34 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

JANUARY 2019

Automatic Software Repair: A Survey

Luca Gazzola, Daniela Micucci

, Member, IEEE, and Leonardo Mariani

, Senior Member, IEEE

Abstract—Despite their growing complexity and increasing size, modern software applications must satisfy strict release requirements
that impose short bug fixing and maintenance cycles, putting significant pressure on developers who are responsible for timely
producing high-quality software. To reduce developers workload, repairing and healing techniques have been extensively investigated
as solutions for efficiently repairing and maintaining software in the last few years. In particular, repairing solutions have been able to
automatically produce useful fixes for several classes of bugs that might be present in software programs. A range of algorithms,
techniques, and heuristics have been integrated, experimented, and studied, producing a heterogeneous and articulated research
framework where automatic repair techniques are proliferating. This paper organizes the knowledge in the area by surveying a body of
108 papers about automatic software repair techniques, illustrating the algorithms and the approaches, comparing them on
representative examples, and discussing the open challenges and the empirical evidence reported so far.

Index Terms—Automatic program repair, generate and validate, search-based, semantics-driven repair, correct by construction, program

synthesis, self-repairing

1 INTRODUCTION

DEBUGGING software failures is still a painful, time con-
suming, and expensive process. For instance, recent
studies showed that debugging activities often account for
about 50 percent of the overall development cost of software
products [1], [2].

There are many factors contributing to the cost of debug-
ging, but the most impacting one is the extensive manual
effort that is still required to identify and remove faults. In
particular, the debugging process requires analyzing and
understanding failed executions, identifying the causes of
the failures, implementing fixes, and validating that the
fixed program works correctly, that is, the problem has
been fixed without introducing any side effect [3], [4], [5].
Most of these activities are executed manually or with par-
tial tool support.

So far, the automation of debugging activities essentially
concerned with the identification of the statements that are
likely to be faulty [6], [7], [8], with the isolation of the specific
inputs or application states that may cause failures [9], [10],
[11], and with the detection of the anomalous events that may
partially explain the reason of a failure[12], [13], [14], [15].

Techniques for the isolation of the likely faulty statements
report to testers a list of statements ranked by suspiciousness,
determined by considering the number of failing and passing
test cases that execute each statement [6], [7], [8]. The intuition
is that the most suspicious statements should be executed by
several failing tests and few passing test cases.

o The authors are with the Department of Informatics, Systems and Commu-
nication (DISCo), University of Milano Bicocca, Milano 20126, Italy.
E-mail: {luca.gazzola, micucci, mariani}@disco.unimib.it.

Manuscript received 6 Aug. 2016; revised 3 Sept. 2017; accepted 10 Sept.
2017. Date of publication 29 Oct. 2017; date of current version 16 Jan. 2019.
(Corresponding author: Leonardo Mariani.)

Recommended for acceptance by A. Zeller.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2017.2755013

Techniques that identify specific inputs and specific states
that may trigger failures are often based on the well-known
Delta Debugging technique [9]. The intuition is that by itera-
tively refining and reducing the input [10] and the state
space [11], it should be possible to identify the smallest input
and the smallest portion of the application state that cannot be
eliminated to observe the failure. This information is relevant
to understand the conditions that may trigger failures.

Finally, anomaly detection techniques can detect the
operations that are executed by an application during fail-
ures but not during correct executions. These operations
may explain why and how an application failed. Anomaly
detection techniques usually exploit specification mining
approaches [16], [17], [18], [19] to automatically generate
models that represent the legal behavior of an application,
and then use these models to analyze the failed executions
and determine the anomalous events [12], [13], [14], [15].

All these techniques provide useful insights about the
possible locations of the faults, the inputs and states respon-
sible for the failures, as well as the anomalous operations
executed during failures. However, developers must still
put a relevant effort on the analysis of the failed executions
to exactly identify the faults that must be fixed. In addition,
these techniques do not help the developers with the syn-
thesis of an appropriate fix.

Recently, researchers focused on a new class of approa-
ches, namely program repair techniques [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29]. The key idea of these techniques is to
try to automatically repair software systems by producing an
actual fix that can be validated by the testers before it is finally
accepted, or that can be adapted to properly fit the system.
The benefit of using these techniques is that the fix both
explains the reason of the failure and provides a possible
solution to the problem, thus alleviating the effort necessary
to identify and correct faults [30], [31].

Since program repair techniques have the potential to
dramatically reduce debugging effort, they attracted the

0098-5589 © 2017 |IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0003-1261-2234
https://orcid.org/0000-0001-9527-7042
https://orcid.org/0000-0001-9527-7042
https://orcid.org/0000-0001-9527-7042
https://orcid.org/0000-0001-9527-7042
https://orcid.org/0000-0001-9527-7042
mailto:

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

NUMBER OF PUBLICATIONS

DDDDH 111

. 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
VEAR

A m

1996 .. 1999 ..

Fig. 1. Publications per year from 1996 to 2016.

interest of many researchers who produced a number of
approaches for repairing different classes of faults under
different conditions and hypotheses. Important results have
been already achieved, but at the same time these results
revealed the existence of relevant challenges that have to be
faced.

The contributions in the area have been preliminary ana-
lyzed by Khalilian et al. [32], who compared three repair
techniques, and Monperrus et al. [33], [34] who discussed
repair and self-healing techniques focusing on the oracle
problem.

This paper contributes to the research on program repair
techniques by providing a comprehensive review of the
available approaches, critically analyzing the capabilities of
repairing techniques, surveying the results achieved so far,
and identifying the key open challenges that should be
faced by the research community in the future.

The paper is organized as follows. Section 2 describes the
procedure we followed to select the papers for this survey
and presents statistics about the selected papers. Section 3
introduces software repair solutions contrasting them with
software self-healing solutions. Section 4 introduces a run-
ning example, consisting of multiple faulty versions of a
same program that are used throughout the paper to illus-
trate the repairing techniques. Section 5 presents the locali-
zation techniques that have been exploited as part of the
program repair solutions. Section 6 presents the algorithms
for generating fixes. Section 7 extends the discussion to tech-
niques recommending fixes that can be turned into an actual
fix with small manual effort. Section 8 presents the main
empirical findings that have been obtained so far. Section 9
discusses open challenges and future research directions.
Section 10 provides final remarks.

2 PAPER SELECTION

We selected the papers for the survey by searching in the
ACM Digital Library, the IEEE Explorer Digital Library,
and the Google Scholar repository for the following terms
commonly used in software repair papers: “‘program
repair”’, “software repair”’, “automatic patch generation”,
“automatic fix generation”, “generate and validate”, and
“semantics driven repair”. We performed the paper selec-
tion at the beginning of January 2017. For each query, we
extracted the first 200 references sorted by relevance. Since
a few queries returned less than 200 references, we ended

35

35

30

25

NUMBER OF PUBLICATIONS

5

0
9 v A N . & & o * s
()S‘? K & & N & & <& é&c & ¢
<

& &

% g
G |

Pt

© X
S &

Fig. 2. Publications per venue.

up with a total of 3,262 references to be analyzed. After
removing duplicated entries, we obtained a population of
2,573 references.

We manually analyzed all these references by checking
the abstract, the introduction, and the conclusion sections,
and scanning the rest of the paper, to quickly eliminate
papers clearly unrelated to the topic of this survey. At the
end of this process, we obtained a total of 107 possibly rele-
vant papers. We carefully read these papers to determine
their relevance according to the conceptual framework dis-
cussed in Section 3. This produced a total of 85 relevant
papers. To be as much comprehensive as possible, we
included the relevant papers that we missed with our
searches but were cited in the papers we selected. This
activity produced 23 additional references that have been
included in the survey [26], [35], [36], [37], [38], [39], [40],
[41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56] for a total of 108 selected papers. The
resulting material has been used to produce this survey.

We analyzed the distribution of the selected papers per
year and per publication venue. Fig. 1 shows the number of
papers published on automatic program repair per year.
After some early papers on this subject, we can notice a
growing number of papers published every year starting
from 2005. If we compare the number of papers published
in the early 2000s to the papers published in the last few
years, we can notice an order of magnitude increment in the
number of published papers. This demonstrates a growing
interesting of the research community on this subject.

Fig. 2 shows the number of papers published in each
publication venue. We report explicitly every venue with at
least 2 publications, while we collapse all the venues with a
single publication in the column Other. We can notice a
prevalence of software engineering conferences, with ICSE
being by far the venue including the highest number of
papers. Conferences related to genetic computation (e.g.,
GECCO) and programming languages (e.g., PLDI and OOP-
SLA) are also present. This is a consequence of the nature of
the approaches to automatic program repair, which are
often based on search and synthesis techniques, and can tar-
get a number of languages and environments.

Finally, we checked the distribution of papers between
journals and conferences, and found that only 8.3 percent
of the publications appeared in journals, while 91.7 percent
appeared in other venues, such as conferences and
workshops.

36 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

3 SOFTWARE REPAIR

The problem of automatically generating a fix for a faulty pro-
gram relates to the more general problem of automatically
generating a program that obeys to a given specification.

This problem is an instance of automatic programming,
which is the process operated by a machine of translating a
specification about a task into a machine executable pro-
gram for doing that task [57], [58]. Although the problem of
automatically synthesizing software programs has been
considered from the early ages of computer science and is
still an active area of research [59], [60], [61], the problem of
automatically repairing faulty programs have been consid-
ered only recently.

A few approaches pioneered the area of automatic program
repairing. Stumptner and Wotawa introduced the idea of
defining fault modes to capture frequent faults in VHDL pro-
grams [46], [62]. Fault modes have been used to automatically
check if a program misbehaves consistently with any known
fault and attempt to automatically repair the program with
strategies depending on the recognized fault mode. Staber
et al. investigated how to automatically replace the compo-
nents of a system to make it satisfy a given Linear Temporal
Logic (LTL) specification [47]. Interestingly, they defined the
repair process as a game between the system, which has to be
repaired, and the environment, which acts against the system
to make the repair fail [43], [47]. Weimer investigated how to
repair a program that violates a safety policy specification
that specifies the allowed paths in the control flow graph of
the program under repair. His approach finds the smallest set
of modifications to be performed on the method calls pro-
duced by a program to make it satisfy the specification [31].
Other researchers extended model checking with artificial
intelligence techniques [48] or template-based strategies [49]
to repair programs.

Research in software repair has started proliferating after
the publication of the seminal work by Arcuri et al. [35], [40],
[63] and Weimer et al. [20], [64], [65], who have been the first
ones to successfully exploit search-based algorithms to gen-
erate fixes.

In the rest of this section, we introduce the basic concepts
relevant to the software repair area, and present a concep-
tual framework that we use to show how the software repair
technology works in general, and how it relates to the soft-
ware self-healing technology.

3.1 Basic Concepts
Two well-known approaches for automatically dealing with
program failures are the software healing and software repairing
technologies. Although similar in principle, they have differ-
ent purposes and use different solutions to address faults.

Software healing solutions detect software failures in-the-field
and respond to them by making the necessary adjustments
to restore the normal operation of a system [66], [67], [68].
These adjustments are not deployed at the source code
level, but rather applied at runtime on the deployed application
to prevent or mitigate failures. Multiple occurrences of simi-
lar failures on the same instance of the software may trigger
the same healing process multiple times.

Software repairing solutions detect software failures, localize
where a fix could be applied, and make the necessary

JANUARY 2019

adjustments to fix the fault, and thus prevent further failures
caused by the same fault [20], [21], [22]. The adjustments are
generated in-house, such as at testing and design time, and
deployed at the source code level.

Software healing and repairing may or may not involve
human intervention. In automatic software healing and
repairing, the human only supervises the process. While,
when the human is completely out of the loop, these techni-
ques are respectively called software self-healing and soft-
ware self-repairing.

Both healing and repairing techniques react to failures by
executing some operations. We distinguish between healing
operations, which are the operations applied at runtime to
turn a failed or a failing execution into a successful execu-
tion, and repair operations, which are the operations per-
formed on the program source code to remove the fault that
caused a failure.

Software healing and repair techniques may generate
either workarounds or fixes. In this context, a workaround is
a temporary solution to a software bug [69], while a fix (or a
patch) is a permanent solution to a software bug [70]. Work-
arounds are not designed to implement optimal solutions.
They rather consist of solutions that can be quickly gener-
ated and deployed, while waiting for a permanent fix from
the developers. Workarounds can be applied at multiple
levels and on different artifacts. For instance, a workaround
may alter the program code, but can also modify the archi-
tecture of a system or change its configuration, or can sim-
ply alter a specific execution, for example letting users to
interrupt unwanted infinite execution loops [71]. Contrarily,
fixes always alter the program source code and are expected
to implement solutions of the same quality of the fixes pro-
duced by the developers when debugging and fixing soft-
ware faults.

3.2 Conceptual Framework

In this section, we present a conceptual framework that
covers both healing and repairing solutions, and that illus-
trates the commonalities and differences between these two
approaches.

Although they both deal with failures, software healing
and software repairing solutions have different objectives.
Software healing solutions are concerned with granting soft-
ware availability despite failure occurrences [66], [67], [68].
They usually execute healing operations to mask failures [69],
[72], [73], or minimize their impact [74], [75]. Identifying and
permanently removing the fault that caused a failure is not a
primary objective of these techniques. Software repairing sol-
utions instead are concerned with fixing faults, and do not
necessarily prevent failures [20], [21], [22]. Indeed failures are
tolerated and information extracted during failing executions
is even exploited by software repairing solutions to better
identify and fix faults. Due to these distinguishing characteris-
tics, software healing solutions are used in-the-field to
improve the reliability and the resilience of software systems,
and software repairing solutions are used in-house to assist
developers in bug fixing tasks.

Fig. 3 graphically illustrates the activities involved in the
healing and repairing processes, represented on the left and
right side of the figure, respectively. Both processes start
from a faulty program that fails deviating from its intended

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

failing execution / faulty program M
healing process

2

e e
/\ <:| | Q => ktch/fix
B <027

healing

verification [

)

successful execution/
faulty program

failure
detection

74

failed execution/
faulty program

37

repairing process

ocalization

verification ‘

failed execution/
fixed program

execution state/program state

Fig. 3. Healing and repairing processes.

behavior, at least for some executions. The failure detection
activity, which is common to both processes, is responsible
of classifying executions as either failures or failure-free
executions.

Failure detection might work differently depending on
the process that must be activated. When serving the healing
process, failure detection typically detects the early symp-
toms of program failures to timely trigger the healing pro-
cess and prevent severe problems, such as system crashes
and loss of data. When serving the repairing process, failure
detection typically partitions a set of observations into
failure and failure-free executions. These executions are
then processed to identify and fix the faults that origi-
nated them. In contrast to the healing process, the repair-
ing process does not prevent failures, but exploits the
information collected during complete (failing) runs to
identify faults.

The way failure detection serves the healing and repair-
ing processes also influences the implementation of the fail-
ure detection component. When used to trigger healing
operations, it is typically implemented as a runtime monitor
that checks the behavior of the application [76], [77]. When
used as part of a repairing process, it is typically imple-
mented as a program oracle [78], for instance as assertions
embedded in a set of test cases [79].

The healing process shown on the left side of Fig. 3 is com-
posed of two steps that might be executed iteratively. The
healing step consists of executing a healing operation that
can prevent or mitigate a failure that has been detected. The
verification step checks if the application is running as
expected after the healing operation has completed. Not all
the healing techniques include a verification step, sometime
healing operations are applied simply assuming they can
only positively or neutrally affect the system. If the verifica-
tion step detects that the healing operation has failed, the
healing step might be repeated, for instance trying a differ-
ent healing operation and verifying the system again, until
the failure has been healed, or no further actions are possi-
ble [80], [81]. The healing process usually requires fast heal-
ing and verification operations because they are both
executed while the application is running in-the-field.

Since the primary objective of healing techniques is
turning failing executions into successful executions,
regardless of the fault that originated the problem, the
healing process might produce two possible outcomes: (i)
successful executions/faulty program, that is, the executions
have been healed but the program is still faulty, (ii) failed
executions/faulty program, that is, the executions have not
been healed and the program is still faulty. In some cases,
a successful workaround might be deployed persistently
on the running application to automatically heal further
occurrences of the same failure, although it can seldom
cope with slightly different failures triggered by the same
fault.

The repairing process shown on the right side of Fig. 3 is
composed of three steps. The localization step identifies the
locations where a fix could be applied to (note that the
faulty statements are not always the only good locations
for fixes). The patch/fix step generates fixes that modify the
software in the code locations returned by the localization
step. The verification step checks if the synthesized fix has
actually repaired the software. The fix and verification steps
might be iterated several times for multiple locations until
the fault has been fixed, until no further fixes can be gener-
ated, or until the time allocated to the repair process has
been exhausted.

If we compare the repair process to the healing process, it
is possible to notice that the repair process includes an extra
step. While a healing process reacts directly to failures, the
repair process needs to first identify locations suitable for
fixes.

In contrast to the healing process, which aims to prevent
failures, software repairing techniques exploit the observa-
tions collected with multiple runs, including both failures
and failure-free executions, to generate fixes. For instance,
many repair techniques generate fixes by using the informa-
tion obtained from the execution of large test suites that
include many passing and failing tests.

The repair process might produce two possible out-
comes: (i) failed executions/fixed program, that is, the execu-
tions have failed but the program has been fixed, thus the
fixed fault will not produce further failures, (i) failed

38 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

executions/faulty program, that is, the executions have failed
and the program is still faulty. The first outcome corre-
sponds to a successful repair, while the second outcome cor-
responds to an unsuccessful repair.

In the following sections, we describe automatic program
repair solutions’, focusing on the strategies for localization,
fixing, and verification. The description is guided by several
sample faulty programs that are introduced in the next sec-
tion. We finally extend the discussion to nearly automatic
approaches that can recommend fixes but require the inter-
vention of the developer to finalize and incorporate the fixes
in the program under repair.

4 EXAMPLE PROGRAMS

In this section, we introduce the running examples that we
use throughout the paper to illustrate program repair tech-
niques. In particular, we use five faulty variants of a pro-
gram that computes the greatest common divisor using
the subtract-based version of the Euclid’s algorithm. The
correct version of the program is shown in Algorithm 1
and has been also used in Weimer et al.’s paper [20] to
present the GenProg program repair technique. Algo-
rithms from 2 to 6 include a fault highlighted with a grey
background.

Algorithm 1. gcd(int a, int b)

1: if(a==0){

2: printf(“%”, b);
3 exit(0);}

4: while(b = 0){
5

6

7

if(a > b)
a=a-b
else
8: b=b-a;}
9: printf("“%d", a);
10: exit(0);

In Algorithm 2, we modified the if condition evaluated
at line 1 by introducing an extra clause. This fault causes the
program to loop indefinitely on statement 8 every time a is
0 and b is greater than 0.

Algorithm 2. gcdWronglf1(int a, int b)

if(a==0&&b==0){//a==0
printf(“%d”, b);
exit(0);}
while(b = 0){
if(a >b)
a=a-b
else
8: b=b-a;}
9: printf("“%d”, a);
10: exit(0);

In Algorithm 3, we modified the while condition at
line 4 from b!=0 to a!=0. This fault causes the program to
loop indefinitely at line 6 when the input value of a is
greater than 0 and the input value of b is equal to 0.

1. We omit the term automatic when obvious from the context.

JANUARY 2019

Algorithm 3. gcdWrongWhile(int a, int b)

1: if(a==0){

2: printf(“%d”, b);

3: exit(0);}

4: while(a '=0){ //b!=0
5: if(a > b)

6: a=a-b

7. else

8: b=b-a;}

9: printf("“%d", a);
10: exit(0);

In Algorithm 4, we removed the exit (0) statement
from the if block at line 1. This fault produces the same
failure than the one considered in Algorithm 2, that is,
when a is 0 and b is greater than 0 the program loops indef-
initely on statement 7. This same fault has been used in [20].

Algorithm 4. gcdNoExit(int a, int b)
1: if(a==0){

2: printf(“%d"”, b);} / /missing exit(0);
3: while(b = 0){
4: if(a >b)

5: a=a-b
6
7

else
b=b-a;}
8: printf(“%d"’, a);
9: exit(0);

In Algorithm 5, we modified the i f condition at line 1 by
changing the clause from a=0 to a<b. This fault may cause
the program to produce a wrong output when a<b and a!
=0. In that case, the execution enters the first if statement
and prints the value of variable a, which might not be the
ged of a and b.

Algorithm 5. gcdWronglf2(int a, int b)

1: if(a<b){ //a==0
printf(“%d”, b);
exit(0);}

while(b = 0){
if(a > b)

a=a-b
else
8: b=b-a;
9: printf(“%d", a);
10: exit(0);

In Algorithm 6, we modified the print statement at
line 2, which prints the value of the wrong variable. The pro-
gram outputs the wrong value every time ais 0 butb! = 0.

When relevant, this set of faulty programs is used to
illustrate the capabilities and complementarities of the pro-
gram repair algorithms surveyed in the next sections.

5 LOCALIZATION

In this section, we discuss the algorithms used by program
repairing techniques to identify the program locations
where the fixes should be applied to. This is an important
step of the program repair process because the success of a

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

repair may depend not only on the fix itself but also on the
location of the fix.

Algorithm 6. gcdWrongPrint(int a, int b)

if(a==0){
printf(“%d ", a); / / printf(“%d", b);
exit(0);}
while(b = 0){
if(a >b)

8: b=b-a;}
9: printf("%d”, a);
10: exit(0);

We distinguish two main classes of approaches for the
choice of the location: fault localization and fix locus localiza-
tion. Fault localization techniques aim at identifying the
faulty statements. In this case, the repair is expected to turn
the discovered faulty statements into correct statements. For
example, in the case of Algorithm 2, a fault localization tech-
nique would aim at identifying that the if condition at
line 1 is the right place for the generation of a fix.

Fix locus localization techniques (also known as fix locali-
zation techniques) aim at detecting the statements where
the effect of the fault can be observed and eliminated. These
statements are not necessarily the statements with the fault,
but they are potentially modifiable to let the program
behave correctly. In fact, a faulty behavior may often be
fixed by compensating the effect of the fault, rather than
removing the fault. For instance, instead of fixing the condi-
tion at line 1 of Algorithm 2, it would be possible to fix that
same program by adding another if condition that prints
the value of b when a is equals to 0 between lines 3 and 4.
Thus, a fix locus localization technique may determine
line 4 as a suitable place for the generation of a fix that may
compensate the fault at line 1.

Although the approaches in the two classes have differ-
ent purposes, in the practice a fault localization technique
may end up identifying a fix location, and vice versa a fix
locus localization technique may end up identifying the
location of the fault.

Both fault and fix locus localization strategies are often
defined ad-hoc, coherently with the capabilities and the
requirements of the corresponding program repair tech-
nique. For instance, AFix [82] can repair the atomicity viola-
tion faults specifically localized with CTrigger [83], which
combines trace analysis and execution perturbation to
extract information about the failure and the faulty code
regions.

When necessary to understand the approach, we
describe the fault localization strategy together with the
repairing techniques. In this section, we discuss classes of
localization approaches that have been exploited by multi-
ple techniques. We refer to these approaches when relevant
throughout the paper.

5.1 Fault Localization

Program repairing techniques extensively use Spectrum-
Based Fault Localization (SBFL) [84] as general mechanism
to localize the statements that are likely to be faulty.

39

SBFL exploits information about the behavior of the soft-
ware collected during testing to identify the program ele-
ments that are likely to be faulty. In particular, SBFL produces
a list of program elements ranked according to their likeli-
hood of being faulty based on the analysis of the program
entities covered by passing and failing tests [6], [85], [86]. The
general intuition is that the program elements executed by
many failing test cases and few passing test cases are likely to
be faulty, and vice versa the program elements executed by
many passing test cases and few, or no, failing tests are likely
to be correct. Program entities of different kind and granular-
ity might be considered for the localization, such as state-
ments, branches, and paths. Fault localization and program
repair usually work at the same granularity level, thatis, if the
program repairing technique works at the level of program
statements, the SBFL algorithm used to localize the fault also
works at the statement level.

We analyzed the papers presenting the techniques that
exploit SBFL and we discovered that four fault localization
solutions have been more frequently used than others so
far: the fault localization algorithm defined in GenProg (32
percent of the papers that use SBFL) [87], [88], Tarantula [6]
(18 percent of the papers that use SBFL), Ochiai (18 percent
of the papers that use SBFL) [89], and Jaccard [90] (5 percent
of the papers that use SBFL). Thus, to illustrate how SBFL
works, we describe how these four techniques perform with
the faulty program shown in Algorithm 6.

SBFL requires the availability of a test suite with passing
and failing tests. The failing tests reveal the fault that must be
localized and repaired. In the example, we assume a test suite
with four passing test cases and one failing test case is avail-
able. Fig. 4 shows the faulty program (on the left), the test
cases (as headers of the columns, the pair of numbers indi-
cates the values of the program inputs a and b, respectively),
the statements executed by each test case (each executed state-
ment is indicated with an X), the test outcome (either P for
pass or F for fail), and the suspiciousness score returned by
Tarantula, Ochiai, GenProg’s fault localization, and Jaccard.
The score is a value between 0 (least suspiciousness) and 1
(highest suspiciousness) and is used to rank the program
statements. We use a grey background to highlight the state-
ments with the highest score according to Tarantula, Ochiai,
and Jaccard. Note that the faulty print statement is in the set
of the most suspicious statements for all the techniques. In the
following, we illustrate how the four techniques work.

We use failed(s) to indicate the number of failed test
cases that execute the statement s, total failed to indicate the
total number of failed test cases in the test suite, passed(s) to
indicate the number of successful test cases that execute the
statement s, totalpassed to indicate the total number of suc-
cessful test cases in the test suite, and execute(s) to indicate
the total number of test cases that execute s.

Tarantula computes the suspiciousness of a statement as
the ratio between the rate of failed test cases that execute
that statement, and the sum between the rate of passed and
failed test cases that execute that same statement. More for-
mally, the suspiciousness susp1’ of a statement s is

Jailed(s)
total failed
passed(s) | failed(s) (1)
totalpassed " total failed

suspT(s) =

40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

JANUARY 2019

0,0 (010 (10,00 (10,15 (1510) | Tarantula Ochiai GenProg Jaccard

gcdWrongPrint(int a, int b) {

1:if (a == 0){ X X X X X 0.5 04 0.1 0.2
2: printf("%d”, a); X X 0.8 0.7 0.1 0.5
3 exit(0);} X X 0.8 07 0.1 05
4: while (b != 0){ X X X 0 0 0 0
5: if (a >b){ X X 0 0 0 0
6: a=a-b; X X 0 0 0 0
7. telse{ X X 0 0 0 0
8 b=b-a;} X X 0 0 0 0
9: printf(”%d”, a); X X X 0 0 0 0
10: exit(0);} X X X 0 0 0 0

test outcome P F P P P

Fig. 4. SBFL with Tarantula, Ochiai, GenProg, and Jaccard.

Ochiai [89] computes the suspiciousness of a statement as
the ratio between the number of failed tests that execute s
and the square radix of the product between the total num-
ber of failed tests and the total number of statements that
execute s. More formally, given a statement s, its suspicious-
ness suspO is

failed(s)

= 2
Vtotal failed x (failed(s) + passed(s)) @

suspO(s)

GenProg [87] assigns to each statement one of three pos-
sible scores representing the case the statement is never exe-
cuted by failed test cases, is only executed by failed test
cases, or is executed by both failed and passing test cases.
More formally, the suspiciousness suspG of a statement s is:

0 failed(s) =0
1.0 passed(s) = 0 A failed(s) > 0

0.1 otherwise

suspG(s) = (3)

Jaccard [90] computes the suspiciousness of a statement s
as the ratio between the number of failed tests that execute s
and the total number of tests that execute s summed to the
failing tests that do not execute s. More formally, given a
statement s, its suspiciousness susp.J is

suspJ(s) — failed(s)

= 4
execute(s) + (total Failed — failed(s)) @

Note that the more failed tests execute a statement, the
higher the Tarantula, Ochiai, and Jaccard scores are. Vice
versa the more passed test cases execute a statement, the
lower the Tarantula, Ochiai, and Jaccard scores are. Gen-
Prog’s fault localization follows a similar pattern, although
based on three possible values only. In particular, all the
techniques assign a score of 0 when no failed tests execute a
statement, and a score of 1 when all and only the failed tests
execute a statement. In the example shown in Fig. 4, the
lowest suspiciousness is assigned to the statements in the
while loop, since no failed test case executes them. The i f
statement has a non-zero suspiciousness score because it is
executed by all the test cases, including the failed ones.
Finally, the most suspicious statements are the ones in the
then branch of the if condition (including the condition
itself for GenProg’s fault localization), which includes the
statement with the fault.

In the example, a program repair solution that uses
one of these fault localization techniques would focus on
the first three statements to synthesize a proper repair.
Note that in the example the most suspicious statements
include the faulty statement, although this is not guaranteed
to happen in general, that is, the faulty statement might be
ranked at lower positions if a different set of test cases is
provided. The impact of these techniques on the effective-
ness of the repair algorithms has been preliminary investi-
gated by Qi et al. [91] and Jaccard has been observed to best
support automatic program repair techniques.

5.2 Fix Locus Localization

Fix locus localization techniques aim to identify the pro-
gram locations suitable for the synthesis of fixes, regardless
of the location of the faults. The idea is that a program loca-
tion where the effect of a fault could be recognized could
also be exploited to compensate its effect. In the following
we describe model-based fix locus localization, which can
identify statements that use objects illegally in object-ori-
ented software [25], and angelic fix localization, which can
localize the statements relevant to missing or faulty if condi-
tions faults [23].

5.2.1 Model-Based Fix Locus Localization

Model-based fix locus localization has been experienced in
the context of program repair techniques that can repair
faults that cause the incorrect usage of class interfaces [25],
[92], 193], [94].

Model-based fix locus localization works by first running
the passing test cases to collect runtime data and then min-
ing models that represent how classes are used by the pro-
gram during correct runs. The mined models consist of
finite state machines that represent the object life-cycle, that
is, how objects are created, when the methods of these
objects can be invoked, and when the fields of these objects
can be written and read. The mined models are then
checked dynamically while the failing test cases are exe-
cuted. A failed execution that violates a mined model
indicates the presence of objects that are incorrectly used by
the program, such as code that writes data on a file that has
been opened in read-only mode. The program statements
that incorrectly use objects are the locations targeted by the
fix generation process. Note that these statements, although

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

not necessarily faulty, are clearly appropriate places for
enforcing the legal use of objects interfaces.

Although not always experienced in the context of soft-
ware repair, the idea of mining models from correct execu-
tions to successively check failing executions and identify
the code elements likely responsible for the failure is shared
with several others failure analyis techniques [14], [15].

5.2.2 Angelic Fix Localization

Angelic fix localization targets faults that can be repaired by
modifying the if conditions in a program [23]. The idea is to
first localize the suspicious conditions according to their
suspiciousness score, and then identify which of these con-
ditions might be wrong by systematically forcing the failing
test cases to take alternative branches at decision points,
regardless of the outcome of the evaluated condition. For
instance, all the inputs with a equals to 0 and b>0 cause
Algorithm 2 to fail because the condition at line 1 evaluates
to false and the execution does not take the then branch.
Angelic fix localization would check what happens when
the then branch is taken by the execution, although the
condition evaluates to false. Taking the then branch causes
the execution to pass, in fact the program would terminate
after printing b, which is the right result for all the inputs
with a equals to 0 and b>0. These conditional values that
make test cases pass are called angelic values. All the deci-
sion points that might be used to turn failing test cases into
successful test cases according to this simple strategy are
selected and returned as possible targets of an automatic
program repairing solution designed to address the condi-
tions in a program.

The above approach works in a slightly different way
when attempting to detect missing if conditions. Angelic fix
localization checks if failing test cases can be turned into
passing test cases by skipping the execution of single (sim-
ple or compound) statements. It investigates the effect of
every suspicious statement and returns those statements
whose execution should be skipped during failing test cases
as targets for the synthesis of fixes. In this case, a fix should
consist in the addition of new if statements that properly
control the execution of the statements that must be
skipped. The synthesis of the appropriate conditions in the
if statements is not part of the fault localization approach,
but of the fixing process.

An improved version of angelic fix localization [95]
extends the original technique with the capability to con-
sider any program expression (instead of only expressions
in conditional branches) when extracting angelic values.
This is done by first identifying the suspicious program
locations and the corresponding expressions with SBFL,
and then running a customized symbolic execution that
determines the angelic values while replacing the suspi-
cious expressions with symbols.

Note that the fix locus locations returned by angelic fix
localization are not necessarily the fault locations. The loca-
tions identified by angelic fix localization are places where
the flow of the executions could be opportunistically
altered, by modifying or adding conditions, to mask or com-
pensate the effect of a fault, and do not necessarily corre-
spond to places with faulty statements.

41

6 FiX GENERATION

This section discusses the algorithms for the automatic gen-
eration of program fixes and the corresponding validation
strategies. All the algorithms approximate the problem of
generating fixes with a problem P, to be solved. This
implies that a solution for P, is likely to solve the origi-
nal problem of producing a fix, but there is no guarantee
this will happen in practice. For this reason, a solution s,¢pqir
to Prepair is called a plausible solution.

We distinguish two main classes of approaches depend-
ing on the way P, is defined and addressed: generate-
and-validate and semantics-driven approaches.

Generate-and-validate approaches produce fixes by defin-
ing and exploring a space S, 0of the potential solutions to
P,epair (note that Sy may contain both elements that solve
and do not solve P,cpqir).

Semantics-driven approaches (also known as correct-by-
construction approaches) encode the problem P,y for-
mally, either explicitly or implicitly, and once they find a
solution, the solution is guaranteed to solve Py

Regardless of the class of approaches that is used, any
solution s, is always reported to the developers who
cross-check its quality and correctness, further elaborating
it to obtain a fully satisfactory and correct fix, if necessary.
Regardless of the need of editing an automatically gener-
ated fix, the availability of an automatic fix may already
help developers understanding the fault in the code and
simplify the implementation of the actual fix.

Repairing techniques might be designed to be either gen-
eral or fault-specific.

General techniques are not designed to target a specific
class of faults and can potentially repair any class of faults
in a program.

Fault-specific techniques are designed to address some
classes of faults only, such as wrong conditions in condi-
tional statements and buffer overflows.

In principle fault-specific techniques should balance their
narrower scope with a higher efficiency of the repair
process.

In the rest of this section, we first present generate-and-
validate techniques and then semantics-driven techniques.
We first introduce the key concepts that characterize each
class of approaches and we provide a roadmap that organ-
izes contributions according to several dimensions, then we
discuss the individual approaches, and finally exemplify
them using the example cases introduced in Section 4.

6.1 Generate-and-Validate

Generate-and-validate approaches execute an iterative pro-
cess as shown in Fig. 5. The process consists of two main
activities, the generate activity, which produces candidate
solutions to the P, problem, and the validate activity,
which checks the correctness of the generated solutions.

The generate activity uses a set of change operators to mod-
ify the original program P and produces k new programs
that are added to the set of the candidate solutions. The modi-
fications are performed with higher probability on the sus-
picious locations identified by localization techniques. The
change operators might be of different nature.

Atomic change operators modify P in a single point.

42

@no solution

no more elements in S
or
timeout

original
program

repair

repair

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

P has not been solved

JANUARY 2019

output § O
s € CS that solves P,

generate s;... S in S

A

validate s;... s, in CS
A

change

candidate solutions (CS)

operators

/\

Spene

Sn

atomic change

pre-defined template

example-based template

Fig. 5. Generate-and-validate repair process.

Pre-defined template operators change P according to
potentially complex pre-defined patterns.

Example-based template operators work the same than pre-
defined templates, but the templates are extracted, either
manually or automatically, from historical data (e.g., a ver-
sioning system).

Some techniques do not only apply the change operators
to P only, but also to the candidate solutions [22], [27], [36],
[38], [63], [64], [96], [97]. In this way, the modified programs
may incrementally accumulate changes produced by the
application of multiple change operators. The overall set of
all the candidate solutions that can be produced by a tech-
nique represents its search space S,.pqir- When every possi-
ble element in S, has been considered or the amount of
time allocated to the repairing process has expired, the pro-
cess ends producing no solution to Pcpqir-

The validate activity checks for the correctness of the can-
didate solutions. So far, most of the generate-and-validate
techniques establish the correctness of the solutions by run-
ning the available test cases, that is, if a program s in the set
of the candidate solutions passes all the available test cases,
the program s is returned to the developer as a possible fix
for P. As outcome of the validation, some or all the elements
in the set of the candidate solutions might be discarded, for
instance the candidate solutions that are largely unsatisfac-
tory because they fail many tests are usually discarded.

The generate and validate activities might be executed
according to two main strategies: search-based and brute-
force. These strategies differ on the way the change opera-
tors and the candidate solutions are handled.

Search-based strategies apply change operators randomly
or guided by a heuristic or meta-heuristic search algorithm.

Brute-force strategies systematically produce every pos-
sible change that can be obtained within certain bounds
with the considered change operators and localization
algorithm.

Note that in the literature the label “search-based’” has
been used both to specifically identify the techniques that
use search algorithms and to indicate the whole class of gen-
erate-and-validate techniques. In this paper, we use the term

Legend

. initial state
@ final state

—> control-flow
== => data-flow

—| > specialization

search-based uniquely to indicate the subclass of generate-
and-validate techniques that use search algorithms.

Tables 1 and 2 report the techniques that implement the
generate-and-validate approach (column Techniques). Table 1
includes the techniques that use atomic change operators to
generate fixes, while Table 2 includes the techniques that
use template-based change operators. The techniques are classi-
fied based on the search strategies used to generate the can-
didate solutions (column Strategy), the type of fault that is
addressed (column Fault model), and the code entities that
are modified in the attempt to repair faults (column Change
model). Note that we use the label General in the column
Fault model to indicate repair techniques that are not
designed to address a specific class of faults, while the other
labels indicate specific classes of faults. Finally, column Sec-
tion indicates the section of the paper that describes the
techniques listed in the corresponding rows. In the rest of
this section, we discuss the cases reported in the table.

6.1.1 Atomic Change Operators

An atomic change operator modifies a program in a single
place of its Abstract Syntax Tree (AST), for instance insert-
ing, deleting, or modifying a statement or even a single
operator of an expression. It is the simplest class of change
operator because it does not require any analysis of the pro-
gram but can be implemented by only analyzing the pro-
gram location that should be changed.

Several techniques use these simple change operators
because they can be efficiently applied and combined
together to obtain many variants of the program under
repair, to possibly find a fix. On the contrary, change opera-
tors that require a more expensive analysis of the program
under repair may slow down the search process, although
they might be more effective in some cases. In the following,
we discuss the generate-and-validate techniques that use
atomic change operators, grouping the techniques working
on a similar way.

General Search-Based Techniques. The search-based pro-
gram repair techniques designed so far (see row search-based
in Table 1) implement a randomized search process

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY 43
TABLE 1
Generate-and-Validate Techniques—Atomic Change Operators

Strategy Fault model = Change model Techniques Section
AST reuse/insert/delete GenProg, Marriagent, RSRepair, SCRepair

search-based general AST modifications JAFF Sec. 6.1.1.1
operator replacement, pyEDB, MUT-APR, CASC
variable name replacement
operator replacement, Debroy and Wong
condition negation

brute-force general method call insertion/deletion PACHIKA Sec. 6.1.1.2
functionality deletion KALI
AST reuse/insert/delete AE

designed to potentially cope with any kind of fault in the
code. The techniques in this category [20], [27], [29], [36],
[50], [96], [98], [99] use slightly different algorithms and dif-
ferent heuristics to maximize the effectiveness of a set of
atomic change operators defined at the level of the AST of
the program, that is, each operator manipulates a single ele-
ment of the AST typically deleting, modifying, and inserting
nodes in the AST, but also modifying the individual opera-
tors and variables used in the statements.

In particular, GenProg, Marriagent, RSRepair, and SCRe-
pair use the same three atomic change operators: deleting a
statement of the AST, inserting a statement copied from a
random location of the AST, modifying an element of the
AST with an element copied from a random location of the
AST. This set of operators constitutes a quite general change
model that can arbitrarily modify a program, as long as the
modified program includes a sufficient variety of state-
ments that can be copied from one location to another. JAFF
extends this set of atomic changes with operators that can
manipulate subtrees of the AST and operators that can ran-
domly generate new statements in the program, further
expanding the set of changes that can be produced at each
step of the process.

Note that these change operators are general and poten-
tially useful to repair any fault in the program, as long as the
statements that must be used to produce the fix are still con-
tained elsewhere in the program (this hypothesis is known
as the plastic surgery hypothesis [100]). For instance, the faulty
algorithm shown in Algorithm 4 could be fixed by these tech-
niques by copying the statement exit (0); from line 9 of the

program to line 2 of the same program. Of course, if the pro-
gram does not include the statements necessary for the fix,
these techniques cannot repair the faults, such as for Algo-
rithm 2 that requires changing the i f condition with a condi-
tion that does not occur elsewhere in the program. JAFF
represents a small exception to this rule, because it includes
the capability of randomly generating new statements,
which makes it potentially useful with a larger number of
faults, although the probability to produce the statements
necessary for a fix randomly is extremely small.

pyEDB, MUT-APR, and CASC also aim to potentially fix
any kind of fault, however they choose to adopt a rather dif-
ferent change model. Instead of using change operators that
can produce a large set of different changes, they use a small
set of focused change operators. In particular, these techni-
ques focus on the use of change operators that can modify
the operators and the variables used in the target program.

In the following, we discuss more in details the individ-
ual techniques.

GenProg [20], [64], [65], [87], [88], [101] is a repair technique
that uses genetic programming to guide the generate and vali-
date activities. At every iteration, the location where an
atomic change is applied to is determined randomly, accord-
ing to a probability distribution that matches the suspicious-
ness of the statements computed with spectrum-based fault
localization algorithms, as described in Section 5.1. The intui-
tion is that changes have a higher probability to affect a fault if
the target statements well correlate to the failure.

When a non-empty set of candidate solutions is available,
the generate activity, in addition to apply the atomic change

Generate-and-Validate TechnithéE_Eeivplate-Based Change Operators
Template type Strategy Fault model Change model Techniques Section
search-based concurrency faults synchronized region manipulation ARC Sec.6.1.2.1
code transformation templates AutoFix-E, AutoFix-E2
pre-defined general condition change, SPR, Prophet Sec. 6.1.2.2
brute-force variable value change
buffer overflow buffer manipulation, PASAN, AutoPAG Sec.6.1.2.3
function replacement
search-based code transformatior} templates, o History-driven repair
general reuse of statements in the same application Sec. 6.1.3.1
example-based code transformation templates PAR, Relifix
general code transformation templates R2Fix Sec.6.1.3.2
brute-force buffer overflow insertion of code fragments from donor CodePhage Sec.6.1.3.3

programs in the code under repair

44 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

operators, also applies single-point crossover, which ran-
domly selects two candidate solutions, randomly selects a
point in the two solutions, and produces two new candidate
solutions by juxtaposing the initial part of the first candidate
solution to the final part of the second candidate solution,
and vice versa.

Every candidate solution is validated running the avail-
able test suite. GenProg defines a fitness function that meas-
ures how good each program variant is based on the number
of passing and failing test cases. In particular, the fitness of a
program is defined as the weighted sum of the number of
passing and failing test cases. Passing test cases are associ-
ated with a positive weight, while failing test cases are asso-
ciated with a negative weight. The program variants with
high fitness are preserved, while the program with low
fitness (fitness below or equal to 0) are discarded.

The whole process is consistent with classic genetic pro-
gramming based on mutation operators (i.e., the atomic
change operators), selection (i.e., the capability to discard
candidate solutions that fail many test cases), and crossover
(i.e., the capability to mix the good solutions that survived
to selection). The search space S,y for GenProg consists of
all the programs that can be obtained by applying an arbi-
trary number of atomic changes and crossovers.

The effectiveness of GenProg has been also studied in
presence of some optimizations. For instance, when a long
time is required to recompile and reinstall a program, weak
recompilation techniques can be exploited to run the test
cases on the candidate solutions that are incrementally gen-
erated, without having to recompile the whole pro-
gram [102], [103]. Similarly, when GenProg is applied to x86
Assembly code and Java bytecode, the changed functions
can be recompiled in the form of shared libraries, which are
invoked instead of the original version of the functions in
the program, thus saving the time necessary to recompile
and reinstall the entire program [104] [105].

Marriagent [96] is a technique that works similarly to Gen-
Prog but uses a different crossover algorithm. Since selecting
individuals for crossover randomly or based on fitness may
cause the selection of similar individuals, which would likely
produce similar offspring that only marginally improve the
quality of the population of the candidate solutions, Mar-
riagent selects individuals for crossover favoring diversity. In
practice, it measures the diversity between a pair of programs
taking into consideration the common and the total set of
changes applied to each program with respect to the original
program. The probability to select a pair for crossover
depends on the diversity of the programs in the pair.

RSRepair [29] (formerly TrpAutoRepair [106]) is a repair
technique that uses random search to guide the fix generation
process. At each iteration, it determines the change operator
that must be applied to the program to be repaired ran-
domly, while the location where the change should be
applied to is determined according to a probability distribu-
tion that depends on the suspiciousness of the statements.

Compared to GenProg, RSRepair does not use evolution,
thus it does not apply atomic changes to candidate solutions
and does not perform crossover operations. The assumption
is that random search may perform well, and even better,
than an evolutionary algorithm in the field of automatic pro-
gram repair, where smoothened and progressive evolution

JANUARY 2019

might be hard to define. At each iteration, RSRepair simply
generates a single candidate solution (k = 1 in Fig. 5), which
is immediately validated and then discarded if it does not
pass all the test cases. As a consequence any candidate solu-
tion always includes a single change with respect to the pro-
gram under repair P. This leads to a search space S,pir
consisting of all the programs that can be obtained by modify-
ing a single statement of the program under repair. Thus fixes
that require multiple changes applied to multiple locations
cannot be produced with this algorithm.

In order to speed up the validation of a candidate solu-
tion, RSRepair prioritizes the available test cases increasing
the probability that an incorrect candidate solution could be
detected by one of the test cases that are executed earlier in
the test suite [107]. The prioritization strategy assigns to
each test case a priority based on the number of candidate
solutions that has been able to discard. The intuition is that
the test cases that have been effective in revealing changes
that do not fix the program should be executed earlier than
others [106].

SCRepair [98] extends RSRepair introducing a metric that
computes the similarity between two code fragments from
their AST. This metric is used to guide the selection of the
new code that can replace the existing code during the
mutation process. In particular, SCRepair looks for code
that is not identical to the code that must be replaced, but
similar enough to integrate well with the code around the
change location. If code satisfying this criterion is present in
multiple locations of the program, developers can define
the types of changes that are more likely able to fix a pro-
gram and thus should be preferred in the selection (e.g.,
changes that introduce if conditions).

JAFF [63], [99] is a technique that exploits a set of change
operators working at both the level of the individual nodes
and the level of the subtrees of the AST of the program to be
repaired. The location of the change is still determined
based on the suspiciousness of the statements, but JAFF
increases the randomness of the selection of the change loca-
tion by first selecting n statements at random, and then
choosing the statement with the highest suspiciousness
among the selected ones. These change operators can be
used to generate candidate solutions according to three pos-
sible search algorithms: random search, hill climbing, and
genetic programming.

pyEDB [27] uses genetic programming to generate and
evolve the candidate solutions. Compared to GenProg,
pyEDB introduces a novel way to represent the candidate
solutions that must be mutated. While GenProg works with
a full representation of the code in the candidate solutions,
pyEDB represents a candidate solution by considering its
delta with respect to the program that must be repaired. In
particular, a candidate solution is identified by the set of
changes that have been applied to the program under
repair. This new representation is particularly convenient
because it is compact and efficient to handle. In fact, the set
of changes necessary to obtain a candidate solution is
always small compared to the size of the whole program.

To obtain this representation, pyEDB exploits the exis-
tence of a small and focused set of change operators. When
a program P must be repaired, pyEDB first generates two
modification tables: the first table includes every possible

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

Fig. 6. AST of the while loop in Algorithm 3.

change to the relational operators that can be performed on
P, and the second table includes every possible change to
the variable names that can be performed on P. Changes
must always lead to a valid program, thus variable names
can only be replaced with other variable names that are in
the scope of the modified instruction. pyEDB represents
each change with a 32 bit string, where the first 4 bits iden-
tify the modification table, the next 20 bits identify the AST
node that must be modified (i.e., they identify the row in
the table), and the last 8 bits identify the specific change
(i.e., they identify the specific change among the ones listed
in the modification table for the selected AST node).

If we consider the while loop in Algorithm 3 whose AST
is shown in Fig. 6, the corresponding modification tables are
the following;:

Modification table for arithmetic
operators replacement

AST Node Possible changes
1 {z, <<= >}
5 {z<<=#
Modification table for
variable replacement
AST Node Possible changes
2 {0}
6 {0}

7 {a}

The search space Syepir is defined by the programs that
can be obtained by applying any combination of the
changes reported in the modification tables. Thus any can-
didate solution can be represented as a set of 32bits strings.

The idea of focusing on the delta has been also explored
in [102], where it has been exploited to optimize the compi-
lation time by partially recompiling programs, dramatically
reducing the cost of compilation.

pyEDB evolves the modification sets (i.e., the candidate
solutions) using crossover and biasing the selection of the
modification according to spectrum-based fault localization.

MUT-APR [36] is a repair technique very similar to Gen-
Prog: it uses spectrum-based fault localization to identify
potentially faulty statements, and uses genetic program-
ming to explore the search space of the possible program
variants. The main difference is in the nature of the atomic
change operators that are used to generate the search
space. While GenProg is a general technique, MUT-APR

45

exclusively addresses faults that can be repaired by modify-
ing the operators used in a program, thus the change opera-
tors are limited to replacement of relational, arithmetic,
bitwise, and shift operators.

CASC [50], [97], [108] uses genetic programming and
atomic change operators mostly affecting programming
operators and variable names. CASC elaborates the concept
of co-evolution formerly introduced by Arcuri et al. [35],
[40], that is, CASC evolves not only the candidate solutions
but also the test cases. The intuition is that it is possible to
produce better program variants and better test suites by
rewarding the candidate solutions that pass the highest
number of test cases and the test cases that discard the high-
est number of candidate solutions. The challenging aspect
of this solution is to evolve the test suite without generating
incorrect test cases that may steer the generation of the pro-
gram variants toward faulty programs.

Sample Cases. Regarding the set of sample faults intro-
duced in Section 4, GenProg, Marriagent, RSRepair, and
SCRepair can only repair the fault reported in Algorithm 4.
In fact, the fix consists of the insertion of the exit (0);
statement in the then branch of the if condition at line 1,
which can be obtained with the atomic change operator that
inserts a statement already present in the program in
another point of the program. In the case of Algorithm 4,
the exit (0); statement is already present at line 9.

The other faults reported in Section 4 cannot be repaired
with any of these four techniques because the correct state-
ment is not present in the program. Of course, if the gecd
routine would be part of a larger program, and somewhere
else in the codebase the statements required to produce a fix
occur, GenProg, Marriagent, RSRepair, and SCRepair might
have a chance to repair these faults as well. In practice, Gen-
Prog, Marriagent, RSRepair, and SCRepair heavily depend
on the assumption that the statements necessary to produce
the fix are available somewhere in the program under
repair.

For what it concerns JAFF, it might be able to repair any
of the faults reported in Section 4, due to its ability to ran-
domly generate new statements. However, to what extent
this capability might be practically effective is not clear.

The capability of pyEDB, MUT-APR, and CASC to deal
with the sample faults presented in Section 4 depends on
the matching between the nature of the fault and the change
model used by each technique. pyEDB, MUT-APR, and
CASC can deal with faults that can be fixed by changing
operators and variable names. In the sample cases, they can
all fix the fault in Algorithm 5 by replacing < with ==. Since
CASC and pyEDB can also change variable names, they can
both fix the faults in Algorithms 3 and 6. While none of the
three techniques can address the faults in Algorithms 2
and 4 because adding new statements and modifying com-
plex if conditions are not in the scope of their change model,
that is, the fixed program is not in the search space S;¢pair of
these techniques.

General Brute-Force Techniques. Brute-force techniques
search for a fix to a program under repair by exploring the
search space systematically. In general, different techniques
might use rather different strategies and different sets of
atomic change operators to address different kinds of faults.
The program repair techniques in this category use four types

46 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

of change operators (see row brute-force in Table 1): operator
replacement and condition negation, method call insertion or
deletion, functionality deletion, and AST manipulations.

The technique by Debroy and Wong [45] investigates the
idea of exploiting the same operators used in mutation test-
ing for automatic program repair. Thus, the atomic change
operators considered by this technique are the replacement
of an arithmetic, relational, logical, increment/decrement or
assignment operator with another operator of the same
kind, and the negation of if/while conditions.

The tecnique works by systematically changing the state-
ments in the program under repair starting from the most
suspicious one until reaching the least suspicious one, or
until the time budget assigned to the repair process has
expired. The search space of this technique only includes
the programs that can be repaired by applying a single
change to the program under repair.

PACHIKA [25] is a program repair technique that exploits
specification mining techniques [109] to repair object-oriented
software programs. The idea implemented in PACHIKA con-
sists of observing and comparing the behavior of the software
during the execution of passing and failing test cases to infer
for each invoked method the preconditions that must be satis-
fied for its successful execution. The failing test cases must
violate some of these preconditions, otherwise the fault can-
not be repaired with this technique.

The fix strategy consists of modifying the program in the
places identified with model-based fix locus localization
(see Section 5.2.1) by adding or removing method calls in a
way that may affect the violated preconditions. PACHIKA
is limited to methods that do not require parameters. The
removed methods are not physically deleted from the pro-
gram, but are wrapped in an if block that skips their execu-
tion when the precondition does not hold.

Kali [110] is a technique that attempts to fix programs by
removing, potentially unnecessary but harmful, functionali-
ties. Kali pursues this strategy using spectrum-based fault
localization to identify the 500 most suspicious statements
of the program and systematically modifying these state-
ments using a set of atomic change operators specifically
designed to drop functionalities (e.g., setting an if condition
to true or false, adding a return statement or removing state-
ments). The search space considered by KALI consists of all
the programs that can be obtained from the program under
repair by applying one of the KALI's atomic change opera-
tors to one of the top 500 most suspicious statements.

Although KALI might succeed fixing faults in some
cases, this repair solution has been primarily designed to
experimentally investigate the issue of deriving plausible
but incorrect fixes. In fact, programs passing test case execu-
tion can often be obtained by simply dropping functionali-
ties, but these plausible fixes would be seldom considered
correct fixes by a developer who generally aims to fix pro-
grams without losing functionalities. The challenge of gen-
erating correct fixes and not only plausible fixes is further
elaborated in Section 9.1.

AE [111] considers the same search space S, consid-
ered by RSRepair, that is, the space of all the program var-
iants that can be obtained by applying a single GenProg’s
change operator to a single statement of the program. The
challenge is that this search space is often large and difficult

JANUARY 2019

to navigate. AE aims to reduce the size of the search space
by exploiting semantic equivalent checking.

Semantic equivalence checking consists of the capability to
detect sets of candidate solutions that are semantically
equivalent although syntactically different. This capability
allows to discard several candidates solutions without run-
ning the test cases, which is a typically expensive operation.
AE can detect that two candidate solutions are semantically
equivalent if they differ for any of those elements:

e Syntactic equality: programs that differ only for the
presence of duplicated variable names or duplicated
statements;

e Dead code: programs that differ only for the presence
of some dead code;

o Instruction scheduling: programs that differ on the
order of some adjacent instructions not referring to
common resources, which can be reordered without
affecting the semantics of the program.

AE is deterministic as long as the program under repair
is deterministic because it exploits the ranking produced by
SBFL to systematically mutate the statements in the pro-
gram, from the most suspicious to the least suspicious.

Sample Cases. The technique by Debroy and Wong might
be able to fix the faulty programs that depend on the use of
incorrect conditions and arithmetic operators, which are
Algorithms 3 and 5. PACHIKA and KALI are ineffective
with the sample set of faults presented in Section 4. The for-
mer technique is ineffective because the program is not an
object-oriented program and thus none of the presented
faults is in the scope of the technique. The latter technique is
ineffective because none of the faults could be fixed by just
dropping functionalities. Since AE shares its search space
with the RSRepair search-based technique, it can address
the same faults, thus it can repair the fault reported in
Algorithm 4.

6.1.2 Pre-Defined Templates

Repair techniques based on pre-defined templates modify
programs according to a set of change operators that can
affect one or more statements of the program (see row pre-
defined in Table 2). Using templates developers may define
complex change patterns that coherently affect the program
under repair in multiple locations, which would be hard to
obtain with a randomized combination of atomic changes.
Examples of these templates are changes that expand syn-
chronization blocks, perform non-trivial manipulations on
program conditions, and add code implementing pre-
defined access control policies.

So far, search-based techniques in this category exploited
templates to address specific classes of faults, while brute-
force techniques exploited templates to address both gen-
eral and specific classes of faults.

Most of the techniques working with pre-defined tem-
plates use brute-force rather than search-based strategies.
This might be because templates could be more expensive
to apply than atomic changes, and this cost factor may hin-
der the speed of the evolution in search-based algorithms. It
might thus be preferable to use brute-force strategies for
systematically checking if there is a fault in any place where
a template could be applied to.

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

Search-Based Techniques for Concurrency Faults. In some
cases, the application of one template might be insufficient,
although useful, to fix a problem. In these cases, search-
based strategies might still be viable. A class of problems
that might require multiple non-trivial changes in multiple
points of a program to be fixed are concurrency faults.
For example ARC [38], which is a repair technique for
concurrency faults, uses manual templates in the context of
a search-based algorithm.

ARC [37], [38] generates candidate solutions for concur-
rency faults by evolving the program under repair using
genetic programming and a set of pre-defined templates,
which implement a range of non-trivial changes that might
be useful in concurrent programs, including synchronizing
unprotected shared resources, expanding synchronization
regions to include unprotected source code, and interchang-
ing nested lock objects.

The candidate solutions are evaluated by running the
available test suite multiple times, each time injecting a dif-
ferent noise using the ConTest tool [112]. Test cases must be
executed multiple times because the capability to observe a
concurrency fault might depend on the specific interleaving
of an execution, and thus multiple executions of a same
test may produce different results. The fitness of candidate
solutions is defined as the ratio between the number of cor-
rect and the number of distinct interleavings that have been
observed.

General Brute-Force Techniques. Brute-force techniques
define templates that may fix program faults if applied once
to a program. The repairing process is addressed by apply-
ing every template to every possible location, until fixing
the program or timing out. General techniques define tem-
plates that might potentially address any type of fault in a
program. In this category, we report the AutoFix-E [92],
AutoFix-E2 [93], SPR [28], and Prophet [113] techniques,
which exploit general pre-defined templates not bounded
to specific fault models.

AutoFix-E [92] is similar to PACHIKA but works on
software written in Eiffel, a programming language that
supports programming by contracts. The presence of the
contracts (e.g., methods pre-conditions and post-condi-
tions) lets AutoFix-E produce fixes that are more complex
than the ones produced by PACHIKA. In fact, contracts
give semantic knowledge about the program, and can be
used to narrow down the set of possible fixes, to differen-
tiate between erroneous and correct program states, and
to facilitate the identification of a strategy to reach the
correct state.

AutoFix-E modifies the program under repair using the
templates shown in Algorithms 7, 8, 9, 10; where snippet is
new code meant to bring the application in a new state that
does not violate the available contracts, oldStmt is a statement
or block of statements already present in the application’s
source code, and fail is a predicate that captures the sets of
values that made the program fail when running the tests in
the available test suite.

Algorithm 7. schema 1

1: snippet
2: oldStmt

47

Algorithm 8. schema 2
1: if(fail){

2: snippet

3:)

4: oldStmt

Algorithm 9. schema 3
1: if(!fail){

2: oldStmt

3:)

Algorithm 10. schema 4

1: if(fail){

2 snippet
3: }else{
4
5

oldStmt
c}

AutoFix-E uses model-based fix locus localization to
determine the points where the templates should be
applied, and uses a metric that measures how a fix affects
the program source code and the program dynamic state to
give priority to the fixes causing the smallest changes. This
strategy is based on the assumption that the fix can be
obtained with a small change of the program.

AutoFix-E2 [93] (also known as AutoFix [94]) refines the
way the templates are applied in AutoFix-E taking advan-
tage of the information dynamically extracted from the con-
ditions that are evaluated during test execution in addition
to the information extracted from the contracts. Moreover, it
extends AutoFix-E with the capability to rank the candidate
solutions according to the suspiciousness of the statements
in the program under repair computed with spectrum-
based fault localization techniques.

SPR [28] addresses program repair with a staged process
that can quickly skip many wrong fixes and focus on the
most promising cases. The repair strategy systematically
applies a set of general transformation templates to the pro-
gram under repair. These templates are parameterized,
hence each one represents a class of program transforma-
tions. In a second phase, for each transformed program,
SPR determines the parameter values that can make the
repair successful, if any. Since the templates often require a
condition as a parameter, in the last step SPR attempts to
synthesize a condition that can produce the values deter-
mined in the second phase when evaluated. If the process is
successful, the condition is embedded in the program and
the repair is finalized.

The parametric templates defined in SPR may produce
changes that affect if conditions (by adding clauses to exist-
ing conditions and by generating new conditions) and vari-
able values (replacing variable names and constant values).
The synthesis of new conditions is limited to conditions of
the form v op const, where v is a variable name, op is either =
or /=, and const is a constant value. SPR can also copy the
statements present in the source code to other locations in
the program.

48 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

Note that compared to atomic change operators, the tem-
plates defined in SPR may address more complex scenarios.
For instance, a template may transform entire conditions,
while atomic change operators usually affect the individual
operators. Of course, the effect of some of the templates
might be potentially recreated by techniques using atomic
change operators through evolution.

SPR systematically applies these templates from the most
suspicious to the least suspicious statement.

For instance, if we consider Algorithm 2 as a sample pro-
gram to repair with SPR, the repair process would first
select a statement and a template. Let us assume the if
statement at line 1 and the template that adds a new
clauses are selected. The new condition would be of the
form a == 0 && b == 0 || absCond, were absCond has to be
determined. SPR runs the available test suite and checks
what Boolean values returned by the expression absCond
would turn the failing test cases into passing test cases,
without changing the outcome of the passing test cases. SPR
also records the values of all the variables in the scope of
the faulty if statement to synthesize a condition that uses
these variables and returns the desired sequence of Boolean
values, in this case successfully identifying a==0 as the
right clause to add.

Prophet [113], [114] uses the same fix generation process
of SPR, but it improves the repair process exploiting the
information available on a large database of software revi-
sion changes (containing many fixed programs). The intui-
tion is that the same kinds of fixes may reoccur across the
lifetime of different projects, thus it is possible to learn from
the past to make the repair process more efficient. In addi-
tion, learning from human-written fixes increases the likeli-
hood that the generated fixes are correct and not only
plausible.

Prophet analyzes the database of software revision
changes to produce a probabilistic model P(m, I|p) that enco-
des the probability that a repaired program can be derived
from a program p with an AST modification m at modifica-
tion point /. These probabilities are used to rank the candi-
date patches and try the patches that have higher probability
to fix the program first. This strategy compared to the set of
heuristics used by SPR may significantly reduce the time nec-
essary to explore the search space.

Sample Cases. AutoFix-E and AutoFix-E2 target Eiffel pro-
grams, thus they cannot address the sample programs.

SPR and Prophet can repair many of the sample faults
described in Section 4. In particular, they can repair the fault
in Algorithm 2 as exemplified when presenting SPR, but
they can also repair the Algorithms 3 and 6 using templates
for variable values. They can also repair the fault in Algo-
rithm 4 exploiting templates for copying existing statements
(exit (0) in this case). They cannot fix the fault in Algo-
rithm 5, because the templates for if statements are insuffi-
cient to fix the faulty condition.

Brute-Force Techniques for Buffer Overflow Faults. PASAN
[115] is a technique designed to repair buffer overflow
vulnerabilities. It works by first detecting the inputs used
in control-hijacking attacks and then using these inputs to
generate fixes that remove the vulnerabilities exploited in
the attacks. PASAN can handle three types of buffer over-
flow vulnerabilities: overflows caused by the use of an

JANUARY 2019

unsafe [ibc function (such as strcpy), overflows caused by
an array copying loop that ends up corrupting a return
address, and buffer overflows that do not corrupt any
return address.

PASAN instruments the application under repair to
extract information about the size of static arrays and
dynamically allocated buffers and uses RAD [116] to detect
buffer overflow attacks that corrupt a function’s return
address. At each iteration, based on the nature of the state-
ment that likely introduced the corrupted value, PASAN
uses different strategies to produce a candidate fix. If the
statement that modifies the return address is a libc function,
PASAN attempts to fix it by replacing the unsafe function
with a safe one. If the statement that corrupted the memory
address is in a loop, PASAN attempts to fix it by first identi-
fying the array being overflowed and its size, and then
enforcing the bound checking on such array with an if state-
ment. Finally, if the vulnerability is not on a return address,
PASAN attempts to find the library function or the loop
that originated the problem and change it by introducing
appropriate checks in the code. The generated fix is tested
by replaying the attack against the fixed program.

AutoPAG [117] uses an approach similar to PASAN to
repair out-of-bound violations. It first instruments the appli-
cation to detect the variables that overflow and thus identi-
fies the tainted sets of statements and variables. The fix
generator works on these tainted sets using different fix
templates: redirecting an out-of-bound read within the
buffer boundary, replacing a call to a function that allows
out-of-bound writes (such as strcpy) with a call to a safe
function (such as strncpy), and simply skipping the state-
ment that causes the out-of-bound violation. The fixed
application is then tested against the same out-of-bound
exploit that triggered the repair process.

6.1.3 Example-Based Templates

Repair techniques using example-based templates modify
programs, either evolving them (search-based techniques) or
systematically performing changes (brute-force techniques),
according to a set of change operators that are extracted from
a sample set of fixes that have been already used to fix pro-
grams (see row example-based in Table 2). Example-based
templates, similarly to pre-defined templates, might imple-
ment quite complex schema that coherently affect the pro-
gram under repair in one or more locations.

The extraction of the templates might be manual or auto-
mated. When the extraction is manual, the templates are
defined once for all and then used to fix programs. This is
the case of History-driven repair [118], PAR [22], Reli-
fix [119], and R2Fix [120]. Note that History-driven repair,
although it automatically mines information for guiding the
evolution of the candidate solutions from historical data,
actually uses a simple pre-defined set of atomic operators
and exampled-based templates as change operators.

In other cases, the templates might be extracted automat-
ically using mining techniques or other algorithms. In this
case, the extraction process can be repeated every time from
a different set of programs, increasing the generality of the
technique. This is the case of CodePhage [24], which can
automatically extract fixes for buffer overflow problems
from a set of correct programs. The effectiveness of

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

example-based techniques is clearly dependent on the set of
cases used to extract the templates [121].

General Search-Based Techniques. The techniques belong-
ing to this category do not consider a specific class of faults
(their fault model is general) but use a specific change
model derived from the analysis of several real-world fixes.
The extracted templates are automatically recombined by
search-based algorithms in order to maximize their effec-
tiveness in repairing faults, assuming some faults may
require the simultaneous application of multiple templates.

History-driven repair [118], [122] exploits information
extracted from the history of several software projects to
guide the generation of candidate fixes. The technique uses
the same evolutionary approach of GenProg, but without a
crossover operator and with 12 mutation operators derived
from GenProg [20], PAR [22], and mutation testing [123].
The information mined from the projects is used to synthe-
size bug fix patterns that represent sets of AST-level
changes that have been useful to fix bugs in the past. The
bug fix patterns are used to guide the selection process, that
is, the candidate solutions that are most likely evolved in
each iteration are the ones that incorporate a set of changes
similar to the ones represented in the bug fix patterns.

PAR [22] uses templates defined from the manual analy-
sis of more than 60,000 real-world fixes. The assumption is
that templates defined from real-world fixes might be more
effective than other templates and may also improve fix
acceptability.

Templates are encoded as sequences of AST rewriting
rules and are used by a genetic programming algorithm to
evolve a set of candidate solutions. Templates are applied
to code locations determined according to spectrum-based
fault localization until a fixed program is found.

Relifix [119] applies an approach similar to PAR in the
specific setting of regression problems. Relifix uses a set of
code transformation templates defined from the manual
analysis of 73 real regression problems. The templates
encode rules specific to regression faults, such as replacing
a statement with the previous version of the same state-
ment, or mutating a statement that has been just modified.

These operators are used with an optimized random
search algorithm that exploits spectrum-based fault locali-
zation to identify the code locations that should be targeted
with the templates.

Sample Cases. History-driven repair can repair the faults
in Algorithms 2, 4, and 6. To fix Algorithm 2, History-driven
repair can use the mutation operator that removes a Boolean
condition from a composite 1f condition to drop the condi-
tion b == 0. To fix Algorithm 4, History-driven repair can
use the mutation operator that inserts statements found
elsewhere in the program that must be fixed. In this case, it
can repair the fault by copying the exit(0); statement in
the then branch of the if condition at line 1. Finally, Algo-
rithm 6 can be fixed with the replace method call parameter
operator (assuming the technique would handle C functions
similarly to Java methods) that can replace a parameter in a
method call with a variable found in the same scope of the
method call. In this case a fix can be obtained by replacing
parameter a with variable b.

For both PAR and Relifix, their ability to fix faults is
directly related to the matching between the fault that

49

must be repaired and the templates defined in these tech-
niques. For example, PAR does not include templates that
may add a method call, which would be useful to fix the
fault in Algorithm 4, while PAR includes a template that
can add and remove terms from a condition predicate,
which can be used to fix the fault in Algorithm 2 by
removing the condition b==0 from the if statement at
line 1. Algorithm 6 can also be repaired by PAR using a
template that replaces a method call parameter with a
compatible one in the same scope, while there are no tem-
plates for Algorithms 3 and 5.

The ability of Relifix to deal with the sample faults pre-
sented in Section 4 strongly depends on whether those
faults have been introduced as regression problems or not.
For instance, if any of the faulty statements (e.g., the 1 f con-
dition at line 1 of Algorithm 2) have been introduced by
simply changing a previously correct version of the algo-
rithm, Relifix may selectively revert the change just for the
faulty statement.

General Brute-Force Techniques. The techniques belonging
to this category are designed to be able to potentially repair
any class of faults, as long as a suitable set of real-world fixes
tolearn from are provided. Differently from other techniques
that use templates manually extracted from a set of real cases
once for all, general techniques can extract templates auto-
matically every time from a different set of samples.

R2Fix [120] is a repair technique that generates fixes start-
ing from bug reports filed by users, exploiting a range of
pre-defined fix templates associated with a number of real-
world bug reports. R2Fix uses machine learning techniques
to identify the real-world bug reports that look similar to
the bug report of the fault that must be fixed. The identified
bug reports are analyzed (e.g., looking at pointers and func-
tion names), automatically paired with the associated pre-
defined templates that are contextualized to the new bug
reports (e.g., although similar, the two bug reports may
refer to different variables and function names), and applied
to the code.

The identified bug reports and the corresponding tem-
plates are applied systematically to the code of the program
under repair, and the candidate solutions are validated run-
ning the test suite attached to the bug report.

Sample Cases. For the techniques in this category, their
ability to address faults depends on the set of samples to
learn from. In principle, if suitable samples fixes are pro-
vided, any fault could be fixed.

Brute-Force Techniques for Buffer Overflow Faults. The tech-
niques belonging to this category are designed to repair
buffer overflow vulnerabilities using templates whose defi-
nition is at least partially influenced by real-world fixes and
real-world programs. These templates are systematically
applied with brute-force algorithms.

CodePhage [24] targets buffer overflow problems, but
instead of defining a pre-defined set of templates, uses a set
of donor programs to extract the conditions that should be
added to the program under repair to prevent the buffer
overflow problem. The set of donor programs must be pro-
grams that implement the same functionality of the pro-
gram under repair. The assumption of this repair technique
is that there might exist a donor program that contains the
check that is missing in the faulty program and that can

50 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

semantics
information ==

———d

formal encoding
of the repair
problem

no solution

Fig. 7. Semantics-driven repair process.

repair the fault if copied from the donor to the program
under repair.

CodePhage uses the (Directed Integer Overflow Discov-
ery Engine) DIODE fix locus localization technique [124] to
specifically discover the inputs that trigger the overflow fail-
ure in the program under repair. DIODE works in two main
logical steps. In the first step, it uses dynamic taint analysis
built on top of the Valgrind framework [125] to identify the
memory allocation sites in a program and the size of the
allocated blocks. In the second step, it uses symbolic execu-
tion [126] to analyze the allocation sites and identify the
input values that may make the program fail with an Inte-
ger overflow. DIODE confirms the presence of the overflow
by running the program with the identified inputs and
checking the generation of the failure. The target statements
for the generation of a fix are the memory allocation sites
that have been discovered during the first step and that
have been confirmed to cause Integer overflows with the
second step.

Note that these statements, although producing the over-
flow when executed, are not necessarily faulty. Indeed, the
values responsible for the overflow could be generated by
other statements. However, Integer overflow problems do
not necessarily need to be addressed looking at the fault
location, but could be prevented directly on the location
where the overflow can be observed.

The set of donor programs are then executed with the
same inputs to discover a donor program that can process
correctly both the error-triggering inputs and the non-error
triggering inputs. The conditional branches of the donor
program that are executed by the input values are analyzed
to discover what are the conditions that evaluate differently
on the failing and passing inputs. These conditions are the
ones that are likely to significantly affect the failing execu-
tions and could be exploited to repair the faulty program.

If such conditions are discovered, CodePhage runs a pro-
cess to adapt the condition discovered in the donor program
to the program under repair. In particular, the condition is
first expressed symbolically with respect to the input values

JANUARY 2019

original

program spec program P

1 1
1
behaviorD ysis)<= ==1

fix generation

Legend

. initial state
@ final state

——> control-flow

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\ - — => data-flow
1

1

1

1

1

output repaired program §

of the program, so that it can be transferred into the pro-
gram under repair. CodePhage then determines every pos-
sible place executed by the failing inputs where the
condition could be inserted to fix the program, thus generat-
ing many program variants that are tested with the avail-
able test suite and checked with DIODE.

6.2 Semantics-Driven Repair

Semantics-driven techniques encode the problem P, for-
mally, either explicitly, for instance as a formula whose sol-
utions correspond to the possible fixes of the program
under repair, or implicitly, as an analytical procedure
whose outcome is a fix. Thus, a solution s,¢p4i-, when it can
be found, is guaranteed to solve the problem P, and
thus does not need to be validated against Ppqir-

Note that although a solution s,¢. is guaranteed to
solve Prepuir, Srepair 1S NOt guaranteed to be fully satisfactory
for the developers. P,y is an approximated representation
of the real repair problem to be solved, and a solution might
be problematic according to aspects not represented in
P,epair. For instance, P, may represent a concurrency
problem present in a program and an actual solution to
P,epair may fix the concurrency problem while introducing
other problems, such as performance or functional prob-
lems. Thus, the automatically generated solutions still need
to be validated manually or automatically to decide if they
can be finally accepted.

The general process of a semantics-driven technique is
illustrated in Fig. 7. The process consists of three main
sequential activities. The behavioral analysis activity analyzes
the program under repair to extract semantics information
about the correct and faulty behaviors of the program. To
this end, behavioral analysis may exploit a number of sour-
ces, such as the available test cases, a specification, and the
source code of the program under analysis. Behavioral anal-
ysis typically exploits a subset of these sources. For exam-
ple, it can focus on the dynamic information that can be
extracted by running the test suite or the information that
can be obtained by statically analyzing the source code of

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY 51
TABLE 3
Semantics-Driven Techniques
Fault model Change model Tecqhniques Section
general synthesis of new expressions SemFix, DirectFix, = Angelix, Sec.6.2.2
SearchRepair
wrong conditions and missing preconditions condition change and if condition insertion =~ NOPOL, Infinitel, DynaMoth Sec. 6.2.3
concurrency faults critical region manipulation, AFix, CFix, HFix, Surendran etal. Sec. 6.2.4
parallelization keyword move Axis, Grail, Lin et al., DFixer
HTML generation faults string modification PHPQuickFix and PHPRepair Sec. 6.2.5
string sanitization insertion of checks, SemRep, Yu et al. Sec. 6.2.6
string modification
access control violations insertion of role checks FixMeUp Sec. 6.2.7
memory leaks insertion of free () statements LeakFix Sec.6.2.8

the program. In the former case, the extracted information
can be in the form of input-output pairs that encode how a
likely faulty code fragment of the program should behave
to run correctly. In the latter case, the extracted information
can represent the behaviors that should be eliminated or
modified from the program under repair to let it run
correctly.

The problem generation activity exploits the information
collected with behavioral analysis to generate either explic-
itly or implicitly a formal representation of the repair prob-
lem whose solutions are code changes that represent actual
fixes.

The fix generation activity tries to solve the problem gen-
erated in the previous step, either identifying the code
change that may fix the program, or producing no solution
in the case the solution to the repair problem does not exist
or cannot be found in a reasonable amount of time.

In some cases, the problem generation and fix generation
activities might be iterated considering different program
locations as a target for the fix. The fix generation process may
also involve implicitly defining and traversing a fix space
driven by the specific formulation of the repair problem.

Semantics-driven techniques often address specific clas-
ses of faults rather than being general. This is because it is
easier to find a formal representation of the problem Py
when a specific characteristic of a program under repair is
considered (e.g., the locking discipline), than trying to pro-
duce a fully comprehensive formalization of the repair
problem. Table 3 shows the classes of faults that can be
addressed with existing semantics-driven techniques (col-
umn Fault model), the code elements that are manipulated in
the attempt to repair a fault (column Change model), and the
corresponding repair techniques (column Technigues). Col-
umn Section indicates the section of the paper that discusses
the techniques listed in the corresponding row. In the fol-
lowing, we first provide a short introduction to program
synthesis, which is used by several semantics-driven techni-
ques, and then we discuss the techniques in each category.

6.2.1 Program Synthesis

A key enabler of several semantics-driven techniques, espe-
cially the ones with the general and wrong conditions and
missing preconditions fault models, is program synthesis,
which is exploited to effectively construct a fix for the
program under repair. The specific program synthesis
approach used by these semantics-driven techniques is the

oracle-guided component-based program synthesis [127].
In the following, we briefly present this form of synthesis.

The synthesis process takes as input both a set of input-out-
put pairs that the synthesized program must satisfy and a set
of basic components that can be recombined to generate the
program (e.g., operators, constant values, and functions), and
outputs a function (or a program) that satisfies every pair.

When used as part of a statement in a synthesized pro-
gram, every basic component defines a variable and uses
one or more variables, which can be defined by other basic
components (e.g., the + basic component uses two varia-
bles, which are the two numbers that must be summed, and
produces one variable, which is the sum). The synthesis
process generates the required program by identifying a
suitable set of connections among the variables and the
components. This problem is typically encoded as a first
order logic constraint problem and is solved using a Satisfi-
ability Modulo Theory (SMT) solvers.

For instance, if we suppose to provide a synthesis
algorithm with two input variables x and y, with the basic
components C = {+, sqr, sqgr} and with the set of
input-output pairs I = {{(0,0),0}, {(1,0),1},
{(1,1),4}, {(2,2),36}}, the synthesis algorithm tries
to connect the components in a way that satisfies every
input-output pair. Fig. 8 shows both an example program
that can be created through synthesis and a visual illustra-
tion of how the program can be produced by connecting
input variables and components. In particular, the compo-
nents are indicated with rectangles and identified by a

xloc: 0 y loc:1
!OC: 2 square
input: 0 x = input,
= input
loc: 3 v Zp :
input: 2,1 r,=x
r,=r, +y
loc: 4 r = r?2
input: 3 SqTre ! ¢
output loc: 4

Fig. 8. Example program created with program synthesis.

52 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

location number (see label loc), edges indicate how the
value produced in a given location is used as input in
another location (see label input associated with every
location). The SMT solver is used to find these connections,
that is, finding an appropriate value for the variables input
associated with every location.

Depending on the set of basic components that are used,
programs of various complexity can be generated.

6.2.2 General Techniques

SemFix [21] synthesizes fixes that consist of a single changed
statement. Thus, fixes that require changes to multiple loca-
tions of the code are out of the scope of this technique. To
identify the statement that should be changed, SemFix uses
spectrum-based fault localization and considers statements
in order of suspiciousness, starting from the most suspicious
one. Every time a statement is considered, SemFix tries to
synthesize a fix by modifying a branch predicate, that is,
changing conditional(fsauy(...)) into conditional(f(...)), or
changing the right hand side of an assignment, that is, chang-
ingx = frauy(...) intox = f(...).

In practice, SemFix replaces the expression in the pro-
gram under repair with a symbolic expression that repre-
sents either a generic condition or a generic assignment of a
value to a variable. When the available test cases are exe-
cuted, the program is executed concretely until the modified
statement and then symbolically. These executions are used
to produce a set of constraints on the symbolic expression
that has been introduced in the program; the constraints
encode the conditions that the symbolic expression must
satisfy to make the program pass all the available test cases.

These constraints together with a set of basic components
are used to solve a program synthesis task. In order to keep
the generated expression as simple as possible, the basic
components supplied to the synthesis algorithm are divided
in levels and fed to the synthesis process incrementally. For
instance, when synthesizing conditional statements the first
basic components that are used are constants, then the algo-
rithm progressively adds comparison operators, logic oper-
ators, arithmetic operators, and so on.

If we consider the faulty program shown in Algorithm 5,
SemFix would consider changing the statements of the pro-
gram according to their suspiciousness. Let us assume at
some point SemFix targets the statement at line 1. SemFix
tries to produce a new statement of the form 1f (£(...))
where £ is a function of the input and program variables.
Since only two variables a and b are defined at that point of
the program, the signature of £ must necessarily be bool-
ean f (a,b). Let us assume that the execution of the avail-
able test cases produces the following constraints f£
(10,15)= false, £(0,10) = true, £(0,15) = true that
must be satisfied to pass the test suite. A possible solution
to this synthesis problem is a==0. Thus the program can be
fixed by replacing the if condition at line 1 with if
(a==0).

DirectFix [128] repairs faulty expressions inside a pro-
gram with a monolithic approach that is technically similar
to SemFix. DirectFix translates a faulty program into a trace
formula f that encodes its behavior, then it translates the set
of failing test cases into a set of oracle constraints O that are
unsatisfiable if conjuncted with the trace formula. The goal

JANUARY 2019

of the repair process is therefore defined as the attempt to
modify the expressions in f such that f A O is satisfiable.
This is done by reducing the problem into an instance of the
partial MaxSAT problem: the basic expressions in f are
extracted, conjuncted with the original formula, and
replaced with placeholders generating what is called repair
condition; a partial MaxSMT solver is then used to generate
a new formula [’ which satisfies f' A O. If a solution is
found, the changes at the level of the formula are retrofitted
to the code.

When multiple fixes are possible for a same faulty
expression, DirectFix selects the simplest fix, under the
hypothesis that simple fixes are less likely to introduce
regression problems.

Compared to SemFix, DirectFix aims at reducing the
complexity of the fixed expressions, and improving fix
acceptability.

Angelix [95] is a semantics-driven repair technique that
aims at synthesizing multi-line fixes while preserving scal-
ability, in contrast with DirectFix, which can produce multi-
line fixes but does not scale well, and SemFix, which is scal-
able but limited to single-line fixes. To generate multi-line
fixes without sacrificing scalability, Angelix exploits the con-
cepts of angelic path and angelic forest. An angelic path enco-
des part of the repair problem as a set of triples each one
containing an instance of a suspicious expression (identified
with spectrum-based fault localization), its angelic value (the
value that the expression should return to pass the tests) and
its angelic state (a set of variables visible at the location of the
expression). Angelix paths are extracted using symbolic exe-
cution. An angelic forest fully encodes the repair problem as
a set of angelic paths. The angelix forest is fed to a fix synthe-
sis engine to produce multi-line fixes.

SearchRepair [44] exploits a database of human-written
patches encoded as SMT formulas. This results in a database
of SMT formulas encoding changes that have fixed faults in
various cases. When a program must be repaired, SearchRe-
pair uses spectrum-based fault localization to determine the
likely faulty code fragments, while the failing and passing
test cases are used to generate an input-output constraint
that describes the desired behavior for each possibly faulty
code fragment. The database of SMT formulas is then
searched looking for a change that might produce the
desired input-output behavior for the target fragment. If it is
found, the change represented in the database is performed
in the program under repair. This process is repeated sys-
tematically for every region that has been selected. The can-
didate fixes obtained in this way are validated with the
available test suite.

Sample Cases. SemFix, Angelix, and DirectFix can repair
the faulty programs in Algorithms 2, 3, and 5. The ability of
SearchRepair to fix the faulty example algorithms depends
on the sample fixes that the database contains: if suitable
code fragments are provided, any fault could be fixed.

6.2.3 Wrong Conditions and Missing Preconditions

The techniques presented in this section target faulty condi-
tions (occurring either in a branch or in a loop statement)
and missing preconditions. Although each technique uses
specific mechanisms, the shared high level process consists
of identifying the most suspicious conditions in the program

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

by using localization algorithms, gathering variables that are
available in the scope of the suspicious condition, and formu-
lating a program synthesis problem, whose solution is the
repaired condition.

NOPOL [23], [129] synthesizes fixes that consist of a single
changed condition occurring in a conditional or loop state-
ment. NOPOL uses spectrum-based fault localization to iden-
tify the suspicious statements that include conditions and
angelic fix localization to confirm the existence of a potential
fix location (see Section 5). In practice, angelic fix localization
can confirm that negating the truth value of the selected con-
dition for the failing test cases can repair the program.

NOPOL runs the test cases and collects evidence about the
truth value that the target condition must return to pass all
the test cases, together with the values of the variables in the
scope of the likely faulty condition that must be repaired.
The truth values that must be returned by the target condi-
tion can be represented as a set Oy ,,, , whose values represent
the expected outcome of the condition at program location !
the mth time it is evaluated during the execution of the nth
test case. The values of the variables in the scope of [are rep-
resented by the Cj,,, set whose values represent the col-
lected variable values at location ! during the mth execution
of the nth test case. The repair synthesis problem can thus be
encoded as finding an expression exp that satisfies

V(l, m, ’I’L) e*rp(cl7nl,71) = OL,m,n

Possible values for exp are obtained by combining simple
arithmetic expressions and program variables.

If applied to the faulty program shown in Algorithm 5,
angelic fix localization can easily identify the statement at
line 1 as the statement to be modified to make the program
pass all the available test cases. The execution of the test
cases produces a set of observations C 1 = (a = 10,b = 15),
CLLQ = (CL = 0, b= 10) N 01,1-," = (a = 0, b= 15) and the
corresponding expected outcomes (O;;11 = false, 01,0 =
true,...,011, = true) which are used as input to the pro-
gram synthesis procedure. A solution to this synthesis prob-
lem is the expression a==0, which is used to fix the program
by replacing the condition used by statement 5 of the
program.

Dynamoth [130] is a new synthesis engine for NOPOL.
Since NOPOL cannot synthesize conditions that include
method calls, Dynamoth extends NOPOL with the ability to
collect the runtime context of the suspicious condition,
including parameters, variables, fields, and return values of
method calls, and to combine these elements in a newly syn-
thesized condition.

Infinitel [26] is similar to NOPOL but specifically targets
infinite loop faults, thus its repairing process is tailored to
change loop conditions to run the loop a finite number of
times while making the program to produce the expect
output.

Infinitel assumes a loop to be faulty if it is executed more
than one millions of times. Exploiting the same strategy
implemented in angelic fix localization, Infinitel determines
the number of times that the loop should be executed to
make the test case pass, if any. This number is called angelic
record. Similarly to NOPOL, Infinitel generates a set of con-
straints forcing the new condition of the loop to evaluate to

53

true while the number of iterations is smaller than the
angelic record and evaluate to false when the angelic record
is reached. Given this set of constraints, the synthesis of the
new condition works the same than in NOPOL.

Let us consider the faulty program shown in Algorithm 3.
When executed with the test input (a equals to 10 and b
equals to 0), the program loops indefinitely on the loop
statement at line 4. Infinitel analyzes the execution and dis-
covers that the failing test case can pass for an angelic
record equals to 0, that is, if the loop is never executed. This
evidence, together with the data collected from the other
test cases, is used as input to a program synthesis procedure
whose solution is the right condition for the program.

Sample Cases. NOPOL and Dynamoth target faults due to
faulty conditions, thus they can only repair the faulty pro-
grams in Algorithms 2 and 5, while Infinitel targets infinite
loop faults, thus it can repair the faulty code in Algorithm 3.

6.2.4 Concurrency Faults

The techniques presented in this section target concurrency
faults, such as atomicity violation, deadlock, livelock, and
safety policy violation. The general approach of the techni-
ques addressing concurrency faults consist of analyzing the
system to discover the weak code regions, that is, those
code regions that might be responsible for concurrency
faults, and then strengthen these code regions by adding
proper checks and synchronization mechanisms that may
prevent concurrency problems.

AFix [82] can repair single variable atomicity violations
faults, that is, faults due to operations that are supposed to
be atomic with respect to a variable, but turn out they might
be interleaved with other operations accessing the same
variable.

As part of behavioral analysis, AFix uses CTrigger [83] to
monitor normal program executions and discover atomicity
violations, which are represented as triples (p, ¢, r), where p
and c are instructions sequentially performing operations
on a variable x on a same thread, and r is a remote modifica-
tion/read of x that happens between p and c.

In these cases, AFix generates a fix by solving the simple
problem of putting p and c in a critical region and r in
another critical region controlled by a same lock to make
the two regions mutually exclusive. This process is applied
multiple times for all the atomicity violations faults that
have been discovered. AFix includes a final step to remove
redundant fixes and merge overlapping fixes.

CFix [131] has been designed to have more general repair
capabilities than AFix, which can only address atomicity
violations by working with mutex lock primitives. CFix
addresses concurrency bugs by decomposing them into a
combination of mutual exclusion and ordering problems.
The mutual exclusion problem is the same considered in
AFix, while the ordering problem is introduced in CFix.

Starting from a bug report, CFix first uses a variety of bug
detectors for concurrency bugs to find the failure-inducing
interleavings and maps a discovered bug to a specific
mutual exclusion or ordering problem. CFix then uses static
analysis to determine where to use locks and condition vari-
ables to synchronize program actions and potentially repair
the bug. Depending on the type of problem, CFix uses either
AFix to enforce mutual exclusion or a new technique, called

54 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

OFix, to enforce order relationships. CFix may identify a
few fixes for a same concurrency problem due to the avail-
ability of multiple repair strategies for some classes of bugs.
These fixes are tested for performance and simplicity and
the best one is selected. Finally, the fixes produced for mul-
tiple bugs are merged to introduce the smallest number of
synchronization variables and operations in the program
under repair.

HFix [132] is an extension of CFix that addresses the prob-
lem of fixing concurrency bugs by only adding lock opera-
tions and condition variables unnecessarily increasing the fix
complexity in some cases. Both these approaches are designed
to solve an interleavings problem identified from the analysis
of the program. HFix produces simpler fixes by largely reus-
ing the code that is already present in the program rather than
generating new code. The technique consists of two bug fixing
approaches: HFix oy, and HFix . HFi2 joi, can fix an order
violation fault that involves two threads by inserting joining
operations that enforce the correct order of the operations.
HFiz,,0e can fix both order violation faults by re-arranging
the ordering of the operations with respect to join operations
moving operations to a new thread if necessary, and atomicity
violation faults by moving lock and unlock operations to
establish appropriate critical regions.

Surendran et al. [133] present a technique that aims to
repair data races in programs written with structured paral-
lel languages, specifically targeting the usage of two con-
structs that these languages use to achieve parallelization:
async and finish (used for creating and terminating tasks,
respectively). The technique takes a program that is not or
is partially synchronized and a test case as input, uses the
ESP-bags algorithm [134] to detect data races, and identifies
where to insert additional finish statements that can prevent
the generation of the discovered data races using a mix of
dynamic and static analyses that contribute in the formula-
tion of the repair problem.

Axis [135] addresses atomicity violations but assumes
that the statements involved in atomicity violation have
been already identified in some other way, that is, it does
not implement the behavioral analysis activity. Axis creates
a Petri Net model of the program, and encodes the correct
behavior of the software as control constraints that can be
solved mathematically to obtain a new Petri Net model
where the atomicity violation has been removed without
introducing any deadlock.

The new locks introduced in the generated Petri Net
model are added to the source code of the program to fix
the concurrency fault.

Grail [136] is a technique that extends Axis with the abil-
ity to generate fixes that are not only correct but also opti-
mal in the sense that mutual exclusion is applied only in the
exact scenarios when the bug may manifest. The fixes pro-
duced by Grail are also more efficient than the fixes pro-
duced by Axis because Grail takes into account both the
multiple runtime configurations that can expose concur-
rency failures and the synchronization behavior of the
threads. The analysis is still based on Petri nets models.

Lin et al. [137] present a technique that can repair dead-
locks, livelocks, and a third kind of starvation faults called
deadlivelock, which is a subtle blocking situation with both
threads blocked waiting for locks and threads actively

JANUARY 2019

trying to acquire locks. The approach used by this repair
technique is to first identify the sets of cyclic dependent
statements and all the lock and trylock statements in the pro-
gram. Then it encodes the desired program behavior as a
weighted partial MaxSAT formula that is solved looking for
solutions that minimize the size of the fix. If a solution is
found, the original program is modified accordingly, for
instance substituting lock with trylock and removing the
false branch of a trylock operation.

DFixer [53] can repair deadlocks without any risk to
introduce new deadlocks. The technique first analyzes the
program to identify where pairs of threads can create a
deadlock by acquiring resources in reverse order. This
information is exploited to construct a representation of the
program behavior and of the repair problem to be solved.
When a problematic situation is identified, DFixer selects
one of the two threads involved in the deadlock and repla-
ces the first lock operation that the thread performs with
one that also acquires the second lock. For example, if
thread, tries to acquire in succession two locks on two dif-
ferent resources r and s with operations acquire(r) and
acquire(s), and threads tries to acquire the same resources
but in reverse order, a possible fix is to replace acquire(r)
and acquire(s) in thread; with acquire(r, s).

6.2.5 HTML Generation Faults

HTML Generation Faults are faults in html generating code.
PHPQuickFix is a simple technique that can detect and
repair print statements that print literals with incorrect html
code [138].

More interesting PHPRepair can address faults caused by
the interaction of multiple constant print statements, such
as the presence of a missing < /td > tag in a dynamically
constructed HTML table [138]. PHPRepair first runs the
available test cases and characterizes test executions as
sequences of constant prints. These print statements are
then compared to the expected output according to the test
cases. This produces an encoding of the repair problem that
is solved by a string constraint solver that identifies what
the correct stream of prints should be. Finally, PHPRepair
adds, modifies, and deletes constant print statements in the
original program to match the expected behavior.

6.2.6 String Sanitization

String sanitization techniques repair routines that incorrectly
check the validity of input strings in Web applications.

SemRep [139] is a technique that can repair partial input
validation functions present in Web applications by auto-
matically adding the checks that are present in other valida-
tion functions but missing in the target function. The idea is
that similar validation functions might be present within
the same application and in different applications and they
can be exploited to repair incomplete validation functions
by transferring checks from one function to another. The
technique uses forward and backward symbolic string anal-
ysis to formulate the repair problem and transfer the valida-
tion, length, and sanitization checks.

Yu et. al [52], [140] present a technique that generates
fixes for input sanitization functions in Web applications.
The technique starts from an input pattern and an attack

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

TABLE 4
Fix Recommender Techniques
Fault model Techniques Section
general BugFix, MintHint, Section 7.1
Logozzo et al., QACrashFix
security BovInspector, Abadi et al., CDRep Section 7.2
faults
data type Coker et al., Malik et al. Section 7.3
misuses
concurrency ConcBugAssist Section 7.4
faults
performance Selakovic et al., CARAMEL Section 7.5
faults

pattern (specified as a regular expression) that breaks the
application and generates a fix in two phases. The first
phase, sanitization signature generation, automatically identi-
fies the signature of benign input strings. It first uses sym-
bolic string analysis to compute an over-approximation of
every possible string that can reach security sensitive func-
tions, that once intersected with the attack pattern indicates
the set of the possible attack strings. Backward symbolic
reachability analysis is then used to identify the malicious
user inputs that can produce these attack strings. The set of
safe inputs, that is, the sanitization signature, is given by
the inputs that are not in the set of the malicious user inputs
and that can be constructed with the application.

The second phase, optimal sanitization synthesis, generates
a sanitizer that automatically converts the malicious input
strings into benign strings while minimizing the degree of
intervention on the input according to an edit distance.

6.2.7 Access Control Violation

FixMelUp [42] specifically targets access control violation
faults in PHP Web applications. This technique works by
detecting the vulnerable program locations, and then trans-
forming the program sections that lack proper access con-
trol using an access control template.

FixMeUp requires a specification that indicates which
sensitive operations must be guarded by access control
checks, then it uses inter-procedural program slicing on the
call, data, and control dependence graphs of the program to
identify the statements that need to be guarded by an access
control check.

FixMeUp checks that for every sensitive operation and
for every calling context, only the user roles that are allowed
to execute the sensitive information can indeed do that. If a
violation is found, an appropriate template is used to fix the
program by inserting the missing access control check.

Finally, to detect the side-effects that might be intro-
duced by the repair, the analysis performed to reveal the
violations to the access control rules is repeated to check if
the problem has disappeared. If the problem has not been
fixed, the change is discarded. This process is repeated for
every problematic point in the program.

6.2.8 Memory Leaks

LeakFix [54] targets memory leaks in C programs. It works
by analyzing memory allocation statements and making

55

sure that there is no leak in any execution path. This is done
by first identifying the functions that allocate, use, or deallo-
cate memory, and then abstracting the program with a con-
trol flow graph that contains information about allocations,
uses, and deallocations. If a leak is detected, a free() state-
ment is added to a suitable location of the program to deal-
locate the unused memory.

7 Fix RECOMMENDERS

Fix recommenders are techniques that do not attempt to
produce fixes, but simply suggest a few changes that might
be operated on the software to repair the fault. In some cases
the recommended changes might fully describe the
required fix, in some other cases some effort might be
required to the developers to produce the final fix. Although
these techniques do not produce an actual repair, that is,
they do not produce a new version of the software that is
supposed to be correct, their output can be quickly turned
into a fix in the best cases.

A few fix recommender techniques have been proposed
so far. Here we discuss these techniques classified according
to their fault model. General techniques aim to be effective
with a range of programs, not limiting their scope to a spe-
cific class of faults. The other techniques can address security
faults, which make programs vulnerable to attacks; data type
faults, which may cause failures due to the misuse of data
structures and other types of data; concurrency faults, which
may cause deadlocks and other concurrency issues; and per-
formance faults, which may cause unacceptable execution
time for some functionalities.

Table 4 summarizes the discussed techniques (column
Techniques), the classes of faults addressed by each tech-
nique (column Fault model), and the section in which the
technique is described (column Section).

7.1 General Techniques

BugFix [39] can analyze the debugging information at a spe-
cific program statement and report to developers a list of
possible actions that may fix the faulty code. The technique
exploits spectrum-based fault localization to identify the
suspicious statements, and uses static and dynamic metrics
to classify and relate the problem that must be fixed to the
entries in a database of debugging rules. The fix suggestions
extracted from the database are finally reported as a priori-
tized list to the developer.

MintHint [141] also generates a ranked list of actions that
can be performed to fix a fault. MintHint identifies the state-
ments that are likely to be faulty using spectrum-based fault
localization. Each faulty statement is replaced by a symbolic
state transformer (i.e., a sort of abstract statement defined
on the state of the program only) that satisfies the property
of making the program pass all the available test cases. Min-
tHint then explores a space of possible changes that can be
performed on the faulty statement to obtain the same behav-
ior defined by the state transformer. The possible solutions
are finally returned to the developer ranked according to
their likelihood of occurring in the repaired statement.

Automatic program repair techniques can be experi-
enced also as fix recommenders if properly integrated with
the development environment. This possibility has been

56 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

investigated by Pei et al. [142] who integrated AutoFix-E
into the EiffelStudio Development Environment to automat-
ically find faults and recommend source code level fixes.

Logozzo et al. [143] present a technique that recommends
code fixes at design time for programs enriched with con-
tracts (preconditions, postconditions, and invariants). The
generation of a fix recommendation is triggered by verifica-
tion techniques for checking contracts, cccheck [144] in this
case. When an assertion does not hold, the technique
exploits a range of analyses based on either backward anal-
ysis or data type analysis to produce the possible fixes.

QACrashFix [55] automates the fixing process for the
faults that cause program crashes by extracting the possible
fixes from the code snippets posted by users in Q&A pages.
QACrashFix first analyzes the crash report of the applica-
tion to build a query that is submitted to a search engine to
retrieve a set of Q&A pages that are likely related to the
fault. The code snippets present in the retrieved pages are
then exploited to identify a set of changes that should be
implemented in the code to fix the fault. This analysis is
guided by natural language keywords that are searched in
the retrieved pages, such as “instead of” or “‘change x to y”’.
The changes that may fix the program are encoded in AST
level edit scripts that can transform the source code of a pro-
gram. The fix is finally applied by localizing the likely faulty
areas of the code that match the faulty code snippets present
in the retrieved Q&A pages and by running the AST edit
scripts. Note that the transformed code is not validated
automatically but it is simply presented to the developers
for manual inspection.

7.2 Security Faults

Bovlnspector [145] uses static analysis and symbolic execu-
tion to analyze buffer overflow threats and suggests fixes by
applying the following three change strategies: add bound-
ary checks, replace API calls with calls to safer API func-
tions, and modify buffer instantiation. The specific change
to be applied to each API call is based on a set of patterns.

Abadi et al. [146] present a technique that recommends
fixes for input sanitization routines in Java. The technique
uses a commercial tool to reveal vulnerabilities related to
input values and recommends fixes for escaping unsafe spe-
cial characters or, in case of SQL queries, for replacing the
unsafe Statement type with the safe PreparedState-
ment type. The analysis can consider the existence of
trusted values that must not be sanitized.

CDRep [147] targets cryptography misuses in Android
applications. In an initial phase it detects misuses in the
decompiled Java code using CRYPTOLINT [148]. It then sug-
gests fixes using a pre-defined set of transformation rules that
can modify the program by eliminating the detected misuses.
CDRep supports seven common cryptography misuses.

7.3 Data Type Misuses

Coker et al. [149] present a technique that can recommend
fixes for Integer type misuses in C programs. The technique
provides three program transformations that can be exe-
cuted from the Eclipse IDE: adding explicit Integer cast
operations, replacing arithmetic operators with calls to safe
functions that detect overflows and underflows, and chang-
ing the type of the Integer variables.

JANUARY 2019

Malik et al. [150] propose to exploit the reports generated
by data structure repair tools [151] to recommend fixes. The
presented technique takes as input a Java method, the struc-
tural invariants that the method must preserve when manip-
ulating the data structure, and an input that violates these
invariants, and produces a fix recommendation that should
prevent the violation of the invariants. The fix is determined
by first identifying the correct data structure that should be
produced instead of the corrupted one, and then identifying
the operations that should be performed to produce such a
data structure. Fixes are recommended to users based on a
set of predefined cases supported by the technique.

7.4 Concurrency Faults

ConcBugAssist [152] is a technique that diagnoses and sug-
gests fixes for concurrency faults. It applies bounded
model-checking to compute the program inputs and to
identify the erroneous thread schedules that make the pro-
gram fail (e.g., the violation of an assertion). It then uses a
MAX-SAT solver to compute the minimum set of thread
interleavings that causes the concurrency problem. The
model checking is then repeated using a blocking clause to
exclude the identified thread interleaving from the analysis.
This process is repeated iteratively until no new failing exe-
cutions can be generated. At this point, exploiting the block-
ing clauses that have been generated, the repair problem
can be instantiated as a binate covering problem, and the
possible solutions, in terms of the order relation enforcing,
are reported to the user.

7.5 Performance Faults

Selakovic et al. [153] present a technique that suggests fixes
for JavaScript performance faults. The technique is based on
23 recurring fix patterns defined at the level of the AST of
the program. Once a pattern has been applied, the original
and the changed versions of the program are executed and
compared. If the performance of the modified program
improves in a statistically significant way, the transforma-
tion is recommended to the developer.

CARAMEL [56] is a technique that suggests fixes for a
specific family of performance faults: applications that
waste time performing the computations inside a loop after
the loop condition has become true. These faults are typi-
cally fixed by the developers introducing break statements.

CARAMEL addresses these issues by first identifying the
statements inside the loop that, under certain conditions,
have no effect or useless effect (i.e., they affect variables that
are not used later in the computation) outside the loop. It
then checks if all the identified statements can be skipped
simultaneously, if so, the conjunction of the conditions asso-
ciated with the individual statements is used as a condition
to break the loop. Finally, CARAMEL checks if the loop
already terminates when such a condition is satisfied. If it is
not the case, CARAMEL reports a performance fault to the
user together with a potential fix of the form of a guarded
break condition to be included in the loop.

8 EMPIRICAL EVIDENCE

Software repair techniques have been evaluated in many
diverse contexts, including papers presenting new

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

approaches and independent empirical evaluations. We
analyzed the findings reported in these papers and recon-
structed the key empirical evidence that has been collected
so far. This evidence is important to understand the status
of the research in the area, to plan for additional studies,
and to identify future research directions.

We first discuss the benchmarks and the applications and
then we discuss the results, distinguishing between the
results obtained with generate-and-validate approaches
and with semantics-driven approaches.

8.1 Tools, Benchmarks, and Experimental Subjects
A number of automatic program repair techniques have been
defined so far, as surveyed in this paper. To facilitate repro-
duction and comparison among techniques, the availability of
tools as well as the existence of benchmarks and shared sub-
ject applications are of critical importance. We investigated
tool availability by checking if the existence of a publicly
accessible tool was reported in the papers presenting an auto-
matic program repair technique. We also checked the Web
site of the authors of the papers presenting new techniques
and we searched the Web entering tool names in Google.
Using this procedure, we have been able to find tools for 46
percent of the techniques surveyed in this paper. We reported
the tool name, its website, and the language addressed by the
tool in Appendix A. Although several tools are available, it is
also true that less than half of the techniques have a tool avail-
able on the Web according to our investigation. This may
make reproduction of the results and comparison among
techniques quite hard in practice.

In terms of the empirical studies, a variety of applications
and faults have been used to evaluate automatic program
repair techniques. In most of the cases the evaluations
involve real bugs in actual systems [154], [155], although
seeded faults have been also exploited sometime [156].
When a test suite is necessary for the purpose of the evalua-
tion, test suites written by the developers of the soft-
ware [154] and test suites automatically generated with
testing tools [24], [93], [138] are regularly used, and only the
earliest papers in the area considered smaller programs and
manually defined test suites for the purpose of the evalua-
tion [35], [64], [97].

Studies focused on the use of unit test cases, with sys-
tem test cases sometime used for command line applica-
tions, while interactive applications equipped with GUI
test cases and acceptance test cases have been seldom con-
sidered. PHPRepair [138] and R2Fix [120] are two excep-
tions since they use GUI test cases and test cases similar to
acceptance test cases derived from user-supplied bug
reports, respectively.

In terms of size, automatic program repair techniques
have been already successful with programs with hundreds
of thousands of lines of codes, and in a few cases scaled up
to pretty large programs with millions of lines of code [154].
This is a good initial evidence of the scalability of the
approach, although the range of large applications that
have been experimented with automatic program repair
techniques is still too limited to conclude anything about
their scalability.

In our analysis, we indeed noticed that the range of
cases that have been used for the evaluation have been

57

strongly influenced by the publicly available benchmarks.
In fact, the set of applications that have been initially
used to evaluate GenProg [20] together with the Many-
Bugs and IntroClass benchmarks [154] have been used as
experimental subjects in 32 percent of the papers that we
analyzed. If we also include the SIR benchmark [156], this
percentage increases to 45 percent. If we exclude the
papers just using examples as a form of validation and
the papers that address concurrency and security faults,
which require specific classes of faults for the evaluation,
these two percentages increase to 44 and 62 percent,
respectively. We can conclude that, although having
benchmarks is important because it facilitates the compar-
ison among techniques, there is also a tangible risk of
producing a research that may overfit the available
benchmarks. It is thus important to better exploit the set
of benchmarks that are currently available (e.g., the CoR-
EBench [155], Defect4] [157], and IBugs [158] benchmarks
have been used only in 3, 2, and 2 percent of the papers,
respectively) and to make the effort to design and release
additional benchmarks that can help achieving general
results.

8.2 Evidence for Generate-and-Validate Approaches
We organize the main pieces of evidence that we extracted
from the papers on software repair based on generate-and-
validate in three sets: empirical evidence about the impact
of the test suite, empirical evidence about the impact of the
search space, and other empirical evidence on the effective-
ness of generate-and-validate approaches.

8.2.1 Impact of the Test Suites

In general, generate-and-validate techniques run test suites
to check the quality of the candidate solutions and deter-
mine if any plausible fix can be reported to the user. Here
we report the main findings about how test suites can influ-
ence the repair process.

The size of the test suites may strongly influence the quality
of the generated fixes: The behavior of generate-and-vali-
date techniques extensively depends on the available test
cases. Having a small test suite that partially covers the
behavior of the program under repair may induce a gen-
erate-and-validate technique to repair a fault by dropping
the functionalities that are not checked by the tests but
interfere with the repairing problem [110], [159]. A ten-
dency to produce programs that pass all the test cases by
dropping statements has been also reported in [160],
where biasing the choice of the mutation operator in favor
of the delete statement operator improved the success
rate and decreased the repair time of GenProg. On the
other hand, having large test suites that extensively (and
unnecessarily) cover the execution space of the program
under repair may slow down the repairing process [29],
[41], [161]. To successfully repair a program is thus
important to have test suites that efficiently sample the
execution space, covering most of the behaviors possibly
without redundancies [20], [22], [27], [29].

The nature of the test suite may impact on the generated fixes:
Some studies reported that using test suites with high cov-
erage might be beneficial for generate-and-validate techni-
ques [162]. This may let people believe that adding many

58 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

positive test cases to the test suites is a good strategy to
build test suites that effectively guide the repair process.
This does not seem to be necessarily true. In fact, empirical
results have shown that test suites with many positive test
cases make the repair process harder [110], [161], only par-
tially compensating this trend with a better quality of the
fault localization [161]. On the contrary, there is small evi-
dence that a good number of failing test cases might be
sometime beneficial [161].

Preliminary studies investigated the impact of the kind
of coverage achieved by a test suite and the effectiveness of
the repair process reporting that test suites satisfying branch
coverage can more effectively prevent the generation of
wrong fixes compared to random test suites and test suites
satisfying statement coverage [36].

Running the test cases is the dominant cost of the repair pro-
cess: When non-trivial programs are analyzed, the main
computational cost for techniques evolving a set of candi-
date solutions is in the computation of the quality of each
solution, which implies running all the available test cases
for all the candidate solutions [29]. For instance, it has been
reported that this cost may amount to the 64 percent of the
total repair time for GenProg [41].

This empirical evidence explains why techniques that
do not evolve the candidate solutions (e.g., RSRepair and
AE), although they are not able to produce fixes resulting
from the application of multiple change operators, might
still be successful, sometimes being more efficient than
algorithms that evolve the candidate solutions (e.g., Gen-
Prog). In fact, these techniques only need to run the test
cases to check if a candidate solution is satisfactory and
tests execution might be interrupted when the first test
case fails, thus incurring in significantly lower test execu-
tion cost compared to techniques that always execute
the whole test suite. The efficient use of the test cases
leads to a higher number of program fixes generated and
checked.

Fast et al. [163] investigated how to increase the effi-
ciency of the repair process by reducing the number of
test cases that must be executed to evaluate the candidate
solutions. In particular, they studied the effectiveness of a
repair process that evaluates each candidate solution on a
random subset of the test cases instead of using the whole
test suite. The full evaluation is conducted only if the can-
didate solution passes all tests in the selected subset. This
optimization has been reported to reduce the running
time of GenProg by 81 percent. Although this approach
introduces noise in the evaluation of the fitness function,
the results suggest that this may not be a problem in
practice.

How tests cover faults is more important than the complexity
of the fault: The success of generate-and-validate techni-
ques have been reported to be strongly influenced by how
well test cases sample the faulty behavior, rather than by
the complexity of the fault itself [20], [22], [27], [29]. Of
course, a fault could be fixed only if the fix exists in the
search space of a repair technique, which implies that the
fault can be fixed by applying one or a combination of the
change operators used by the technique. However, sam-
pling well the fault is a key factor to produce successful
repairs.

JANUARY 2019

8.2.2 Search Space

The shape of the search space explored by a repair tech-
nique is of crucial importance for its success. Aspects like
the density of plausible and correct solutions can be decisive
factors influencing the effectiveness of a repair process.

The size and shape of the search space mostly depend on
the strategy (e.g., search-based vs brute-force) and the
change operators (e.g., atomic vs templates) used to pro-
duce the candidate solutions. In this section, we report the
main findings about the relation between the search space
and generate-and-validate techniques.

Unclear impact of the strategy: The impact of the strategy,
either search-based or brute-force, and also the effect of the
individual variants of a strategy, such as using genetic pro-
gramming or random search, are not clear. There is con-
trasting evidence, sometime showing that one can be
beneficial on the other, and vice versa. For instance, random
has been reported to be more effective and more efficient in
the generation of plausible fixes than genetic program-
ming [29], [164] and vice versa [161].

This partially contradicting evidence might be due to fac-
tors that are difficult to control. For instance, the effective-
ness of a strategy may depend on the available test cases,
the faults and the type of the program under repair. More-
over, techniques usually do not differ only on the search
strategy but also implement other heuristics and optimiza-
tions that may impact on the observed results. So when dif-
ferent results are reported, it is always hard to isolate the
effect of the search strategy from other confounding factors.

Overall, there is still little solid evidence about the search
strategy that should be preferred to approach automatic
software repair.

Brute-force might be preferable for repairing small programs:
Kong et al. [161] reported preliminary evidence that brute-
force techniques may benefit from the reduced execution
time that often characterizes small programs, because they
can efficiently explore a large portion of the search space,
compared to techniques that evolve the candidate solutions,
which still require executing the whole test suites many
times at each iteration and that are frequently unable to
compensate this additional cost with a higher effectiveness.
While with larger programs, where the exploration per-
formed by brute-force techniques is limited, the difference
between brute-force and other approaches is not significant.

The cost of repeatedly running test cases can be at least
partially compensated with fitness sampling techniques,
which only require executing random subsets of a test suite,
as investigated in [87], [163].

This evidence might be an interesting starting point of
additional investigations, which are necessary to confirm
this preliminary result.

Few correct fixes in the search spaces: While generate-and-
validate techniques have been reported to be able to gen-
erate plausible fixes, that is, fixes that pass all the avail-
able test cases, a careful analysis of these fixes revealed
that most of them would be hardly acceptable by the
developers [110], [159]. These plausible but hardly accept-
able fixes have been obtained due to the weaknesses of
the available test cases, which easily allow for program
changes that would not be allowed by developers (e.g.,
dropping functionalities).

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

A careful analysis of the search space produced by gener-
ate-and-validate techniques revealed the presence of few
correct fixes, often hindered by the presence of several plau-
sible fixes that could be erroneously returned to the devel-
opers before a correct fix can be reached [159]. This
evidence raises issues about the properties that the test
suites that should be used to guide generate-and-validate
approaches should satisfy (see also Section 8.2.1).

A technique with a narrow change model might be preferable
when the fix is in the scope of the technique: Generate-and-
validate techniques which reuse statements in the same
application [20], [29], [111] might have hard time distin-
guishing plausible and correct fixes, while techniques
with a narrower change model [27], [36], [45], [50], [110],
although limited to the modifications foreseen when the
technique has been designed, have reported good results in
term of their capability to produce correct fixes. Developers
should likely experience these techniques first, before trying
with techniques using a general change model.

Larger search spaces do not necessarily correspond to a more
effective repair process: Increasing the search space in prin-
ciple increases the range of faults that can be repaired
with a generate-and-validate technique, but it might be
deleterious in practice. In fact, increasing the search space
might actually decrease the density of the correct fixes
making the whole process less effective, as reported
in [159].

Martinez et al. [165], [166] studied the problem of effec-
tively navigating large fix spaces. They extracted the repair
actions that have been performed to fix the software in sev-
eral software versions and defined a probability distribution
that identifies which repair actions are more successful at
fixing faults. In their study, they observed that the likely-
correct fixes are concentrated in specific regions of the
search space and that exploiting probabilities to select repair
actions might be beneficial in directing the search towards
these regions.

Changes can often be assembled from the code that is already in
the program: An analysis of the changes in several large Java
projects [100] empirically validated the plastic surgery
hypothesis, which states that the content of new code in an
application can be mostly derived from code that already
exists in it. This hypothesis is particularly important for
general search-based techniques that use change operators
that borrow code from different parts of the program under
repair. Results show that 43 percent of the application’s
new code (including fixes) can be reconstituted from exist-
ing code in the version being changed. Moreover they found
that 30 percent of the new code in commits can be found
within the same file.

A similar analysis is presented in [167], where the tempo-
ral redundancy assumption is validated. A temporal redun-
dant commit is composed of code elements that can be
found in previous commits. Results show that 52 percent of
commits are temporally redundant.

Overall these results support the idea that general pro-
gram repair solutions can be defined by reusing the code
that is already present in the same program.

Taking statements from other programs may help fixing more
faults: Generate-and-validate techniques that reuse state-
ments in the same application when modifying the source

59

code of a program (e.g., GenProg) are limited by the fact
that if the application requires a line of code that is not pres-
ent in its source code, the technique will not be able to find
a correct fix. Sumi et al. [168] investigated the actual possi-
bility to generate fixes from statements taken from other
programs by abstracting the structure of the borrowed state-
ment and using variable names that appear close to the fault
location instead of the variable names originally found in
the statement. In their experiments, they observed a 20 per-
cent increase in the number of plausible fixes generated
using this approach.

To efficiently select the statements that can be used to
fix faults, Yokoyama et al. [169] investigated the idea of
using the statements present in the code regions that are
similar to the region that must be fixed. An analysis of
several bug reports showed that more than 75 percent of
the faults can be fixed using code already present in the
application in code regions similar to the faulty one, sug-
gesting that this heuristic is potentially useful for the pro-
gram repair process.

Anti-patterns can be used to reduce the search space by
removing the regions that are likely to produce wrong fixes:
Tan et al. [170] identified several anti-patterns that define
regions of the search space that frequently lead to fixes
that are discarded by the developers and used these
anti-patterns to prune the search space. Experiments
with SPR and GenProg show that anti-patterns have
been useful to produce meaningful fixes that are less
likely to remove functionalities and are easier to inspect
manually.

8.2.3 Effectiveness

Empirical evidence shows that there are other factors influ-
encing the effectiveness of generate-and-validate techniques
than the test suite and the search space. This section dis-
cusses these factors.

Using templates extracted from human-written fixes improves
acceptability: Templates are often defined from fixes imple-
mented by developers. Since these fixes are likely to resem-
ble the way developers change their code, the templates
obtained from these fixes are more likely to produce
changes that might be immediately accepted by the devel-
opers. This aspect has been studied in [22] by involving
both computer science students and software developers.
Results suggest that templates can produce fixes that are
more acceptable than the ones obtained by techniques using
atomic change operators.

Spectrum-based fault localization effectively biases the repair
process: Most of the generate-and-validate techniques
exploit spectrum-based fault localization to determine
where a program should be changed at each iteration (see
Section 5.1). Biasing the selection of the statements to be
modified with spectrum-based fault localization has been
consistently reported as useful, compared to an unbiased
selection of the point that should be changed in a pro-
gram [20], [22], [27], [29].

Qi et al. [171], [172] empirically compared the effective-
ness of 14 spectrum-based fault localization techniques in
terms of the number of invalid candidate solutions that
GenProg produces before generating a valid fix. In this

60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

experiment, the Jaccard coefficient [90] always results in
higher or equal effectiveness compared to other localization
techniques.

Automatic bug fixing is cheap: Automatic software repairing
is not for free because fixes require significant resources to be
generated. Two studies quantified this cost for the AE and
GenProg search-based techniques [87], [111]. They conducted
the experiments on the Amazon’s cloud computing infra-
structure, and they computed the cost per fault by dividing
the cost of renting the infrastructure by the number of bugs
that have been repaired. Early results show that the cost of fix-
ing a fault is 4.40% with AE and 14.78% with GenProg.

Although automatically fixing faults seem to be
extremely cheap, this evaluation does not consider the effort
that the developers have to spend inspecting the output
produced by software repair techniques to check the fixes.
Note that several fixes might be discarded by the develop-
ers [110], so doing this check is not a trivial activity. Study-
ing the overall cost of the automatic repair process is still an
open issue.

The representation of the problem (Ppair) has a strong impact
on the effectiveness of the repair process: Generate-and-validate
techniques differ in the representation of the individuals,
the definition of the search space, and the design of the
mutation and crossover operators. Le Goues et al. [160]
empirically studied the impact of various aspects on the
repair process. One of the reported results shows that repre-
senting individuals as a list of modifications to the original
program outperforms AST representation in terms of suc-
cess rate.

Smoothening the gradient of the fitness function may poten-
tially improve the automatic repair process. Fast et al. [163]
investigated the idea of using Daikon [16] to learn pro-
gram invariants that characterize the behavior of success-
ful and failed executions. The differences between the
program invariants associated with the program under
repair and the invariants associated with the candidate
solutions can be used in the definition of the fitness func-
tion, smoothening its gradient: a specific candidate solu-
tion might still fail a test case but it could turn an invariant
to true. In this way the repair process may better capture
progresses toward the identification of a fix. In their
experiments, Fast et al. observed that a smoothed fitness
function can better guide the search process, but the cost
of computing this specific function overcame the benefits
for the search process overall resulting in a 3 percent aver-
age overhead.

8.3 Evidence for Semantics-Driven Approaches
Semantics-driven techniques have been studied less exten-
sively than generate-and-validate techniques and many of
the factors that influence their effectiveness are still
unknown. However, the empirical results collected so far
are sufficient to report some interesting observations.

The size of the test suite may strongly influence the
generation of the fixes: As for the generate-and-validate
approaches, bigger test suites produce more data making
the generation of the fixes harder due to the many con-
straints that must be satisfied to match the collected data.
For instance, the problem of synthesizing a new clause
for an if condition is harder if the new clause has to

JANUARY 2019

satisfy thousands of constraints collected by executing a
large test suite rather then a dozen constraints. Intuitively
it is harder to generate repairs that pass many tests. How-
ever, it is important to note that fixes that are generated
from small test suites might be inaccurate and produce
wrong behaviors when thoroughly validated. It is thus
important also for semantics-driven techniques to work
with test suites that extensively cover the behavior of the
program for the statements that must be repaired, with-
out being unnecessarily large or redundant, as early expe-
rienced in SemFix [21].

Program synthesis techniques are faster than expression
enumeration techniques: Identifying a fix by explicitly enu-
merating all the possible expressions that can be con-
structed starting from a set of program variables and
operators is easier than using program synthesis techni-
ques, but it is also significantly slower. For instance, Sem-
Fix estimates that producing constraints by enumeration
might be four times slower than using program synthesis
techniques [21].

SMT solving is the dominating cost factor in the repair
process: While test case execution is the major cost factor in
generate-and-validate techniques, SMT solving is the domi-
nating cost factor in semantics-driven techniques. It has
been reported that SMT solving can take up to 99 percent of
the total repair time [26]. Designing semantics-driven tech-
niques that make a better use of solvers is thus an important
direction for the future.

Fixes of concurrency faults may significantly affect the per-
formance of the program under repair: Concurrency fault
detection techniques might be inaccurate, for instance
identifying large code regions as faulty regions (e.g.,
regions that may trigger an atomicity violation bug). As
a consequence, repair techniques may generate large crit-
ical regions protected by lock and unlock operations pro-
ducing significant overhead in the program under
repair [82]. This is an example of how a fix for a fault
(e.g., a concurrency fault) might introduce another fault
(e.g., a performance fault).

9 OPEN CHALLENGES

Automatic program repair techniques have already demon-
strated their effectiveness in a number of non-trivial con-
texts, but their general applicability as well as the
possibility to exploit this technology in industrial settings
must still be demonstrated. In our analysis, we identified a
number of important challenges as well as research trends
suggesting where the future effort in the area might concen-
trate. In this section we report these challenges organized in
three sections: fix correctness challenges, process chal-
lenges, and technical challenges.

9.1 Fix Correctness Challenges

Plausible versus Correct Solutions: Most of the techniques can
generate plausible fixes, for instance fixes that pass all the
test cases in an available test suite. In contrast, developers
need correct fixes, that is, fixes that satisfy all the require-
ments of the program under repair. Although the use of test
suites has undoubtedly been the main method to validate
the automatically generated fixes, other approaches have

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

been also experienced, such as the use of specifications [42]
and code contracts [94]. However, also in these cases the
generated fixes are only plausible, that is, they are correct
according to the specific validation criterion that has been
used (e.g., a specification or a contract), and they are not
necessarily correct for the developers.

To mitigate this issue, some approaches investigated the
definition of repair operators inspired from actual fixes writ-
ten by developers [22], [119], [120], others considered the
manual inspection of the fixes as the most useful validation
method [55]. However, it is still a generally open challenge to
identify methods to produce fixes that are correct and under-
standable according to the developers’ judgment [51].
Although it might be infeasible to produce fixes that are
“guaranteed” to satisfy the developers’ expectations, finding
methods to generate and evaluate fixes that are likely accept-
able by developers is an important research direction.

Non-Functional Qualities of the Fixes: The gap between
plausible and correct solutions is exacerbated by the many
non-functional qualities that a fix should satisfy to be fully
acceptable by a software developer. For instance, develop-
ers may need fixes that are both secure and computationally
efficient, aspects that are often badly covered or even
ignored by the available test suites. The challenge of satisfy-
ing the non-functional qualities, especially the ones that are
hard to test with test suites, is an open research issue.

The clarity of the fix is also important. An acceptable pro-
gram change must usually satisfy structural and syntactical
requirements defined in terms of best coding practices and
naming conventions. These practices may vary a lot organiza-
tion by organization, and automatic repair techniques must
satisfy a non-trivial level of customization and sophistication
to effectively consider all these aspects when producing fixes.

Cross-Validating the Automatically ~ Generated Fixes.
Although a fix produced by an automatic program repair
technique might be directly accepted without any modifica-
tion by a developer, in practice developers need to check its
correctness before it can be integrated into a program. While
some fixes might be trivial to check, a number of fixes might
be non-obvious and require a certain degree of adaptation
to be finalized. The effort required to cross-check and
understand a fix might be significant, potentially mitigating
the benefit of automatic techniques.

However automatic program repairing techniques, in
addition to generating fixes, might be able to generate infor-
mation that explains the rationale of the fix and that facili-
tates and assists the developer during the validation of the
fix. Producing this additional piece of knowledge is an open
challenge.

9.2 Process Challenges

Selecting the right technique for the right case: How to select the
appropriate program repair solution in a given situation is
an important open problem. There are choices to be made at
multiple levels. On the first place, developers may prefer
fully automatic repair techniques to fix recommenders, or
vice versa. This choice may depend on the developer’s pref-
erences, but also on the nature of the repair task. For
instance, some tasks might be hard to be completely auto-
mated and fix recommenders may represent a valid
option in these cases. Unfortunately, there is still little

61

understanding when one class of approaches should be pre-
ferred to the other.

Another variable is whether opting for a fault-specific or
a general technique. A good strategy might be preferring
fault-specific techniques when applicable, and use general
techniques otherwise. Unfortunately it might be hard to
guess a-priori what the fault to be repaired is, and thus it
might be extremely difficult to choose the right fault-specific
technique, unless the failure is already explicative of the
nature of the fault, such as for infinite loop failures.

Another level of decision is the choice of the type of
change model and of the algorithmic strategy that should
be adopted to fix a fault. The ability to make these choices
might significantly facilitate the selection of a repair tech-
nique. However, since a fault is unknown until it has been
fixed, taking these decisions is extremely hard in practice.

A preliminary result about the identification of the
method that should be used to address a fault is the work
by Le et al. who defined a method to decide if a bug report
should be addressed with standard techniques or with an
automatic program repair technique [173].

Defining Methodologies and Adapting Software Processes:
The definition of suitable methodologies and software pro-
cesses to efficiently integrate software repair techniques
into industrial processes is still a completely open research
area. Aspects that deserve more attention are understanding
how to design programs that can be effectively repaired
automatically, defining when automatic program repair
routines should be executed and how their output should
be integrated into organization processes, and revise
responsibilities and roles of the quality assurance process.

The Challenge of a Fully Automatic Repair Process: While
program repair techniques can sometime automatically pro-
duce reasonable fixes, the acceptability of a fix is still rele-
gated to the judgment of developers. The benefit of using
these techniques would be evident if the repair process
could be fully automated, at least in some cases. Some
approaches investigated the possibility to automatically
generate and deploy “quick-and-dirty” fixes in the
field [101], [174], [175], but automatically producing devel-
oper-quality fixes is still a long-term challenge.

Program Maintainability: While it is well-known how to
maintain programs subject to regular human-driven
changes, how to maintain software programs subject to a
mix of changes actuated by both developers and auto-
matic program repairing techniques is still unclear. In
principle, automatic fixes of low internal quality may
hinder code maintainability, and their accumulation may
lead to major issues on software evolvability. Designing
techniques that fix programs without negatively affecting
the maintainability of a software project is still a largely
unexplored area.

9.3 Technical Challenges

Scattered Set of Findings: There are many software repair
techniques and many studies available, however findings
are still scattered and difficult to be synthesized into a clear
picture. This is often due to the mix of innovation (e.g., pre-
senting a new strategy for the synthesis of program fixes),
and optimizations (e.g., prioritizing the test cases for the
validation) introduced by each work in the area. Due to the

62 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

overlapping effect of these factors it is sometime hard to
establish what the factor influencing more the results is. Is it
the strategy? Is it a specific heuristic? Is it the quality of the
implementation? The way all these factors may interfere
when comparing and studying the solutions in a same area
has been also discussed in [176].

It is important to improve the maturity of the field and
obtain a better understanding of the strategies and the heu-
ristics that are important and useful, and that should be
present in every automatic program repair technique, for
instance by increasing the number of independent studies
on the impact of equivalence checking [111], optimized
representation of the candidate solutions [27], [102], and
test prioritization schema [29], [106].

Test Suites for Program Repair: There is clear evidence that
test suites may have a dramatic impact on the effectiveness
of both generate-and-validate (see Section 8.2.1) and seman-
tics-driven techniques (see Section 8.3). However there is
only initial evidence of the factors that characterize a good
test suite for program repair, such as the strength of the ora-
cle [110] and its completeness [36], [159]. This results in the
lack of guidelines about the construction of test suites that
can optimally support the automatic repair process. Defin-
ing proper methods to create these test suites may have a
dramatic impact on the effectiveness of program repair
solutions.

Design for Program Repair: There is evidence that the com-
plexity and the structure of a program (e.g., the presence of
statements that may increase the effectiveness of general
program repair techniques [100], [167]) as well as the pres-
ence of annotations (e.g., the presence of function pre- and
post-conditions [92]) have an influence on the success and
the type of program repair techniques that can be applied.
This raises a more general question about whether we can
build software that facilitates program repairing, for
instance using a specific coding style, or avoiding/prefer-
ring some programming constructs to others, or using spe-
cific libraries. Since we cannot expect program repair
techniques to be able to address every possible situation, we
should think about building software ready to be repaired
automatically.

Alternative Validation Mechanisms: Almost all the gener-
ate-and-validate techniques use testing as validation mecha-
nism. However, test cases have demonstrated several
limitations when used to validate candidate solutions. In
particular, a weak test suite may favour repairs that drop
functionalities, and strong test suites may make the genera-
tion of correct fixes extremely hard [110]. While understand-
ing how to design good test suite for program repair is
definitely an option, test suites are not the only option for
validation. For instance, FixMeUp [42] uses access control
rules as validation mechanism. More in general, automatic
program repair should investigate alternative validation
mechanisms, for instance based on the reuse of the same
artifacts used to define the requirements or the design of the
software, that might complement the validation performed
with the test suite obtaining better fixes.

Producing Better Search Spaces: The search spaces
defined so far have been demonstrated to not include
enough correct programs to enable the design of efficient
and general program repair solutions [159]. It is thus

JANUARY 2019

necessary to produce better search spaces with a higher
density of correct fixes that can be efficiently discovered
with program repair techniques. To this end, it is impor-
tant to exploit as many sources of information as possible,
including fixes from other applications and systems, user
hints, specifications, and comments. So far, only the exist-
ing fixes have been exploited by example-based techni-
ques (see Section 6.1.3).

Benchmarks: To let the field progress, it is important to
have a good number of benchmarks that researchers could
use to assess and compare techniques. Automatic program
repair techniques have already extensively exploited some
of the available benchmarks, such as the applications and
the faults defined in the ManyBugs benchmark [154] and in
the SIR repository [156]. While these benchmarks are defi-
nitely useful, it is important to better exploit the available
resources and define additional benchmarks enriching the
set of faults and cases considered as subjects of the experi-
ments to prevent the risk of collecting empirical evidence
biased by the use of a limited set of benchmark applications
and faults, and to increase the capability of delivering find-
ings that generalize beyond the specific cases that have been
analyzed.

Better Use of Test Suites and Solvers: Running the test suites
in generate-and-validate techniques [41] and running the
solvers in semantics-driven techniques [26] have been
reported as the dominating cost factors. Since the design of
more efficient solutions allows a more thorough exploration
of the search space and a more effective synthesis, it is
important to reduce these costs. Some techniques have par-
tially addressed this problem for instance prioritizing the
test cases to reduce the cost of test execution [29], [106].
However, it is necessary to design repair techniques that
perform a definitely smarter and better use of these expen-
sive technologies to improve program repair solutions by
order of magnitudes.

10 CONCLUSIONS

Automatic program repair techniques address the ambi-
tious challenge of automatically repairing faulty software.
In the last decade, program repair techniques have pro-
duced relevant and impactful results demonstrating the
potential of significantly affecting testing, validation, and
debugging practices on the long term.

This paper organizes the knowledge in the area, survey-
ing the existing work, and discussing the main results and
challenges. In particular, this paper shows that program
repairing approaches address the problem of repairing
software according to two main strategies. Generate-and-
validate approaches generate a search space of the possible
fixes and then explore this search space looking for a correct
fix. Semantics-driven approaches produce a representation
of the problem of fixing a program and solve this problem
to obtain the actual fixes.

We integrate and summarize the empirical evidence col-
lected from multiple diverse studies into a set of key facts
that show the tradeoffs and factors influencing the effective-
ness of these approaches. We finally discuss the challenges
we believe are the most important and that can influence
the future research in the area.

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

APPENDIX A
PuBLICLY AVAILABLE TOOLS

Technique Tool Language
Angelix http://angelix.io/ C
ARC https:/ /github.com/sqrlab/arc/ Java
AutoFix-E2 http://se.inf.ethz.ch/research/autofix/ Eiffel
(AutoFix)
ConcBugAssist http://www-bcf.usc.edu/~wang626/ C
project_concbugassist.htm
DFixer http://Ics.ios.ac.cn/~yancai/dfixer/release_lk/ C
SourceCodeRelease_2015Nov17.7z
DynaMoth https:/ /github.com/SpoonLabs /nopol Java
AE http://dijkstra.cs.virginia.edu/ genprog/ C
GenProg http://dijkstra.cs.virginia.edu/genprog/ C
Grail https:/ /github.com/Ipxz?tab=repositories Java
History-driven https://github.com/xuanbachle/bugfixes Java
repair
JAFF http:/ /sachaproject.gforge.inria.fr/mirror/ Java
abf-jaff-arcuri.zip
KALI http://groups.csail.mit.edu/pac/patchgen/ C
Leakfix http://sei.pku.edu.cn/~gaoqing11/leakfix/ C
MintHint http://www iisc-seal.net/minthint C
MUT-APR http://fyassiri.wixsite.com/mutapr C
Nopol https:/ /github.com/SpoonLabs /nopol/ Java
PACHIKA http://www.st.cs.uni-saarland.de/models / Java
Prophet http://groups.csail.mit.edu/pac/patchgen/ C
pyEDB https:/ /bitbucket.org/tomackling / pyedb Python
QACrashFix http://sei.pku.edu.cn/~gaoqing11/qacrashfix/ Java
RSRepair (aka http://qiyuhua.github.com/projects/rsrepair/ C
TrpAutoRepair)
SearchRepair https://github.com/ProgramRepair/SearchRepair/ C
SemRep http://cs.ucsb.edu/~vlab/tools.html php
SPR http://groups.csail. mit.edu/pac/patchgen/ C
Surendran et al. http://dl.acm.org/citation.cfm?id=2594335 Habanero
Java

ACKNOWLEDGMENTS

The authors would like to thank Fan Long, Shan Lu, Xiao-
guang Mao, and Abhik Roychoudhury for their comments
on an early version of this paper. This work has been par-

tially

supported by the EU H2020 ““Learn” project, which

has been funded under the ERC Consolidator Grant 2014
program (ERC Grant Agreement n. 646867) and the
“GAUSS” national research project, which has been funded
by the MIUR under the PRIN 2015 program (Contract
2015 KWREMX).

REFERENCES

[1]

[2]

[3]

[4]

[5]

T. Britton, L. Jeng, G. Carver, and P. Cheak, “Reversible debug-

ging software - quantify the time and cost saved using reversible

debuggers,” 2013.

Undo Software, “Increasing software development productivity

with reversible debugging,”” Undo Software, Tech. Rep. white

paper, 2014.

M. A. Miillerburg, “The role of debugging within software engi-

neering environments,” ACM SIGSOFT Softw. Eng. Notes, vol. 8,

no. 4, pp. 81-90, 1983, doi: 10.1145/1006147.1006165.

B. Hailpern and S. Padmanabhan, ““Software debugging, testing,

and verification,” IBM Syst. J., vol. 41, no. 1, pp. 4-12, 2002, doi:

10.1147/5j.411.0004.

A. Zeller, Why Programs Fail, Second Edition: A Guide to Systematic

Debugging, 2nd ed. Burlington, MA, USA: Morgan Kaufmann,
009.

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

63

J. A. Jones and M.]. Harrold, “Empirical evaluation of the Taran-
tula automatic fault-localization technique,” in Proc. Int. Conf. Auto-
mated Softw. Eng., 2005, pp. 273-282, doi: 10.1145/1101908.1101949.
C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff, ““Sober: Statistical
model-based bug localization,” in Proc. Joint Meet. Eur. Softw.
Eng. Conf. Symp. Foundations Softw. Eng., 2005, pp. 286295, doi:
10.1145/1081706.1081753.

R. Abreu, P. Zoeteweij, and A.]J. C. van Gemund, “Spectrum-
based multiple fault localization,” in Proc. Int. Conf. Automated
Softw. Eng., 2009, pp. 88-99, doi: 10.1109/ ASE.2009.25.

A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?”” in Proc. Joint Meet. Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 1999, pp. 253-267, doi: 10.1007 /3-540-48166-4_16.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,”” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183—
200, Feb. 2002, doi: 10.1109/32.988498.

A. Zeller, “Isolating cause-effect chains from computer pro-
grams,”’ in Proc. Symp. Foundations Softw. Eng., 2002, pp. 1-10,
doi: 10.1145/587051.587053.

L. Mariani and F. Pastore, ““Automated identification of failure
causes in system logs,” in Proc. Int. Symp. Softw. Rel. Eng., 2008,
pp- 117-126, doi: 0.1109 /ISSRE.2008.48.

A. Babenko, L. Mariani, and F. Pastore, ““AVA: Automated inter-
pretation of dynamically detected anomalies,” in Proc. Int. Symp.
Softw. Testing Anal., 2009, pp. 237-248, doi: 10.1145/
1572272.1572300.

L. Mariani, F. Pastore, and M. Pezze, “Dynamic analysis for diag-
nosing integration faults,” IEEE Trans. Softw. Eng., vol. 37, no. 4,
pp- 486-508, Jul./ Aug. 2011, doi: 10.1109/TSE.2010.93.

D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso, “MIMIC:
locating and understanding bugs by analyzing mimicked execu-
tions,” in Proc. Int. Conf. Automated Softw. Eng., 2014, pp. 815-
826, 10.1145/2642937.2643014.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to support
program evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 2,
pp- 99-123, Feb. 2001, doi: 10.1145/302405.302467.

D. Lorenzoli, L. Mariani, and M. Pezze, “Automatic generation
of software behavioral models,” in Proc. Int. Conf. Softw. Eng.,
2008, pp. 501-510, doi: 10.1145/1368088.1368157.

M. Gabel and Z. Su, “Testing mined specifications,” in Proc. Int.
Symp. Foundations Softw. Eng., 2012, pp. 4:1-4:11, doi: 10.1145/
2393596.2393598.

I. Krka, Y. Brun, and N. Medvidovic, ““Automatic mining of spec-
ifications from invocation traces and method invariants,” in Proc.
Int. Symp. Found. Softw. Eng., 2014, pp. 178-189, doi: 10.1145/
2635868.2635890.

W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automati-
cally finding patches using genetic programming,” in Proc. Int.
Conf. Softw. Eng., 2009, pp. 364-374, doi: 10.1109/
ICSE.2009.5070536.

H. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, ““Semfix:
Program repair via semantic analysis,” in Proc. Int. Conf. Softw.
Eng., 2013, pp. 772-781, doi:10.1109/ICSE.2013.6606623.

D. Kim, J. Nam, J. Song, and S. Kim, ““Automatic patch genera-
tion learned from human-written patches,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 802-811, doi: 10.1109/ICSE.2013.6606626.

F. DeMarco, J. Xuan, D. L. Berre, and M. Monperrus, ““Automatic
repair of buggy if conditions and missing preconditions with
SMT,” in Proc. Int. Workshop Constraints Softw. Testing Verification
Anal., 2014, pp. 30-39, doi: 10.1145/2593735.2593740.

S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard,
“’Automatic error elimination by horizontal code transfer across
multiple applications,” in Proc. Conf. Program. Language Des.
Implementation, 2015, pp. 43-54, doi: 10.1145/2737924.2737988.

V. Dallmeier, A. Zeller, and B. Meyer, “Generating fixes from
object behavior anomalies,” in Proc. Int. Conf. Automated Softw.
Eng., 2009, pp. 550-554, doi: 10.1109/ASE.2009.15.

S. Marcote and M. Monperrus, “Automatic repair of infinite
loops,” Tech. Rep. hal-01144026, 2015.

T. Ackling, B. Alexander, and I. Grunert, “Evolving patches for
software repair,” in Proc. Annu. Conf. Genetic Evol. Comput., 2011,
pp. 1427-1434, doi: 10.1145/2001576.2001768.

F. Long and M. Rinard, “‘Staged program repair with condition
synthesis,” in Proc. Joint Meet. Eur. Softw. Eng. Conf. Symp. Foun-
dations Softw. Eng., 2015, pp. 166-178, doi: 10.1145/
2786805.2786811.

http://dx.doi.org/10.1145/1006147.1006165
http://dx.doi.org/10.1147/sj.411.0004
http://dx.doi.org/10.1145/1101908.1101949
http://dx.doi.org/10.1145/1081706.1081753
http://dx.doi.org/10.1109/ASE.2009.25
http://dx.doi.org/10.1007/3-540-48166-4_16
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1145/587051.587053
http://dx.doi.org/0.1109/ISSRE.2008.48
http://dx.doi.org/10.1145/1572272.1572300
http://dx.doi.org/10.1145/1572272.1572300
http://dx.doi.org/10.1109/TSE.2010.93
http://dx.doi.org/10.1145/302405.302467
http://dx.doi.org/10.1145/1368088.1368157
http://dx.doi.org/10.1145/2393596.2393598
http://dx.doi.org/10.1145/2393596.2393598
http://dx.doi.org/10.1145/2635868.2635890
http://dx.doi.org/10.1145/2635868.2635890
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2009.5070536
http://dx.doi.org/10.1109/ICSE.2013.6606623
http://dx.doi.org/10.1109/ICSE.2013.6606626
http://dx.doi.org/10.1145/2593735.2593740
http://dx.doi.org/10.1145/2737924.2737988
http://dx.doi.org/10.1109/ASE.2009.15
http://dx.doi.org/10.1145/2001576.2001768
http://dx.doi.org/10.1145/2786805.2786811
http://dx.doi.org/10.1145/2786805.2786811
http://angelix.io/
https://github.com/sqrlab/arc/
http://se.inf.ethz.ch/research/autofix/
http://www-bcf.usc.edu/~wang626/project_concbugassist.htm
http://www-bcf.usc.edu/~wang626/project_concbugassist.htm
http://www-bcf.usc.edu/~wang626/project_concbugassist.htm
http://lcs.ios.ac.cn/~yancai/dfixer/release_lk/SourceCodeRelease_2015Nov17.7z
http://lcs.ios.ac.cn/~yancai/dfixer/release_lk/SourceCodeRelease_2015Nov17.7z
http://lcs.ios.ac.cn/~yancai/dfixer/release_lk/SourceCodeRelease_2015Nov17.7z
https://github.com/SpoonLabs/nopol
http://dijkstra.cs.virginia.edu/genprog/
http://dijkstra.cs.virginia.edu/genprog/
https://github.com/lpxz?tab=repositories
https://github.com/xuanbachle/bugfixes
http://sachaproject.gforge.inria.fr/mirror/abf-jaff-arcuri.zip
http://sachaproject.gforge.inria.fr/mirror/abf-jaff-arcuri.zip
http://groups.csail.mit.edu/pac/patchgen/
http://sei.pku.edu.cn/~gaoqing11/leakfix/
http://sei.pku.edu.cn/~gaoqing11/leakfix/
http://www.iisc-seal.net/minthint
http://fyassiri.wixsite.com/mutapr
https://github.com/SpoonLabs/nopol/
http://www.st.cs.uni-saarland.de/models/
http://groups.csail.mit.edu/pac/patchgen/
https://bitbucket.org/tomackling/pyedb
http://sei.pku.edu.cn/~gaoqing11/qacrashfix/
http://sei.pku.edu.cn/~gaoqing11/qacrashfix/
http://qiyuhua.github.com/projects/rsrepair/
https://github.com/ProgramRepair/SearchRepair/
http://cs.ucsb.edu/~vlab/tools.html
http://cs.ucsb.edu/~vlab/tools.html
http://groups.csail.mit.edu/pac/patchgen/
http://dl.acm.org/citation.cfm?id=2594335

64

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, ““The strength of ran-
dom search on automated program repair,” in Proc. Int. Conf.
Softw. Eng., 2014, pp. 254-265, doi: 10.1145/2568225.2568254.

Y. Tao, J. Kim, S. Kim, and C. Xu, “Automatically generated
patches as debugging aids: a human study,” in Proc. Int. Symp.
Found. Softw. Eng., 2014, pp. 64-74, doi: 10.1145/2635868.2635873.
W. Weimer, “Patches as better bug reports,” in Proc. Int. Conf.
Generative Program. Component Eng., 2006, pp. 181-190, doi:
10.1145/1173706.1173734.

A. Khalilian, A. Baraani-Dastjerdi, and B. Zamani, “On the eval-
uation of automatic program repair techniques and tools,” in
Proc. Iranian Conf. Elect. Eng., 2016, pp. 61-66, doi: 10.1109/
IranianCEE.2016.7585390.

M. Monperrus, “Automatic software repair: A bibliography,”
Univ. Lille, Lille, France, Tech. Rep. hal-01206501, 2015.

M. Monperrus and B. Baudry, “Two flavors in automated soft-
ware repair: Rigid repair and plastic repair,” in Dagstuhl Seminar
n. 13061 “'Fault Prediction, Localization, and Repair”’, 2013.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,”” in Proc. World Congr. Comput.
Intell., 2008, pp. 162-168.

F. Assiri and J. Bieman, “’An assessment of the quality of auto-
mated program operator repair,” in Proc. Int. Conf. Softw. Testing
Verification Validation, 2014, pp. 273-282, doi: 10.1109/
ICST.2014.40.

J. Bradbury and K. Jalbert, ““Automatic repair of concurrency
bugs,” in Proc. Int. Symp. Search Based Softw. Eng., 2010, pp. 73-84.
D. Kelk, K. Jalbert, and J. S. Bradbury, “Automatically repairing
concurrency bug with ARC,” in Proc. Int. Conf. Multicore Softw.
Eng., Perform. Tools, 2013, pp. 73-84, doi: 10.1007/978-3-642-
39955-8_7.

D. Jeffrey, M. Feng, N. Gupta, and R. Gupta, “Bugfix: A learning-
based tool to assist developers in fixing bugs,” in Proc. Int. Conf.
Program Comprehension, 2009, pp. 70-79, doi: 10.1109/
ICPC.2009.5090029.

A. Arcuri and X. Yao, “Coevolving programs and unit tests from
their specification,” in Proc. Int. Conf. Automated Softw. Eng.,
2007, pp. 397-400, doi: 10.1145/1321631.1321693.

C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Springer Softw. Quality]., vol. 21, no.
3, pp. 421-443, 2013, doi: 10.1007 /s11219-013-9208-0.

S. Son, K. McKinley, and V. Shmatikov, “Fix me up: Repairing
access-control bugs in web applications,” in Proc. Netw. Distrib.
Syst. Symp., 2013.

B. Jobstmann, A. Griesmayer, and R. Bloem, ““Program repair as
a game,” in Proc. Int. Conf. Comput. Aided Verification, 2005,
pp- 226-238, doi: 10.1007 /11513988 _23.

Y. Ke, K. Stolee, C. Le Goues, and Y. Brun, “Repairing programs
with semantic code search,” in Proc. Int. Conf. Automated Softw.
Eng., 2015, pp. 295-306, doi: 10.1109/ASE.2015.60.

V. Debroy and E. Wong, “Using mutation to automatically sug-
gest fixes for faulty programs,” in Proc. Int. Conf. Softw. Testing
Verification Validation, 2010, pp. 65-74, doi: 10.1109/1CST.2010.66.
M. Stumptner and F. Wotawa, ““A model-based approach to soft-
ware debugging,’” in Proc. Int. Workshop Principles Diagnosis,
1996, pp. 233239, doi: 10.1007 /978-3-540-92814-0_36.

S. Staber, B. Jobstmann, and R. Bloem, “Finding and fixing
faults,” in Proc. Adv. Res. Work. Conf. Correct Hardware Des. Verifi-
cation Methods, 2005, pp. 3549, doi: 10.1007 /11560548 6.

F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, “Enhancing model
checking in verification by Al techniques,” Artif. Intell., vol. 112,
no. 1-2, pp. 57-104, 1999, doi: 10.1016 /50004-3702(99)00039-9.

A. Dennis, R. Monroy, and P. Nogueira, “Proof-directed debug-
ging and repair,” in Proc. Symp. Trends Functional Program., 2006,
pp. 131-140.

J. Wilkerson, D. Tauritz, and]. Bridges, ‘“Multi-objective coevolu-
tionary automated software correction,” in Proc. Annu. Conf.
Genetic Evol. Comput., 2012, pp. 1229-1236, doi: 10.1145/
2330163.2330333.

Z. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proc. Int. Symp. Softw. Testing Anal., 2012,
pp- 177-187, doi: 10.1145/2338965.2336775.

F. Yu, C.-Y. Shueh, C.-H. Lin, Y.-F. Chen, B.-Y. Wang, and T.
Bultan, “Optimal sanitization synthesis for web application vul-
nerability repair,” in Proc. Int. Symp. Softw. Testing Anal., 2016,
pp. 189-200, doi: 10.1145/2931037.2931050.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

JANUARY 2019

Y. Cai and L. Cao, “Fixing deadlocks via lock pre-acquisitions,”
in Proc. Int. Conf. Softw. Eng., 2016, pp. 1109-1120, doi: 10.1145/
2884781.2884819.

Q. Gao, et al., “Safe memory-leak fixing for C programs,” in Proc.
Int. Conf. Softw. Eng., 2015, pp. 459-470, doi: 10.1109/
ICSE.2015.64.

Q. Gao, H. Zhang,]. Wang, Y. Xiong, L. Zhang, and H. Mei, “‘Fix-
ing recurring crash bugs via analyzing Q&A sites,” in Proc. Int.
Conf. Automated Softw. Eng., 2015, pp. 307-318, doi: 10.1109/
ASE.2015.81.

A. Nistor, P. Chang, C. Radoi, and S. Lu, “CARAMEL: Detecting
and fixing performance problems that have non-intrusive fixes,”
in Proc. Int. Conf. Softw. Eng., 2015, pp. 902-912, doi: 10.1109/
ICSE.2015.100.

A.W. Biermann, “Automatic programming: A tutorial on formal
methodologies,” |. Symbolic Comput., vol. 1, no. 2, pp. 119-142,
1985, doi: http://dx.doi.org/10.1016/50747-7171(85)80010-9.

D. L. Parnas, “Software aspects of strategic defense systems,”
Commun. ACM, vol. 28, no. 12, pp. 1326-1335, 1985, doi: 10.1145/
214956.214961.

O. Polozov and S. Gulwani, ““FlashMeta: A framework for induc-
tive program synthesis,” in Proc. Int. Conf. Object-Oriented Pro-
gram. Syst. Languages Appl., 2015, pp. 107-126, doi: 10.1145/
2814270.2814310.

R. Alur, et al., “Syntax-guided synthesis,” in Proc. Int. Conf. For-
mal Methods Comput.-Aided Des., 2013, pp. 1-8, doi: 10.1109/
FMCAD.2013.6679385.

V. Le and S. Gulwani, “FlashExtract: A framework for data
extraction by examples,” in Proc. Conf. Program. Language Des.
Implementation, 2014, pp. 542-553, doi: 10.1145/2594291.2594333.

M. Stumptner and F. Wotawa, “Model-based program debug-
ging and repair,”” in Proc. Int. Conf. Ind., Eng. Other Appl. Appl.
Intell. Syst., 1996, pp. 155-160.

A. Arcuri, “On the automation of fixing software bugs,” in Proc.
Int. Conf. Softw. Eng., 2008, pp. 1003-1006, doi: 10.1145/
1370175.1370223.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,”” in Proc.
Annu. Conf. Genetic Evol. Comput., 2009, pp. 947-954, doi:
10.1145/1569901.1570031.

W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, ““Automatic
program repair with evolutionary computation,” Commun.
ACM, vol. 53, no. 5, pp. 109-116, 2010, doi: 10.1145/
1735223.1735249.

H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and systems,” Springer Comput., vol. 91, no. 1,
pp- 43-73, 2011, doi: 10.1007 /s00607-010-0107-y.

D. Ghosh, R. Sharman, H. Rao, and S. Upadhyaya, ““Self-healing
systems - survey and synthesis,”” Elsevier Decision Support Syst.,
vol. 42, no. 4, pp. 2164-2185, 2007, doi: 10.1016/j.dss.2006.06.011.

A. Keromytis, “Characterizing self-healing software systems,” in
Proc. Int. Conf. Math. Methods Models Archit. Comput. Netw. Secur,
2007, pp. 22-33, doi: 10.1007 /978-3-540-73986-9_2.

A. Carzaniga, A. Gorla, N. Perino, and M. Pezze, ““Automatic
workarounds: Exploiting the intrinsic redundancy of web appli-
cations,” ACM Trans. Softw. Eng. Methodologies, vol. 24, no. 3, pp.
16:1-16:42, 2015, doi: 10.1145/2755970.

M. Pezze and M. Young, Software Testing and Analysis: Process,
Principles and Techniques. Hoboken, NJ, USA: Wiley, 2007.

M. Carbin, S. Misailovic, M. Kling, and M. Rinard, “Detecting
and escaping infinite loops with jolt,” in Proc. Eur. Conf. Object-
Oriented Program., 2011, pp. 609-633, doi: 10.1007/978-3-642-
22655-7_28.

O. Riganelli, D. Micucci, and L. Mariani, “Policy enforcement
with proactive libraries,” in Proc. Int. Symp. Softw. Eng. Adaptive
Self-Manag. Syst., 2017, pp. 182-192, doi: 10.1109/SEAMS.2017.9.

D. G. De La Iglesia and D. Weyns, “MAPE-K formal templates to
rigorously design behaviors for self-adaptive systems,” ACM
Trans. Autonomous and Adaptive Syst., vol. 10, no. 3, pp. 15:1-
15:31, 2015, doi: 10.1145/2724719.

R. Ding, et al., ““Healing online service systems via mining histor-
ical issue repositories,” in Proc. Int. Conf. Automated Softw. Eng.,
2012, pp. 318-321, doi: 10.1145/2351676.2351735.

A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezze,
““Automatic recovery from runtime failures,” in Proc. Int. Conf.
Softw. Eng., 2013, pp. 782-791, doi: 10.1109/ICSE.2013.6606624.

http://dx.doi.org/10.1145/2568225.2568254
http://dx.doi.org/10.1145/2635868.2635873
http://dx.doi.org/10.1145/1173706.1173734
http://dx.doi.org/10.1109/IranianCEE.2016.7585390
http://dx.doi.org/10.1109/IranianCEE.2016.7585390
http://dx.doi.org/10.1109/ICST.2014.40
http://dx.doi.org/10.1109/ICST.2014.40
http://dx.doi.org/10.1007/978-3-642-39955-8_7
http://dx.doi.org/10.1007/978-3-642-39955-8_7
http://dx.doi.org/10.1109/ICPC.2009.5090029
http://dx.doi.org/10.1109/ICPC.2009.5090029
http://dx.doi.org/10.1145/1321631.1321693
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/11513988_23
http://dx.doi.org/10.1109/ASE.2015.60
http://dx.doi.org/10.1109/ICST.2010.66
http://dx.doi.org/10.1007/978-3-540-92814-0_36
http://dx.doi.org/10.1007/11560548_6
http://dx.doi.org/10.1016/S0004-3702(99)00039-9
http://dx.doi.org/10.1145/2330163.2330333
http://dx.doi.org/10.1145/2330163.2330333
http://dx.doi.org/10.1145/2338965.2336775
http://dx.doi.org/10.1145/2931037.2931050
http://dx.doi.org/10.1145/2884781.2884819
http://dx.doi.org/10.1145/2884781.2884819
http://dx.doi.org/10.1109/ICSE.2015.64
http://dx.doi.org/10.1109/ICSE.2015.64
http://dx.doi.org/10.1109/ASE.2015.81
http://dx.doi.org/10.1109/ASE.2015.81
http://dx.doi.org/10.1109/ICSE.2015.100
http://dx.doi.org/10.1109/ICSE.2015.100
http://dx.doi.org/10.1016/S0747--7171(85)80010-9.
http://dx.doi.org/10.1145/214956.214961
http://dx.doi.org/10.1145/214956.214961
http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1145/2814270.2814310
http://dx.doi.org/10.1109/FMCAD.2013.6679385
http://dx.doi.org/10.1109/FMCAD.2013.6679385
http://dx.doi.org/10.1145/2594291.2594333
http://dx.doi.org/10.1145/1370175.1370223
http://dx.doi.org/10.1145/1370175.1370223
http://dx.doi.org/10.1145/1569901.1570031
http://dx.doi.org/10.1145/1735223.1735249
http://dx.doi.org/10.1145/1735223.1735249
http://dx.doi.org/10.1007/s00607-010-0107-y
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1007/978-3-540-73986-9_2
http://dx.doi.org/10.1145/2755970
http://dx.doi.org/10.1007/978-3-642-22655-7_28
http://dx.doi.org/10.1007/978-3-642-22655-7_28
http://dx.doi.org/10.1109/SEAMS.2017.9
http://dx.doi.org/10.1145/2724719
http://dx.doi.org/10.1145/2351676.2351735
http://dx.doi.org/10.1109/ICSE.2013.6606624

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

[76]

[77]

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

(911

[92]

[93]

[94]

[95]

[96]

[97]

B.Jacob, R. Lanyon-Hogg, D. K. Nadgir, and A. F. Yassin, A Prac-
tical Guide to the IBM Autonomic Computing Toolkit. Armonk, NY,
USA: IBM Redbooks, 2004.

S. Colin and L. Mariani, ““Run-time verification,” in Model-Based
Testing of Reactive Systems, Berlin, Germany: Springer, 2005,
vol. 3472, pp. 525-555, doi: 10.1007 /11498490 _24.

E. T. Barr, M. Harman, P. McMinn, and M. Shahbaz, ““The oracle
problem in software testing: A survey,” IEEE Trans. Softw. Eng.,
vol. 41, no. 5, pp. 507-525, May 2015, doi: 10.1109/
TSE.2014.2372785.

Y. Zhang and A. Mesbah, ““Assertions are strongly correlated
with test suite effectiveness,” in Proc. Joint Meet. Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2015, pp. 214224, doi: 10.1145/
2786805.2786858.

H. Chang, L. Mariani, and M. Pezze, “Exception handlers for
healing component-based systems,” ACM Trans. Softw. Eng.
Methodology, vol. 22, no. 4, pp. 30:1-30:40, 2013, doi: 10.1145/
2522920.2522923.

S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.
Keromytis, ““Assure: automatic software self-healing using res-
cue points,”” ACM SIGARCH Comput. Archit. News, vol. 37, no. 1,
pp- 37-48, 2009, doi: 10.1145/1508284.1508250.

G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, “Automated atom-
icity-violation fixing,”” ACM SIGPLAN Notices, vol. 46, no. 6,
pp- 389400, 2011, doi: 10.1145/1993498.1993544.

S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing atomicity viola-
tion bugs from their hiding places,” in Proc. Int. Conf. Archit. Sup-
port Program. Languages Operating Syst., 2009, pp. 25-36, doi:
10.1145/1508244.1508249.

P. Agarwal and A. Agrawal, “Fault-localization techniques for
software systems: A literature review,” SIGSOFT Softw. Eng.
Notes, vol. 39, no. 5, pp. 1-8, 2014, doi:10.1145/2659118.2659125.
B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan, “Scalable
statistical bug isolation,” in Proc. Conf. Program. Language Des.
Implementation, 2005, pp. 15-26, doi: 10.1145/1065010.1065014.
W. E. Wong, V. Debroy, and B. Choi, “A family of code coverage-
based heuristics for effective fault localization,”]. Syst. Softw.,
vol. 83, no. 2, pp. 188-208, 2010, doi:10.1016/}.jss.2009.09.037.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, ““A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. Int. Conf. Softw. Eng., 2012, pp. 3-13,
doi: 10.1109/ICSE.2012.6227211.

C. Le Goues, “Automatic program repair using genetic program-
ming,” Ph.D. dissertation, Faculty School Eng. Appl. Sci., Univ.
Virginia, Charlottesville, VA, USA, 2013.

R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accu-
racy of spectrum-based fault localization,” in Proc. Testing: Aca-
demic Ind. Conf. Practice Res. Techn. - MUTATION, 2007, pp. 89—
98, doi: 10.1109/ TAIC.PART.2007.13.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pin-
point: Problem determination in large, dynamic internet serv-
ices,” in Proc. Int. Conf. Dependable Syst. Netw., 2002, pp. 595-604,
doi: 10.1109/DSN.2002.1029005.

Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program
repair for evaluating the effectiveness of fault localization techni-
ques,” in Proc. Int. Symp. Softw. Testing Anal., 2013, pp. 191-201,
doi: 10.1145/2483760.2483785.

Y. Wej, et al., “Automated fixing of programs with contracts,” in
Proc. Int. Symp. Softw. Testing Anal., 2010, pp. 61-72,
doi: 10.1145/1831708.1831716.

Y. Pei, Y. Wei, C. Furia, M. Nordio, and B. Meyer, ““Code-based
automated program fixing,”” in Proc. Int. Conf. Automated Softw.
Eng., 2011, pp. 392-395, doi: 10.1109/ ASE.2011.6100080.

Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE Trans.
Softw. Eng., vol. 40, no. 5, pp. 427-449, May 2014, doi: 10.1109/
TSE.2014.2312918.

S.Mechtaev, J. Yi, and A. Roychoudhury, “’Angelix: Scalable multi-
line program patch synthesis via symbolic analysis,” in Proc. Int.
Conf. Softw. Eng., 2016, pp. 691-701, doi: 10.1145/2884781.2884807.
R. Kou, Y. Higo, and S. Kusumoto, “A capable crossover tech-
nique on automatic program repair,” in Proc. Int. Workshop
Empirical Softw. Eng. Practice, 2016, pp. 45-50, doi: 10.1109/
IWESEP.2016.15.

J. Wilkerson and D. Tauritz, “Coevolutionary automated soft-
ware correction,”” in Proc. Annu. Conf. Genetic and Evol. Comput.,
2010, pp. 1391-1392, doi: 10.1145/1830483.1830739.

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

65

T. Ji, L. Chen, X. Mao, and X. Yi, “Automated program repair by
using similar code containing fix ingredients,” in Proc. Annu.
Comput. Softw. Appl. Conf., 2016, pp. 197-202, doi: 10.1109/
COMPSAC.2016.69.

A. Arcuri, “Evolutionary repair of faulty software,” Appl. Soft
Comput., vol. 11, no. 4, pp. 3494-3514, 2011, doi: 10.1016/j.
asoc.2011.01.023.

E. T. Barr, T. Brun, P. Devanbu, M. Harman, and F. Sarro, ““The
plastic surgery hypothesis,”” in Proc. Int. Symp. Foundations Softw.
Eng., 2014, pp. 306-317, doi: 10.1145/2635868.2635898.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans.
Softw. Eng., vol. 38, no. 1, pp. 54-72, Jan./Feb. 2012, doi: 10.1109/
TSE.2011.104.

Y. Qi, X. Mao, and Y. Lei, “Making automatic repair for large-
scale programs more efficient using weak recompilation,” in
Proc. Int. Conf. Softw. Maintenance, 2012, pp. 254-263, doi:
10.1109/ICSM.2012.6405280.

Y. Qi, X. Mao, Z. Dai, and Y. Qi, “Efficient automatic program
repair using function-based part-execution,” in Proc. Int. Conf.
Softw. Eng. Service Sci., 2013, pp. 235-238, doi: 10.1109/
ICSESS.2013.6615295.

E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated
repair of binary and assembly programs for cooperating embed-
ded devices,”” ACM SIGPLAN Notices, vol. 48, no. 4, 2013,
pp- 317-328, doi: 10.1145/2499368.2451151.

E. Schulte, S. Forrest, and W. Weimer, ““Automated program repair
through the evolution of assembly code,” in Proc. Int. Conf. Autom.
Softw. Eng., 2010, pp. 313-316, doi: 10.1145/1858996.1859059.

Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
through fault-recorded testing prioritization,” in Proc. Int. Conf.
Softw. Maintenance, 2013, pp. 180189, doi: 10.1109/ICSM.2013.29.
G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, ““Prioritizing
test cases for regression testing,” IEEE Trans. Softw. Eng., vol. 27,
no. 10, pp. 929-948, Oct. 2001, doi: 10.1109/32.962562.

J. Wilkerson and D. Tauritz, ““Scalability of the coevolutionary auto-
mated software correction system,” in Proc. Conf. Companion Genetic
Evol. Comput., 2011, pp. 243-244, doi: 10.1145/2001858.2001995.

V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller, “Mining
object behavior with ADABU,” in Proc. Int. Workshop Dynamic
Anal., 2006, pp. 17-24, doi: 10.1145/1138912.1138918.

Z.Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
pp- 24-36, doi: 10.1145/2771783.2771791.

W. Weimer, Z. Fry, and S. Forrest, ““Leveraging program equiva-
lence for adaptive program repair: Models and first results,” in
Proc. Int. Conf. Autom. Softw. Eng., 2013, pp. 356-366, doi:
10.1109/ASE.2013.6693094.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur, “Multi-
threaded Java program test generation,” IBM Syst. |., vol. 41, no.
1, pp. 111-125, 2002, doi: 10.1147/5j.411.0111.

F. Long and M. Rinard, “Automatic patch generation by learning
correct code,” in Proc. Annu. Symp. Principles Program. Languages,
2016, pp. 298-312, doi: 10.1145/2914770.2837617.

F. Long and M. Rinard, “Prophet: Automatic patch generation
via learning from successful patches,” MIT, Cambridge, MA,
USA, Tech. Rep. MIT-CSAIL-TR-2015-027, 2013.

A. Smirnov and T. Chiueh, ““Automatic patch generation for
buffer overflow attacks,” in Proc. Int. Symp. Inform. Assurance
Secur., 2007, pp. 165-170, doi: 10.1109/IAS.2007.87.

T. Chiueh and F. Hsu, “RAD: A compile-time solution to buffer
overflow attacks,” in Proc. Int. Conf. Distributed Comput. Syst.,
2001, pp. 409-417, doi: 10.1109/I1CDSC.2001.918971.

Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “Autopag: Towards
automated software patch generation with source code root
cause identification and repair,” in Proc. Symp. Inform., Comput.
Commun. Secur., 2007, pp. 329-340, doi: 10.1145/1229285.1267001.
X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program
repair,” in Proc. Int. Conf. Softw. Anal. Evol. and Reengineering,
2016, pp. 213-224, doi: 10.1109/SANER.2016.76.

S. Tan and A. Roychoudhury, “Relifix: Automated repair of soft-
ware regressions,’” in Proc. Int. Conf. Softw. Eng., 2015, pp. 471-
482, doi: 10.1109/ICSE.2015.65.

C. Liu, J. Yang, L. Tan, and M. Hafiz, “R2fix: Automatically gen-
erating bug fixes from bug reports,”” in Proc. Int. Conf. Softw. Test-
ing Verification Validation, 2013, pp. 282-291, doi: 10.1109/
ICST.2013.24.

http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1145/2786805.2786858
http://dx.doi.org/10.1145/2786805.2786858
http://dx.doi.org/10.1145/2522920.2522923
http://dx.doi.org/10.1145/2522920.2522923
http://dx.doi.org/10.1145/1508284.1508250
http://dx.doi.org/10.1145/1993498.1993544
http://dx.doi.org/10.1145/1508244.1508249
http://dx.doi.org/10.1145/2659118.2659125
http://dx.doi.org/10.1145/1065010.1065014
http://dx.doi.org/10.1016/j.jss.2009.09.037
http://dx.doi.org/10.1109/ICSE.2012.6227211
http://dx.doi.org/10.1109/TAIC.PART.2007.13
http://dx.doi.org/10.1109/DSN.2002.1029005
http://dx.doi.org/10.1145/2483760.2483785
http://dx.doi.org/10.1145/1831708.1831716
http://dx.doi.org/10.1109/ASE.2011.6100080
http://dx.doi.org/10.1109/TSE.2014.2312918
http://dx.doi.org/10.1109/TSE.2014.2312918
http://dx.doi.org/10.1145/2884781.2884807
http://dx.doi.org/10.1109/IWESEP.2016.15
http://dx.doi.org/10.1109/IWESEP.2016.15
http://dx.doi.org/10.1145/1830483.1830739
http://dx.doi.org/10.1109/COMPSAC.2016.69
http://dx.doi.org/10.1109/COMPSAC.2016.69
http://dx.doi.org/10.1016/j.asoc.2011.01.023
http://dx.doi.org/10.1016/j.asoc.2011.01.023
http://dx.doi.org/10.1145/2635868.2635898
http://dx.doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/TSE.2011.104
http://dx.doi.org/10.1109/ICSM.2012.6405280
http://dx.doi.org/10.1109/ICSESS.2013.6615295
http://dx.doi.org/10.1109/ICSESS.2013.6615295
http://dx.doi.org/10.1145/2499368.2451151
http://dx.doi.org/10.1145/1858996.1859059
http://dx.doi.org/10.1109/ICSM.2013.29
http://dx.doi.org/10.1109/32.962562
http://dx.doi.org/10.1145/2001858.2001995
http://dx.doi.org/10.1145/1138912.1138918
http://dx.doi.org/10.1145/2771783.2771791
http://dx.doi.org/10.1109/ASE.2013.6693094
http://dx.doi.org/10.1147/sj.411.0111
http://dx.doi.org/10.1145/2914770.2837617
http://dx.doi.org/10.1109/IAS.2007.87
http://dx.doi.org/10.1109/ICDSC.2001.918971
http://dx.doi.org/10.1145/1229285.1267001
http://dx.doi.org/10.1109/SANER.2016.76
http://dx.doi.org/10.1109/ICSE.2015.65
http://dx.doi.org/10.1109/ICST.2013.24
http://dx.doi.org/10.1109/ICST.2013.24

66

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO.1,

M. Monperrus, ““A critical review of ““automatic patch generation
learned from human-written patches”: Essay on the problem
statement and the evaluation of automatic software repair,” in
Proc. Int. Conf. Softw. Eng., 2014, pp. 234-242, doi: 10.1145/
2568225.2568324.

X.-B. D. Le, “Towards efficient and effective automatic program
repair,” in Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2016,
pp- 876-879, doi: 10.1145/2970276.2975934.

J. Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf, ““An exper-
imental determination of sufficient mutant operators,” ACM
Trans. Softw. Eng. Methodology, vol. 5, no. 2, pp. 99-118, 1996, doi:
10.1145/227607.227610.

S. Sidiroglou-Douskos, et al., “Targeted automatic integer over-
flow discovery using goal-directed conditional branch enforce-
ment,” in Proc. Int. Conf. Archit. Support Program. Languages
Operating Syst.., 2015, pp. 473-486, doi: 10.1145/2694344.2694389.
N. Nethercote and J. Seward, ““Valgrind: A framework for heavy-
weight dynamic binary instrumentation,”” ACM SIGPLAN Noti-
ces, vol. 42, no. 6, pp. 89-100, 2007, doi: 10.1145/1273442.1250746.
J. King, “Symbolic execution and program testing,”” Commun.
ACM, vol. 19, no. 7, pp. 385-394, 1976, doi: 10.1145/
360248.360252.

S.Jha, S. Gulwani, S. S. A, and A. Tiwari, ““Oracle-guided compo-
nent-based program synthesis,” in Proc. Int. Conf. Softw. Eng.,
2010, pp. 215-224, doi: 10.1145/1806799.1806833.

S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for
simple program repairs,” in Proc. Int. Conf. Softw. Eng., 2015,
pp- 448458, doi: 10.1109/ICSE.2015.63.

J. Xuan, et al., “Nopol: Automatic repair of conditional statement
bugs in Java programs,” IEEE Trans. Softw. Eng., vol. 43, no. 1,
pp- 34-55, Jan. 2017, doi: 10.1109/TSE.2016.2560811.

T. Durieux and M. Monperrus, ““Dynamoth: dynamic code syn-
thesis for automatic program repair,” in Proc. Int. Workshop
Autom. Softw. Test, 2016, pp. 85-91, doi: 10.1109/AST.2016.021.

G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, ““Automated con-
currency-bug fixing.”” in Proc. USENIX Symp. Operating Syst. Des.
Implementation, 2012, pp. 221-236.

H. Liu, Y. Chen, and S. Lu, “Understanding and generating high
quality patches for concurrency bugs,” in Proc. Int. Symp. Found.
Softw. Eng., 2016, pp. 715-726, doi: 10.1145/2950290.2950309.

R. Surendran, R. Raman, S. Chaudhuri, J. Mellor-Crummey, and
V. Sarkar, “Test-driven repair of data races in structured parallel
programs,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 15-25,
2014, doi: 10.1145/2666356.2594335.

R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, ““Efficient
data race detection for async-finish parallelism,” in Proc. Int.
Conf. Runtime Verification, 2010, pp. 368-383, doi: 10.1007/978-3-
642-16612-9_28.

P. Liu and C. Zhang, ““Axis: Automatically fixing atomicity viola-
tions through solving control constraints,” in Proc. Int. Conf.
Softw. Eng., 2012, pp. 299-309, doi: 10.1109/ICSE.2012.6227184.

P. Liu, O. Tripp, and C. Zhang, “Grail: context-aware fixing of
concurrency bugs,”” in Proc. Int. Symp. Foundations Softw. Eng.,
2014, pp. 318-329, doi: 10.1145/2635868.2635881.

Y. Lin and S. Kulkarni, “’Automatic repair for multi-threaded
programs with deadlock/livelock using maximum satisfiabil-
ity,” in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 237-247,
doi: 10.1145/2610384.2610398.

H. Samimi, M. Schafer, S. Artzi, T. Millstein, F. Tip, and L.
Hendren, “Automated repair of HTML generation errors in PHP
applications using string constraint solving,” in Proc. Int. Conf.
Softw. Eng., 2012, pp. 277-287, doi: 10.1109/ICSE.2012.6227186.
M. Alkhalaf, A. Aydin, and T. Bultan, “Semantic differential
repair for input validation and sanitization,” in Proc. Int. Symp.
Softw. Testing Anal., 2014, pp. 225-236, doi: 10.1145/
2610384.2610401.

F. Yu, M. Alkhalaf, and T. Bultan, “Patching vulnerabilities with
sanitization synthesis,” in Proc. Int. Conf. Softw. Eng., 2011,
pp- 251-260, doi: 10.1145/1985793.1985828.

S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, ““MintHint:
Automated synthesis of repair hints,” in Proc. Int. Conf. Softw.
Eng., 2014, pp. 266-276, doi: 10.1145/2568225.2568258.

Y. Pei, C. F. A, M. Nordio, and B. Meyer, ““Automated program
repair in an integrated development environment,” in Proc. Int.
Conf. Softw. Eng., 2015, pp. 681-684, doi: 10.1109/1CSE.2015.222.
F. Logozzo and T. Ball, “Modular and verified automatic pro-
gram repair,” ACM SIGPLAN Notices, vol. 47, no. 10, 2012,
pp- 133-146, doi: 10.1145/2398857.2384626.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

JANUARY 2019

M. Fahndrich and F. Logozzo, “Static contract checking with
abstract interpretation,” in Proc. Int. Conf. Formal Verification
Object-Oriented Softw., 2010, pp. 10-30, doi: 10.1007/978-3-642-
18070-5_2.

F. Gao, L. Wang, and X. Li, “Bovinspector: automatic inspection and
repair of buffer overflow vulnerabilities,” in Proc. Int. Conf. Autom.
Softw. Eng., 2016, pp. 786-791, doi: 10.1145/2970276.2970282.

A. Abadi, R. Ettinger, Y. Feldman, and M. Shomrat, “’Automati-
cally fixing security vulnerabilities in Java code,” in Proc. Int.
Conf. Object Oriented Program. Syst. Languages Appl., 2011, pp.
483-502, doi: 10.1109/SP.2017.26.

S.Ma, D. Lo, T. Li, and R. H. Deng, “CDRep: Automatic repair of
cryptographic misuses in Android applications,” in Proc. Asia
Conf. Comput. and Commun. Secur., 2016, pp. 711-722, doi:
10.1145/2897845.2897896.

M. Egele, D. B. Y., Fratantonio, and C. Kruegel, ““An empirical
study of cryptographic misuse in Android applications,” in Proc.
Conf. Comput. Commun. Secur., 2013, pp. 73-84, doi: 10.1145/
2508859.2516693.

Z. Coker and M. Hafiz, “Program transformations to fix C inte-
gers,” in Proc. Int. Conf. Softw. Eng., 2013, pp. 792-801, doi:
10.1109/1ICSE.2013.6606625.

M. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid, ““A case for
automated debugging using data structure repair,” in Proc. Int.
Conf. Autom. Softw. Eng., 2009, pp. 620-624, doi: 10.1109/
ASE.2009.92.

B. Elkarablieh, I. Garcia, Y. Suen, and S. Khurshid, ““Assertion-
based repair of complex data structures,” in Proc. Int. Conf. Autom.
Softw. Eng., 2007, pp. 64-73, doi: 10.1145/1321631.1321643.

S. Khoshnood, M. Kusano, and C. Wang, “ConcBugAssist: Con-
straint solving for diagnosis and repair of concurrency bugs,” in
Proc. Int. Symp. Softw. Testing Anal., 2015, pp. 165-176, doi:
10.1145/2771783.2771798.

M. Selakovic and M. Pradel, ““Automatically fixing real-world
javascript performance bugs,” in Proc. Int. Conf. Softw. Eng., 2015,
pp- 3—4, doi: 10.1145/2048147.2048149.

C. Le Goues, et al., “The manybugs and introclass benchmarks
for automated repair of C programs,” IEEE Trans. Softw. Eng.,
vol. 41, no. 12, pp. 1236-1256, Dec. 2015, doi: 10.1109/
TSE.2015.2454513.

M. Béhme and A. Roychoudhury, “CoREBench: Studying com-
plexity of regression errors,” in Proc. Int. Symp. Softw. Testing
Anal. (ISSTA), 2014, pp. 105-115, doi: 10.1145/2610384.2628058.
Lincoln University of Nebraska, “‘Software-artifact infrastructure
repository,”” (2017). [Online]. Available: http://sir.unl.edu/

R. Just, D. Jalali, and M. D. Ernst, ““Defects4]: A database of exist-
ing faults to enable controlled testing studies for Java programs,”
in Proc. Int. Symp. Softw. Testing Anal., 2014, pp. 437-440, doi:
10.1145/2610384.2628055.

V. Dallmeier and T. Zimmermann, “Extraction of bug localiza-
tion benchmarks from history,” in Proc. Int. Conf. Autom. Softw.
Eng., 2007, pp. 433-436, doi: 10.1145/1321631.1321702.

F. Long and M. Rinard, “An analysis of the search spaces for gen-
erate and validate patch generation systems,” in Proc. Int. Conf.
Softw. Eng., 2016, pp. 702-713, doi: 10.1145/2884781.2884872.

C. Le Goues, W. Weimer, and S. Forrest, “‘Representations and
operators for improving evolutionary software repair,” in Proc.
Conf. Genetic Evol. Comput., 2012, pp. 959-966, doi: 10.1145/
2330163.2330296.

X. Kong, L. Zhang, W. E. Wong, and B. Li, “’Experience report:
How do techniques, programs, and tests impact automated pro-
gram repair?”’ in Proc. Int. Symp. Softw. Rel. Eng. (ISSRE), 2015,
pp- 194-204, doi: 10.1109/ISSRE.2015.7381813.

E. Smith, E. Barr, C. Le Goues, and Y. Brun, “’Is the cure worse
than the disease? overfitting in automated program repair,” in
Proc. Joint Meet. Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
2015, pp. 532-543, doi: 10.1145/2786805.2786825.

E. Fast, C. Le Goues, S. Forrest, and W. Weimer, “Designing bet-
ter fitness functions for automated program repair,” in Proc.
Conf. Genetic Evol. Comput., 2010, pp. 965-972, doi: 10.1145/
1830483.1830654.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “Does genetic pro-
gramming work well on automated program repair?”’ in Proc.
Int. Conf. Comput. Inform. Sci. 2013, pp. 1875-1878, doi: 10.1109/
ICCIS.2013.490.

M. Martinez and M. Monperrus, “‘Mining repair actions for guid-
ing automated program fixing,” Arxiv, Tech. Rep. 1311.3414,
2012.

http://dx.doi.org/10.1145/2568225.2568324
http://dx.doi.org/10.1145/2568225.2568324
http://dx.doi.org/10.1145/2970276.2975934
http://dx.doi.org/10.1145/227607.227610
http://dx.doi.org/10.1145/2694344.2694389
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/1806799.1806833
http://dx.doi.org/10.1109/ICSE.2015.63
http://dx.doi.org/10.1109/TSE.2016.2560811
http://dx.doi.org/10.1109/AST.2016.021
http://dx.doi.org/10.1145/2950290.2950309
http://dx.doi.org/10.1145/2666356.2594335
http://dx.doi.org/10.1007/978-3-642-16612-9_28
http://dx.doi.org/10.1007/978-3-642-16612-9_28
http://dx.doi.org/10.1109/ICSE.2012.6227184
http://dx.doi.org/10.1145/2635868.2635881
http://dx.doi.org/10.1145/2610384.2610398
http://dx.doi.org/10.1109/ICSE.2012.6227186
http://dx.doi.org/10.1145/2610384.2610401
http://dx.doi.org/10.1145/2610384.2610401
http://dx.doi.org/10.1145/1985793.1985828
http://dx.doi.org/10.1145/2568225.2568258
http://dx.doi.org/10.1109/ICSE.2015.222
http://dx.doi.org/10.1145/2398857.2384626
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1007/978-3-642-18070-5_2
http://dx.doi.org/10.1145/2970276.2970282
http://dx.doi.org/10.1109/SP.2017.26
http://dx.doi.org/10.1145/2897845.2897896
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1145/2508859.2516693
http://dx.doi.org/10.1109/ICSE.2013.6606625
http://dx.doi.org/10.1109/ASE.2009.92
http://dx.doi.org/10.1109/ASE.2009.92
http://dx.doi.org/10.1145/1321631.1321643
http://dx.doi.org/10.1145/2771783.2771798
http://dx.doi.org/10.1145/2048147.2048149
http://dx.doi.org/10.1109/TSE.2015.2454513
http://dx.doi.org/10.1109/TSE.2015.2454513
http://dx.doi.org/10.1145/2610384.2628058
http://sir.unl.edu/
http://dx.doi.org/10.1145/2610384.2628055
http://dx.doi.org/10.1145/1321631.1321702
http://dx.doi.org/10.1145/2884781.2884872
http://dx.doi.org/10.1145/2330163.2330296
http://dx.doi.org/10.1145/2330163.2330296
http://dx.doi.org/10.1109/ISSRE.2015.7381813
http://dx.doi.org/10.1145/2786805.2786825
http://dx.doi.org/10.1145/1830483.1830654
http://dx.doi.org/10.1145/1830483.1830654
http://dx.doi.org/10.1109/ICCIS.2013.490
http://dx.doi.org/10.1109/ICCIS.2013.490

GAZZOLA ET AL.: AUTOMATIC SOFTWARE REPAIR: A SURVEY

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

M. Martinez and M. Monperrus, “Mining software repair models
for reasoning on the search space of automated program fixing,”
Empirical Softw. Eng., vol. 20, no. 1, pp. 176-205, 2015, doi:
10.1007 /s10664-013-9282-8.

M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingre-
dients already exist? An empirical inquiry into the redundancy
assumptions of program repair approaches,” in Proc. Int. Conf.
Softw. Eng., 2014, pp. 492495, doi: 10.1145/2591062.2591114.

S. Sumi, Y. Higo, K. Hotta, and S. Kusumoto, ““Toward improv-
ing graftability on automated program repair,” in Proc. Int. Conf.
Softw. Maintenance Ewvol., 2015, pp. 511-515, doi: 10.1109/
ICSM.2015.7332504.

H. Yokoyama, Y. Higo, K. Hotta, T. Ohta, K. Okano, and S.
Kusumoto, “Toward improving ability to repair bugs automati-
cally: a patch candidate location mechanism using code similar-
ity,” in Proc. Symp. Appl. Comput., 2016, pp. 13641370, doi:
10.1145/2851613.2851770.

S. Tan, H. Yoshida, M. P. R, and A. Roychoudhury, “Anti-
patterns in search-based program repair,” in Proc. Int. Symp.
Foundations Softw. Eng., 2016, pp. 727-738, doi: 10.1145/
2950290.2950295.

Y. Qi, X. Mao, Y. Lei, Z. Dai, Y. Qi, and C. Wang, “Empirical
effectiveness evaluation of spectra-based fault localization on
automated program repair,” in Proc. Comput. Softw. Appl. Conf.,
2013, pp. 828-829, do: 10.1109/COMPSAC.2013.139.

Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program
repair for evaluating the effectiveness of fault localization techni-
ques,” in Proc. Int. Symp. Softw. Testing Anal., 2013, pp. 191-201,
doi: 10.1145/2483760.2483785.

X.D. Le, T. B. Le, and D. Lo, ““Should fixing these failures be del-
egated to automated program repair?”’ in Proc. Int. Symp. Softw.
Rel. Eng., 2015, pp. 427-437, doi: 10.1109/ISSRE.2015.7381836.

J. H. Perkins, et al., “Automatically patching errors in deployed
software,” in Proc. Symp. Operating Syst. Principles, 2009, pp. 87—
102, doi: 10.1145/1629575.1629585.

S. Sidiroglou and A. Keromytis, “Countering network worms
through automatic patch generation,” IEEE Secur. Privacy, vol. 3,
no. 6, pp. 41-49, 2005, doi: 10.1109/MSP.2005.144.

E. F. Rizzi, S. Elbaum, and M. B. Dwyer, ““On the techniques we
create, the tools we build, and their misalignments: A study of
KLEE,” in Proc. Int. Conf. Softw. Eng., 2016, pp. 132-143, doi:
10.1145/2884781.2884835.

67

Luca Gazzola received the MSc degree in com-
puter science from the University of Milano
Bicocca. He is currently working toward the PhD
degree at the University of Milano Bicocca work-
ing under the supervision of Prof. Leonardo
Mariani. His PhD work focuses on software test-
ing, and more specifically on field testing. He is
also interested in automatic software testing and
automatic software repair.

Daniela Micucci received the PhD degree in
mathematics, statistics, computational sciences
and computer science from the University of
Milano, in 2004. She is currently an assistant pro-
fessor at the University of Milano Bicocca. Her
research interests include software engineering,
in particular software architectures, real-time sys-
tems, and self-healing and self-repairing sys-
tems. She is currently active in several European
and National projects. She is also regularly
involved in the program committees of workshops
and conferences in her areas of interest. She is a
member of the IEEE.

Leonardo Mariani received the PhD degree in
computer science from the University of Milano
Bicocca, in 2005. He is an associate professor at
the University of Milano Bicocca. His research
interests include software engineering, in particu-
lar software testing, static and dynamic analysis,
automated debugging, and self-healing and self-
repairing systems. He has been awarded with the
ERC Consolidator Grant in 2015 and he is cur-
rently active in several European and National
projects. He is regularly involved in the organizing
and program committees of major software engineering conferences. He
is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

http://dx.doi.org/10.1007/s10664-013-9282-8
http://dx.doi.org/10.1145/2591062.2591114
http://dx.doi.org/10.1109/ICSM.2015.7332504
http://dx.doi.org/10.1109/ICSM.2015.7332504
http://dx.doi.org/10.1145/2851613.2851770
http://dx.doi.org/10.1145/2950290.2950295
http://dx.doi.org/10.1145/2950290.2950295
http://dx.doi.org/10.1109/COMPSAC.2013.139
http://dx.doi.org/10.1145/2483760.2483785
http://dx.doi.org/10.1109/ISSRE.2015.7381836
http://dx.doi.org/10.1145/1629575.1629585
http://dx.doi.org/10.1109/MSP.2005.144
http://dx.doi.org/10.1145/2884781.2884835

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

