
Specialising Software for Different Downstream
Applications Using Genetic Improvement

and Code Transplantation
Justyna Petke , Mark Harman, William B. Langdon, and Westley Weimer

Abstract—Genetic improvement uses automated search to find improved versions of existing software. Genetic improvement has

previously been concerned with improving a system with respect to all possible usage scenarios. In this paper, we show how genetic

improvement can also be used to achieve specialisation to a specific set of usage scenarios. We use genetic improvement to evolve

faster versions of a C++ program, a Boolean satisfiability solver called MiniSAT, specialising it for three different applications, each with

their own characteristics. Our specialised solvers achieve between 4 and 36 percent execution time improvement, which is

commensurate with efficiency gains achievable using human expert optimisation for the general solver. We also use genetic

improvement to evolve faster versions of an image processing tool called ImageMagick, utilising code from GraphicsMagick, another

image processing tool which was forked from it. We specialise the format conversion functionality to greyscale images and colour

images only. Our specialised versions achieve up to 3 percent execution time improvement.

Index Terms—Genetic improvement, GI, code transplants, code specialisation, SAT, ImageMagick, GraphicsMagick

Ç

1 INTRODUCTION

GENETIC improvement (GI) [1], [2], [3], [4], [5], [6], [7]
uses automated search to find improved versions of

existing software. We report on GI-based specialisation
applied to MiniSAT [8],1 a popular Boolean satisfiability
(SAT) solver, and to ImageMagick,2 an open-source image
processing software.

MiniSAT is an open-source C++ program. It implements
the core technologies of modern SAT solving, including
unit propagation, conflict-driven clause learning and
watched literals [10]. We chose SAT solving as our target,
because of its widespread applicability in software engi-
neering. More specifically, we chose the SAT solving system
MiniSAT because it has been iteratively improved over
many years by expert human programmers. They have
addressed the demand for more efficient SAT solvers and
also responded to repeated calls for competition entries to
the MiniSAT-hack track of SAT competitions [11]. As such,

the SAT solver we seek to improve by specialisation is
already highly optimised by expert programmers, and
therefore denotes a significant challenge for any further
automated improvement.

We use the version of the solver from the first MiniSAT-
hack track competition, MiniSAT2-070721,3 as our host sys-
tem to be improved by GI with transplantation. Further-
more, this competition, in which humans provide
modifications to a baseline MiniSAT solver, provides a nat-
ural baseline for evaluation. It also provides a source of can-
didate ‘genetic material’ (code fragments that can be
transplanted), which we call the code bank.

ImageMagick is an open source C program that has
been around for over 25 years. It can be used to create,
edit, compose, or convert bitmap images. It can also read
and write over 200 image file formats. Millions of website
use ImageMagick to process images. Many plugins
depend on the ImageMagick library, including, PHP’s
imagick, Ruby’s rmagick and paperclip, and nodejs’s image-
magick. Another popular image processing software, called
GraphicsMagick,4 was forked from ImageMagick in 2002
and it’s still in use today.

We use the 5.5.2 version of the ImageMagick software as
our host system to be improved by genetic improvement.
Furthermore, we use code from the first version of Graph-
icsMagick. It was forked from ImageMagick-5.5.2. One of
the reason’s for the fork was to change coding practices to
improve the tool’s efficiency5.

1. This paper is an extension of our previous EuroGP conference
paper [9], which received the GECCO’14 Humie silver medal (http://
www.sigevo.org/gecco-2014/humies.html).

2. https://www.imagemagick.org/

� J. Petke, M. Harman, and W.B. Langdon are with the University College
London, London WC1E 6BT, United Kingdom.
E-mail: {j.petke, mark.harman}@ucl.ac.uk, W.Langdon@cs.ucl.ac.uk.

� W. Weimer is with the University of Virginia, Charlottesville, VA 22903.
E-mail: weimer@cs.virginia.edu.

Manuscript received 27 Oct. 2015; revised 17 Feb. 2017; accepted 5 Apr. 2017.
Date of publication 28 June 2017; date of current version 20 June 2018.
(Corresponding author: Justyna Petke.)
Recommended for acceptance by A. Roychoudhury.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2017.2702606

3. Solver available at: http://minisat.se/MiniSat.html.
4. http://www.graphicsmagick.org/
5. http://marc.info/?l=imagemagick-developer&m=

104777007831767&w=2

574 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

0098-5589 � 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
http://www.sigevo.org/gecco-2014/humies.html
http://www.sigevo.org/gecco-2014/humies.html
https://www.imagemagick.org/
mailto:
mailto:
mailto:
http://www.graphicsmagick.org/

Definition. The problem of program specialisation is to
construct, automatically, from an original general program,
different specialised versions, each targeting a specific sub-
area of the original program’s application domain.

The motivation for automated specialisation comes from
the observation that programs might have been constructed
to target general-purpose solutions to whole classes of
related problems [12], [13], [14]. Subsequently, a more spe-
cific version of the program may be required for either a
subset of the original problem domain, or a slightly differ-
ent problem domain than that initially envisaged by the
programmer [15], [16], [17], [18]. The multiplicity of differ-
ent platforms, devices and usage scenarios for software sys-
tems poses a challenge due to the sheer number of different
specialised versions that may be required [19].

Early work on program specialisation focused on techni-
ques such as partial evaluation and mixed computation,
which have a long intellectual heritage dating back to 1970s
[20], [21], [22]. In a functional programming language, par-
tial evaluation can be achieved by partial application of a
function to a subset of its arguments [12], while in impera-
tive styles of programming language, some of the inputs to
the program are fully specified (and thereby become fixed
at compile time) while others remain free (to be instantiated
at runtime) [15].

Partial evaluation consists of ‘hardwiring’ the conse-
quences of the fixed arguments/inputs into the program
code, thereby specialising the program. Hitherto, all work
on partial evaluation has focused on the application of pro-
gram transformation rules to optimise the specialised pro-
gram for the application sub-domain of interest [12], [23].
This has the advantage that the resulting specialised pro-
gram is correct, so long as the original program is correct
and all of the transformation steps are correct. However, it
means that specialisation can only find programs that result
from the sequence of meaning preserving transformations,
and the specialisation criterion needs to be specified as a
subset of input parameters (or a predicate over these param-
eters [24]). The software engineer needs to decide which of
these parameters capture desired behaviour.

We seek to use GI to target a more general form of spe-
cialisation. In our approach, the sub-application domain is
captured, not by instantiating particular arguments to a
function call, nor by selecting fixed values for input, but by
a set of test cases that capture the desired behaviour of the
specialised program. This allows us to specialise according
to any subset of test cases; our specialisation criterion can
therefore refer to both input and output (and the relation-
ships between them).

Using a set of test cases to capture the specialisation crite-
rion also has the advantage that it draws the specialisation
problem within reach of genetic programming [25], [26], on
which our GI is based. By using genetic programming we
are not restricted to the deterministic application of a set of
meaning-preserving transformations. Instead, we can use
evolution to explore the space of candidate specialised pro-
grams within a neighbourhood of the original, defined by
our genetic operators.

Unlike traditional genetic programming [25], [26], but in
common with more recent work on GI [1], [3], [5], [7], [9],
[27], [28], GI-based specialisation seeks, not to construct a

program from scratch but rather, to improve an existing pro-
gram for a specific application domain.

Multiple specialisations can be performed, thereby yield-
ing different specific versions of a program from a single
general program. We take the general SAT solver, MiniSAT,
and specialise it for three different, real-world, downstream
applications. Our aim is that the three GI-evolved special-
ised MiniSAT versions should outperform any human-
optimised general version of MiniSAT, thereby demonstrat-
ing the potential of GI-based program specialisation.

We also use a very popular image processing software,
ImageMagick, and specialise it for two downstream appli-
cations. In particular, we focus on its conversion from jpg to
png format function that was identified to be slow on vari-
ous internet fora.6 By allowing GI access to code from
GraphicsMagick, software that was forked from ImageMa-
gick-5.5.2, we demonstrate the potential of GI for using
code from various software variants in order to specialise it
for a particular application.

The goal of our approach to automated specialisation is
to reduce the reliance on human software engineers as the
sole means by which different specialised versions are con-
structed. Automated specialisation can recommend inter-
ventions (small code changes, in our case one-line changes)
in order to optimise for a specialised scenario. The software
engineer can then decide which of these automatically rec-
ommended interventions to adopt.

If the software engineer has high confidence in the test-
ing process [29], then they may simply trust the specialised
version. However, provided the number of interventions is
manageable, the programmer may find it reasonable to
decide upon whether to accept each one on a case-by-case
basis. It is therefore important that an automated specialisa-
tion approach does not produce too many interventions, yet
can, nevertheless, produce nontrivial performance improve-
ment. These observations motivate some of the questions
we seek to answer in our empirical evaluation.

The primary contribution of this paper is an empirical evalu-
ation that demonstrates that GI-based specialisation can
produce multiple human-competitive specialised software
versions specialised for various downstream software engi-
neering application domains. We demonstrate this by spe-
cialising the 2009 incarnation of MiniSAT and the 2002
incarnation of ImageMagick.

We extend our previous conference paper [9] by provid-
ing further evidence for the effectiveness and efficiency of
GI-based specialisation: Whereas the conference paper con-
sidered only one downstream application, the present paper
extends this to three downstream applications for MiniSAT
and reports the results of applying GI to specialise another
piece of software, i.e., ImageMagick. Furthermore, while the
conference version reported only upon the performance
improvements due to GI (a subset of Research Question 1 in
this paper), the present paper extends these results, report-
ing, in detail, on the performance of the GI process itself
(RQs 2, 3, 4 and 5).

In summary, the ‘delta’ over previous (conference) ver-
sion is as follows: MiniSAT has been specialised for two

6. http://www.imagemagick.org/discourse-server/viewtopic.php?
t=27580

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 575

http://www.imagemagick.org/discourse-server/viewtopic.php?t=27580
http://www.imagemagick.org/discourse-server/viewtopic.php?t=27580

additional application domains (Automated Termination
Analysis of Term Re-write Systems and the problem of
Ensemble Computation); each experiment has been re-run
three times, varying the seed for GI; a detailed analysis of
the GI process has been investigated in Section 9; an addi-
tional piece of software, called ImageMagick, has been spe-
cialised for two downstream applications.

The rest of the paper is organised as follows: Section 2
describes our approach to GI. Section 3 describes our chosen
software for improvement, i.e., MiniSAT. Section 4 presents
three problem classes to which we apply the proposed
approach. Section 5 presents ImageMagick and the software
specialisation scenarios. Section 6 describes the research
questions posed. Section 7 presents our experiments, the
results of which are given in Section 8. In Section 9 we ana-
lyse different aspects of our GI framework. In Section 10 we
present threats to validity. Section 11 briefly outlines related
work and Section 12 concludes.

2 GENETIC IMPROVEMENT WITH MULTI-DONOR

TRANSPLANTATION AND SPECIALISATION

We describe our approach to genetic improvement (GI),
which uses code from multiple authors for transplantation
and specialises the genetically improved software for a spe-
cific application domain by training GI on a specific set of
test cases. We use a population-based genetic programming
(GP) approach. Our work extends and adapts the genetic
improvement framework introduced by Langdon and Har-
man [2]. Since we are using a different program, we update
the fitness function. We also modify just one C++ or C file
which contains the main solving algorithm. However,

unlike Langdon and Harman [2], we use multiple donors
and focus on specialising the program to improve it for a
specific application domain. An overview of the approach
for the MiniSAT solver is shown in Fig. 1.

Program Representation. GI modifies the code (in this case
MiniSAT and ImageMagick) at the level of lines of source
code. A notation (inspired by BNF grammars) is used to cre-
ate a template containing all the lines from which new indi-
viduals are composed [2]. Such a template is created
automatically and ensures that classes, types, functions and
data structures are retained. For instance, opening and clos-
ing brackets in C++ programs are forced to stay in the same
place, but the lines between them can be modified. More-
over, initialisation lines are also left untouched. An extract
of a template for MiniSAT is shown in Fig. 2. Header files
and comments are not included in our representation. The
genome used in our GP is a list of mutations (see below).

Code Transplants. We evolve the host program by trans-
planting lines of code from other programs [30]. GI can also
modify both original and transplanted code. Thus our GP
has access to both the host program being evolved, as well
as the donor program(s). We call all the lines of code which
GP has access to the code bank. The donor code statements
are then available for mutations of the host instance, but
need not be used in the same order. For example, our search
may combine the first half of an optimisation from one ver-
sion of MiniSAT with the second half of an optimisation
from another and then specialise the resulting code to prob-
lems from a particular application domain. This re-use and
improvement of existing developer expertise is critical to
the success of our technique.

Mutation Operator. A new version of a program (i.e., a
new individual) is created by making multiple changes to
the original program. Each such mutation or, in other words,
update is either a DELETE, REPLACE or COPY operation. The
changes are made at the level of lines of source code (with a
special case for conditional and loop statements), which are
picked at random from the code bank. A DELETE operation
simply deletes a line of code, a REPLACE operation replaces a
line of code with another line of code from the code bank

Fig. 1. Overview of the genetic improvement framework used for the MiniSAT solver.

Fig. 2. Lines 156-160 from the Solver.C MiniSAT program source file
represented in our notation inspired by BNF grammars. Lines marked
with _Solver can be modified.

576 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

and COPY operation inserts a line of code from the code bank
into the program. In the case of conditional and loop state-
ments, we focus on and modify their predicate expressions.7

For instance, the second part of a FOR loop (e.g., i<0) can
only be replaced with the second part of another FOR loop
(e.g., i<10) and any IF condition can be replaced with any
other IF condition. Examples of the three mutation types are
shown in Fig. 3.

Initial Population. The initial population is generated at
random. Each individual in the initial population consists
of a single mutation, i.e., either a DELETE, COPY or REPLACE

operation, selected at random. Three examples of such sin-
gle-mutation individuals are presented in Fig. 3.

Crossover Operator. We represent each individual as a list
of mutations, which we call the edit list. This representation
allows our technique to apply to programs of significant
size [31], since we do not keep the whole of each version of
the program in memory-just a list of changes. When creat-
ing individuals for the next generation, a crossover operation
simply concatenates two individuals from the current popu-
lation by appending one list to another. The first parent is
chosen based on its fitness value while the other is chosen
uniformly among those individuals from the breeding pop-
ulation, as in previous work [2].

Fitness Function. We evaluate the fitness of an individual in
terms of a combination of functional properties (those related
to software correctness) and non-functional properties (those
related to performance, quality of service, etc.) by observing
its performance on SAT instances. Before the GP starts, the
training set of SAT instances is divided into five groups by dif-
ficulty, which we measure in required solving time and
instance satisfiability.8 In each generation one test case is sam-
pled uniformly from each group (or ‘bin’ following terminol-
ogy in [2]) and all individuals are run on the five selected test
cases, following previous work. This sampling helps to avoid
over-fitting. To evaluate an individual, the corresponding list
of changes is applied to the original programand the resulting
source code is compiled, producing a new SAT solver that can
then be executed (individuals that fail to compile are never
selected to be parents of the next generation).

To guide the GP search toward a more efficient version of
the program, our fitness function takes into account both
solution quality (in our case whether an instance is satisfi-
able or not) and program speed. We note that it will vary

depending on the software application to be improved. For
internal fitness calculations, efficiency is measured in terms
of lines of code executed based on simple counter-based
program instrumentation. The use of line counts (instead of
CPU or wall-clock times) avoids environmental bias and
provides a deterministic fitness signal. Therefore, we can
use test cases that require a few seconds to compute. For the
final presentation of our empirical results, timing measure-
ments in seconds are also presented (see Section 8).

Selection. The GP process is run for a fixed number of
generations with a fixed population size. After the fitness of
each of the individuals is calculated, the fittest half of the
population is chosen, filtered to include only those individ-
uals that exceed a threshold fitness value. We focus on
exploiting high-quality solutions, and thus our fitness
threshold is set to select those individuals that either
(1) return the correct answer in all cases, or (2) return the
correct answer in all but one case and produce the correct
answers at least twice as quickly as the original solver as
measured in terms of the number of lines of code executed.

Next, a set of offspring individuals is created using cross-
over on those selected from the current population. Also a
new mutation is added to each of the parent individuals
selected to create offspring. Both crossover and mutation are
applied with 50 percent probability. If mutation is chosen,
one of the three operations (i.e., REPLACE, COPY and DELETE) is
selectedwith equal probability. If mutation and crossover do
not create a sufficient number of individuals for the next gen-
eration, new individuals are created consisting of one muta-
tion (selected randomly). Finally, the fitness of the newly-
created individuals is calculated, as described above, and the
process continues until the generation limit is reached.

Filtering. We have observed that many program optimisa-
tions are independent and synergistic. As a result, we pro-
pose a final step that combines all mutations from the fittest
individuals evolved and retains all synergistic edits. Explor-
ing all subsets of edits is infeasible. Our prototype imple-
mentation uses a greedy algorithm. Each mutation from the
best individuals from our experiments is considered sepa-
rately. We apply each operation to the original program and
evaluate its fitness. Next, we order the mutations by their fit-
ness value9 and iteratively consider these, adding only those
edits that increase fitness. Other efficient techniques, such as
constructing a 1-minimal subset of edits [32], are possible.

3 SAT SOLVING IN SOFTWARE ENGINEERING

The Boolean satisfiability problem (SAT) is the problem of
deciding whether there is a variable assignment that satis-
fies a propositional formula. An example formula in con-
junctive normal form (CNF) is: ðx _ yÞ ^ :z, where x, y and
z are Boolean variables; this formula is satisfiable, e.g., by
the following assignment: x ¼ 1, y ¼ 0 and z ¼ 0, while
z ¼ 1 makes the formula unsatisfiable. Many problems
involving constraints can be encoded into CNF effi-
ciently [33], thus allowing SAT solvers to be used on a wide
range of problems.

Fig. 3. Examples of the three types of mutations.

7. In the case of a DELETE operation we replace the predicate expres-
sion with ‘0’.

8. The first group of test cases contains fast satisfiable SAT instances;
the second group contains fast unsatisfiable instances; the third group
contains satisfiable instances that require more time to solve; the fourth
group contains unsatisfiable instances that require more time to solve;
the fifth group contains a mixture of SAT instances requiring the most
amount of time to solve.

9. Note that since each individual is represented by a list of edits (or
mutations) and at the filtering stage we consider one mutation in turn,
we use the word ‘mutation’ and ‘individual’ interchangeably.

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 577

Due to the developments in the early 2000s SAT solvers
have become extremely efficient [34] and hence new appli-
cation domains emerged, including problems in software
engineering (SE). It would be infeasible to mention all the
work in SE that uses SAT solvers, thus we will only men-
tion a few problem domains. SAT solvers have been
widely used in software and hardware verification. They
improved the scalability of symbolic model checking, an
important technique in verification [35], [36], by acting as
backend solvers in the state-of-the-art model checkers.
SAT solvers have also been used for finding optimal solu-
tions for test suite minimisation [37] as well as optimal
combinatorial interaction test suites [38], [39], [40] by
translating the whole problem instance into SAT. Other
applications involve test suite prioritisation [41] and soft-
ware product line engineering [42]. Moreover, work on a
SAT-based constraint solver won the ACM SIGSOFT Dis-
tinguished Paper award at the International Conference on
Software Engineering 2015 [43].

MiniSAT is a well-known open-source C++ solver for
SAT. It implements the core technologies of modern SAT
solving, including: unit propagation, conflict-driven clause
learning and watched literals [10]. The solver has been
widely adopted due to its efficiency, small size and avail-
ability of ample documentation. It is used as a backend
solver in several other tools, including Satisfiability Modulo
Theory (SMT) solvers, constraint solvers (for solving Con-
straint Satisfaction Problems-CSP), Answer Set Program-
ming (ASP) systems and solvers for deciding Quantified
Boolean Formulae (QBF). MiniSAT has also served as a ref-
erence solver in SAT competitions.

In the last few years progress in SAT solving technolo-
gies involved only minor changes to the solvers’ code.
Thus in 2009 a new track has been introduced into the SAT
competition, called MiniSAT-hack track. In order to enter
this track one needs to modify the code of MiniSAT. This
solver has been improved by many expert human pro-
grammers over the years, thus we wanted to see how well
an automated approach scales. We used genetic improve-
ment in order to find a more efficient version of the solver.
In our experiments we used the version of the solver from
the first MiniSAT-hack track competition-MiniSAT2-
070721.

4 PROBLEM CLASSES

SAT solving has a wide range of applications ranging from
model checking through planning to automatic test-pattern
generation [34], [44]. Moreover, over 1,000 benchmarks are
available from SAT competitions.10 These are divided into
application, random and crafted categories.

We focus on three real-world problem domains to which
SAT solving has been applied. Moreover, a wide range of
benchmarks is available for each of the problem classes cho-
sen. These include easy instances, solvable within seconds,
that can be used within our GI framework during fitness
evaluation. The three SAT problem classes have also been
used by Bruce et al. [45] to optimise MiniSAT for energy
consumption.

4.1 Combinatorial Interaction Testing

SAT solving has recently been successfully applied to Com-
binatorial Interaction Testing (CIT) [38], [39], [40], allowing
us to experiment with GI for specialisation to that problem
domain. CIT is an approach to software testing that produces
tests to expose faults that occur when parameters or configu-
rations to a system are combined [46]. CIT systematically
considers all combinations of parameter inputs or configura-
tion options to produce a test suite. However, CIT must also
minimise the cost of that test suite. The problem of finding
suchminimal test suites is NP-hard and has attracted consid-
erable attention [47], [48], [49], [50], [51].

SAT solvers have been applied to CIT problems [38],
[39], [40] but the solution requires repeated execution of the
solver with trial test suite sizes, making solver execution
time a paramount concern. We follow the particular formu-
lation of CIT as a SAT problem due to Banbara et al. [38],
since it has been shown to be efficient.

4.2 Automated Termination Analysis

Program termination is one of the most important proper-
ties of software. Even though the problem is undecidable in
general, there are techniques that can determine if certain
programs will terminate automatically. There has been a lot
of research in the area of termination analysis of term
rewrite systems (TRS) [52]. Many programming languages
can be translated into TRSs, thus making tools for termina-
tion analysis of TRSs very popular. From 2006 SAT solvers
have been used to automate certain TRS termination techni-
ques [53], and now they are a key technique in the field [54].

One of the systems for automated termination proofs of
term rewrite systems is the Automated Program Verifica-
tion Environment (AProVE).11 We use SAT benchmarks
obtained using this system that were also submitted to SAT
competitions in 2007, 2009 and 2011.12

4.3 Ensemble Computation

SAT solving is used outside software engineering as well.
Thus we include another application in order to also investi-
gate wider applications of genetic improvement for SAT
solving beyond software engineering.

SAT representation is a natural fit for modelling prob-
lems relating to logical circuits, for example, testing circuit
equivalence. In real-world circuits a key issue is minimising
the number of elementary computations for a given task.
This problem generalises to finding the smallest Boolean cir-
cuit that computes multiple Boolean functions simulta-
neously. The Ensemble Computation problem is to decide
whether a certain number of arithmetic gates suffices to
evaluate all the computations on the required subsets of
input variables [55], [56].

Recently a SAT encoding has been introduced to model
the problem of deciding whether a given ensemble has a cir-
cuit of given size [56]. A generator of such instances is pro-
vided at: http://www.cs.helsinki.fi/u/jazkorho/sat2012/.
The website also provides a set of challenge instances that
are yet to be solved.

10. See http://www.satcompetition.org.

11. See:http://aprove.informatik.rwth-aachen.de/index.asp?sub-
form =home.html.

12. SAT benchmarks obtained with AProVE that we used are avail-
able at: http://www.cs.ucl.ac.uk/staff/C.Fuhs/.

578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

http://www.satcompetition.org
http://www.cs.ucl.ac.uk/staff/C.Fuhs/

5 IMAGE PROCESSING

Image processing deals with transforming an image to
create a new image, for instance, to increase the image
quality or reduce it’s size. There exist hundreds of differ-
ent image file formats that offer different trade-offs. Image
manipulation is very important, since images can be used
for various tasks. These can range from posting holiday
images on one’s blog to storing medical images, such as
MRI images.

ImageMagick, one of the most popular open source soft-
ware suites for image processing, is able to process over 200
different file formats. It can animate an image sequence, com-
pare mathematically and visually annotate the difference
between an image and it’s reconstruction. It allows for conver-
sion between the various image formats as well as image
resizing, blurring, flipping and other. It can display and
report on the characteristics of the input image. It can also cre-
ate a composition of images by combining several separate
images.

GraphicsMagick, forked from ImageMagick at the end
of 2002, is a popular alternative to ImageMagick. There
are plenty of web articles and blogs comparing both
tools. They have similar functionality, yet their efficiency
might vary significantly depending on the type of images
being processed. We envision that GI could combine the
two programs to create a hybrid that would work best
for all image conversion tasks. In our experiments we
focus on a specific functionality, namely, conversion from
jpg to png, that was reported to be slow by users of
ImageMagick.

Our chosen version of ImageMagick, i.e., 5.5.2, is an
incarnation of software that has been around for over
10 years. Even though the GraphicsMagick fork occurred
partly to improve software’s efficiency, the core functions
have largely remained the same between the two projects at
the time of the fork. Therefore, this version is already
highly-optimised by expert human developers. As men-
tioned before, we will use GI to improve efficiency of the
jpg to png file conversion. We use two sets of images for
specialisation: greyscale and colour images.

6 RESEARCH QUESTIONS

The primary research questions for any technique that seeks
to provide automated support to software engineers concern
the efficiency and effectiveness of the proposed technique.
Therefore, our first research question investigates this for GI-
based specialisation.

RQ1, Effectiveness and Efficiency. What is the effectiveness
and efficiency of GI-based specialisation?

This question consists of two subquestions, concerned
with effectiveness and efficiency. The effectiveness of GI-
based specialisation concerns the degree to which it can cre-
ate improved specialised versions:

RQ1a, Effectiveness. Can genetic improvement find faster
specialised software versions than any general version
developed and optimised by expert human programmers?

The efficiency of GI-based specialisation is simply the
computational cost of the specialisation process:

RQ1b, Efficiency. What is the computation cost of the spe-
cialisation process?

Note that a specialised version, once constructed, will be
usedmultiple times. Therefore, the overall approach remains
useful, even where efficiency gain for each execution of a
specialised version is considerably smaller than the compu-
tational cost of producing it. However, the computational
cost will, nevertheless, determine the ways in which GI-
based specialisation can be used in practice. Given the com-
plexity of the task in hand, it seems unreasonable to expect
specialisation to be instantaneous, but it will need to be fast
enough to incorporate into a development cycle (for exam-
ple, taking no longer than an overnight build, in practice).

If our approach to GI-based specialisation proves to be
sufficiently efficient and effective to be potentially useful,
then this serves as a proof of concept. However, the nature
of the specialisation process immediately raises a number of
important subsidiary questions, concerning the factors
which may influence the quality and performance of GI-
based specialisation; questions to which we now turn.

Clearly, the larger the code bank, the larger is the poten-
tial search space of possible program mutations. We there-
fore investigate the relationship between the size of the
code bank and the performance of genetic improvement:
RQ2, Code Bank Size. How well does the genetic improve-
ment approach perform depending on the size of the code
bank?

Our GI-based specialisation uses a post-processing filter
to find the best individual mutations from all GI runs for
each problem class. The outcome of this filtering process is
the final set of modifications to be recommended for the
original program in order to improve it. This set of modifi-
cations needs to be small enough to be practical, if the
genetic improvement technique is to be used as a recom-
mendation system (which recommends ‘specialisation inter-
ventions’ to the software engineer). This motivates our next
research question:

RQ3, Number of Modifications Required. Does our filtering
technique produce the most efficient solver variants when
comparedwith the ones evolved directly by genetic improve-
ment and howmany interventions are recommended?

One would expect the specialisation technique to behave
differently for each downstream application. If the same
intervention is required for each and every application,
then the specialisation technique cannot truly be said to be
specialising. This motivates our fourth research question:

RQ4a, Specificity. Are the changes produced by GI prob-
lem-specific?

RQ4b, Generality. Are the changes produced by GI gen-
eral efficiency improvements?

Finally, since our approach uses computational search as
the primary mechanism for identifying improvements,
there are a number of natural questions that arise concern-
ing the computational search strategy. These are addressed
in our final set of related research questions:

RQ5a, Fitness Function.What is the impact of the trade-off
between efficiency and effectiveness in fitness function on
finding a specialised software version using GI?

RQ5b, Comparison to Random Search (Sanity Check [57]).
How does the chosen search strategy compare with random
search?

RQ5c, Genetic Operators. What is the impact of various
mutation and crossover operator rates on GI efficacy?

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 579

In order to provide answers to the research questions
posed we conduct several genetic improvement runs
described in the next section.

7 EXPERIMENTAL SETUP

We present details of the genetic improvement framework
used in our experiments.

Host & Donor Programs. We evolve MiniSAT2-070721, in
particular the C++ file containing its main solving algorithm
(i.e., the Solver.C file). This version was used as a reference
solver in the first MiniSAT-hack competition, organised in
2009. Unless otherwise noted, we use MiniSAT and Min-
iSAT2-070721 interchangeably. The main solver algorithm
involves 478 of the 2,419 lines in MiniSAT. For our experi-
ments we use two donor programs, which altogether pro-
vide 104 new lines of source code. The first donor is the
winner of the MiniSAT-hack competition from 2009, called
“MiniSAT 09z”. We refer to this solver as MiniSAT-best09.
The second donor program is the “MiniSat2hack” solver,
the best performing solver from the competition when run
on our CIT and AProVE specific benchmarks.13 In order to
conform with notation in our previous work [9] we refer to
this solver as MiniSAT-bestCIT.

We also evolve ImageMagick-5.5.2.14 We used callgrind15

and gprof16 to profile ImageMagick and find the most time
consuming part of the code when converting from jpg to
png file format. We found that majority of the time is spent
in the jpeg.c file, in it’s ReadJPEGImage function, hence
we target it for specialisation. Unless otherwise stated, we
use ImageMagick and ImageMagick-5.5.2 interchangeably.

We use GraphicsMagick-1.017 as the donor program.
This is the first version of the software based on a
fork from ImageMagick. We use GraphicsMagick-1.0
and GraphicsMagick interchangeably. ImageMagick’s
ReadJPEGImage function contains 414 lines of code
(of 1,426 in the jpeg.c file). By transplanting code from
GraphicsMagick, the genetic improvement process has
access to overall 439 lines of code.

Test Cases. Real-world SAT instances from the combina-
torial interaction testing area can take hours to run. Thus we
evaluate MiniSAT performance on a set of synthetic CIT
benchmarks. Using the encoding of Banbara et al. [38], we
translated 130 CIT benchmarks into SAT instances.18 We
kept the number of values for each of the parameters the
same in every instance. This allows us to verify observed
results against public catalogues of best known results [48].
We use about half of these CIT benchmarks in the training
set (which is divided into five groups, as discussed in
Section 2) and used the rest in the verification set.

We chose 56 real-world SAT benchmarks from the auto-
mated termination analysis field (based on runtime), 24 of

which are used as our training set. Once again we use exe-
cution time to define instance difficulty and divide the train-
ing set into five groups, where the second and fourth group
contain unsatisfiable instances only, while the first and third
contain only satisfiable ones.

Instances for the problem of finding efficient circuits for
ensemble computation have been produced using the
instance generator provided (see Section 4.3). A subset of
benchmarks from the ‘smallest’ category available on the
website is also used. The test set contains altogether 50 test
cases, half of which are used by GI.

In each of the three cases we use execution time to define
instance difficulty and divide the training set into five
groups based on that measure. The largest instances in the
training sets contain over 1 million SAT clauses. Neverthe-
less, MiniSAT is able to produce an answer for each of these
within two minutes on the desktop machine used.

We evaluate ImageMagick’s performance on five sets of
greyscale and colour images. Each set consists of 20 images
coming from the following five sources: geometric shapes
used in previous work by the authors,19 face images taken
from University of Massachusetts ‘Labelled Faces In The
wild’ dataset,20 ‘Pasadena Houses 2000’ dataset used by the
Computational Vision Group at California Institute of
Technology,21 images of galaxies posted by the National
Optical Astronomy Observatory22 and a set of personal
photographs showing scenes from everyday life.23

As in the case of MiniSAT, we divided the images based
on their type into 5 groups. In each generation we randomly
sample an image from each group to avoid over-fitting. We
specialise ImageMagick for two cases: greyscale and colour
images. In the first set of experiments with ImageMagick
we use 100 randomly selected greyscale images, 20 for each
image type (i.e., house, galaxy, face, geometric shape, per-
sonal) in the training set. We randomly select another 100
for the test set. We repeat this procedure for the second set
of experiments were we use colour images.

Code Transplants. In our experiments the source code of
high-level human optimisations targeting a generic bench-
mark set serve as donor code and are selected and recom-
bined with novel changes to produce a specialised host SAT
solver. Adding a donor statement X to the code bank is
equivalent, in terms of the search space explored, to adding
IF (0) X to the input program in a preprocessing step.

In our previous work [9] we obtained the best results
when using the best version of MiniSAT for the CIT domain
as the donor. Thus we first evaluate which version of the
solver is best for the three problem classes. Next, we use
that version of the solver as the donor and run the GI frame-
work. In the second experiment we add all three MiniSAT
versions to the code bank in each case. We repeat all GI
runs three times.

In the case of ImageMagick, we use code from Graphics-
Magick as the donor code. In all experiments code from
GraphicsMagick is in the code bank along with the original

13. Both solvers are available from the SAT competitions’ website:
http://www.satcompetition.org/.

14. Software available at: https://sourceforge.net/projects/image-
magick/files/old-sources/5.x/5.5/

15. http://valgrind.org/docs/manual/cl-manual.html
16. https://sourceware.org/binutils/docs-2.16/gprof/
17. Software available at: http://78.108.103.11/MIRROR/ftp/Graphics-

Magick/1.0/
18. Benchmarks as well as the different MiniSAT versions are avail-

able by e-mail from Justyna Petke at j.petke@ucl.ac.uk.

19. Available upon request.
20. http://vis-www.cs.umass.edu/lfw/lfw.tgz
21. http://www.vision.caltech.edu/archive.html
22. https://www.noao.edu/image_gallery/galaxies.html
23. Available upon request.

580 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

http://www.satcompetition.org/
www.cs.umass.edu/lfw/lfw.tgz
http://www.vision.caltech.edu/archive.html
https://www.noao.edu/image_gallery/galaxies.html

code from ImageMagick. We specialise the conversion from
jpg to png by modifying the ReadJPEGImage function.

Software Comparison. SAT instances produce either a
‘Satisfiable’ or ‘Unsatisfiable’ result. Therefore, output com-
parison of the original MiniSAT and the modified one is eas-
ily comparable.We note that we also check that the satisfiable
answer returned by the evolved solvers is also correct.

As far as ImageMagick is concerned, we first specialise it
for the set of greyscale images without allowing for any vari-
ation in the quality of the png image produced. We use the
Mean-Squared Error metric for our comparison, frequently
used for image comparison.24 The fitness function takes into
account values for all the RGB dimensions produced by the
metric.We also investigate the trade-off between image qual-
ity and efficiency gain. Therefore in the next experiments, we
allow for 50 percent difference in each of the red, green and
blue values according to the MSE metric. We repeat these
experiments for colour images. Each of the four GI runs is
repeated three times and the best results are reported.

We compare our evolved software with both the host and
donor programs in each of the experiments. We call our
evolved softwareMiniSAT-gp and ImageMagick-gp, respec-
tively. Finally, we refer to the software that results from our
post-processing filtering step (see Section 2) as MiniSAT-gp-
combined and ImageMagick-combined, respectively.

8 RESULTS

To evaluate the efficacy of our technique, we evolve
improved and specialised versions of MiniSAT and Image-
Magick and compare them to human-improved SAT solvers
and ImageMagick, respectively, in terms of both runtime
cost and solution quality.

When specialising MiniSAT we conduct two sets of
experiments for each application described in Section 4,
varying the donor code bank. When specialising ImageMa-
gick, we vary the image quality threshold in the fitness func-
tion for both greyscale and colour images. Each GI run is
repeated three times (with different seed for mutation and
crossover). The results are reproducible if the same seed, GI
framework, population size and number of generations are
used. While internal fitness calculations are measured in
terms of lines of code executed, all final results are presented
in terms of CPU time data based on runs on a Dell OptiPlex
9010 desktop with 8 GB RAM and a single 3.40 GHz Intel
Core i7-3770 CPU in the case of MiniSAT and a 1.6 GHZ
Lenovo 3000 N200 laptopwith an Intel Core 2 Duo processor
and 2 GB of RAM in the case of ImageMagick.

The GI framework was run with a population size of 100
for 20 generations. In each generation in the MiniSAT set of
experiments the top fitness value was shared by up to 75
individuals. Note that individuals with the highest fitness
among all generations might not always be the best, since in
each generation a set of test cases is picked at random from
the training set. Therefore, we used the following strategy
to identify the best evolved solver: pick the best solver in
each generation based on the total number of lines executed;
evaluate these evolved solvers on the whole training set;

select the one that requires the least number of lines to be
executed as the best overall evolved solver. As before, we
used the lines of code execution measure to determine the
best evolved solver to avoid environmental bias.

We note that the best individual in terms of runtime
might still be missed. However, we will get deterministic
results. The same approach was used to evaluate each muta-
tion (and combinations of mutations) during the filtering
stage. In all experiments the compilation rate (using MiniS-
AT’s and ImageMagick’s provided Makefile) was high,
between 68 and 95 percent. This high compilation rate
results from our use of a specialised notation for edits,
which prevents syntax errors, which was previously used
by Langdon and Harman [2]. An example of which is
shown in Fig. 2.

8.1 MiniSAT: Combinatorial Interaction Testing

In our previous work we identified “MiniSat2hack” solver
as the best performing solver from the MiniSAT-hack track
2009 competition when run on our CIT-specific bench-
marks. In order to conform with notation in our previous
work [9] we refer to this solver as MiniSAT-bestCIT.

8.1.1 Transplanting from MiniSAT-bestCIT

In this experiment the code bank contained source code
both from the original MiniSAT solver as well as MiniSAT-
bestCIT. It was re-run three times varying the random seeds
for genetic operators. To pick the best solver from the three
GI runs, each of the evolved versions was run 10 times on
the whole training set. Average runtimes were used to
establish the best solver.

Runtime comparison with the fastest evolved solvers
(called MiniSAT-gp each) for all 130 benchmarks used for
the CIT problem domain is shown in Table 1. The best
evolved version of MiniSAT is, on average, 1 percent faster
than the original solver. Given that the best solver in our
previous experiment [9] provided 17 percent improvement,
this shows the importance of producing repeated runs.

It is unclear what impact certain mutations have on the
solving process. However, we identified that 3 out of 6 line
deletions simply removed assertions, which are indeed not
needed in the solving process. This optimisation is rather
trivial. These can be easily removed from the GI process by
removing assertions from the code bank, so that GI searches
for efficiency gains elsewhere in the code.

TABLE 1
Normalised Runtime Comparison of MiniSAT Versions,
Specialised for CIT, Based on Averages Over 10 Runs

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp bestCIT 0.97 0.99
MiniSAT-gp bestCIT+best09 0.73 0.85

MiniSAT-gp-combined bestCIT+best09 0.72 0.84

The “Donor” column indicates the source of the donor code available in the
code bank. “Lines” indicates lines of code executed, “Time” indicates CPU
time executed. Left column contains the best MiniSAT versions from 3 runs of
the GI framework. (Lower is better, all measurements normalized to original
MiniSAT).

24. We use ImageMagick’s ‘-metric MSE’ and ‘-colorspace Lab’
options.

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 581

Moreover, 6 out of 11 loop condition replacements have
not introduced any important changes to the code, for
example, i++ was substituted with i++.

The performance of our evolved version and the human-
written version are not much different. Changes made by
the GI process are shown in Table 2.

8.1.2 Transplanting from MiniSAT-bestCIT & MiniSAT-

best09

In the second experiment for the CIT domain we added the
version of MiniSAT that won the 2009 MiniSAT-hack com-
petition to the code bank. We repeated the GI run three
times and used the same evaluation criteria as in the previ-
ous experiment.

In contrast to previous work [9] this led to a faster ver-
sion of MiniSAT than when only MiniSAT-bestCIT donor
was used. The evolved version improved MiniSAT runtime
by 15 percent as shown in Table 1. Details of the changes in
this best evolved solver are presented in Table 3. The IF

statement condition replacement triggered 95 percent of the
code from MiniSAT-bestCIT donor, modifying the conflict
analysis stage of the SAT solving process. The same change
was discovered by GI run in our previous work [9].

8.1.3 Combining Results

Many mutations in the best evolved individuals are inde-
pendent, that is, different one-line mutations, as shown in
Fig. 3, occur in various software versions. Thus our
approach based on filtering holds out the promise of com-
bining the best parts of all variants discovered.

In the previous experiment the GI identified a ‘good
change’: a one-line modification that allowed 95 percent of
the code of MiniSAT-bestCIT donor to be executed. Even
though the GP process produced individuals containing

such a change, other mutations within all such individuals
caused slower runtime or compilation errors.

We use our filtering technique described in Section 2 to
combine the best mutations. We started with the individual
composed of one mutation with the best runtime perfor-
mance in terms of lines of source code executed and itera-
tively added mutations from the next performant
individual. Only changes that decrease the number of lines
executed and preserve correctness (in terms of output valid-
ity on the set of test cases) are retained. We tried all 27 muta-
tions from the best two solvers evolved in the previous
experiments.

The resulting ‘combined’ solver is on average 16 percent
faster than the original MiniSAT, as shown in Table 1. In
total, this version involved 7 evolved mutations. Details of
all the mutations selected are presented in Table 4 and in
Fig. 4. Note that new donor code was instrumented by
means of IF (0) statements and marked with /**/.

The one IF condition replacement is the one that led to
15 percent speed-up in the second experiment. Two line
deletions were one-line assertion removals. The other two
corresponded to: deletion of a subtraction operation on a
variable used for statistics; and removal of clause optimisa-
tion which removes false and duplicate literals. The last two
changes remove conditions that check if the solver is in a
conflicting state.

By combining the synergistic optimisations found in the
three best evolved individuals, our approach produced the
fastest specialised SAT solver for CIT among all solvers
developed by expert human programmers that were
entered into the 2009 MiniSAT-hack competition.

Since small benchmarks were chosen for the training set,
the evolved individual might not scale to larger problems.
Manual inspection suggests that optimisations relevant to
large instances may not be retained, but a systematic evalua-
tion on separate instances is left to future work. However, we
note that the evolved individual retained required functional-
ity on all the instances thatwere held out for verification, even
though it was not exposed to any of themduring evolution.

Ideally, we would like genetic improvement to be used
as part of the build cycle, to recommend improvements to
the software engineer. In the Combinatorial Interaction
Testing case, the one IF condition replacement (leading to
15 percent speed-up) would be put forward as a recom-
mended software change given its significant impact on
solver performance.

The execution times are those for a standard desktop com-
puter. Practising software engineers will likely have more
powerful computational resources available for their build
process, and we can expect engineering improvements to

TABLE 2
Mutations Occurring in the Best Genetically Improved Solver,

Specialised for CIT, from Three GI Runs

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 2
REPLACE IF statement condition 2
DELETE line of code 6
COPY line of code 1

DELETE FOR loop condition 4
REPLACE FOR loop condition 11

total 26

(Donor: MiniSAT-bestCIT.)

TABLE 3
Mutations Occurring in the Best Genetically Improved Solver,

Specialised for CIT, from Three GI Runs

solver mutation mutated code changes

MiniSAT-gp
REPLACE IF statement condition 1

total 1

(Donor: MiniSAT-bestCIT &MiniSAT-best09.)

TABLE 4
Mutations Occurring in the Combination of the Fastest
Genetically Improved Solvers, Specialised for CIT,

Also Presented in Fig. 4

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 4
REPLACE IF statement condition 1

total 7

582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

improve the performance of our implementation, which is
mearly a research prototype. Therefore, we believe these
results provide encouraging initial evidence that the compu-
tational time required by GI-based specialisation would
allow it to be incorporated in many practical software engi-
neering build processes.

8.2 MiniSAT: Automated Termination Analysis

We ran all solvers from the MiniSAT-hack track competition
on the benchmarks obtained from the AProVE termination

analysis tool. We identified that the best solver for this set of
instances is “MiniSat2hack”, that is, the same solver that is
the best human-developed solver for the CIT domain, hence
we use it as the donor again.

8.2.1 Transplanting from MiniSAT-bestCIT

We conduct three GI runs, varying the random number
seed. By using runtime averages over the whole training set
we determine the fastest evolved solver out of the three
runs. The best evolved version is 2 percent times faster than
the original MiniSAT solver, as shown in Table 5.

Mutations present in the best individual are given in
Table 6. Note that 49 percent of the mutations are DELETE

operations. Given that only 2 percent runtime improvement
was achieved, we suspect that a lot of these mutations might
actually have no impact or even a negative impact on solver
performance. These might also delete functionality not cov-
ered by test cases. This hypothesis will be tested at the filter-
ing stage when we combine best mutations from evolved
individuals.

8.2.2 Transplanting from MiniSAT-bestCIT & MiniSAT-

best09

In the next experiment we added MiniSAT-best09 donor to
the code bank. When specialising for CIT, addition of new
code led to a version of MiniSAT that was best overall for
the CIT domain. However, for the AProVE domain the
reduction both in lines of source code executed as well as
runtime has not been significant as shown in Table 5.

Fig. 4. Details of the 7 mutations of MiniSAT solver for the CIT domain.

TABLE 5
Normalised Runtime Comparison of MiniSAT Versions,

Specialised for AProVE, Based on Averages Over 10 Runs

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp bestCIT 0.87 0.98
MiniSAT-gp bestCIT+best09 1.00 1.00

MiniSAT-gp-combined bestCIT+best09 0.87 0.96

The “Donor” column indicates the source of the donor code available in the
code bank. “Lines” indicates lines of code executed, “Time” indicates CPU
time executed. Left column contains the best MiniSAT versions from 3 runs of
the GI framework. (Lower is better, all measurements normalized to original
MiniSAT).

TABLE 6
Mutations Occurring in the Best Genetically Improved Solver,

Specialised for AProVE, in Three GI Runs

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 4
REPLACE IF statement condition 9
DELETE line of code 34
REPLACE line of code 5
COPY line of code 8

DELETE FOR loop condition 3
REPLACE FOR loop condition 20

total 83

(Donor: MiniSAT-bestCIT

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 583

Mutations occurring in the best evolved version of the
solver are presented in Table 7.

Only two mutations were present in the best evolved
solver version. One assertion was removed. The FOR loop
condition replacement actually had no impact on runtime,
since the expression i++ was replaced with i++ from a dif-
ferent line of code.

8.2.3 Combining Results

We use our filtering process for greedily combining muta-
tion from the best evolved solvers from the two experi-
ments. This technique leads to a solver that is 4 percent
faster than the original MiniSAT on the set of instances
from Automated Termination Analysis of Term Re-write
Systems problem class as shown in Table 5. The mutations
retained are shown in Table 8.

Out of 85 mutations, 16 were retained. These were: 10
assertion removals; deletion of a variable assignment to 0;
removal of three addition operations on variables used for sta-
tistics; and deletion of two if conditions checking if the solver
is in a conflicting state. Each individual change led to less than
1 percent improvement with top 5 being assertion removals.
Therefore, it would be up to software developers whether
additional time gain isworth getting rid off these assertions.

8.3 MiniSAT: Ensemble Computation

A SAT encoding of the problem of whether a given circuit
computes an ensemble consisting of only SUM or OR gates
was only proposed as recently as 2012 [56]. In our experi-
ments for this problem domain we used the winner of the
MiniSAT-hack track from 2009, since it turned out to be the
most efficient out of the human-developed versions of Min-
iSAT available in the competition. Results for the best
evolved MiniSAT versions obtained in the experiments
described below are presented in Table 9.

8.3.1 Transplanting from MiniSAT-best09

In the first experiment MiniSAT-best09 and the original
solver were used as donors. We conducted three GI runs

with different pseudo random number seeds. Once again
average runtimes on the whole training set were used to
determine the best evolved solver from the three runs. The
evolved MiniSAT version is 33 percent faster on the whole
Ensemble Computation set as shown in Table 9. The
evolved mutations are presented in Table 10.

The best versions of solvers evolved in the three experi-
ments contained one mutation that was responsible for the
biggest runtime improvement. It removed a line of code in a
CASE statement that led to reversing the polarity mode of Min-
iSAT. When an unassigned variable is picked by the solver
for assignment, MiniSAT sets it to false by default. The one
line removal changed that decision to true. This change is
non-trivial, given that only around 30 percent of literals in
all instances are positive, i.e., satisfied by assigning value
true to them.

Moreover, 55 percent of the mutations in the best indi-
vidual are deletion operations, a lot of which remove dead
code. Note that by instrumenting the solver with IF (0) state-
ments, to introduce new code as described in Section 4, we
introduce code that is never executed. The GI process is
able to discover the unused lines of code.

8.3.2 Transplanting from MiniSAT-bestCIT

& MiniSAT-best09

By allowing GI to have access to code from all three solver
versions, a MiniSAT version was evolved that is 36 percent
faster than the original as shown in Table 9. Details of

TABLE 7
Mutations Occurring in the Best Genetically Improved Solver,

Specialised for AProVE, in Three GI Runs

solver mutation mutated code changes

MiniSAT-gp
DELETE line of code 1
REPLACE FOR loop condition 1

total 2

(Donor: MiniSAT-bestCIT &MiniSAT-best09)

TABLE 8
Mutations Occurring in the Combination of the Fastest

Genetically Improved Solvers

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 14

total 16

TABLE 9
Normalised Runtime Comparison of MiniSAT Versions,

Specialised for Ensemble Computation, Based
on Averages Over 10 Runs

Solver Donor Lines Time

MiniSAT (original) — 1.00 1.00

MiniSAT-gp best09 0.54 0.67
MiniSAT-gp bestCIT+best09 0.51 0.64

MiniSAT-gp-combined bestCIT+best09 0.62 0.70

The “Donor” column indicates the source of the donor code available in the
code bank. “Lines” indicates lines of code executed, “Time” indicates CPU
time executed. Left column contains the best MiniSAT versions from 3 runs of
the GI framework. (Lower is better, all measurements normalised to original
MiniSAT).

TABLE 10
Mutations Occurring in the Genetically Improved Solver from

Three GI Runs, Specialised for Ensemble Computation

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 7
REPLACE IF statement condition 4
DELETE line of code 25
REPLACE line of code 5
COPY line of code 7

DELETE FOR loop condition 5
REPLACE FOR loop condition 15
DELETE WHILE loop condition 1

total 69

(Donor: MiniSAT-best09)

584 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

mutations in this best individual are presented in Table 11.
Again the best individual contained replacement of a line of
code in the CASE statement that reversed polarity of Min-
iSAT. On about a third of the 50 test cases the best evolved
version produced worse runtimes than the original solver,
but the advantage of reversed polarity for the rest of the
instances compensated for this loss.

8.3.3 Combining Results

Finally, we applied the filtering step to the two best solver
versions evolved in our previous experiments. The resultant
solver is 30 percent faster than the original, Mutations pres-
ent in the combined version of the solver are shown in
Table 8. From a total of 160 mutations only 39 decreased the
number of lines executed. After adding each of them in turn
(according to the minimum number of lines executed) and
checking whether the number of lines decreases, 31 of the
39 mutations remained, shown in Table 12.

Interestingly the best evolved solver in this experiment is
6 percent slower than a previously evolved version, as
shown in Table 9. Thus we suspect there exist a mutation or
a set of mutations that executes fewer lines, but eventually
leads to increase in runtime. Another explanation would be
existence of a certain combination of mutations that provide
better improvement when applied concurrently rather than
individually.

We have looked at all the 31 mutations. Most of these
were assertions or operations on statistical variables remov-
als. We identified three mutations responsible for the slow-
down: two removed a call to a method, REMOVESATISFIED, that
removes clauses that are already satisfied, while the third
caused the main loop in that method not to be executed.
These three changes accounted for a slowdown, since

information for the satisfied clauses is still maintained, thus
they are unnecessarily processed during the search process.
To verify our findings, we removed the three mutations
from the evolved solver and run it on our test set. This ver-
sion achieved 37 percent speed-up over the original solver.

This finding triggers the question whether there should
be a human-in-the-loop in the GI process, so that they could
identify parts of the program that should be left unchanged
by evolution. Alternatively larger test cases could have been
chosen, however, this might not guarantee that all optimisa-
tions for large instances will be retained and the overall run-
time overhead would be worth it. Ultimately we can
recommend individual changes to the code and leave it for
the software engineer to decide which should be deployed.
For example, polarity mode switch would be suggested for
the Ensemble Computation problem class.

8.4 ImageMagick: Grayscale Images

We used two profiling tools, gprof and callgrind, to identify
the most time consuming part of ImageMagick when used
for converting jpg to png images. We identified the Read-
JPEGImage function in the jpeg.c file to be the target for GI
optimisation. In all experiments the code bank contains the
original code from ImageMagick and additional code from
GraphicsMagick from its jpeg.c file. Each GI run was re-run
three times varying the random seeds for genetic operators.

8.4.1 Transplanting from GraphicsMagick

We ran two sets of experiments for greyscale images. In the
first one we only allowed GI-modified versions of Image-
Magick to move to the next generation, if the output png
was the same as the one produced by the original software.
We say that the fitness threshold is set at 0 percent. In the
second set we allowed for 50 percent difference in the out-
put image RGB values, using the mean-squared error met-
ric. We say that the fitness threshold is set at 50 percent.

Runtime comparison with the fastest evolved software
for all 100 greyscale testset benchmarks used is shown in
Table 13. All versions of the software that are reported in
Table 13 produce identical output as the original software.
The best evolved version of ImageMagick is, on average,
3 percent faster than the original software. Interestingly,
25 percent reduction in the number of lines executed is

TABLE 11
Mutations Occurring in the Genetically Improved Solvers in
Three GI Runs, Specialised for Ensemble Computation

solver mutation mutated code changes

MiniSAT-gp
DELETE IF statement condition 10
REPLACE IF statement condition 9
DELETE line of code 28
REPLACE line of code 9
COPY line of code 7

DELETE FOR loop condition 8
REPLACE FOR loop condition 20

total 91

(Donors: MiniSAT-best09+MiniSAT-bestCIT)

TABLE 12
Mutations Occurring in the Combination of the Fastest

Genetically Improved Solvers

mutation mutated code number of changes

DELETE IF statement condition 2
DELETE line of code 26
REPLACE line of code 2
DELETE FOR loop condition 1

total 31

TABLE 13
Normalised Runtime Comparison of ImageMagick Versions,

Specialised for Greyscale Images, Based on Averages
Over 10 Runs

Software Donor Fitness
threshold

Lines Time

ImageMagick (original) — — 1.00 1.00

ImageMagick-gp Graphicks- 0% 0.75 1.00
Magick

ImageMagick-gp Graphicks- 50% 0.75 0.97
Magick

The “Donor” column indicates the source of the donor code available in the
code bank. “Lines” indicates lines of code executed, “Time” indicates CPU
time executed. Left column contains the best ImageMagick versions from 3
runs of the GI framework. (Lower is better, all measurements normalized to
original ImageMagick).

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 585

achieved. This is because GI removes lines in a for loop that
is used very frequently. In particular, if statement condition-
als are removed from inside the loop. The condition evalua-
tion might be quick, yet the if statement body is never
actually executed, hence doesn’t contribute much towards
runtime.

The performance of our evolved version and the human-
written version are not different in a statistically significant
sense. Changes made by the GI process are shown in
Tables 14 and 15.

Interestingly, only 2 of 12 line deletions in the first experi-
ment (with fitness threshold 0 percent) and 1 out of 16 line
deletions in the second experiment (with fitness threshold
50 percent) removed an assertion. Most of the code removed
was composed of assignment statements. The impact of
those changes is, however, unclear.

8.4.2 Combining Results

As in the case with our experiments with MiniSAT, we note
that many mutations in the best evolved individuals are
independent. We use a filtering strategy to identify the best
mutations.

We started with the individual composed of one muta-
tion with the best runtime performance in terms of lines of
source code executed and iteratively added mutations from
the next performant individual. Only changes that decrease
the number of lines executed and preserve correctness are

retained. We tried all 110 individual mutations from the
best two ImageMagick versions evolved in the previous
experiments (4 were the same). 20 of these caused a reduc-
tion in lines used. The biggest one was caused by one-line
deletion that seems to update a pointer offset from an Index-
Packet variable. We conjecture that either the update never
happens or the action is immediate hence does not influence
the overall runtime significantly.

We also investigated runtimes of the individuals com-
posed of single-line mutations. None of these produced a
faster version of software when compared with the original.
ImageMagick consists largely of if statements and for loops.
The mutations that led to improvment in terms of lines
used modified a statement within a for loop or disabled an
if condition. Since the png images produced by mutated
software did not vary from the one produced by original
ImageMagick, we conjecture that those if conditions evalu-
ate to false in the original software. GI-modified software
simply avoids unnecessary checks. Therefore, shows poten-
tial for improving legacy software.

8.5 ImageMagick: Colour Images

We repeated the set of experiments outlined in the previous
section with a different training set. This time we focused
on colour images and the jpg to png conversion functional-
ity of ImageMagcik as before. We also used two fitness func-
tions. Only those individuals that produced a valid png
image that was identical to the output of the original soft-
ware were moved onto the next generation. To allow GI to
explore a larger search space we relaxed this condition by
allowing 50 percent difference in the RGB values when com-
paring using the MSE image comparison metric. In both
experiments GI evolved versions of software that preserve
image output characteristics. We report on the fastest of
such ImageMagick software variants in Table 16.

8.5.1 Transplanting from GraphicsMagick

In both sets of experiments we use GraphicsMagick as a
source of the donor code. Mutations produced by the two
best evolved versions are presented in Tables 17 and 18.

Neither of the best evolved individuals, in terms of lines
used, led to runtime improvements. It is worth mentioning,
however, that an if statement that was previously in Graph-
icsMagick was transplanted into ImageMagick. However,

TABLE 14
Mutations Occurring in the Best Genetically Improved Image
Processing Software, Specialised for Greyscale Images,

from Three GI Runs

solver mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 4
REPLACE IF statement condition 7
DELETE line of code 12
REPLACE line of code 10
COPY line of code 6

DELETE FOR loop condition 2
REPLACE FOR loop condition 6

total 47

(Donor: GraphicksMagick. Fitness threshold: 0%)

TABLE 15
Mutations Occurring in the Best Genetically Improved Image
Processing Software, Specialised for Greyscale Images,

from Three GI Runs

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 8
REPLACE IF statement condition 7
DELETE line of code 16
REPLACE line of code 11
COPY line of code 12

DELETE FOR loop condition 5
REPLACE FOR loop condition 8

total 67

(Donor: GraphicksMagick. Fitness threshold: 50%)

TABLE 16
Normalised Runtime Comparison of ImageMagick Versions,

Specialised for Colour Images, Based on Averages
Over 10 Runs

Software Donor Fitness threshold Lines Time

ImageMagick (original) — — 1.00 1.00

ImageMagick-gp Graphicks- 0% 0.97 1.00
Magick

ImageMagick-gp Graphicks- 50% 0.97 1.00
Magick

The “Donor” column indicates the source of the donor code available in the
code bank. “Lines” indicates lines of code executed, “Time” indicates CPU
time executed. Left column contains the best ImageMagick versions from 3
runs of the GI framework. (Lower is better, all measurements normalised to
original software).

586 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

that mutation did not lead to any statistically significant
runtime improvement.

8.5.2 Combining Results

Finally, we evaluated each mutation from the best individu-
als in turn. However, since none of them produced runtime
improvments on the test set, we did not proceed with the fil-
tering step as in the case of MiniSAT.

8.6 Summary

We summarise our findings and answer the following
research question posed at the beginning of this paper.

RQ1, Effectiveness and Efficiency. What is the effectiveness
and efficiency of GI-based specialisation?

RQ1a, Effectiveness. Can genetic improvement find faster
specialised software versions than any general version
developed and optimised by expert human programmers?

RQ1b, Efficiency. What is the computation cost of the spe-
cialisation process?

To sum up, we found MiniSAT solver versions achieving
between 4 and 36 percent runtime improvement. We veri-
fied these results with uninstrumented versions of MiniSAT
(without source code calculating lines of code, IF(0) state-
ments etc.). We manually inserted changes produced in the
final evolved solver versions into the original Solver.C file
and noted only up to 2 percent discrepancy (based on aver-
ages over 20 runs).

Additionally, these automatically evolved solvers are
faster than any of the general purpose human-optimised
general solvers from the first edition of the MiniSAT-hack
track competition for the three applications investigated.

Efficiency gain of ImageMagick was less significant. The
best individual achieved up to 3 percent runtime improve-
ment. However, the number of executed lines by the best
evolved version of ImageMagick reduced the number of
lines by 25 percent.

This thus provides an answer to RQ1a, that is, genetic
improvement can find faster specialised software versions. The
efficiency improvement can, however, vary.

Answering RQ1b, in the Combinatorial Interaction Test-
ing case, each run of the genetic framework took 9 hours, while
for the other two problem classes each GI run took just under two
days. The reason for this runtime difference is that the
instances from the Automated Termination Analysis and
Ensemble Computation sets that were used for training

simply take longer to run than the CIT instances. This shows
that the efficiency of GI is highly dependant on the training
set. Since significant improvement was achieved for CIT,
we believe that using small instances is enough to apply the
GI framework. However, evolution might target certain
optimisations for large instances. This poses a challenge to
the current GI framework. Evaluations of ImageMagick on
100 small images (less than 1 MB) took 5 hours each. This
raises the question of trade-off between the GI effort and
potential optimisation gains.RQ2, Code Bank Size. How well
does the genetic improvement approach perform depend-
ing on the size of the code bank?

Furthermore, Tables 1, 5 and 9 provide an answer to
RQ2, namely, the size of the code bank has negligible impact on
the performance of the genetic improvement framework. In partic-
ular, a more efficient version of the solver was found when
larger code bank was used in the Combinatorial Interaction
Testing case, but the reverse was true for the Automated
Termination Analysis problem class. By allowing GI access
to a larger code bank, we enlarge the search space for possi-
ble changes. Therefore, efficient optimisations from other
software variants might be harder to find. One could
approach this problem by either adding weights to the code
that’s transplanted, so that it is mutated more frequently, or
increase population and generation size. Further research
needs to be done to address this issue.

RQ3, Number of Modifications Required. Does our filtering
technique produce the most efficient solver variants when
comparedwith the ones evolved directly by genetic improve-
ment and howmany interventions are recommended?

Experiments conducted for the Ensemble Computation
problem class provide an answer to RQ3. Our filtering tech-
nique does not always produce the most efficient solver variant
when compared with the ones evolved directly by genetic improve-
ment. In that case, as shown in 9, the filtering step produced
a less efficient program than the one evolved directly by the
genetic improvement approach. In the case of ImageMagick,
the runtimes of the best evolved individuals were almost
identical with the run of the original software.

RQ4a, Specificity. Are the changes produced by GI prob-
lem-specific?

RQ4b, Generality. Are the changes produced by GI gen-
eral efficiency improvements?

Overall, in all experiments there were certain generalist
mutations such as assertion removals and deletion of

TABLE 17
Mutations Occurring in the Genetically Improved Solver from

Three GI Runs, Specialised for Colour Images

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 10
REPLACE IF statement condition 12
DELETE line of code 34
REPLACE line of code 14
COPY line of code 16

DELETE FOR loop condition 8
REPLACE FOR loop condition 12

total 106

(Donor: GraphicksMagick, Fitness threshold: 0%)

TABLE 18
Mutations Occurring in the Genetically Improved Solver from

Three GI Runs, Specialised for Colour Images

mutation mutated code changes

ImageMagick-gp
DELETE IF statement condition 9
REPLACE IF statement condition 17
DELETE line of code 23
REPLACE line of code 15
COPY line of code 25

DELETE FOR loop condition 3
REPLACE FOR loop condition 11

total 103

(Donor: GraphicksMagick, Fitness threshold: 50%)

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 587

operations on variables used for statistics (such as learnt
clauses counter). However, GI also found a few domain-
specific changes. For the CIT domain, transplantation of
functionality from another MiniSAT variant turned out the
most fruitful, whilst polarity mode switch was the most
effective for the Ensemble Computation domain, as shown
in Section 8. This switch was not efficient for the CIT and
Automated Termination Analysis as shown in previous
work on energy optimisation of MiniSAT using genetic
improvement [45]. In the ImageMagick experiments, differ-
ent mutations were promoted, depending on whether grey-
scale or colour images were targeted for conversion
optimisation. Answering RQ4, the genetic improvement
approach produces mutations that are problem-specific, but is also
able to evolve changes leading to general efficiency improvements.

9 ANALYSIS

Next we report results of modifying various aspects the
genetic improvement framework. We focus on the experi-
ments involving MiniSAT only, since the evolved solver
versions showed a range of efficiency behaviour based
on the seed to the GI process and the downstream
application.

9.1 Tuning the Fitness Function

We investigated various fitness function parameters to
answer the following research questions:

RQ5a, Fitness Function.What is the impact of the trade-off
between efficiency and effectiveness in fitness function on
finding a specialised software version using GI?

RQ5b, Comparison to Random Search (Sanity Check [57]).
How does the chosen search strategy compare with random
search?

Before we set the fitness in our experiments, we varied
the trade-off between efficiency and correctness (and did

not use donor transplantation technique) in order to identify
a fitness function that would guide GP towards faster (but
still correct) individuals. We performed GP runs with the
following sets of fitness thresholds:

1) the evolved individual must be at least as quick
as the original solver

2) the evolved individual must be correct in 2 out of 5
test cases and must be at least as quick as the original
solver

3) the evolved individual must be correct in 3 out of 5
test cases and must be at least as quick as the original
solver

4) the evolved individual must be correct in 4 out of 5
test cases and must be at least as quick as the original
solver

The answer to RQ5a is as follows: in cases 1), 2) and 3) the
individuals with highest fitness values were those that
always produced a SATISFIABLE or UNSATISFIABLE
answer. In those cases the DELETE mutation was used the
most frequently. The functionality of the solver algorithm
was being switched off, leaving just the ‘return SAT-
ISFIABLE’ or ‘return UNSATISFIABLE’ statements. Similar
results were obtained in experiment 4), however, at least a
few correct individuals were created, but their performance
was statistically similar to the original, producing better
runtime results for only 2 percent of instances.

We also performed a comparison with random search
by switching off individual selection based on fitness
value in our GI framework. After five generations the
search produced entire populations of individuals that
simply did not compile or produced errors and thus had
zero fitness, which answers RQ5b. The result of the experi-
ment conducted is shown in Fig. 5. By using a fitness-
guided selection strategy we were able to evolve multiple
individuals that met the fitness threshold and were faster
than the original program.

9.2 Tuning the Genetic Operation Rates

We also asked:
RQ5c, Genetic Operators. What is the impact of various

mutation and crossover operator rates on GI efficacy?We
have noticed that frequently a few mutations have a huge
impact on MiniSAT performance. Therefore, we tried the
following mutation and crossover rates: {mutation: 75 per-
cent, crossover: 25 percent} and {mutation: 25 percent, cross-
over: 75 percent}. However, none of these experiments led
to a version of MiniSAT that was better than the one
evolved in the work described in Section 8. This answers
RQ5c. It is unclear when crossover would be helpful in GI
work. Given the result by Gabel et al. [58] about software
uniqueness, it is possible that at least 6 one-line changes
need to be made to have a significant influence on runtime.
In the current setup crossover plays a major role in the num-
ber of mutations in individual software variants. Further
investigations into the impact of crossover and mutation in
genetic improvement work needs to be undertaken.
Another issue is the choice of genetic operators. Perhaps a
more fine-grained mutation, that provided expression-level
changes, would yield better results. Deep parameter tuning
work would be suggested as a future direction [59].

Fig. 5. Maximum fitness comparison with random search. GI framework
was run on MiniSAT2-070721 with CIT test cases, varying individual
selection strategy. After five generations all individuals had fitness value
0, i.e., did not compile or always returned an invalid output.

588 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

9.3 Test Case Selection

In our previous work we produced a version of MiniSAT
that was 17 percent faster on instances from the CIT applica-
tion domain [9]. However, some mutations did not scale to
large real-world CIT instances. Thus we re-ran the GI frame-
work with larger instances. This experiment has taken pro-
portionally longer to run and has not produced a faster
version with more generalisable mutations. Best results
were obtained efficiently with small test cases.

Moreover, mutations produced by our GI framework are
at the source code level, hence are easily readable. There-
fore, programmers can then decide which changes should
be applied.

Current GI process relies heavily on the assumption that
the test cases capture the desired software behaviour.
Therefore, more work is needed to help the developer
decide which ones to select for the GI process.

9.4 Output Validity

Since program correctness is measured by the pass rate of
test cases, the evolved version might potentially not be valid
on other, non-tested cases. However, we verified each solu-
tion produced by the final evolved solvers using the EDACC
verifier tool available from SAT 2013 competition website:
http://www.satcompetition.org/2013/downloads.shtml.
Furthermore, for the CIT domain, for example, output valid-
ity can be checked in polynomial-time; it is the time to gener-
ate CIT test suites that is an issue.

Hence, depending on the application, it might be benefi-
cial to have a program that is, say, 30 percent faster, but cor-
rect in 9 out of 10 cases (as long as output can be verified
efficiently). Multi-objective optimisation could be applied to
investigate the various trade-offs.

Furthermore, GI-generated changes have already been
adapted into development. Langdon et al. [60] sped-up a
DNA sequence mapping program using GI. The generated
edits were submitted to the software development team,who
incorporated these into the next software release. This shows
that GI can already serve as a recommender system for soft-
ware developers. Furthermore, since certain mutations pro-
duced by the GI framework are non-obvious to human
developers, an automated approach that could verify such
changes would overcome the issue of validity. Another idea
would be to introduce an automated rollback functionality.

9.5 Masking Effect

In Section 8.3.2 we observed that if an individual contains a
mutation that greatly increases it’s fitness value, it may also
contain mutations that actually hinder solver performance
and still be selected in the next generation. One way to
avoid this, would be to dynamically adapt the fitness func-
tion, based on fitness of the best individual found so far.
Another idea would be to employ a hill-climbing algorithm
instead of genetic algorithm in the search process. However,
strict hill climbing could miss individuals where certain
combinations of mutations lead to program speed-up.

9.6 Search Strategy

We used genetic programming within our GI framework to
find specialised program versions. Plots of the mean fitness
values in three of our six experiments (with 0-fitness value

individuals excluded) are shown in Fig. 6. Given that there
isn’t an obvious increase in fitness value with the number of
generations and that there exist individual mutations that
lead to a significant runtime improvement, as shown in
Section 8, a question arises whether the GI framework could
benefit from another search strategy, such as hill climbing.
Furthermore, the graphs show that there’s little gain to be
had in later generations. Perhaps deep learning strategies
could be used to obtain a more fine-grained fitness function
that would lead to better results with the genetic program-
ming approach used. It would be good if the fitness function
could be specified based on the application. As solution
quality and speed should not have the same priority always
for all applications.

9.7 Benchmark Structure

The best improvement was obtained for the Ensemble Com-
putation problem class. For this set of benchmarks the win-
ner of the 2009 MiniSAT-hack track competition was the
best human-developed version of the solver, in contrast to
the other two problem classes. Given that the biggest run-
time improvement was obtained by simply switching the
polarity mode of MiniSAT from false to true, one might
argue that the instances from the Ensemble Computation
class simply contain more positive literals than negative
ones. This is, however, not the case.

Even though the general SAT problem is NP-complete,
SAT solvers are generally extremely fast at solving industrial
instances. It has been shown that such real-world bench-
marks usually contain a small set of variables, that once set
correctly, make the rest of the instance easily solvable. These
are known as backdoors [61]. Perhaps reversing the polarity
mode caused the backdoor variables to be set to correct val-
uesmore quickly thanwhen using the default settings.

More recently, a strong connection was found between
MiniSAT’s runtime and graph modularity of SAT instances,
denoted by Q [62], [63]. In particular, SAT instances with
0:05 � Q � 0:13 are much harder to solve for MiniSAT than
others. Industrial instances were found to have high graph
modularity, frequently above 0.3. We calculated the Q val-
ues for all instances used in our experiments using SAT-
Graf.25 For the CIT instances, the mean Q value is 0.24; for
the AProVE instances, the mean Q value is 0.46; while for
the Ensemble Computation class the mean Q value is the
highest: 0.52. Given that several CIT instances had Q values
in the ‘hard-to-solve’ range, the 16 percent improvement
achieved by our GI approach (see Table 1) shows great
potential for using transplantation as means of specialising
software.

9.8 Code Bank

In our work we used code that has been developed by
expert human programmers. Several software variants
were available from the competition devoted to optimising
MiniSAT. The question arises what is a good source for the
code bank. As shown in previous work on bug fixing, the
original software is a good source of such code (the ‘plastic

25. SATGraf tool is available at https://ece.uwaterloo.ca/
�vganesh/EvoGraph/Download.html. We used the ‘cnm’ algorithm.

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 589

http://www.satcompetition.org/2013/downloads.shtml
https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html
https://ece.uwaterloo.ca/~vganesh/EvoGraph/Download.html

surgery hypothesis’ [64]). We advocate that our approach
for software specialisation generalises to instances where

one has access to multiple software variants. Where such
variants do not exist, we cannot apply the transplantation
approach. However, software variants can be found, for
instance, in software revision histories or related projects
(multiple pieces of software performing the same task, e.g.,
in open-source repositories). We picked an example of fork-
ing for the second set of experiments to show another area
where the approach can be applied to.

10 THREATS TO VALIDITY AND LIMITATIONS

Our experiments show that, indeed, it is possible to auto-
matically modify existing, highly-optimised code, in order
to achieve runtime improvements. We used genetic
improvement with software transplantation to achieve this.
The range of results varies, depending on the downstream
application and software of choice, of course. We have only
reported results for two applications and a total of five
downstream specialisation scenarios. More research is
required to investiage the degree to which these generalise.

Genetic improvement is a new research area, hence there
are not yet any guidelines in terms of how to setup a GI
framework to evolve an optimised software version effec-
tively and efficiently. In the previous section we mentioned
several issues that might influence the success of genetic
improvement techniques for runtime improvements. We
presented empirical data, yet there is more work to be done.

The set of test cases that preserve software behaviour is
not yet well defined. Furthermore, many programs do not
come with test suites that provide good coverage. Therefore,
the approach would not be immediately applicable.

One needs to consider each software improvement
framework separately. In the case of MiniSAT, we were able
to quickly verify the output of software. A SAT instance can
be either satisfiable or not and we used benchmarks for
which satisfiability is known. In the case of ImageMagick
we chose a particular image comparison metric. However,
one might argue that image quality might be sacrificed, for
example, by 1 percent, if the software can process images
much faster than the original software. The number of test
cases needed for GI also requires further understanding of
the genetic improvement process.

Traditionally, small mutations are applied to the code in
the form of one-line copy, replace and delete operations.
These have shown some success, including in this work, yet
further research needs to be done into at which level of
granularity the changes should be made. Another question
relates to the crossover rate. In the MiniSAT experiments,
the earlier generations produced the best results. The trend
was reverse for the ImageMagick software.

Finally, output validity was measured by the number of
test cases passed as a proxy for correctness in the fitness
function. We argue that GI can draw here from the literature
on genetic programming. However, we hope that the GI
techniques will also investigate other search-based techni-
ques in the quest of exploring the vast space of possible soft-
ware mutations.

11 RELATED AND FUTURE WORK

Our approach to program specialisation is based on Genetic
Improvement. GI uses computational search to improve

Fig. 6. Mean fitness values throughout 20 generations with 0-fitness indi-
viduals excluded. GI framework was run on MiniSAT2-070721.

590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

existing software while retaining its partial functionality. GI
has been successfully used to automate the process of bug
repair [28], in which the improved program has one or
more bugs fixed that were present in the original program.
The achievements of genetic programming to improve exist-
ing programs (by patching their bugs) has led to an explo-
sion of interest in automated program repair [4]. It has also
been successful in other areas of software engineering, such
as reverse engineering [30].

GI described here is a specific instance of the application
of evolutionary computation to software engineering prob-
lems [65], an area that has come to be known as Search
Based Software Engineering (SBSE) [66], [67], [68], [69].
SBSE has been applied to many problems in software engi-
neering such as project management [70], requirements
engineering [71], design [72], [73], testing [29], [74], [75],
maintenance [76], reverse engineering [30], refactoring and
code smell detection [77], [78], [79]. Whereas many areas of
SBSE target software engineering processes and non-code-
based aspects of the overall software system, GI targets the
source code itself, so it is a form of source code analysis and
manipulation [80].

GI has been used to improve non-functional properties of
relatively small laboratory programs [5], [7], [27], as well as
larger real-world systems [2], [3], [81], [82], [83], [84]. It has
also been used to automatically migrate a system from one
platform to another [3], to improve energy consumption
[45], [85] and to graft novel functionality into large existing
systems [86], [87], [88].

Previous work on genetic improvement was concerned
with a single program; the program to be improved. Code is
extracted, perhaps modified and then reinserted back into
the program at a different location. In most cases, the code
to be inserted is taken from elsewhere in the original pro-
gram [2], [3], [5], [6], [7], [27], [28], [81], but can also come
from other programs written by human programmers [89],
or be grown from scratch by genetic programming [86], [87].

Our focus is on transplantation from multiple programs
for specialisation. This is an important departure from the
previous literature in GI. As a result of multiple transplanta-
tion, GP is no longer concerned with a single program to be
improved, but multiple donor programs, from which code
can be extracted to help guide genetic improvement. The
idea of code transplantation using GP was proposed by
Harman et al. [30] and first implemented by Petke et al. [9].
In subsequent work, Barr et al. successfully transplanted a
feature from one program into another using genetic
improvement [89]. Program transplantation is a general
approach (taking code from one human-written system and
inserting it into another), but here we use it for GI-based
specialisation.

The idea of transplanting code to improve its behaviour
has also been investigated in the context of replacing legacy
code with external components [90], [91], [92], [93]. Our
approach could also be applied to this problem. Further-
more, it is more flexible in terms of granularity of the
changes. For example, just one line of code from the donor
could be transplanted using GI.

The goal of improvement adopted here also differs from
that of most previous GI work, which focused on improving
functional properties (by bug repair [4] and grafting [86]) or

non-functional properties (such as execution time [2], [3],
[5], [7], [27], [81], [82], [83] and energy consumption [6],
[45], [85], [94], [95]).

In all of this previous GI work, the full functionality of
the original program (notwithstanding any buggy behav-
iour) was to be retained in the genetically improved version
of the program. By contrast, we explore GI’s potential to
specialise a program to a particular application domain.
The specialised program need not retain the full functional-
ity of the original. Therefore, it can optimise, outperforming
the original program for the specific task for which it has
been evolved.

In preliminary experiments with MiniSAT [96], optimisa-
tion through genetic improvement of general SAT competi-
tion instances was conducted. However, this approach led to
only very modest runtime improvements of up to 2 percent.
Using transplantation from various different versions of Min-
iSAT, we have been able to use GI-based specialisation to
achieve a (human-competitive) improvement of 17 percent
for the specialised application subdomain of Combinatorial
Interaction Testing [9]. Here we extend our previous work [9]
to show that MiniSAT can be specialised for multiple down-
stream application subdomains and add results for another
piece of software, i.e., ImageMagick.

GI-based specialisation shares the goal of previous work
on partial evaluation [12], [13], [14]. That is, both GI-based
specialisation and partial evaluation seek to produce, from
an original general program, multiple specialised versions
that target some subset of the original’s application domain.

However, the criterion for specialisation, the techniques
used to specialise, and the specialised programs that result
from each of the two approaches are all very different. That
is, unlike partial evaluation, GI-based specialisation uses
evolution, in the form of genetic programming, to search for
specialised programs, whereas partial evaluation uses a
sequence of meaning preserving transformations. The spe-
cialisation criterion for partial evaluation is a subset of
inputs, or some predicate over the input space, where as for
GI-based specialisation, the specialisation criterion is cap-
tured by a set of test cases (inputs and the corresponding
desired output). Partial evaluation is also deterministic,
whereas GI-based specialisation presented in this work is
inherently stochastic, since it is based on evolutionary
computation.

The vast majority of current genetic improvement work
relies on a genetic programming algorithm. This has proven
very successful in the automated program repair work [28].

However, GI can also use other SBSE approaches in order
to search the space of different software variants. These,
however, are yet to be tried.

We have chosen the original program to be the test oracle
[97], determining the output corresponding to each input,
and thereby constructing the test cases that guide genetic
programming. This means that each specialisation targets
some sub-problem within the overall problem space
attacked by the original program. However, our formula-
tion of specialisation as a problem for GI allows us to apply
specialisation to problems where the specialised program
must behave differently to the original program.

This could be useful in situations where the original pro-
gram is not only too general for a particular problem (and

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 591

therefore unnecessarily slow), but where it also fails to quite
fit the specialised problem; the original program needs to be
specialised and (slightly) adapted. By careful inclusion of a
few additional test cases (that capture the desired newbehav-
iour) we may be able to specialise the program and simulta-
neously adapt it, using the same GI-based specialisation
process advocated here. It is worth noting that there is a time
cost associated with setting up and running the GI frame-
work. Investigation of this specialise-and-adapt problem and
its efficiency remains an open challenge for futurework.

12 CONCLUSIONS

We evolved specialised versions of the C++ program, Min-
iSAT, and ImageMagick, image processing software, using
genetic improvement with transplants. Genetic improve-
ment specialised MiniSAT for three particular hard problem
classes and ImageMagick for two different types of images.

The MiniSAT-hack track of SAT competitions is specifi-
cally designed to encourage human scientists and engineers
to adapt and develop MiniSAT code to find runtime
improvements, and hence lead to new insights into SAT
solving technology. The competition provides a natural
source of genetic material for code transplants, as well as a
natural baseline for assessing the competitiveness of the GI-
specialised versions against the general versions optimised
by expert humans.

We applied GI-based specialisation to three problem
domains: Combinatorial Interaction Testing, Automated
Termination Analysis of Term Re-write Systems and the
problem of Ensemble Computation. The evolved MiniSAT
versions achieved between 4 and 36 percent runtime
improvement on our test set over the best general solver opti-
mised by humans. For all three problem domains, the
evolved solvers outperform all of the general human-written
solvers entered into the 2009 MiniSAT-hack track competi-
tion, when applied to problems from the specialised domain.

We also applied the genetic improvement approach to
ImageMagick. We targeted optimisation of the JPG to
PNG conversion function. We used code from Graphics-
Magick, that was forked from ImageMagick. That code
was used as a pool of source code from which to draw can-
didates for transplantation. The best evolved individual
achieved a 3 percent runtime improvement with respect to
the original software. Future work may explore relaxed
forms of equivalence that woud permit greater degrees of
speed up.

We believe that these findings provide compelling evi-
dence to support the claim that GI-based specialisation is a
promising approach to automated program specialisation.
We also believe that more research needs to be done into
finding optimal GI setups for a given software application.

REFERENCES

[1] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the Pareto pro-
gram surface using genetic programming to find better programs
(keynote paper),” in Proc. 27th IEEE/ACM Int. Conf. Automated
Softw. Eng., Sep. 2012, pp. 1–14.

[2] W. B. Langdon and M. Harman, “Optimising existing software
with genetic programming,” IEEE Trans. Evol. Comput., vol. 19,
no. 1, pp. 118–135, Feb. 2015.

[3] W. B. Langdon and M. Harman, “Evolving a CUDA kernel from
an nVidia template,” in Proc. IEEE World Congr. Comput. Intell.,
18–23 Jul. 2010, pp. 2376–2383.

[4] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Softw. Quality J., vol. 21, no. 3,
pp. 421–443, 2013.

[5] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” IEEE Trans. Evol. Comput., vol. 15, no. 2, pp. 166–182,
Apr. 2011.

[6] D. R. White, J. Clark, J. Jacob, and S. Poulding, “Searching for
resource-efficient programs: Low-power pseudorandom number
generators,” in Proc. Genetic Evol. Comput. Conf., Jul. 2008,
pp. 1775–1782.

[7] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improve-
ment of programs,” IEEE Trans. Evol. Comput., vol. 15, no. 4,
pp. 515–538, Aug. 2011.

[8] N. E�en and N. S€orensson, “An extensible SAT-solver,” in Theory
and Applications of Satisfiability Testing. Berlin, Germany: Springer,
2004, pp. 502–518.

[9] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using
genetic improvement and code transplants to specialise a C++
program to a problem class,” in Proc. 17th Eur. Conf. Genetic Pro-
gram., 2014, pp. 137–149.

[10] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learn-
ing SAT solvers,” in Handbook of Satisfiability, A. Biere, M. Heule,
H. van Maaren, and T. Walsh, Eds. Amsterdam, The Netherlands:
IOS Press, 2009, pp. 131–153.

[11] “MiniSAT-hack track of SAT competition,” In 2009 this was part
of the 12th International Conference on Theory and Applications
of Satisfiability Testing, 2009. [Online]. Available: http://www.
satcompetition.org/2009/

[12] D. Bjørner, A. P. Ershov, and N. D. Jones, Partial Evaluation and
Mixed Computation. Amsterdam, The Netherlands: North-
Holland, 1987.

[13] D. Binkley, S. Danicic, M. Harman, J. Howroyd, and L. Ouarbya,
“A formal relationship between program slicing and partial eval-
uation,” Formal Aspects Comput., vol. 18, no. 2, pp. 103–119, 2006.

[14] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. London, U.K.: Prentice-Hall, 1993.

[15] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and
E.-N. Volanschi, “Partial evaluation for software engineering,”
ACM Comput. Surveys, vol. 30, no. 3, Sep. 1998, Art. no. 20.
[Online]. Available: http://www.acm.org:80/pubs/citations/
journals/surveys/1998–30-3es/a20-consel/

[16] S. Draves, “Partial evaluation for media processing,” ACM Com-
put. Surveys, vol. 30, no. 3, Sep. 1998, Art. no. 21. [Online]. Avail-
able: http://www.acm.org:80/pubs/citations/journals/surveys/
1998–30-3es/a21-draves/

[17] M. Dwyer, J. Hatcliff, and M. Nanda, “Using partial evaluation to
enable verification of concurrent software,” ACM Comput. Surveys,
vol. 30, no. 3, Sep. 1998, Art. no. 22. [Online]. Available: http://
www.acm.org:80/pubs/citations/journals/surveys/1998–30-
3es/a22-dwyer/

[18] C. K. Gomard and N. D. Jones, “Compiler generation by partial
evaluation,” in Proc. 11th IFIP World Comput. Congr. Inf. Process.,
1989, pp. 1139–1144.

[19] C. Cadar, P. Pietzuch, and A. L. Wolf, “Multiplicity computing: A
vision of software engineering for next-generation computing
platform applications,” in Proc. Workshop Future Softw. Eng. Res.,
2010, pp. 81–86.

[20] L. Beckman, A. Haraldson, O. Oskarsson, and E. Sandewall, “A
partial evaluator, and its use as a programming tool,” Artif. Intell.,
vol. 7, no. 4, pp. 319–357, 1976.

[21] A. P. Ershov, On the Essence of Computation. Amsterdam, The
Netherlands: North-Holland, 1978, pp. 391–420.

[22] Y. Futamura, “Partial evaluation of computation process-an
approach to a compiler-compiler,” Syst. Comput. Controls, vol. 2,
no. 5, pp. 721–728, Aug. 1971.

[23] A. Haraldsson, “A partial evaluator, its use for compiling iterative
statements in Lisp,” in Proc. Conf. Rec. 5th Annu. ACM Symp. Prin-
ciples Program. Languages, Jan. 1978, pp. 195–202.

[24] Y. Futamura andK.Nogi, “Generalizedpartial computation,” inProc.
IFIPTC2Workshop Partial Eval.Mixed Comput., 1987, pp. 133–151.

[25] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Egham, U.K.: Lulu Enterprises, 2008.

[26] J. R. Koza, Genetic Programming-on the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1993.

592 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

http://www.satcompetition.org/2009/
http://www.satcompetition.org/2009/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a20-consel/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a20-consel/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a21-draves/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a21-draves/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a22-dwyer/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a22-dwyer/
http://www.acm.org:80/pubs/citations/journals/surveys/1998--30-3es/a22-dwyer/

[27] A. Arcuri, D. R. White, J. A. Clark, and X. Yao, “Multi-objective
improvement of software using co-evolution and smart seeding,”
in Proc. 7th Int. Conf. Simulated Evol. Learn., Dec. 2008, pp. 61–70.

[28] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Trans. Softw.
Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.

[29] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in Proc. 8th
IEEE Int. Conf. Softw. Testing Verification Validation, 2015, pp. 1–12.

[30] M. Harman, W. B. Langdon, and W. Weimer, “Genetic program-
ming for reverse engineering,” in Proc. 20th Working Conf. Reverse
Eng., 14–17 Oct. 2013, pp. 1–10.

[31] C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A sys-
tematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each,” in Proc. Int. Conf. Softw. Eng., 2012, pp. 3–13.

[32] A. Zeller, “Yesterday, my program worked. Today, it does not.
Why?” in Proc. 7th Eur. Softw. Eng. Conf. Held Jointly 7th ACM SIG-
SOFT Int. Symp. Found. Softw. Eng., 1999, pp. 253–267.

[33] S. D. Prestwich, “CNF encodings,” in Handbook of Satisfiability,
A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds. Amster-
dam, The Netherlands: IOS Press, 2009, pp. 75–97.

[34] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, vol. 185. Amsterdam, TheNetherlands: IOS Press, 2009.

[35] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability
solvers and their applications in model checking,” Proc. IEEE,
vol. 103, no. 11, pp. 2021–2035, Nov. 2015.

[36] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of auto-
mated techniques for formal software verification,” IEEE Trans.
CAD Integr. Circuits Syst., vol. 27, no. 7, pp. 1165–1178, Jul. 2008.
[Online]. Available: http://dx.doi.org/10.1109/TCAD.2008.923410

[37] F. Arito, F. Chicano, and E. Alba, “On the application of SAT solv-
ers to the test suite minimization problem,” in Proc. 4th Int. Symp.
Search Based Softw. Eng., 2012, pp. 45–59. [Online]. Available:
http://dx.doi.org/10.1007/978–3-642-33119-0_5

[38] M. Banbara, H. Matsunaka, N. Tamura, and K. Inoue, “Generating
combinatorial test cases by efficient SAT encodings suitable for
CDCL SAT solvers,” in Proc. 17th Int. Conf. Logic Program. Artif.
Intell. Reasoning, 2010, pp. 112–126.

[39] T. Nanba, T. Tsuchiya, and T. Kikuno, “Constructing test sets for
pairwise testing: A SAT-based approach,” in Proc. Int. Conf. Netw.
Comput., 2011, pp. 271–274.

[40] A. Yamada, T. Kitamura, C. Artho, E. Choi, Y. Oiwa, and A. Biere,
“Optimization of combinatorial testing by incremental SAT sol-
ving,” in Proc. 8th IEEE Int. Conf. Softw. Testing Verification Valida-
tion, 2015, pp. 1–10. [Online]. Available: http://dx.doi.org/
10.1109/ICST.2015.7102599

[41] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. L. Traon, “Bypassing the combinatorial explosion: Using simi-
larity to generate and prioritize t-wise test suites for large software
product lines,” IEEE Trans. Softw. Eng., vol. 40, no. 7, pp. 650–670,
2014.

[42] D. Benavides, S. Segura, and A. R. Cort�es, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst.,
vol. 35, no. 6, pp. 615–636, 2010. [Online]. Available: http://dx.
doi.org/10.1016/j.is.2010.01.001

[43] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*: A
general-purpose higher-order relational constraint solver,” in
Proc. 37th IEEE/ACM Int. Conf. Softw. Eng., 2015, pp. 609–619.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2015.77

[44] J. Marques-Silva , “Practical applications of Boolean satisfiability,”
in Proc. 9th Int. Workshop Discrete Event Syst., May 2008, pp. 74–80.

[45] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consump-
tion using genetic improvement,” in Proc. Genetic Evol. Comput.
Conf., 2015, pp. 1327–1334.

[46] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Comput. Surveys, vol. 43, no. 2, pp. 11:1–11:29, 2011.

[47] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The
AETG system: An approach to testing based on combinatorial
design,” IEEE Trans. Softw. Eng., vol. 23, no. 7, pp. 437–444, Jul. 1997.

[48] C. Colbourn, “Covering array tables,” 2013. [Online]. Available:
http://www.public.asu.edu/ ccolbou/src/tabby/catable.html

[49] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “Evaluating improve-
ments to a meta-heuristic search for constrained interaction
testing,” Empirical Softw. Eng., vol. 16, no. 1, pp. 61–102, 2011.

[50] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/
IPOG-D: Efficient test generation for multi-way combinatorial
testing,” Softw. Testing Verification Rel., vol. 18, no. 3, pp. 125–148,
2008.

[51] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Efficiency and
early fault detection with lower and higher strength combinatorial
interaction testing,” in Proc. Eur. Softw. Eng. Conf. ACM SIGSOFT
Symp. Found. Softw. Eng., Aug. 2013, pp. 26–36.

[52] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge,
U.K.: Cambridge Univ. Press, 1998.

[53] M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann, “SAT
solving for termination proofs with recursive path orders and
dependency pairs,” J. Autom. Reasoning, vol. 49, no. 1, pp. 53–93,
2012.

[54] C. Fuhs, “SAT-based termination analysis for Java bytecode with
AProVE,” (2011). [Online]. Available: http://www.dcs.bbk.ac.
uk/~carsten/satcomp/AProVE11.pdf

[55] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Freeman, 1979.

[56] M. J€arvisalo, P. Kaski, M. Koivisto, and J. H. Korhonen, “Finding
efficient circuits for ensemble computation,” in Proc. 15th Int.
Conf. Theory Appl. Satisfiability Testing, 2012, pp. 369–382.

[57] M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based soft-
ware engineering: Techniques, taxonomy, tutorial,” in Empirical
Software Engineering and Verification: LASER 2009-2010, B. Meyer
and M. Nordio, Eds. Berlin, Germany: Springer, 2012, pp. 1–59.

[58] M. Gabel and Z. Su, “A study of the uniqueness of source code,”
in Proc. 18th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2010,
pp. 147–156.

[59] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep
parameter optimisation,” in Proc. Genetic Evol. Comput. Conf.,
2015, pp. 1375–1382.

[60] W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
CUDADNA analysis software with genetic programming,” in Proc.
Genetic Evol. Comput. Conf., 2015, pp. 1063–1070.

[61] R. Williams, C. P. Gomes, and B. Selman, “Backdoors to typical
case complexity,” in Proc. 18th Int. Joint Conf. Artif. Intell., 2003,
pp. 1173–1178.

[62] C. Ans�otegui, J. Gir�aldez-Cru, and J. Levy, “The community struc-
ture of SAT formulas,” in Proc. 15th Int. Conf. Theory Appl. Satisfi-
ability Testing, 2012, pp. 410–423. [Online]. Available: http://dx.
doi.org/10.1007/978–3-642-31612-8_31

[63] Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, and
L. Simon, “Impact of community structure on SAT solver per-
formance,” in Proc. 17th Int. Conf. Held Part Vienna Summer Logic
Theory Appl. Satisfiability Testing, 2014, pp. 252–268. [Online].
Available: http://dx.doi.org/10.1007/978–3-319-09284-3_20

[64] E. T. Barr, Y. Brun, P. T. Devanbu, M. Harman, and F. Sarro, “The
plastic surgery hypothesis,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Found. Softw. Eng., 2014, pp. 306–317.

[65] M. Harman, “Software engineering meets evolutionary
computation,” IEEE Comput., vol. 44, no. 10, pp. 31–39, Oct. 2011.

[66] T. E. Colanzi, S. R. Vergilio, W. K. G. Assuncao, and A. Pozo,
“Search based software engineering: Review and analysis of the
field in Brazil,” J. Syst. Softw., vol. 86, no. 4, pp. 970–984, Apr. 2013.

[67] F. G. Freitas and J. T. Souza, “Ten years of search based software
engineering: A bibliometric analysis,” in Proc. 3rd Int. Symp. Search
Based Softw. Eng., Sep. 2011, pp. 18–32.

[68] M. Harman and B. F. Jones, “Search based software engineering,”
Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, Dec. 2001.

[69] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: Trends, techniques and applications,” ACM Comput.
Surveys, vol. 45, no. 1, pp. 11:1–11:61, Nov. 2012.

[70] F. Ferrucci, M. Harman, and F. Sarro, “Search-based software
project management,” in Software Project Management in a Chang-
ing World. Berlin, Germany: Springer, 2014, pp. 373–399.

[71] Y. Zhang, A. Finkelstein, and M. Harman, “Search based require-
ments optimisation: Existing work and challenges,” in Proc. Int.
Working Conf. Requirements Eng.: Found. Softw. Quality, 2008,
pp. 88–94.

[72] O. R€aih€a, “A survey on search–based software design,” Comput.
Sci. Rev., vol. 4, no. 4, pp. 203–249, 2010.

[73] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and
Y. Zhang, “Search based software engineering for software prod-
uct line engineering: A survey and directions for future work,” in
Proc. 18th Int. Softw. Product Line Conf., 2014, pp. 5–18.

[74] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation
of search-based test-case generation,” IEEE Trans. Softw. Eng.,
vol. 36, no. 6, pp. 742–762, Nov./Dec. 2010.

PETKE ET AL.: SPECIALISING SOFTWARE FOR DIFFERENT DOWNSTREAM APPLICATIONS USING GENETIC IMPROVEMENT AND CODE... 593

http://dx.doi.org/10.1109/TCAD.2008.923410
http://dx.doi.org/10.1007/978--3-642-33119-0_5
http://dx.doi.org/10.1109/ICST.2015.7102599
http://dx.doi.org/10.1109/ICST.2015.7102599
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1109/ICSE.2015.77
http://www.public.asu.edu/ ccolbou/src/tabby/catable.html
http://www.dcs.bbk.ac.uk/~carsten/satcomp/AProVE11.pdf
http://www.dcs.bbk.ac.uk/~carsten/satcomp/AProVE11.pdf
http://dx.doi.org/10.1007/978--3-642-31612-8_31
http://dx.doi.org/10.1007/978--3-642-31612-8_31
http://dx.doi.org/10.1007/978--3-319-09284-3_20

[75] P. McMinn, “Search-based software test data generation: A
survey,” Softw. Testing Verification Rel., vol. 14, no. 2, pp. 105–156,
Jun. 2004.

[76] M. D. Penta, “SBSE meets software maintenance: Achievements
and open problems,” in Proc. 4th Int. Symp. Search Based Softw.
Eng., 2012, pp. 27–28.

[77] U. Mansoor, M. Kessentini, B. Maxim, and K. Deb, “Multi-
objective code-smells detection using good and bad design
examples,” Softw. Quality J., vol. 25, no. 2, pp. 529–552, 2017.

[78] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. �O.
Cinn�eide, “High dimensional search-based software engineering:
Finding tradeoffs among 15 objectives for automating software
refactoring using NSGA-III,” in Proc. Genetic Evol. Comput. Conf.,
2014, pp. 1263–1270.

[79] A. Ouni, M. Kessentini, H. A. Sahraoui, K. Inoue, and K. Deb,
“Multi-criteria code refactoring using search-based software engi-
neering: An industrial case study,” ACM Trans. Softw. Eng. Meth-
odology, vol. 25, no. 3, pp. 23:1–23:53, 2016.

[80] M. Harman, “Why source code analysis and manipulation will
always be important (keynote),” in Proc. 10th IEEE Int. Work. Conf.
Source Code Anal. Manipulation, 2010, pp. 7–19.

[81] W. B. Langdon, M. Modat, J. Petke, and M. Harman, “Improving
3D medical image registration CUDA software with genetic pro-
gramming,” in Proc. Genetic Evol. Comput. Conf., 2014, pp. 951–958.
[Online]. Available: http://doi.acm.org/10.1145/2576768.2598244

[82] W. B. Langdon and M. Harman, “Genetically improved CUDA C
++ software,” in Proc. 17th Eur. Conf. Genetic Program., 2014,
pp. 87–99.

[83] P. Sitthi-amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” ACM Trans. Graph.,
vol. 30, no. 6, pp. 152:1–152:11, 2011.

[84] W. B. Langdon, “Genetically improved software,” in Handbook of
Genetic Programming Applications, A. H. Gandomi, A. H. Alavi,
and C. Ryan, Eds. Berlin, Germany: Springer, 2015, ch. 8,
pp. 181–220. [Online]. Available: http://www.cs.ucl.ac.uk/staff/
W.Langdon/ftp/papers/langdon_2015_hbgpa.pdf

[85] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-
compiler software optimization for reducing energy,” SIGARCH
Comput. Archit. News, vol. 42, no. 1, pp. 639–652, Feb. 2014.

[86] M. Harman, Y. Jia, and W. B. Langdon, “Babel pidgin: SBSE can
grow and graft entirely new functionality into a real world sys-
tem,” in Proc. 6th Symp. Search Based Softw. Eng., 2014, pp. 247–252.

[87] W. B. Langdon and M. Harman, “Grow and graft a better CUDA
pknotsrg for RNA pseudoknot free energy calculation,” in Proc.
Genetic Evol. Comput. Conf., 2015, pp. 805–810. [Online]. Available:
http://doi.acm.org/10.1145/2739482.2768418

[88] Y. Jia, M. Harman, W. B. Langdon, and A. Marginean, “Grow and
serve: Growing Django citation services using SBSE,” in Proc. 7th
Int. Symp. Search-Based Softw. Eng., 2015, pp. 269–275. [Online].
Available: http://dx.doi.org/10.1007/978–3-319-22183-0_22

[89] E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke,
“Automated software transplantation,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 257–269.

[90] M. Sch€afer, M. Sridharan, J. Dolby, and F. Tip, “Refactoring Java
programs for flexible locking,” in Proc. 33rd Int. Conf. Softw. Eng.,
2011, pp. 71–80.

[91] K. Ishizaki, S. Daijavad, and T. Nakatani, “Refactoring Java pro-
grams using concurrent libraries,” in Proc. 9th Workshop Parallel
Distrib. Syst. Testing Anal. Debugging, 2011, pp. 35–44.

[92] A. Ouni, R. G. Kula, M. Kessentini, T. Ishio, D. M. Germ�an, and
K. Inoue, “Search-based software library recommendation using
multi-objective optimization,” Inf. Softw. Technol., vol. 83, pp. 55–
75, 2017.

[93] F. Thung, D. Lo, and J. L. Lawall, “Automated library recommen-
dation,” in Proc. 20th Working Conf. Reverse Eng., 2013, pp. 182–191.

[94] D. Li, A. H. Tran, andW. G. J. Halfond, “Making web applications
more energy efficient for OLED smartphones,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 527–538.

[95] I. L. Manotas-Guti�errez, L. L. Pollock, and J. Clause, “SEEDS: A
software engineer’s energy-optimization decision support frame-
work,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 503–514.

[96] J. Petke, W. B. Langdon, and M. Harman, “Applying genetic
improvement to MiniSAT,” in Proc. 5th Int. Symp. Search Based
Softw. Eng., 24–26 Aug. 2013, pp. 257–262.

[97] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle problem in software testing: A survey,” IEEE Trans. Softw.
Eng., vol. 41, no. 5, pp. 507–525, May 2015.

Justyna Petke is a senior research associate in
the Centre for Research on Evolution, Search and
Testing (CREST), University College London.
She has published articles on the applications of
genetic improvement. Her paper work on GI won
multiple awards. She is supported by the Dynamic
Adaptive Automated Software Engineering grant
from UK Engineering and Physical Sciences
Research Council (EPSRC).

Mark Harman is professor of software engineer-
ing with UCL and an engineering manager with
Facebook. He is widely known for work on source
code analysis and testing and was instrumental
in the founding of the field of search based soft-
ware engineering (SBSE), an area of research to
which this paper seeks to make a contribution.
Since its inception in 2001, SBSE has rapidly
grown to include more than 900 authors, from
nearly 300 institutions. GGGP and DAASE proj-
ects partly support the presented work.

William B. Langdon is a professorial research fel-
low with UCL. He worked on distributed real time
databases for control and monitoring of power sta-
tions in the Central Electricity Research Laborato-
ries. He then joined Logica to work on distributed
control of gas pipelines and later on computer and
telecommunications networks. After returning to
academia to gain a PhD in GP at UCL, he worked
with the University of Birmingham, the CWI, UCL,
Essex University, King’s College, London and now
for a third time atUCL.

Westley Weimer received the BA degree in com-
puter science and mathematics from Cornell Uni-
versity and the MS and PhD degrees from the
University of California, Berkeley. He is currently
an associate professor with the University of
Virginia. His main research interests include
static and dynamic analyses to improve software
quality, and fix defects.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

594 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 44, NO. 6, JUNE 2018

http://doi.acm.org/10.1145/2576768.2598244
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2015_hbgpa.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2015_hbgpa.pdf
http://doi.acm.org/10.1145/2739482.2768418
http://dx.doi.org/10.1007/978--3-319-22183-0_22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

