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Abstract—Software engineering and development is well-known to suffer from unplanned overtime, which causes stress and illness

in engineers and can lead to poor quality software with higher defects. Recently, we introduced a multi-objective decision support

approach to help balance project risks and duration against overtime, so that software engineers can better plan overtime. This

approach was empirically evaluated on six real world software projects and compared against state-of-the-art evolutionary approaches

and currently used overtime strategies. The results showed that our proposal comfortably outperformed all the benchmarks

considered. This paper extends our previous work by investigating adaptive multi-objective approaches to meta-heuristic operator

selection, thereby extending and (as the results show) improving algorithmic performance. We also extended our empirical study to

include two new real world software projects, thereby enhancing the scientific evidence for the technical performance claims made in

the paper. Our new results, over all eight projects studied, showed that our adaptive algorithm outperforms the considered state of the

art multi-objective approaches in 93 percent of the experiments (with large effect size). The results also confirm that our approach

significantly outperforms current overtime planning practices in 100 percent of the experiments (with large effect size).

Index Terms—Software engineering, management, planning, search-based software engineering, project scheduling, overtime,

hyperheuristic, multi-objective evolutionary algorithms, NSGAII
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1 INTRODUCTION

FEW software engineers can have failed to notice the
harmful effects of unplanned overtime on the software

industry. Software engineering is notorious for effort esti-
mate inaccuracy and time-to-market pressure, with soft-
ware engineers often finding themselves coerced into high
levels of unplanned overtime. It is widely believed that this
leads to dissatisfaction and depression, which are worrying
enough in themselves [1]. Moreover, asking people to work
beyond their working hours not only increases project costs
but also leads to burnout, errors, and rework [2], [3], [4],
none of which is a characteristic of a successful project.
In its most extreme form, unplanned overtime results in a
so-called ‘death march project’ [5], with all the implications
this inherently has for quality of software, and the quality of
life of engineers unfortunate enough to find themselves
involved in such projects.

Problems associated with unplanned overtime have been
widely reported upon in the occupational health literature.
This literature contains several systematic studies of the
effects of unplanned overtime on professionals. Demanding
unplanned overtime from people at a short notice could

take time from their lives, disrupting their work-life balance
with consequent negative effect on their morale [4]. Even
from a ‘purely product-focussed point of view’ (divorced
from any concerns over engineers’ welfare), this literature
also highlights the harmful impact of unplanned overtime
the products and services professionals are able to provide
[6], [7], [8].

Although there is a great deal more literature on the gen-
eral problems of unplanned overtime in the wider work-
place than there has been specific evidence focussing on
software engineering projects, there is also evidence specifi-
cally concerned with software engineering professionals: A
controlled study of 377 software engineers found positive
correlations (p < 0:05) between unplanned overtime and
several widely-used stress and depression indicators [2].
There is also evidence that the deployment of overtime can
lead to increased software defect counts [3].

Fortunately, there is also case study evidence that proper
overtime planning (i.e., allocating fairly in advance some
extra amount of time to complete a certain task) leads not
only to greater software engineer job satisfaction, but also to
improved customer satisfaction in the resulting software
products [1], [4], [9]. Indeed, thanks to overtime planning, a
project manager can analyse in advance if there is any
potential benefit (e.g., reduce risk of overrun) from working
overtime on certain tasks rather than others and evaluate
whether the current team can handle the project or some
overtime is needed to cover the gap [4]. Looking to the
wider (non-software-engineering specific) literature, we can
also find evidence that, if overtime is properly planned then
there are few, if any, of the harmful side-effects that so-often
accompany unplanned overtime [10]. This evidence all
points to the need for research into decision support for
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software engineers to help them better plan for overtime,
balancing the need for overtime against project overrun
risks and budgetary constraints.

Given the importance of the problem for both software
engineers and the products they produce, it is surprising
that this problem has not been more widely scientifically
studied. The research agenda we report on in this paper
seeks to address this lack of work on overtime planning for
software engineering project management.

Previously [11], we introduced an approach to support
software engineers in better planning for overtime by iden-
tifying in advance when is best to work beyond normal
working hours. The problem is to find the right balance
between the conflicting objectives of reducing project dura-
tion, amount of overtime, and risk of project overrun. Com-
plex multi-objective decision problems with competing and
conflicting constraints such as this are well suited to Search
Based Software Engineering (SBSE) [12], which has proved
able to provide decision support for other early-stage soft-
ware engineering activities, notably requirements engineer-
ing [13], [14], [15]. However, this is the first time that an
approach has been introduced to provide decision support
for software engineers attempting to reconcile the complex
trade-offs inherent in overtime planning. Our previous
work [11] thus introduced the first search based formulation
of the project overtime planning problem.

Our approach balances trade offs between project dura-
tion, overrun risk, and overtime resources for three different
risk assessment models. It is applicable to software project
plans, such as those constructed using the Critical Path
Method, widely adopted by software engineers and imple-
mented in many tools. This paper extends that work, with
novel adaptive algorithms for overtime planning and wider
evaluation on a larger number of real world data sets con-
cerning software project management.

Our original approach was evaluated on six real world
software projects, using three standard evaluation measures
and three different approaches to risk assessment. The
results showed that the proposed approach is significantly
better than currently used overtime planning strategies
with large effect size. Moreover, they revealed that using
the Non-dominated Sorting Genetic Algorithm 2 (NSGAII)
with a crossover operator specifically conceived for the
overtime planning problem (i.e., NSGAIIv) leads to signifi-
cantly improvement over a standard multi-objective search
(i.e., NSGAII).

In this paperwe extend our previouswork [11], as follows:

1) We investigate adaptive multi-objective approaches
to meta-heuristic operator selection, thereby extend-
ing and (as the results show) improving the algorith-
mic performance of the approach proposed in the
conference version of this paper (which considered
only non-adaptive approaches) [11]. This is the first
use of adaptive multi-objective evolutionary algo-
rithms for software project management.

2) We validate our proposed multi-objective approach
for overtime planning by using two new real projects
in addition to the six ones previously used in our
conference paper [11]. This leads to 288 different
experiments, comparing Adaptivevsc the proposed

algorithm with adaptive crossover selection and
domain specific crossover operator to random
search (a sanity check), and to the two standard
multi-objective algorithms for overtime planning
from the conference version of our paper. Addition-
ally, we have compared our adaptive algorithm to
the adaptive NSGAII originally proposed by Nebro
et al. [16]. The results reveal that our approach is sta-
tistically significantly better than random search in
100 percent experiments (with large effect size) and
is also statistically significantly better than the con-
sidered state of the art multi-objective approaches in
93 percent of experiments (with large effect size).

3) We also compare the performance of seven adaptive
NSGAII variants introduced in this paper to assess the
impact of using different crossover and adaptive
strategies. This leads to 432 experiments: Adaptivevsc
outperforms the other approaches in 281 cases, pro-
vided similar results in 91 cases, and was worse in
only 60 cases. The results suggest that the criteria used
to adaptively select the genetic operator during the
search are important to obtain an effective algorithm.

4) We compare the new adaptive algorithm to standard
overtime planning strategies reported in the litera-
ture. This reveals that our approach significantly out-
performs these standard strategies with high effect
size in all the experiments, thus confirming and
extending previous results [11].

The rest of the paper is organised as follows: In Section 2
the overtime planning problem is defined. Section 3 intro-
duces the search based approach proposed to address this
problem using a multi-objective Pareto optimal approach.
Section 4 describes the method used in our empirical stud-
ies, the results of which are presented in Section 5. Section 6
analyses the limitations of the present study, while Section 7
describes the context of related work in which the current
paper is located. Section 8 concludes and presents directions
for future work.

2 OVERTIME PROBLEM FORMULATION

The formulation of the overtime problem we previously
introduced [11] starts from the Work Breakdown Schedule
(WBS) produced by the software engineer. The WBS is a
hierarchical decomposition of the project goals into smaller
and manageable tasks (i.e., work packages) that are exe-
cuted and delivered by the project team to accomplish the
project goals. The upper levels in the hierarchy represent
the major project deliverables, while the lower levels depict
the granular level activities needed to be performed
towards achieving the deliverables. This provides project
managers with a better control of all project planning activi-
ties. The WBS allows indeed to: (i) define the project scope
in terms of deliverable and components; (ii) provide the
framework on which the project status and progress reports
are based; (iii) provide inputs for other project management
processes like estimation, scheduling, staff assignment, risk
assessment, etc. The number and complexity of the WBS
levels depend on the size and nature of the project. Many
tools such as Microsoft project [17] (the tool used by all the
organisations that provided the real world schedules used
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to evaluate our approach in this paper), can support soft-
ware engineers to produce a WBS.

A formal definition of a WBS follows: Let a project sched-
ule be represented as an acyclic directed graph consisting of
a node set WP ¼ fwp1; wp2; :::; wpng of work packages and
an edge set DEP ¼ fðwpi; wpjÞ : i 6¼ j; 1 � i � n; 1 � j � ng
of dependencies between elements of WP, where wpj can
start only when wpi has completed. WP and DEP form a
graph, the set of paths, P, of which, denote the dependence-
respecting orderings of work packages to be undertaken to
complete the project.

Associated with each work package, wp 2WP , is the esti-
mated effort, ewp, required to complete wp (such an effort in
our study is provided for each work package by the soft-
ware company and it is measured as normalized person
hours). The estimated duration (in days) of a given work
package DurationðwpÞ, can be computed by dividing the
estimated effort ewp for the number of hours worked per
day on that work package.

Based on this, the duration of each path p 2 P through
the project dependence graph is given by

Durationp ¼
X
8wp2p

DurationðwpÞ (1)

and the total estimated shortest possible duration of the
project is given by any maximal length (or ‘critical’) path
in P. This is a formalisation of the well-known ‘Critical
Path Method’ [18], which has been widely used in project
planning for several decades. Though there may be sev-
eral equal length critical paths (for which no other path is
longer) it is traditional to select one and to refer to it as
the critical path, CP [19], in our experiment if there is
more than one critical path we select one of them uni-
formly at random.

Our problem is to analyse the effects of choice of over-
time assignments, each of which seeks to minimize project
duration, risk of overrun and the amount of overtime
deployed. This can be formulated as a three objective deci-
sion problem in which the three objectives of duration, risk
and overtime are conflicting minimisation objectives.

We represent a candidate solution to our problem as an
assignment of overtime to work packages. A feasible solution
is an assignment of a certain number of extra hours to each
work package, denoted by OvertimeðwpiÞ subject to the fol-
lowing constraint: 0 � OvertimeðwpiÞ �MaxOvertimeðwpiÞ,
where MaxOvertimeðwpiÞ is the maximum assignable over-
time to the ith work package and depends on the maximum
overtime assignable per each day of its expected duration.1

We shall use computational search to seek an allocation
of overtime for all work packages that minimises each of
the three objectives of Overtime (O), Project Duration (D)
and Risk of Overrun (R). We therefore measure fitness as
a triple hO;D;Ri, whose components are defined as
follows:

Overtime(O) is the amount of time worked on each work
package beyond the individual time limit OvertimeðwpiÞ
summed over all work packages inWP 2. More formally:

O ¼
Xn
i¼0

OvertimeðwpiÞ (2)

Project Duration (D) is the estimated duration (i.e., the
length of the critical path). More formally:

D ¼
X

wp2CP
DurationðwpÞ (3)

We define the risk of overrun in terms of the risk of overrun
associated to each path, p, in the project schedule:

riskp ¼ Durationp

DurationCP
(4)

The closer riskp is to 1.0, the greater the chance that an
overrun on a work package along path p will cause p to
supersede the current critical path as the determinant of
project duration (p thus becoming the new critical path due
to the overrun).

We use three different approaches to the measurement of
Risk of Overrun (R), each of which combines the path risk
riskp, above into an overall project risk, R, as follows:

R ¼ RAvgRisk ¼
P

p2P riskp

jPj (5)

R ¼ RMaxRisk ¼ maxp2P�CP riskp (6)

R ¼ RTrsRiskðLÞ ¼
fp j p 2 P ^ riskp > Lg�� ��

jPj � 100 (7)

These are, respectively, average, maximal, and threshold
level risks. Average risk is suited to the engineer who is ‘risk
averse’; it assumes that any overrun on any path could be a
problem. This is ‘risk averse’ in the sense that it reflects a pes-
simistic belief that ‘anything that can go wrong will go
wrong’. Maximum risk is better suited to the engineer who is
more concerned that the critical path is not disrupted, but
who is relaxed about overruns in non-critical paths that do
not threaten to supersede the critical path, as these could be
absorbed into the project schedule. Threshold risk allow the
engineer to choose a risk level, making risk level a parameter
to the overall approach (which we set to 0.75 in this paper).
These three choices seek to capture realistic instantiations of
approaches that would suit a particular management style.

1. The length of a working day and maximum allowed overtime per
day are country specific parameters to our approach, determined by
legal and governance procedures in place. In this paper we set these to
8 hours for a working day and 3 hours maximum overtime per day. Of
course different settings can be used without altering the formulation
of the problem.

2. Please, note that this objective does not consider the monetary
costs associated to overtime. Overtime monetary cost can be calculated
by multiplying the overtime hours by the resource’s overtime rate. The
resource’s overtime rate, however, may vary depending on the soft-
ware company policies [4] (for example, some resources can be paid
the same hourly rate for extra hours or a more rewarding rate, salaried
employees may not be paid overtime, etc.). Where data is available the
monetary cost may be used as an alternative objective function to the
one defined herein. It is worth to note that even if the salaried employ-
ees are not paid to work overtime (so there is no monetary cost associ-
ated to the overtime) they are anyway demanded to do it, in this case it
would be even more critical to plan overtime since for an employee is
not rewarding to work beyond its regular working time for no
compensation.

900 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 43, NO. 10, OCTOBER 2017



However, other choices are possible and we leave the investi-
gation of these to futurework.

Of course, overtime allocation is a disruptive process; it
can change the critical path. This is one of the motivations
for decision support: engineers cannot be expected to
understand the impact of proposed overtime allocations on
the critical path, while simultaneously balancing budget,
duration, and estimates of overrun. These are precisely
those problems for which we need the kind of automated
analysis we investigate in this paper.

3 THE SOLUTION APPROACH

Our solution uses Search Based Software Engineering
(SBSE) [12], [20], for which it is established best practice to
define a representation, fitness function and computational
search algorithm [21]. Since our formulation is a triple objec-
tive formulation we also need to decide how to handle mul-
tiple objectives.

3.1 Handling Multiple Objectives

It is possible to combine multiple objectives into a single cri-
terion, however, in cases like ours where there are no obvi-
ous weights that allow a combination in a single criterion, it
is recommended to use a multi-objective approach.

Since in our case, the three objectives are measured on
orthogonal scales we use Pareto optimality [21], which
states: A solution x1 is said to dominate another solution x2,
if x1 is no worse than x2 in all objectives and x1 is strictly
better than x2 in at least one objective.

Pareto optimality means that we do not suggest to the
engineer a single proposed solution. That would not be real-
istic. No engineer would trust an automated tool to provide
a single overtime allocation. Rather, we seek to provide a
decision support tool, by showing the solutions in a space
of trade offs between the three objectives, allowing the engi-
neer to see the trade offs between them.

Using Pareto optimality we can plot the set of solutions
found to be non-dominated (and therefore equally viable).
In the case where there are three objectives, such as ours,
this leads to a three dimensional Pareto surface, though we
can also project this surface onto a two dimensional Pareto
front to focus any two objectives of interest. The shapes of
such surfaces and fronts can yield actionable insights. For
example, where there is a knee point (a dramatic switch in
the material values of trade off between objectives), this
guides decision making (see Section 5).

3.2 Solution Representation

Feasible solutions to the problem defined in Section 2 are
assignments of a certain number of overtime hours to each
work package. We encoded them as chromosomes of length
n, where each gene represents the number of extra hours
assigned to each work package. The initial population, com-
posed by n chromosomes, was randomly obtained by
assigning to each wpi an overtime ranging from 0 to
MaxOvertimeðwpiÞ.

3.3 Fitness Evaluation

To evaluate the fitness of each chromosome we employed a
multi-objective function to simultaneously minimise the

objectives described in Section 2, namely Project Duration,
Overtime, and Risk of Overrun. We report results for each
overrun risk assessment measure (AvgRisk, MaxRisk, and
TrsRisk) separately to explore the effects of each approach
to risk assessment.

3.4 Computational Search

In our previous work [11] we employed a widely used
Multi-Objective Evolutionary Algorithm, namely NSGAII
[22] as ranking method to solve the multiobjective overtime
planning problem. We also proposed a variant, NSGAIIv,
which performed significantly better than NSGAII and
some currently used software engineering practices tipically
applied to overtime planning problems [11]. The main dif-
ference with respect to the original NSGAII lies in the use of
a new crossover specifically conceived for the overtime
planning problem. Indeed, it is often insufficient merely to
apply a generic algorithm like NSGAII ‘out of the box’; we
need to define problem-specific genetic operators to ensure
best performance. In the case of genetic algorithms, such as
NSGAII, the crossover operator plays a pivotal role [23],
[24], [25] and thus forms a natural focus for such problem-
specific algorithm design.

In this paper, we investigate adaptive multi-objective
approaches to meta-heuristic operator selection. This fol-
lows a recently proposed hyperheuristic SBSE approach in
which the search algorithm learns the best genetic operators
to be used among a given set of available operators during
the search process (i.e., the search algorithms is able to
adapt itself during the search) [26].

In particular, in addition to the above approaches, we
investigated the use of a new adaptive version of NSGAII,
namely Adaptivevsc, which sinergically combines the cross-
over proposed in our previous work [11] with an extension of
NSGAII, namely NSGAIIa, proposed by Nebro et al. [16]. The
general idea is thatNSGAIIa works asNSGAII, but the genetic
operators are selected adaptively during the search from a set
of different operators [16]. With respect to the algorithm pro-
posed by Nebro et al. [16] we extended the operator set by
including a crossover we specifically conceived for overtime
planning [11] and we introduced a new adaptive strategy to
select the genetic operators during the search.

We analysed the effect of these choices by applying incre-
mental changes to NSGAIIa, each of them resulted in a dif-
ferent algorithm that has been evaluated and compared
against NSGAIIa and its variations as detailed in the follow-
ing. The final algorithm, namely Adaptivevsc, has resulted
to be superior with respect to NSGAII, NSGAIIv, and
NSGAIIa as detailed in Section 5.

The first algorithm we analysed, referred to as Adaptivev
hereinafter, works as NSGAIIa, but includes in the oper-
ators’ set a crossover we previously proposed for overtime
planning [11]. We also introduced two further adaptations
since we noticed that for the problem under investigation
both NSGAIIa and Adaptivev often converge very early (i.e.,
after 5 to 15 generations) on the selection of the strongest
operator in the set thus preventing the use of other opera-
tors that may still be useful later on in a different phase of
the search. The first adaption (denoted with the subscripted
suffix ‘s’ ) sorts the operators’ set in ascending order each
time that an early convergence is observed giving again to
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all the operators equal probability to be selected (this proba-
bility is subsequently updated during the search in the
same way as for NSGAIIa). The second one (denoted with
the subscripted suffix ‘c’ ) uses instead a different adaptive
selection criterion. We analysed the effect of applying these
adaptions alone or combined, thus considering the follow-
ing variants: Adaptives, Adaptivec, Adaptivesc, Adaptivevs,
Adaptivevc, Adaptivevsc.

In the following we provide details about each of the
algorithms we investigate in this paper. For the sake of clar-
ity, we first present the original techniques (i.e., NSGAII,
NSGAIIv, NSGAIIa) and then the new variants we introduce
in this paper. Table 1 summarise the key aspects of each
algorithm. We use the “stem” name NSGAII for the 3 exist-
ing algorithms and “Adaptive” for the novel variations in
order to clarify which is novel to this paper from which is
studied for comparison.

� NSGAII decomposes the population into several
fronts, as follows:�1 all the solutions are ranked using
the non-dominance concept;�2 all non-dominated sol-
utions of the population are assigned to rank 1, then
they are removed from the population;�3 iteratively,
non-dominated solutions are determined and
assigned rank 2. Steps 1-3 are iterated until the popula-
tion is empty. Then the solutions are ranked again
according to a crowding distance, namely the differ-
ence between the left and right neighbors or infinity if
there are no neighbors. The use of the crowding dis-
tance is crucial to preserve the diversity in the solu-
tions fronts, since computing the distance between a
given solution and its nearest neighbors allows
NSGAII to approximate the density of the obtained
solution. So, solutions with higher crowding distance
are considered better solutions, as they introduce
more diversity in the population. Once all the solu-
tions are ranked by both dominance and crowing dis-
tance, crossover andmutation operators are applied to
produce an offspring. Then a tournament selector is
applied and the best m solutions (in terms of

dominance and crowding) are copied into the next
generation. The algorithm is stopped after a fixed
number of fitness evaluations (see Section 4.5). The
NSGAII used herein is the same we used in our previ-
ous work [11] and has been implemented by using the
JMetal framework [28].

� NSGAIIv is a variant of NSGAII introduced specifi-
cally for the overtime planning problem [11].
NSGAIIv exhibits the same selection and crowding
distance characteristics as the standard NSGAII but
exploits a new crossover operator. This operator
aims to preserve genes shared by the fittest overtime
assignments, thereby avoiding the well-known dis-
ruptive effects of crossover [23]. It is defined as fol-
lows: Let P1 and P2 be parent chromosomes, C the
point of cut randomly selected in the parents, and O1

and O2 the new offspring. For the genes placed
before C, O1 and O2 inherit the genes of P1 and P2,
respectively. While each gene gi placed after C
inherit genes from P1 and P2 as follows3:

O1ðgiÞ ¼ P1ðgiÞ;p¼0:5
P2ðgiÞ;p¼0:5

n o

O2ðgiÞ ¼ ðP1ðgiÞ þ P2ðgiÞÞ=2;

Note that when the parent genes hold the same
characteristic (i.e., same quantity of overtime) they are
retained in both offspring, otherwise we generate two
different genes for the offspring: one that inherits the
gene frommother or father with equal probability and
one that inherits both parent characteristics in terms of
overtime average. It is important to note that in multi-
objective optimization, it is better to create children
that are close to their parents in order to have a more
efficient search process [27]. The NSGAIIv used herein
is the samewe used in our previous work [11] and has
been implemented by using JMetal [28].

TABLE 1
The Fixed and Adaptive Multi-Objectives Evolutionary Algorithms to Overtime Planning Investigated in This Work

Algorithm Brief Description

NSGAII The NSGAII algorithm originally proposed by Deb et al. [27].
NSGAIIv Modified version of NSGAII that uses a crossover specifically conceived for overtime planning by Ferrucci

et al. [11].
NSGAIIa Adaptive NSGAII orginally proposed by Nebro et al. [16] that selects the genetic operator to use during the

search from a predefined operator pool.
Adaptivev Same as NSGAIIa but includes in the genetic operator pool a crossover specifically conceived for overtime

planning by Ferrucci et al. [11]
Adaptives Modified version of NSGAIIa that uses a different strategy to sort the operator pool.
Adaptivec Modified version of NSGAIIa that uses a different adaptive criterion to select the genetic operators applied

during the search.
Adaptivesc Modified version of NSGAIIa that uses the sorting criterion and the adaptive criterion used by Adaptives and

Adaptivec, respectively.
Adaptivevs Same as Adaptives but includes in the genetic operator pool a crossover specifically conceived for overtime

planning by Ferrucci et al. [11]
Adaptivevc Same as Adaptivec but includes in the genetic operator pool a crossover specifically conceived for overtime

planning by Ferrucci et al. [11]
Adaptivevsc Same as Adaptivesc but includes in the genetic operator pool a crossover specifically conceived for overtime

planning by Ferrucci et al. [11]

3. This definition is a simplified but equivalent version of the one
given in our previous work [11]
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� NSGAIIa works as NSGAII, but the genetic operators
are selected adaptively during the search from a set of
different operators [16] depending on the success of
each operator in the past. The success is quantified as
the number of children produced by each operator
that survived to the next generation. The employed
operator set is composed of three genetic operators
commonly used in multi-objective optimization meta-
heuristics: the SBX crossover, the polynomial-based
mutation, and the variation operator used forDifferen-
tial Evolution [16]. The adaption is obtained by giving
to the operators a higher probability of being chosen
when they are capable of producing solutions that sur-
vive from one generation to the next. The adaptive
scheme used for the operator selection is the same
used in previous work [16], [29] and it is shown in
Algorithm 2, while Algorithm 1 shows the pseudo-
code of NSGAIIa [16]. NSGAIIa proceeds as follows.
For each individual in the population, it produces a
random value in [0,1] (Algorithm 1 line 6) and com-
putes the contribution (i.e., probabilityOperator)
of each genetic operator (line 7) using the method
shown in Algorithm 2. These values are compared
and one out of the three genetic operators is selected
(Algorithm1 lines 7-18) as follows: If the randomvalue
is less than the probability value associated to the first
genetic operator, this operator is selected to create the
new offspring, otherwise the second genetic operator
is compared, and so on. If no condition is satisfied, the
last operator is selected. The probabilityOpera-

tor values are computed by using the adaptive selec-
tion scheme shown in Algorithm 2. This method takes
as input the set of different genetic operators and a
population P in order to compute the contribution of
each of the genetic operators, i.e., howmany solutions
generated by each operator are part of the next genera-
tion of the population (Algorithm 2: line 3). If an opera-
tor has contributed with less solutions than a
minimum threshold, its contribution is set to thismini-
mum threshold (Algorithm 2: lines 4-6). This helps us
prevent discarding an operator if it does not produce
any survival solutions in a certain iteration. In our
work we have considered a threshold equal to 2 as
suggested in previous work [16], [29]. Once the contri-
bution of all operators has been computed, the prob-
abiltyOperator is returned to the main procedure
(Algorithm 2: line 12). Then, the NSGAIIa algorithm
behaves as the original NSGAII (Algorithm 1 lines 19-
26). A reference implementation of NSGAIIa is freely
available in JMetal [28] since Version 4.5.

� Adaptivev works as NSGAIIa but we added the cross-
over operator used in [11] to the genetic operator set
already used by NSGAIIa [16]. To realize Adaptivev
(and also the adaptions described in the following)
we extended the implementation of NSGAIIa pro-
vided in JMetal [28].

� Adaptives (Adaptivevs): works as NSGAIIa but every
time an early convergence is detected the genetic oper-
ators in the set are sorted in ascending order with
respect to the their success (i.e., the number of children
that survived to a next generation) and equal

probability is given to each of them before continuing
the search by applying the same adaptive selection cri-
terion as used inNSGAIIa (Adaptivev, respectively).

Adaptivec (Adaptivevc) works as NSGAII (Adaptivev,
respectively) but adaptively chooses the genetic opera-
tors at each iteration depending on the quality of the
offspring generated by each operator in terms of each
of the single objectives included in the multi-objective
formulation (Section 2). It works as follows: At each
iteration, all the children that survive to the next gener-
ation are compared against the best individuals sur-
vived to the previous generations and every time a
child is better than at least an existing individual for a
given objective, the success of the genetic operator that
produced that child is incremented. Once the success
of each operator has been updated, for each individual
in the population, a random value in [0,1] is produced
and compared with the operators success in the last
iteration. Depending on this value, one of the genetic
operators is selected. In case the random number is
higher than the success of all the operators, the genetic
operator with the highest success is chosen. Once the
offspring is generated, the algorithm behaves as the
original NSGAII.

� Adaptivesc (Adaptivevsc) sorts the genetic operators in
the same way as Adaptives before applying the
adaptive selection criterion used for Adaptivec
(Adaptivevc).

Algorithm 1. Pseudocode of NSGAII Adaptive (NSGAIIa)
[16]

Require: n, operatorList {n = population size, operatorList = set
of genetic operators}

1: P  RandomPopulationðÞ {P = population}
2: Q ; {Q = auxiliary population}
3: while notTerminationConditionðÞdo do
4: for i 1 to n do
5: randValue randðÞ
6: probabilityOperator½�  contributionðP; operatorListÞ

{See Algorithm 2 for the definition of the contribution()
method}

7: if randValue � probabilityOperator½0� then
8: parents Selection2ðP Þ
9: offspring SBXðparentsÞ
10: else
11: if randValue � probabilityOperator½1� then
12: parents Selection3ðP Þ
13: offspring DEðparentsÞ
14: else
15: parents Selection1ðP Þ
16: offspring PolynomialMutationðparentsÞ
17: end if
18: end if
19: EvaluateFitnessðoffspringÞ
20: Insertðoffspring;QÞ
21: end for
22: R P [Q
23: RankingAndCrowdingðRÞ
24: P  SelectBestIndividualsðRÞ
25: end while
26: return P
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Algorithm 2. Computing the Contribution of EachGenetic
Operator [16], [29]

Require: P, operatorList {P = population, operatorList = set of
genetic operators}

1: totalContribution 0
2: numOperators sizeðoperatorListÞ numOperators

indicates the number of operators in the pool
3: for operator 0 to numOperators do
4: contributionOperator½operator�  solutionInNextPopulation

ðP; operatorList½operator�Þ
5: if contributionOperator½operator� � threshold then
6: contributionOperator½operator�  threshold
7: end if
8: totalContribution totalContributionþ contribution

Operator½operator�
9: end for
10: for operator 0 to numOperators do
11: probabilityOperator½operator�  contributionOperator

½operator�=totalContribution
12: end for
13: return probability Operator

4 THE DESIGN OF THE EMPIRICAL STUDY

This section explains the design of our empirical study; the
research questions we set out to answer and the methods
and statistical tests we used to answer these questions. We
adopted the same methodology, the same risk assessment
measures and the same quality indicators we used in the
original study [11]. However we extended the study by add-
ing two new datasets to the six ones previously used [11].

4.1 Research Questions

We seek to answer the following four research questions.
Three of them (i.e., RQ1, RQ3, and RQ4) were posed in our
previous work [11] and are answered herein to assess the
effectiveness of the adaptive multi-objective algorithms we
introduced in this work.4 We also answered a new question
(i.e., RQ2) to investigate the different variants of NSGAIIa.

RQ1 (SBSE Validation). How do NSGAIIa and its variants
perform compared to random search? In any attempt at
an SBSE formulation of a problem this is a standard
baseline question asked. If a proposed formulation
does not allow an intelligent computational search tech-
nique to outperform random search convincingly, then
there is clearly something wrong with the formulation.
This question is thus adopted in SBSE research as a pre-
liminary ‘sanity check’ [30]. We therefore compare the
adaptive evolutionary algorithms proposed in this
work with respect to random search.

RQ2 (Comparison of Different NSGAIIa Adaptions). How does
the use of the adaptions we introduced affect the perfor-
mance of NSGAII? Since in our previous work [11] we
showed that using a crossover operator specifically
designed for the overtime problem leads to significant

improvement of NSGAII’s performance, in this paper
we studied adaptive multi-objective approaches to
meta-heuristic operator selection. In particular, we ana-
lysed the adoption of this crossover in combination with
a new algorithm, namely NSGAIIa, that is able to adap-
tively select the genetic operators during the search
from a pool of different operators. Therefore, to answer
this goal we compare on the considered datasets the
performances of all the NSGAIIa variants introduced in
Section 3.4 (i.e., Adaptives, Adaptivec, Adaptivesc,
Adaptivevs, Adaptivevc, Adaptivevsc) .

RQ3 (Comparison to State of the Art Search). How does
Adaptivevsc perform compared to the state of the art?
Outperforming random search is necessary, but not suf-
ficient. In order for a proposed approach to be adopted it
must also outperform the state of the art for the problem
in hand. In our case the state of the art is represented by
NSGAII and NSGAIIv used in our previous work [11]
for the overtime problem and NSGAIIa [16] that we first
use herein to the overtime planning problem.

RQ4 (Usefulness). How does Adaptivevsc perform compared
to currently used overtime planning approaches? While
outperforming a standard multi-objective search may
be a valuable technical result, in order to be useful to
software engineers, our approach must also outperform
existing overtime management strategies used by prac-
ticing software engineers. We therefore repeat the
experiments in RQ1 and RQ3, but for RQ4 we compare
our approach with three currently used strategies.

4.2 Software Projects Used in the Empirical Study

To assess the performance of our approach we used 8 data-
sets representing real world software projects. All of them
have been used in previous work on project staffing and
scheduling (see, e.g., [31], [32], [33]) and six of them have
been also used in previous work on multi-objective software
project overtime planning5 [11].

The projects came from eight different organisations,
involved different kinds of software engineering develop-
ment, and had different sizes, ranging from 31 to 245 work
packages and from a few person weeks to several person
years in duration.

Table 2 summarises the key information concerning the 8
datasets here described in details:

DB2 concerned the next release of a large data-intensive,
multi-platform software system, written in several lan-
guages including DB II, SQL, and .NET.

Web delivered a web-based IT sales system across North
America. The project included the development and testing
of website, search engine and order management and
tracking.

Quotewas a system developed for a large Canadian sales
company to provide on-demand conversion of quotes to
orders. This change was both internal and customer facing
and ultimately affected every level of the organisation (Web,
internal development, database, sales and customers).

4. In our previous work [11] we also investigated how the Pareto-
fronts obtained using multi-objective overtime planning reveal insights
into the trade off between risk, duration and overtime. The same results
hold for the present work.

5. Five of these datasets (those for which non-disclosure agreement
allows us to publish data after publication) will be made publicly avail-
able once the paper has been published. We make this data available at
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/overtime/ to sup-
port replication and comparison of future work with our results.
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Oracle was large scale database upgrade, migrating an
old, yet mission-critical, Oracle system. The information that
was migrated had an estimated value to the organisation of
several million dollars and formed the cornerstone of the
organisation’s operations. About half of the project involved
taking precautions against possible causes of data loss. This
project primarily involved the Database Administration
section of the organisation. However, the Software Applica-
tion Development section was also involved at the end for
training and for upgrading the existing scripts and triggers to
make use of the newly available database functionality.

Pricewas an enhancement to the client side of a sales sys-
tem to provide improved pricing and features for discounts,
vouchers, andprice conversions. The enhancement concerned
has a potentially significant influence on the organisation’s
revenue stream, so extensive QA was involved. This project
involved the web portion of the company’s infrastructure
with smaller impact on the underlying database and other
internal software. The project concluded with an employee
training phase.

The details of project CutOver are the subject of a Non-
Disclosure agreement and so cannot be published.

Broker was a software project developed by an IT com-
pany to implement a vessel insurance policies management
system for a large insurance broker company. The project
consisted of 4 management tasks, 2 database design tasks,
21 programming tasks, and 4 testing tasks [33].

Chartwell was a software for an on-line gaming and
gambling industry developed using several technologies,
such as Java, Flash, and Action Script, by a global software
team [32].

4.3 Multi-Objective Evaluation Measurements Used

Assessing the performance of a computational search algo-
rithm for a single objective optimisation problem typically
requires observations about the best solution found. This
approach is not applicable for multi-objective optimisation
problems because there are a set of candidate solutions,
each of which is said to be ‘non-dominating’. That is, each is
incomparable to the others because no other solution has
better values for all objectives.

Analysis of graphical plots of the solutions can provide
some indications of performance, but it provides a qualitative
evaluation and cannot provide a quantitative assessment of
the quality of solutions from one approach relative to another.
A robust evaluation requires that qualitative evaluations be
augmented by amore quantitative evaluation.

To provide this quantitative assessment we employ three
solution set quality indicators, namely Contributions (IC),
Hypervolume (IHV ), and Generational Distance (IGD), as
done in previous work [11]. To compute these we normalise
fitness values to avoid unwanted scaling effects [28] and
compute a reference front of solutions, RS, which is the set
of non-dominated solutions found by the union of all
approaches compared [34].

The IC quality indicator is the simplest measure. It meas-
ures the proportion of solutions given by an algorithm, A,
that lie on the reference front RS [35]. The higher this pro-
portion, the more A contributes to the best solutions found
by the approaches compared, and so the better is the quality
of its solutions. IC is a simple and intuitive measure, but it
is affected by the number of solutions produced, unfavour-
ably penalising algorithms that might produce ‘few but
excellent’ solutions. This is why we also consider two other
measures of solution quality, IHV and IGD.

The IHV quality indicator [36] calculates the volume
(in the objective space) covered by members of a non-
dominated set of solutions from an algorithm of interest.
The larger this volume, the better the algorithm, because
the more it captures of the non-dominated solution space.
Zitzler demonstrates [37] that this hypervolume measure is
also strictly ‘Pareto compliant’. That is, the hypervolume of
A is higher than B if the Pareto set of A dominates that of B.
By using a volume rather than a count, this measure is also
less susceptible to bias when the numbers of points on the
two compared fronts are very different.

The IGD quality indicator [38] computes the average dis-
tance between the set of solutions, S, from the algorithmmea-
sured and the reference set RS. The distance between S and
RS in an n objective space is computed as the average
n-dimensional euclidean distance between each point in S
and its nearest neighbouring point inRS. We can think of IGD

as the distance between the front S and the reference frontRS
in the n-dimensional objective space of the problem.

4.4 Inferential Statistical Test Methods Used

Due to the stochastic nature of evolutionary algorithms, best
practice requires the use of careful deployment of inferential
statistical testing to assess the differences in the performance
of the algorithms used [21], [39]. We therefore performed 30
independent runs per algorithm, per risk assessment mea-
sure, and per project to allow for such statistical testing.

To analyse the normality of distributions we employed
the Shapiro-Wilks test [40]. As we expected, many of our

TABLE 2
Software Projects Used in the Empirical Study

Project #WPs #Dep. Effort Brief Description

DB2 120 102 594 A multi-platform database upgrade involving several languages such as DB2, SQL and .NET
Web 245 247 6,664 A web-based purchase order system development
Quote 60 64 547 An enhancement of an existing system to include on-demand conversion of quotes to orders
Oracle 106 105 5,390 A large-scale Oracle database migration with tight data security constraints
Price 72 71 1,570 A client-side sales system upgrade to offer additional features to users
CutOver 95 68 2,356 Details cannot be revealed because of a Non Disclosure Agreement with the project data provider
Broker 31 40 2,192 Software project to develop a management system for a broker company
Chartwell 41 29 6,680 Software for an online gaming and gambling industry developed using several languages (Java, Flash, AS)

Effort is measured in normalised person hours.
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samples showed no evidence that they come from normally
distributed populations, making the t-test unsuitable. We
therefore used the Wilcoxon test [41] to check for statistical
significance. Using the Wilcoxon test is a safe test to apply
(even for normally distributed data), since it raises the bar
for significance, by making no assumptions about underly-
ing data distributions. We set the confidence limit, a, at 0.05
and applied the standard Bonferroni correction (a=K, where
K is the number of hypothesis) in cases where multiple
hypothesis were tested.

As has been previously noted in advice on statistical test-
ing of algorithms such as these [21], [39], it is inadequate to
merely show statistical significance alone; we also need to
know whether the effect size is worthy of interest.

To this end we used the Vargha-Delaney effect size Â12

[42], the results of which are values between 0 and 1: when
the Â12 measure is exactly 0.5, then the two compared tech-
niques achieve equal performance; when Â12 is less than
0.5, the first technique is worse; and when Â12 is more than
0.5, the second technique is worse. The closer to 0.5, the
smaller the difference between the techniques; the farther
from 0.5, the larger the difference [42]. Given the first algo-
rithm performing better than the second, Â12 is considered
small for 0:6 � Â12 < 0:7, medium for 0.7 < Â12 < 0:8,
and large for Â12 � 0:8, although these thresholds are some-
what arbitrary.

Since our measurement concerns quality measures such
as hypervolume and distance to the reference front, there is
no domain specific transformation required for the effect
size measurement [43]. Indeed, no domain specific transfor-
mation is required when (as in our case) one is interested in
the fact that the probability of one technique outperforms
the other.

To answer RQ1 we implemented a random search to be
compared with the evolutionary approaches considered in
this study (see Table 1). The random search assigns ran-
domly to each work package of the project, an overtime
varying from 0 to the maximum overtime assignable. The
resulting Pareto fronts were compared for statistically sig-
nificant differences with those produced by the evolution-
ary algorithms, using the quality indicators explained in
Section 4.3. In this sanity check we used the Wilcoxon test
and for significance also performed a Vargha-Delaney effect
size test in all results.

We do not wish to devote too much space to RQ1, since it
is only a ‘sanity check’, preferring to devote more space to
the answers to RQs 2–4, which concern more scientifically
important evidence for the performance and usefulness of
our approach.

To answer RQ2 we compared the performances of all the
considered NSGAIIa variants (see Section 3.4) in terms of
the quality indicators for statistical significance and effect
size, as for RQ1, but additionally presenting the results
using boxplots to give a pictorial account of the distribu-
tions of results obtained. To answer RQ3 we compared the
best approach identified by RQ2 (i.e., Adaptivevsc) with
respect to the current multi-objective state of the art (i.e.,
NSGAII, NSGAIIv, and NSGAIIa). To answer RQ4 we
repeated the same experiments and analysis performed for
RQ3, but we compared Adaptivevsc to standard overtime
management strategies. That is, we implemented three

strategies currently used, and compared the results to
Adaptivevsc using the same tests as we performed to answer
RQ1 and RQ3.

4.5 Parameter Tuning and Setting

An often overlooked aspect of research on computational
search algorithms lies in the selection and tuning of the
algorithmic parameters, which is necessary in order to
ensure fair comparison, but which often goes unreported
and, thereby, hinders any potential replication. In order to
facilitate replication of our findings, in this section we report
the method adopted for algorithmic parameter tuning and
selection, which is a replication of the methodology previ-
ously adopted [11].

For each algorithm we evaluated five different configura-
tions, characterised by very small (VS), small (S), medium
(M), large (L), and very large (VL) values for population as
detailed in Table 3. All configurations were allowed an
identical budget of fitness evaluations (250,000), thereby
ensuring that all require the same computational effort,
though they may differ in parameter settings. We executed
all the considered algorithms (see Section 3.4) with each
configuration 30 times and collected the corresponding IC ,
IHV , and IGD values, testing for significant differences using
the Wilcoxon Test. Fig. 1 shows the best configurations
obtained per each algorithm, over all the risk measures and
datasets considered in our study. We can observe that in
general a very large (VL) configuration is used in the major-
ity of the cases, however the adaptive evolutionary algo-
rithms require a VL configuration less often than traditional
NSGAII algorithms. We run each of the algorithm with
these configurations in answer our RQs.6

The rest of our parameter settings for both algorithms
were typical standard settings. We report them here for
completeness and replicability.

For population size n, at each generation, n=2 applica-
tions of the single point crossover operator are used by
NSGAII and NSGAIIv to construct offspring. As for
NSGAIIa and its variants the operator is adaptively chosen
during the search from a set of different crossovers as
explained in Section 3.4. The mutation operator randomly
assigns a new value between 0 and MaxOvertimeðwpÞ. The
crossover and mutation operators are applied with a proba-
bility of 0.5 and 0.1, respectively.7

TABLE 3
Configurations Explored to Tune the Nine Algorithms

Configuration Pop. Size Generations Fitness Evals

Very Small (VS) 50 5,000 250,000
Small (S) 100 2,500 250,000
Medium (M) 200 1,250 250,000
Large (L) 500 500 250,000
Very Large (VL) 1,000 250 250,000

6. In order to allow for replication we report in Appendix the config-
urations obtained for each algorithm per risk measure and per dataset.

7. The crossover and mutation rates used in our experiment fall in
the ranges recommended in previous work on search-based project
management (i.e., from 0.45 to 0.95 for crossover rate and from 0.06 to
0.1 for mutation rate) [44], [45]. The impact of different settings may be
investigated in future work.
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We employed binary tournament selection based on
dominance and crowding distance, and in tied tournaments
one of the two competitor parents is chosen at random
(with equal probability for both).

5 ANALYSIS OF RESULTS

This section presents the results obtained from our experi-
ments for RQs 1–4 set out in Section 4.1.

5.1 Results for RQ1 (SBSE Validation)

We observed that all the adaptive multi-objective
approaches we considered achieved superior values with
respect to random search on all the eight projects in terms
of the considered quality indicators (i.e., IC , IHV , IGD). The
Wilcoxon Test (with Bonferroni correction) revealed that
the indicator values achieved by NSGAIIa and its adaptions
were significantly better than those of the random search,
with a ‘large’ Â12 effect size for all the 24 comparisons (three
risk measures, eight datasets). Thus, we conclude that there
is strong empirical evidence that NSGAIIa and its variations
pass the sanity check denoted by RQ1.8

5.2 Results for RQ2 (Comparison of Different
NSGAIIa Adaptions)

To answer RQ2 we compared the performance of all the
NSGAIIa variants introduced in Section 3.4 (i.e., Adaptives,
Adaptivec, Adaptivesc, Adaptivevs,Adaptivevc,Adaptivevsc).

9

Table 4 reports the mean values of each of the three quality
assessment indicators obtained for 30 runs of all projects using
the considered algorithms. We can observe that Adaptivevsc

provided better values for all performance indicators with
respect to other approaches in all but two cases (i.e., Ic values
for TrsRisk for projects DB2 andWeb where it obtained lower
values thanAdaptivevc andAdaptivesc, respectively).

We applied the Wilcoxon Test to assess whether this dif-
ference was statistically significant on each of the datasets.
In particular, for each pair ðx; yÞ of variants we verified the
following hypothesis: “The quality measure values pro-
vided by Adaptivex are significantly better than those pro-
vided by Adaptivey” by taking into account three risk
measures, three quality measures, and eight datasets. Since
we performed multiple statistical tests, the Bonferroni cor-
rection has been used to ensure that we retain only a maxi-
mum 0.05 probability of Type 1 error.

To summarise the results of the Wilcoxon comparisons,
we use the following win-tie-loss procedure [46] ; if the dis-
tribution i is statistically significantly better (less) than j
according to the Wilcoxon test we updated wini and lossj,
otherwise we incremented tiei and tiej.

Fig. 2 reports the percentage of win-tie-loss values
achieved by the algorithms with different risk measures
over all datasets for the MaxRisk, AvgRisk, and TrsRisk.
This graphically illustrates the difference in relative perfor-
mance of each of the different NSGAIIa variants.

We can observe that Adaptivevsc provides us the best bal-
ance among win-tie-loss for all risk measures (i.e., 281-91-60),
followed by Adaptivesc (i.e., 221-97-114), while the worst per-
formance was achieved by Adaptives (i.e., 81-150-201). Let us
recall that the main difference between Adaptives and
Adaptivesc is the criteria adopted to select the genetic operator
during the search (see Section 3), while Adaptivevsc works as
Adaptivesc but adds to the set of genetic operators available
during the search a crossover operator specifically conceived
for the overtime problem [11]. Thus, the above results suggest
that the criteria used to adaptively select the crossover during
the search is important to obtain an effective overtime plan-
ning algorithm. Moreover, the use of a crossover specifically
designed to the problem in hand allows us to significantly
improve the algorithm performance.

Fig. 1. Best obtained configurations per algorithm (over 3 risk measures and 8 datasets).

8. The results of each algorithm can be found at http://www0.cs.
ucl.ac.uk/staff/F.Sarro/projects/overtime/

9. Please, note that for brevity, we excluded Adaptivev from our
analysis since we noticed that it shows the same behaviour as NSGAIIa.
We observed that this was due to the fact that both algorithms con-
verged early (i.e., after 5-15 generations) on the selection of the stron-
gest operator in the pool implying that any additional genetic operator
was not taken into account during the search.
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5.3 Results for RQ3 (Comparison to State of the
Art Search)

To assess whether the proposed algorithm (i.e., Adaptivevsc)
improves the state of the art, we compared it with respect to
NSGAII, NSGAIIv, andNSGAIIa for the considered datasets.

The boxplots in Fig. 3 show the performance of
Adaptivevsc and NSGAII relatively to the three risk meas-
ures (i.e., MaxRisk, AvgRisk, TrsRisk) and the three quality
assessment indicators (i.e., IC , IHV , IGD) we considered (see
details in Sections 2 and 4.3). We can observe that

TABLE 4
RQ2: Mean Values and Standard Deviation (Mean;Stdev) of the Quality Indicators for All the NSGAIIa

Variants (the Leading Zero Is Not Shown, e.g. 0.16 Is Reported as 16)

Project Risk

Measure

IC IHV IGD

Av As Ac Asc Avs Avc Avsc Av As Ac Asc Avs Avc Avsc Av As Ac Asc Avs Avc Avsc

DB2

MaxRisk 16;01 16;01 10;01 11;01 18;00 17;02 11;01 56;00 56;00 56;00 56;00 56;00 56;00 56;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

AvgRisk 17;02 17;02 10;01 11;01 18;01 16;02 10;01 56;00 56;00 58;00 56;00 56;00 56;00 56;00 00;00 00;00 00;00 00;00 00;00 06;00 00;00

TrsRisk 19;01 18;01 08;01 08;01 20;00 16;03 10;03 56;00 56;00 56;00 56;00 56;00 55;01 56;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

Web

MaxRisk 00;00 00;00 12;08 47;26 00;00 01;04 39;33 56;00 56;00 58;00 58;00 56;00 36;19 58;01 00;00 00;00 00;00 00;00 00;00 05;00 00;00

AvgRisk 00;01 00;01 04;04 16;08 01;02 38;30 41;31 53;03 55;04 62;02 65;02 53;01 60;12 65;02 04;00 04;00 01;00 01;00 05;01 02;00 01;00

TrsRisk 01;01 01;01 19;13 48;17 01;04 04;14 23;22 54;01 54;01 57;01 58;01 55;01 34;19 56;01 01;00 01;00 01;00 01;00 01;00 04;02 00;00

Quote

MaxRisk 14;02 13;00 13;03 13;03 14;02 20;06 13;03 57;00 57;00 57;00 57;00 57;00 56;00 57;00 01;00 01;00 01;00 01;00 01;00 01;00 01;00

AvgRisk 10;06 10;06 15;03 13;02 16;06 20;06 06;04 56;01 56;01 57;00 56;00 56;00 56;01 57;00 05;00 05;00 05;00 04;00 05;00 04;00 05;00

TrsRisk 05;02 06;03 06;03 21;05 10;04 20;12 31;04 58;00 58;00 58;00 58;00 58;00 56;02 58;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

Oracle

MaxRisk 10;06 12;06 13;05 20;07 00;00 25;14 19;07 51;01 51;01 51;00 51;00 45;01 50;01 51;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

AvgRisk 00;00 00;00 19;04 22;05 00;01 32;09 26;07 45;02 49;02 54;02 54;02 57;02 54;04 55;02 01;00 01;00 01;00 01;00 01;00 01;00 01;00

TrsRisk 12;03 02;01 07;03 09;03 20;04 00;01 46;03 50;00 49;00 50;00 50;00 50;00 44;05 50;00 00;00 00;00 00;00 00;00 00;00 01;00 00;00

Price

MaxRisk 02;01 02;01 21;34 25;03 02;01 27;06 21;02 58;00 58;00 00;00 58;00 57;00 58;02 58;00 00;00 00;00 58;00 00;00 00;00 00;00 00;00

AvgRisk 02;00 02;00 22;03 23;02 04;01 22;08 25;03 57;01 57;00 58;00 59;00 58;00 57;04 59;00 02;00 02;00 00;00 00;00 01;00 01;00 00;00

TrsRisk 03;01 03;01 04;01 05;01 04;01 18;10 61;07 58;00 58;00 58;00 58;00 58;00 55;04 58;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

CutOver

MaxRisk 07;04 07;03 19;02 19;04 10;04 11;09 27;04 54;00 54;00 54;00 54;00 54;00 40;19 54;00 00;00 00;00 00;00 00;000 00;00 07;10 00;00

AvgRisk 00;00 00;00 09;06 15;05 01;02 54;07 20;04 48;02 48;01 53;01 54;01 49;01 54;00 54;01 12;01 20;02 04;00 04;00 09;07 05;00 05;02

TrsRisk 05;03 04;02 22;08 24;08 05;01 19;15 21;07 52;01 52;01 53;00 53;00 52;01 40;20 53;00 01;00 01;00 01;00 01;00 01;01 09;08 01;00

Broker

MaxRisk 14;01 13;01 14;01 17;01 14;01 13;04 14;01 54;00 54;00 54;00 54;00 54;00 53;01 54;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

AvgRisk 09;03 08;03 18;01 18;02 09;02 17;05 20;01 54;00 54;00 54;00 54;00 54;00 54;01 54;00 01;00 00;00 00;00 00;00 00;00 00;00 00;00

TrsRisk 14;08 14;02 13;01 13;01 14;01 15;01 16;01 54;00 54;00 54;00 54;00 54;00 54;00 54;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

Chartwell

MaxRisk 18;07 18;09 23;06 04;06 14;06 02;02 21;06 52;00 52;00 53;00 52;00 52;00 52;00 53;00 00;00 00;00 01;00 01;00 01;00 01;00 00;00

AvgRisk 02;02 02;02 25;10 18;08 04;05 04;02 45;14 51;00 51;00 53;00 53;00 51;00 53;00 58;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

TrsRisk 08;04 09;05 17;07 16;07 10;06 04;03 35;13 50;00 51;00 53;00 53;00 51;00 52;00 53;00 00;00 00;00 00;00 00;00 00;00 00;00 00;00

Fig. 2. RQ2: Number of win-tie-loss results from the Wilcoxon Test performed on the three quality indicators (Ic, IHV , IGD) of the pareto fronts obtained
by comparing all the NSGAIIa variants for each risk measure on each of the considered datasets.
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Adaptivevsc provides much better results than NSGAII for
all the considered datasets. This finding is confirmed by the
Wilcoxon test results summarised in Fig. 6a. We observe
that the results provided by Adaptivevsc are significantly
better than those of the standard NSGAII in 71 out of the 72
experiments (99 percent) with a large Â12 effect size. Only in
one case (i.e., project Quote for MaxRisk and the IC quality
measure) NSGAII performs better than Adaptivevsc but
with a very small effect size (i.e., Â12 = 0.003).

Fig. 4 compares the performance of Adaptivevsc and
NSGAIIv, we can observe that Adaptivevsc provides better
results than NSGAIIv in almost all the cases. The Wilcoxon
tests confirm this finding (see Fig. 6b): Adaptivevsc signifi-
cantly outperforms NSGAIIv in 70 out of 72 (97 percent)
experiments and in all of these it does so with a large Â12

effect size. In the other two cases no significant difference
has been observed.

Fig. 5 compares the performance of Adaptivevsc and
NSGAIIa. We can observe that in most of the cases
Adaptivevsc is able to provide better quality indicators than
NSGAIIa. According to the Wilcoxon Test (see Fig. 6c)

Adaptivevsc significantly outperforms NSGAIIa in 59 out of
72 (82 percent) experiments always with a large Â12 effect
size. In the remaining 13 cases NSGAIIa performs better
than Adaptivevsc with large (eight cases), medium (three
cases), and small (two cases) effect sizes.

These results suggest a positive answer to our research
question: Adaptivevsc significantly outperforms the state of
the art with a large effect size in 202 out of 216 cases (93
percent).

5.4 Results for RQ4 (Usefulness)

In order to answer RQ4, we compared our approach against
the ‘current overtime planning practice’ [11]. There is evi-
dence that current overtime practice employs what has
been termed ‘margarine management’ [11]; spreading the
overtime thinly and evenly over all work packages [47]. We
can therefore compare our adaptive multi-evolutionary
approach to this documented Overtime Management Strat-
egy (OMS).

There are two other natural strategies (often referred to
anecdotally in the literature and used in [11]): loading

Fig. 3. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the qual-
ity measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAII (Algorithm B) on each dataset.
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overtime onto the critical path to reduce completion time
and loading it onto the later half of the project to compen-
sate for earlier delays.

Table 5 reports the mean values of each of the three qual-
ity assessment indicators obtained for 30 runs of all projects
using Adaptivevsc and the three OMS practices briefly
described above. We can observe that Adaptivevsc outper-
forms these practices. The Wilcoxon Test confirmed that all
the indicators obtained by employing Adaptivevsc were sig-
nificantly better than those obtained with each and all of the
OMS practices and with a high Â12 effect size in every case.
As an example, Fig. 7 shows the reference fronts obtained
by Adaptivevsc and the three OMS practices for the largest
project Web.10 For completeness, we also report in Table 6
the mean of the values for each of the objectives provided
by the OMS practices and our approach. While Table 5 gives
the precise technical answer to RQ4, Fig. 7 provides a more

qualitative assessment of the meaning of this technical find-
ing. As can be seen, the Pareto surface produced by
Adaptivevsc offers many more points. By contrast, the cur-
rently used approaches appear to merely pick relatively
arbitrary solutions, which can be sub-optimal (far away
from the frontier) and which thus denote little more than
rather inaccurate guesses.

6 THREATS TO VALIDITY

It is widely recognised that several factors can bias the
validity of empirical studies. In this section we discuss
the validity of our study based on three types of threats,
namely construct, internal, and external validity. Construct
validity concerns the methodology employed to construct
the experiment. Internal validity concerns possible bias in
the way in which the results were obtained, while exter-
nal validity concerns the possible bias of choice of experi-
mental subjects.

In our study, construct validity threats may arise from
the assumptions we make about the current state of the

Fig. 4. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the qual-
ity measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAIIv (Algorithm B) on each dataset.

10. In this figure overtime is measured in total overtime hours com-
mitted to the project, while project duration is measured as the length
of the critical path (in days).
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art and practice. We found comparatively little literature
to guide us on what we should consider to be the
‘standard practice’ adopted by engineers. We found no
new work that addresses the overtime problem since our
conference version of the present paper [11], thus we
compared against the same three “common current

practices’ we identified there. As we noted previously
[11] there is some degree of support in the literature for
one of these choices (‘margarine management’), but there
is only anecdotal evidence in the literature for the
other two practices. Another threat to construct validity
can arise from the fact that we did not take into account

Fig. 5. RQ3: Boxplots for the maximal (MaxRisk), average (AvgRisk) and threshold (TrsRisk) risk assessment approaches, evaluated using the qual-
ity measures IC (a), IHV (b), and IGD (c) applied to Adaptivevsc (Algorithm A) and NSGAIIa (Algorithm B) on each dataset.

Fig. 6. RQ3: Results of the Wilcoxon Test performed on the Pareto Quality Indicators (i.e., Ic, IHV , IGD) for Adaptivevsc compared to the state of the art
(the number of wins obtained by each techniques is grouped per Very Small (VS), Small (S), Medium(M), and Large (L) Â12 effect sizes).
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resource allocation and skills in the formulation of
the problem.

We catered for internal threats to validity in the standard
manner for randomised algorithms [21], [39], using non-
parametric statistical testing over 30 repeated runs of the
algorithms.

Our approach to external threats is also relatively stan-
dard for the empirical software engineering literature. That
is, while we were able to obtain a set of subjects that had a
degree of diversity in scope, application and project team,
we cannot claim that our results generalise beyond these
subjects studied. The results reported herein use two more
datasets, and confirm and extend our original findings [11].

7 RELATED WORK

A comprehensive review on Search Based Project Manage-
ment can be found elsewhere [45]. In Section 7.1 we summa-
rise the main work in this field by highlighting the
difference with the approach we proposed herein, while in
Section 7.2 we summarise the main work that analysed the
impact of crossover operator and adaptive algorithms in
Search Based Software Engineering. The approach used in
this paper is also closely related to approaches used in other
works on search based software engineering, but not (in any
way) concerned with project management. We review this
closely related work outside the area of Search Based Project
Management in Section 7.3.

7.1 Search Based Project Management

For a long time, software engineers have used the Critical
Path Method as the principle means of bringing some
rudimentary analysis to bear on the problem of project
planning [18]. Many software engineers use this approach
to plan their projects. However, there have been attempts
to replace the human project planner with a more auto-
mated planner, based on scheduling and resource optimi-
sation techniques.

The first attempt to apply optimisation to software proj-
ect planning was the work of Chang et al. [48], who intro-
duced the Software Project Management Net (SPMNet)
approach for project scheduling and resource allocation and
assesed it on simulated project data. Subsequent research
also formulated the problem of constructing an initial proj-
ect plan as a Search Based Software Engineering problem,
using scheduling and simulation [49], [50]. Though most
approaches have focused on minimising project duration as

TABLE 5
RQ4: Mean Values of the Quality Indicators for Adaptivevsc and
the Three Current Overtime Management Strategies (OMS)

Project Risk

Measure

IC IHV IGD

Adaptivevsc OMS Adaptivevsc OMS Adaptivevsc OMS

DB2

MaxRisk 0.996 0.003 0.371 0.156 0.003 0.227

AvgRisk 0.995 0.005 0.653 0.335 0.002 0.059

TrsRisk 0.994 0.005 0.609 0.000 0.001 0.068

Web

MaxRisk 0.989 0.011 0.209 0.008 0.000 0.555

AvgRisk 0.994 0.006 0.674 0.225 0.000 0.030

TrsRisk 0.977 0.023 0.538 0.215 0.001 0.051

Quote

MaxRisk 0.993 0.006 0.408 0.135 0.000 0.247

AvgRisk 0.993 0.006 0.518 0.230 0.000 0.009

TrsRisk 0.990 0.009 0.000 0.290 0.000 0.004

Oracle

MaxRisk 0.995 0.005 0.491 0.092 0.000 0.125

AvgRisk 0.994 0.006 0.641 0.295 0.000 0.019

TrsRisk 0.994 0.006 0.545 0.360 0.000 0.155

Price

MaxRisk 0.996 0.004 0.528 0.190 0.001 0.103

AvgRisk 0.997 0.003 0.663 0.365 0.002 0.042

TrsRisk 0.992 0.008 0.541 0.342 0.000 0.132

CutOver

MaxRisk 0.990 0.009 0.502 0.133 0.012 1.449

AvgRisk 0.992 0.008 0.723 0.425 0.001 0.006

TrsRisk 0.982 0.170 0.376 0.365 0.000 0.000

Broker

MaxRisk 0.994 0.006 0.541 0.412 0.000 0.035

AvgRisk 0.993 0.007 0.554 0.397 0.001 0.021

TrsRisk 0.993 0.007 0.613 0.431 0.001 0.045

Chartwell

MaxRisk 0.999 0.000 0.206 0.002 0.000 0.047

AvgRisk 0.991 0.009 0.347 0.117 0.000 0.001

TrsRisk 0.984 0.016 0.146 0.118 0.002 0.005

Fig. 7. RQ4: Pareto surfaces for Adaptivevsc (depicted by the circles) and for all of the three Overtime Management Strategies (depicted by the trian-
gles) obtained using each of the three risk assessment approaches: AvgRisk(a), MaxRisk(b), and TrsRisk(c) for the project Web.

TABLE 6
RQ4. Average Objective Values Achieved by Our Evolutionary

Approach (Adaptivevsc) and the Three Current Overtime
Management Strategies (OMS) for the Project Web

Risk Strategy Adaptivevsc OMS

Overtime Duration Risk Overtime Duration Risk

AvgRisk 332.09 92.60 0.28 291.20 100.05 0.28
MaxRisk 101.78 95.93 1.00 11.50 104.56 1.00
TrsRisk 164.61 92.73 0.05 421.67 98.04 0.05
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the sole optimisation objective, there has also been work on
constructing suitable teams of engineers [51], [52], [53] and
work on predicting the effort needed to develop software
projects (e.g., [54], [55], [56], [57], [58], [59]).

Previous work has used a variety of SBSE techniques
such as Genetic Algorithms [49], Simulated Annealing
[51], Co-evolution [31], and Scatter Search [60] as well as
hybrids, for example, combining SBSE with constraint
satisfaction [61]. Though most of the previous work has
been single objective, there has been previous work on
multi-objective formulations [51], [62], [63], [64]. How-
ever, unlike the present paper, none of this previous
work has considered overtime, and all previous work
starts with the assumption that it is the role of the opti-
misation tool (not the software engineer) to provide the
initial project plan.

We believe that the assumption that any automated tool
should have the role of producing the initial project plan,
may not always be realistic. Our experience with practi-
tioners is that they would prefer to trust in their own judge-
ment for the initial project plan. This is because the
allocation of staff to teams and teams to work packages
involves all sorts of human and domain specific judgements
for which an automated approach is ill-equipped and a
human may be far more suitable.

By contrast, our approach to the overtime planning
problem has a fundamentally different starting point and
usage scenario in mind: We do not seek to replace the
software engineer, nor to second guess their decisions.
Rather, we seek to provide decision support in analysing
the effects and trade offs in overtime planning. Few soft-
ware engineers set out with the intention of coercing their
team into unplanned overtime, but many well-intentioned
and professional software engineers end up doing just
that [2], [5]. We seek to provide decision support so that
this can be properly planned and better informed by
multi-objective risk analysis.

Other authors have considered overtime planning
issues in software projects, though none has offered an
approach to plan overtime, balancing overtime deploy-
ment against project risks. For example, Jia et al. [65] ana-
lysed the use of System Dynamics Modeling [66],
reporting results on a simulation carried out on a real
software project (i.e., ISAM3.1 at Alcatel Shanghai Bell).
They report on the harmful effects of excessive overtime
(above set limits). Lipke [67] presented a brief report of
an effort to control the use of reserve budget in a software
project for the defence industry. Barros and Araujo Jr [70]
have recently reported some lessons learned by consider-
ing both the positive effects of overtime on productivity
and its negative effects on product quality. There are
many authors who opine overtime’s severe negative
impacts on staff and their projects (e.g., [6], [7], [8], [68],
[69]) but we are the first to offer a technique for auto-
mated decision support to help the engineer better plan
the deployment of overtime [11]. Moreover, unlike previ-
ous work (e.g., [49], [68], [69]), because the approach we
use starts with the software engineer’s original project
plan (rather than attempting to construct it), it requires
no simulation, thereby removing this source of potential
error and the assumptions that go with it.

7.2 Genetic Operators and Adaptive Algorithms in
Search Based Software Engineering

Previous work has discussed the importance of the genetic
operators for evolutionary algorithms and adaptive search
applied to different optimisation problems (e.g., [71], [72],
[73], [74], [75]). In the following we focus our attention on
Search Based Software Engineering problems.

Raiha et al. [76] investigated the impact of using cross-
over for genetically synthesizing software architecture
design. They found that although sexual reproduction is
favoured among various species of animals and plants,
asexual reproduction is more “natural” in the case of genetic
synthesis of software architecture. Subsequently, Raiha et al.
[77] showed that complementary crossover can significantly
improve the use of genetic algorithms to synthesize soft-
ware architecture.

More recently, Guizzo et al. [78] introduced a meta-
model and a mutation operator to allow the application of
design patterns in Search Based Product Line Architecture
design. The model represents suitable scopes, that is, set of
architectural elements that are suitable to receive a pattern.
The mutation operator is used with a multi-objective and
evolutionary approach to obtain PLA alternatives.

Wang et al. [79] investigated the use of a Memetic Algo-
rithm (MA), based on two genetic operators (i.e., breadth-
first crossover and breadth-first mutation) and local search,
to maximize the reliabilty of a system by means of Multi-
Level Redundancy Allocation. The results showed that the
proposed MA significantly outperformed the state of the art
approach on two representative examples.

Harman et al. [80] proposed a specific crossover operator
for Search Based Optimization of Software Modularization
that allowed them to improve the performance of Genetic
Algorithm (GA).

Conrad et al. [81] presented a genetic algorithm-based
test prioritization method that employs a wide variety of
mutation, crossover, selection, and transformation opera-
tors to reorder a test suite. The results of their empirical
study highlighted the crucial role that the selection opera-
tors play in identifying an effective ordering of a test suite.

McMinn analysed how program structure impacts the
effectiveness of the crossover operator in evolutionary test
input generation and the type of crossover which works most
efficiently for different program structures [82], [83]. Harman
andMcMinn [84] provided evidence that evolutionary testing
performswell for Royal Road functions and that this is due to
the effect of the crossover operation. Lehre et al. [85] investi-
gated the impact of using crossover on the execution time for
the conformance testing of finite state machines. Arcuri and
Fraser [86] empirically investigated how GA parameter tun-
ing (e.g., crossover and mutation rate) can have an impact on
the performance of the algorithm. The results showed that
tuning does indeed have impact but, at least in the context of
test data generation, it does not seem easy to find settings that
significantly outperform the ‘default’ values suggested in the
literature. Recenlty, LeGoues et al. [87] analysed specific
crossover and mutation operators for improving Evolution-
ary Software Repair. Other work mined and analysed large
corpus of software projects to provide useful insights for
improving the genetic operators used for automatic program
repair [88], [89].
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In our previous work [11] we investigated the use of a
specific crossover operator to multi-objective overtime man-
agement. In the present work we further analysed the use of
this crossover together with a multi-objective algorithm
able to adaptively use different crossovers during the
search. To the best of our knowledge this is the first use of
adaptive multi-objective evolutionary algorithms to Search-
Based Project Management.

The novel algorithms introduced in the present paper
extend our previous work on hyperheuristic learning. This
was proposed in 2012 as a means of increase adaptiveness
in SBSE [26], but the first results for hyperheuristic SBSE
have only recently began to emerge [90].

7.3 Closely Related Work Outside the Area of
Search Based Project Management

This paper is concerned with search based project manage-
ment, which is a subarea of Search Based Software Engi-
neering. One of the advantages of SBSE is the way in which
it has the ability to connect apparently unrelated areas of
software engineering. Because SBSE solutions can share rep-
resentations and fitness functions, they can exploit problem
formulations that are similar, even though they attack
entirely different software engineering application areas.
Such connections have been demonstrated, for example,
between requirements and regression testing which, from
an optimisation perspective, both involve prioritization and
selection problems [30]. The work reported in this paper
therefore has potential application beyond search based
project management, to search based software engineering
in general, and to wider search based optimisation prob-
lems (that may not even involve software engineering). Evi-
dence for this potential application comes from the way in
which other authors have reused the formulation of our
evaluation methodology in their own work on SBSE and
other multi-objective optimisation problems. For example,
Nejati and Briand [91] re-used our evaluation methodology
(introduced in our ICSE paper [11] for which the present
paper is an extension) in their work on trading CPU and
temporal properties, while Olaechea [92] also reused our
methodology in their work on multi-objective software
product line optimisation. This reuse of the evaluation
methodology is not confined to software engineering alone:
Ficco et al. re-used our evaluation methodology in their
work on optimal selection of positioning systems [93].

8 CONCLUSIONS AND FUTURE WORK

We have extended the search based approach to overtime
planning for software engineering projects we proposed
in previous work [11] and evaluated it on eight real world
software engineering projects. Our approach, evaluated in
terms of three standard measures of result quality, per-
formed significantly better (with large effect size) than
currently used software engineering practice. Further-
more the adaptive multi-objective evolutionary algorithm
introduced in the present work outperformed the state of
the art multi-objective algorithms applied to the same
problem in 202 out of 216 (93 percent) experiments (with
large effect size) showing that the criteria used to adap-
tively select the crossover during the search together with

the use of a crossover specifically designed to the prob-
lem in hand allows us to significantly improve the evolu-
tionary algorithm performance.

We provide qualitative evidence that the approach can
provide actionable insights to the software engineer, backing
up this quantitative evidence that it is effective and useful
[11]. As we show in the results presented in our conference
paper [11], which are confirmed herein), there exist inflection
points that mark sharp differences in the trade-off between
additional overtime, and the advantages that accrue from its
deployment. These trade-offs cannot be understood without
some form of algorithmic approach, since a human cannot be
expected to discover such inflection points, unaided.

We believe that this paper lays a firm foundation for
future development of semi-automated decision support for
software engineers faced with the challenges of planning
overtime on complex and demanding projects. However,
there remains much to be done to realise the practical bene-
fits that this approach offers.

In future work we plan to deploy a version of the tooling
reported upon in this paper as a freely available, open source
plug-in component to popular project planning tools, such as
Microsoft project. This will allow more extensive evaluation
of the interface between the technical aspects of the work
reported in this paper and other related socio-technical issues
for implementation and exploitation, such as user interface,
HCI, and decision support. Moreover, this will allow us also
to get feedback from practitioners on the usefulness of the
insights provided by our approach and the considered over-
run risk strategies. We also plan to collect more data to ana-
lyse how well the model performs by applying it on actual
projects and comparing the outcomes with projects that use
the traditional rule-of-thumb strategies.

Furthermore, it would be interesting to extend the prob-
lem formulation considering other aspects such as human
and skills allocation [94], team efficiency [95], and voluntary
overtime [1] to better represent real world projects and to
offer a stronger decision support for software engineers.

Recent results showed that integer linear programming
can be successfully applied to the Next Release Problem
(NRP) [96] and future work might investigate exact algo-
rithms for project over time planning. Indeed, finding an
exact solution would be clearly attractive where possible.
However, while it is interesting that there are exact solu-
tions to some problems in search based software engineer-
ing, there is no guarantee that the same approach will
perform well for a different problem.
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APPENDIX

Table 7 shows the best configuration obtained for each algo-
rithm, per risk measures and per datasets, as a result of the
tuning process described in Section 4.5. We used these config-
urations to answer the research questions set out in Section 4.1.
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