011, pp. 1–10.

[17] J. Cabot and E. Teniente, “A metric for measuring the complexity
of OCL expressions,” in Proc. Model Size Metrics Workshop Co-
Located MODELS, 2006, Art. no. 10.

[18] L. Reynoso, E. Manso, M. Genero, and M. Piattini, “Assessing the
influence of import-coupling on OCL expression maintainability:
A cognitive theory-based perspective,” Inf. Sci., vol. 180, pp. 3837–
3862, 2010.

[19] S. C. Reid, “An empirical analysis of equivalence partitioning,
boundary value analysis and random testing,” in Proc. IEEE 4th
Int. Softw. Metrics Symp., 1997, Art. no. 64.

[20] J. J. Durillo, et al., “jMetal: A Java framework for multi-objective
optimization,” Advances Eng. Softw., vol. 42, pp. 760–771, 2011.

[21] S. R. Chidamber and C.F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493,
Jun. 1994.

[22] S. R. Schach, et al., “Maintainability of the Linux kernel,” IEE
Proc.-Softw., vol. 149, no. 1, pp. 18–23, 2002.

[23] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-oriented
designs,” in Proc. 18th IEEE Australian Softw. Eng. Conf., 2007,
pp. 329–340.

[24] A. Correa and C. Werner, “Refactoring object constraint lan-
guage specifications,” Softw. Syst. Model., vol. 6, no. 2, pp. 113–
138, 2007.

[25] A. Correa, C. Werner, and M. Barros, “Refactoring to improve the
understandability of specifications written in object constraint
language,” IET Softw., vol. 3, no. 2, pp. 69–90, 2009.

[26] J. Reimann, et al., “Tool supported OCL refactoring catalogue,” in
Proc. 12th Workshop OCL Textual Model., 2012, pp. 7–12.

[27] M. O’Keeffe and M. �O. Cinn�eide, “Search-based refactoring:
An empirical study,“ J. Softw. Maintenance Evolu. Res. Practice, vol.
20, no. 5, pp. 345–364, 2008.

[28] J. Bansiya and C. G. Davis, “A hierarchical model for object-ori-
ented design quality assessment,” IEEE Trans. Softw. Eng., vol. 28,
no. 1, pp. 4–17, Jan. 2002.

[29] A. C. Jensen, et al., “On the use of genetic programming for auto-
mated refactoring and the introduction of design patterns,” in
Proc. 12th Annu. Conf. Genetic Evolu. Comput.. 2010. pp. 1341–1348.

[30] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test
data from OCL constraints with search techniques,” IEEE Trans.
Softw. Eng., vol. 39, no. 10, pp. 1376–1402, Oct. 2013.

[31] S. Wang, S. Ali, T. Yue, and M. Liaaen, “Using feature model to
support model-based testing of product lines: An industrial case
study,” in Proc. 13th Int. Conf. Quality Softw., 2013, pp. 75–84.

[32] K. Nie, T. Yue, S. Ali, L. Zhang, and Z. Fan, “Constraints: The core
of supporting automated product configuration of cyber-physical
systems,” in Proc. 16th Int. Conf. Model-Driven Eng. Languages
Syst., 2013, pp. 370–387.

[33] M. O. Barros, and A. C. Dias-Neto, “Threats to validity in search-
based software engineering empirical studies,” UNIRIO - Univer-
sidade Federal do Estado do Rio de Janeiro 0006/2011, pp. 1–11, 2011.

[34] OMG, “Object Constraint Language v2.0,” Object Management
Group Adopted Specification (formal/06-05-01). (2006). [Online].
Available: http://www.omg.org/spec/OCL/2.0/

[35] C. Wohlin, P. Runeson, and M. H€ost, Experimentation in Software
Engineering: An Introduction. Berlin, Germany: Springer, 1999.

[36] M. H€ost, B. Regnell, and C. Wohlin, “Using students as subjects—a
comparative study of students andprofessionals in lead-time impact
assessment,” Empirical Softw. Eng., vol. 5, no. 3, pp. 201–214, 2000.

[37] E. Arisholm and D. I. K. Sjoberg, “Evaluating the effect of a dele-
gated versus centralized control style on the maintainability of
object-oriented software,” IEEE Trans. Softw. Eng., vol. 30, no. 8,
pp. 521–534, Aug. 2004.

[38] M. Genero, et al., “Building measure-based prediction models for
UML class diagram maintainability,” Empirical Softw. Eng.,
vol. 12, no. 5, pp. 517–549, 2007.

[39] R. J. A. Little, “A test of missing completely at random for multi-
variate data with missing values,” J. Amer. Statistical Assoc.,
vol. 83, no. 404, pp. 1198–1202, 1988.

[40] R. Hofman, “Behavioral economics in software quality engineer-
ing,” Empirical Softw. Eng., vol. 16, no. 2, pp. 278–293, 2011.

[41] W. Stacy and J. MacMillan, “Cognitive bias in software engineer-
ing,” Commun. ACM, vol. 38, no. 6, pp. 57–63, 1995.

[42] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for nor-
mality (complete samples),’ Biometrika., vol. 52, pp. 591–611, 1965.

[43] T. Yue, S.Ali, and B. Selic, “Cyber-physical systemproduct line engi-
neering: Comprehensive domain analysis and experience report,” in
Proc. 19th Int. Conf. Softw. Product Line, 2015, pp. 338–347.

[44] R. Behjati, T. Yue, L. Briand, and B. Selic, “SimPL: A product-line
modeling methodology for families of integrated control sys-
tems,” Inf. Softw. Technol., vol. 55, pp. 607–629, 2013.

[45] L. Briand, et al., “Research-based innovation: A tale of three proj-
ects in model-driven engineering,” in Proc. Int. Conf. Model Driven
Engineering Languages Syst., 2012, pp. 793–809.

[46] H. A. ElMaraghy, “Flexible and reconfigurable manufacturing
systems paradigms,” Int. J. Flexible Manufacturing Syst., vol. 17,
pp. 261–276, 2005.

[47] S. Berman and Y. Edan, “Decentralized autonomous AGV system
for material handling,” Int. J. Production Res., vol. 40, pp. 3995–
4006, 2002.

[48] B. Mahadevan, et al., “Design of an automated guided vehicle-
based material handling system for a flexible manufacturing sys-
tem,” Int. J. Production Res., vol. 28, pp. 1611–1622, 1990.

[49] H. Lu, T. Yue, S. Ali, and L. Zhang, “Model-based incremental
conformance checking to enable interactive product configu-
ration,“ J. Inf. Softw. Technol., vol. 72, pp. 68–89, 2016.

[50] S. Wang, et al., “MBF4CR: A model-based framework for support-
ing an automated cancer registry system,” in Proc. 12th Eur. Conf.
Model. Found. Appl., 2016, pp. 191–204.

[51] (2014). [Online]. Available: http://www.junitloop.org/index.
php/DresdenOCL

[52] J. Brownlee, “Clever Algorithms: Nature-Inspired Programming
Recipes,” ISBN: 978-1446785065, 1st ed. Published by lulu.com, 2012.

[53] (2014). [Online]. Available: https://github.com/jcabot/ocl-
repository/tree/master/academic/DresdenOCL-SEPA-Example

[54] S. Wang, et al., “A practical guide to select quality indicators for
assessing Pareto-based search algorithms in search-based soft-
ware engineering,” in Proc. 38th Int. Conf. Softw. Eng., 2016,
pp. 631–642.

[55] M. Genero, et al., “Finding “early” indicators of UML class dia-
grams understandability and modifiability,” in Proc. Int. Symp.
Empirical Softw. Eng., 2004, pp. 207–216.

LU ET AL.: AUTOMATED REFACTORING OF OCL CONSTRAINTS WITH SEARCH 169

http://www.junitloop.org/index.php/DresdenOCL
http://www.junitloop.org/index.php/DresdenOCL
https://github.com/jcabot/ocl-repository/tree/master/academic/DresdenOCL-SEPA-Example
https://github.com/jcabot/ocl-repository/tree/master/academic/DresdenOCL-SEPA-Example

[56] G. Suny�e, et al., “Refactoring UML models,” in Proc. 4th Int. Conf.
Unified Model. Language Model. Languages Concepts Tools, 2001,
pp. 134–148.

[57] S. Markovi�c and T. Baar, “Refactoring OCL annotated UML class
diagrams,” in Proc. Model Driven Eng. Languages Syst., 2005,
pp. 280–294.

[58] D. Falessi, et al., “Empirical software engineering experts on the
use of students and professionals in experiments,” Empirical Softw.
Eng. J., pp 1–38, 2017.

[59] H. Lu, T. Yue, S. Ali, and L. Zhang, “Nonconformity resolving
recommendations for product line configuration,” in Proc. IEEE
Int. Conf. Softw. Testing Verification Validation, Apr. 2016, pp. 57–68.

Hong Lu received the PhD degree from Beihang
University, China, in 2016. She is currently a
postdoctoral researcher in Simula Research
Laboratory (Norway). Her research interests
mainly focus on search-based software engineer-
ing, product line engineering, and empirical
software engineering. She has been an external
reviewer for several international journals, e.g.,
JSS and SoSyM and several international confer-
ences such as MODELS, GECCO, QSIC etc.

Shuai Wang is currently a postdoctoral researcher
in Simula Research Laboratory (Norway) after suc-
cessfully receiving the PhD degree with an honor
from theUniversity ofOslo, in 2015. He holds broad
research interests such as search-based software
engineering, product line engineering, model-
based testing, and empirical software engineering
with more than 20 publications from well-recog-
nized international journals (such as JSS, EMSE
and SOSYM) and high-reputed international
conferences (such as ICSE, MODELS, ISSRE,

ICST, SPLC). He is also a recipient of an ACM distinguished paper award
of MODELS 2013 (also best application track paper) and an outstanding
reviewer award during 2015-2016 of the Information and Software Tech-
nology journal. He is amember of the ACMand IEEE computer society.

Tao Yue received the PhD degree from the
Department of Systems and Computer Engineer-
ing, Carleton University, Ottawa, Canada, in
2010. She is a chief research scientist with Sim-
ula Research Laboratory, Oslo, Norway. Before
that, she was an aviation engineer and system
engineer for seven years. She has nearly 20
years of experience of conducting industry-
oriented research with a focus on Model-Based
Engineering (MBE) in various application
domains such as Avionics, Maritime and Energy,

Communications, Automated Industry, and Healthcare in several coun-
tries including Canada, Norway, and China. Her present research
area is software engineering, with specific interests in Requirements
Engineering, MBE, Model-based Testing, Uncertainty-wise Testing,
Uncertainty Modeling, Search-based Software Engineering, Empirical
Software Engineering, and Product Line Engineering, with a particular
focus on large-scale software systems such as Cyber-Physical
Systems. She has been on the program and organization committees
of several international conferences (e.g., MODELS, RE, SPLC). She
is also on the editorial board of Empirical Software Engineering. She is
leading the standardization effort of Uncertainty Modeling at OMG and
also actively participating in defining international standards in Object
Management Group (OMG) such as SysML and UTP.

Shaukat Ali is currently a senior research scien-
tist in Simula Research Laboratory, Norway. His
research focuses on devising novel methods for
Verification and Validation (V&V) of large scale
highly connected software-based systems that
are commonly referred to as Cyber-Physical Sys-
tems (CPSs). He has been involved in several
basic research, research-based innovation, and
innovation projects in the capacity of PI/Co-PI
related to Model-based Testing (MBT), Search-
Based Software Engineering, and Model-Based

System Engineering. He has rich experience of working in several coun-
tries including UK, Canada, Norway, and Pakistan. He has been on the
program committees of several international conferences (e.g., MOD-
ELS, ICST, GECCO, SSBSE) and also served as a reviewer for several
software engineering journals (e.g., TSE, IST, SOSYM, JSS, TEVC).
He is also actively participating in defining international standards on
software modeling in Object Management Group (OMG), notably a new
standard on Uncertainty Modeling.

Jan F. Nyga
�
rd received engineering degree in

cybernetics from Oslo College of Engineering, in
1991, the bachelor’s degree in political science,
in 1998 and the PhD degree in epidemiology, in
2005, both from the University of Oslo. He is the
head of the Department of Registry Informatics at
the Cancer Registry of Norway. His research
interest lies in cross-section between ICT, theo-
retical epidemiology and applied registry infor-
matics. He has published more than 40 original
research papers in peer-reviewed journals. He

has supervised MSc and PhD students from both informatics and medi-
cal faculties. He worked at the Institute of community medicine at the
University of Oslo from 1992 to 1998. Since 1999 he came to the Cancer
Registry to work in the Screening Department where he did his PhD on
the effectiveness of cervical cancer screening. From 2005, he headed
the section of medical coding and registration, and had the responsibili-
ties of establishing the quality registries. From 2007, he was the first
head of the newly formed IT-department, which in 2012 changed into
the Registry Informatics department. As Head of the Registry Informatics
he is responsible for modernization and digitalisation of the Cancer Reg-
istry, including the development and deployment of an ICT-framework
for cancer registries with electronic cancer reporting using the Norwe-
gian Health Network. Establishing the ICT-system for the pilot project for
Colorectal screening programme, modernization of the cervical cancer
screening programme, and the insourcing the ICT-systems of the
National Mammography screening programme. He is a board member
of the CERTUS SFI, as well as serving on several reference and steer-
ing committees.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

170 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 2, FEBRUARY 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

