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Abstract—App Store Analysis studies information about applications obtained from app stores. App stores provide a wealth of

information derived from users that would not exist had the applications been distributed via previous software deployment methods.

App Store Analysis combines this non-technical information with technical information to learn trends and behaviours within these

forms of software repositories. Findings from App Store Analysis have a direct and actionable impact on the software teams that

develop software for app stores, and have led to techniques for requirements engineering, release planning, software design, security

and testing. This survey describes and compares the areas of research that have been explored thus far, drawing out common

aspects, trends and directions future research should take to address open problems and challenges.
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1 INTRODUCTION

APP stores are a recent phenomenon: Apple’s App Store
and Google Play were launched in 2008, and since then

both have accumulated in excess of 1 million downloadable
and rateable apps. Google announced that there were 1.4 bil-
lion activated Android devices in September 2015 [32].
Mobile app stores are also extremely lucrative: the set of
online mobile app stores were projected to be worth a com-
bined 25 billion USD in 2015 [152]. The success of app stores
has coincided with the mass consumer adoption of smart-
phone devices. Smartphones existed prior to the launch of
these stores, but it was not until 2008 that users could truly
exploit their extra computing power and resulting versatility
through downloadable apps. In-house and even commercial
applications had been available before the launch of app
stores, but app stores had some differences: availability, com-
patibility, ease of use, variety, and user-submitted content.

It is the user-submitted content that fundamentally dis-
tinguishes app stores from the ad-hoc commercially avail-
able applications that existed beforehand. As a result,
software engineering researchers have access to large num-
bers of software applications together with customer feed-
back and commercial performance data, unavailable in
previous software deployment mechanisms.

Furthermore, through readily available, downloadable
toolkits, users can write their own applications to make use
of a smart device’s hardware. They can subsequently pub-
lish their software in the central app store for users to down-
load (and possibly pay for). This publication process is
subject to the store’s in-house review and certification

policies, but in general apps and app updates can be made
available quickly (typically within hours/days).

In this paper we provide a survey of literature that per-
forms “App Store Analysis for Software Engineering”
between 2000 and November 27, 2015.1 Our contributions
are as follows: i) We provide formal definitions of apps,
stores, and technical and non-technical attributes, which are
used for App Store Analysis research. ii) We study the
growth patterns of App Store Analysis literature both over-
all, and in each emergent subcategory. iii) We analyse the
scale of app samples used, and discuss how this is likely to
progress in the future. iv) We identify some of the key ideas
published in App Store Analysis, in addition to common
aspects, trends and future directions, to help readers to
understand the progression of the field overall.

1.1 Definitions

The following definitions help to clarify key components of
App Store Analysis literature. We used them to find all the
relevant literature.

App: An item of software that anyone with a suitable
platform can install without the need for technical expertise.

App Store: A collection of apps that provides, for each
app, at least one non-technical attribute.

Technical attribute: An attribute that can be obtained
solely from the software.

Non-technical attribute: An attribute that cannot be
obtained solely from the software.

Examples of attributes are shown in Fig. 1, based on the
data we collected in previous studies [92], [154], [202]. As
our diagram shows, some attributes are distinctly technical
or non-technical in a boolean sense, but others lie in a grey
area, depending on the precise interpretation of what can be
obtained from software alone. Those in the grey box cannot
be considered technical in the strictest sense of the definition,
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because they are not guaranteed to be obtainable solely from
the software in all cases. These attributes can be both non-
technical and technical, depending on how they are
obtained. They are attributes that, in some cases, can be pro-
vided by the developer and not the app store, whilst attrib-
utes that are strictly non-technical may only be provided by
an app store. For example, consider the ‘author’ attribute. In
the case of Android software, the author can be obtained
solely from the distributed apk file. However, in the case of a
compiled C binary such as a simple “hello world” program,
the author cannot be obtained directly from the binary file.
The ‘author’ attribute therefore belongs in the grey area. We
can obtain the size of the C binary, and so this attribute is
technical; we cannot obtain the price from either of these
example files, and so this is a non-technical attribute.

Our definition of App Store may seem simplistic. How-
ever, at the time of writing, app stores serve as more than
just collections of apps, but enable more developers than
ever to produce and distribute content, and enable a com-
munication channel between users and developer via
reviewing systems. Therefore, our definition is aimed at
inclusivity. In only 7 years since the launch of the two big-
gest app stores, there are already over 180 papers devoted
to their study, and each of these stores has well over 1 mil-
lion apps each. As this rapid development has shown, the
concept of apps and app stores is very likely to evolve over
the coming years. It is our aim to encompass this evolution
as best we can through the stated definitions, in the hope
that future surveys will be able to build upon this work and
the App Store Analysis literature to come.

1.2 Overview

This survey is structured as follows: Section 2 describes the
process used to find the included literature; Section 3 breaks
down the growth trends in non-technical research com-
pared with technical-only research, and Section 4 breaks
down the growth of scale of apps used; key ideas in each
subfield of app store analysis are identified in Section 5.

We define the following App Store Analysis subfields,
based on the literature gathered through the process
explained in Section 2: “API Analysis”, which is discussed
in Section 6; “Feature Analysis”, which is discussed in Sec-
tion 7; “Release Engineering”, which is discussed in Sec-
tion 8; “Review Analysis”, which is discussed in Section 9;

“Security”, which is discussed in Section 10; “Store
Ecosystem”, which is discussed in Section 11; and “Size and
Effort Prediction”, which is discussed in Section 12.

Closely relatedwork is discussed in Section 13; guidelines
and recommendations for future app store analysis authors
are outlines in Section 14; we identify potential future direc-
tions in Section 15, and conclude our findings in Section 16.

2 LITERATURE SEARCH

In this section, we describe the process used to find litera-
ture, including our scope, search terms and repositories and
lessons learned for future app store analysis surveyors.

2.1 Scope

App Store Analysis literature encompasses studies that per-
form analysis on a collection of apps mined from an App
Store. We are particularly interested in studies that combine
technical with non-technical attributes, as these studies pio-
neer the new research opportunities presented by app
stores. However, we also include studies that use app stores
as software repositories, to validate their tools on a set of
real world apps, or by using specific properties such as the
malware verification process apps go through before being
published in the major app stores.

Our survey is not a Systematic Literature Review (SLR).
The area of App Store Analysis is still developing, but has
not reached a level of maturity at which research questions
can be chosen and asked of a well-defined body of litera-
ture. Our study aims to define, collect and curate the dispa-
rate literature, arguing and demonstrating that there does,
indeed, exist a coherent area of research in the field that can
be termed “App Store Analysis for Software Engineering”.
We hope that this will prove to be an enabling study for
future SLRs in this area.

We apply the following inclusion criteria:

i) The paper is related to software engineering, and
may have actionable consequences for software
users, developers or maintainers.

ii) The paper is related to mobile app stores, concerning
the use of collections of apps or non-technical data
gathered from one or more app stores.

We apply the following exclusion criteria:

i) The paper focuses on mobile app development but
does not extend to collections of apps nor to app stores.

ii) The paper uses an arbitrary collection of apps to test
a tool, but it was not mined from an app store, and
the study does not extend to app stores.

2.2 Search Methodology

In order to collect all relevant literature to date that meets
the scope defined in Section 2.1, we perform a systematic
search for the terms defined below, from each repository
(also defined below). Unique papers are collected into a
table, and a decision is made based on the inclusion criteria
in three stages:

Title: We remove publications that are clearly irrelevant
from the title.

Abstract: We inspect the abstract and remove publica-
tions which are clearly irrelevant according to the scope
defined in Section 2.1.

Fig. 1. Example attributes showing mined attributes that are strictly tech-
nical (left) or non-technical (right), and attributes that may be in either
category (centre in box).
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Body: Results are read fully and a judgement is made on
whether the paper a) meets the key requirements on what is
defined as “app store analysis” in our scope, or b) is very
relevant to the field and so should be included as
“expanded literature”, to put the main literature into con-
text. Papers matching the requirements of a) or b) are
included in this survey.

A summary of the number of papers found through the
search, as well as the number of papers accepted at each
stage of validation, can be found in Table 1. All of the refer-
ences for papers discussed in this survey are available in an
online repository [201].

2.2.1 Search Repositories

We performed a search in each of the following repositories
for papers to include in the study: Google Scholar, Scopus,
JSTOR, ACM, IEEE and arXiv.

2.2.2 Terms

Wesearched for the following terms andphrases, to encompass
the sub-fields of App Store Analysis that we identify: “App
Store”, mining, API, feature, release, requirements, reviews,
security, and ecosystem.Weperformed searches for the follow-
ing specific queries, where terms joined by an ‘AND’ must
appear, and phrases in quotesmust appear verbatim:

“app store analysis”
“app store analysis” ANDmining
“app store analysis” ANDmining AND API
“app store analysis” ANDmining AND feature

We performed the following more general searches to
ensure that no relevant literature was missed from the
survey:

“app store” AND analysis AND API
“app store” AND analysis AND API ANDmine
“app store” AND analysis AND feature ANDmine
“app store analysis” ANDmining AND requirements
“app store analysis” ANDmining AND release
“app store analysis” ANDmining AND reviews
“app store analysis” ANDmining AND security
“app store analysis” ANDmining AND ecosystem

We mitigate the threat of missing papers by conduct-
ing searches for “app store analysis” AND “mining” and
also each of the names of each of the major subfields of
App Store Analysis literature. Since, by our definition,
app store analysis research uses collections of apps, this
should encompass much of the field. We also performed
snowballing, which further helps to mitigate the threat
of potentially missing papers. However, the threat of
missing papers is a threat to the validity of any survey,
including this one.

TABLE 1
Search Query Results Indicating the Number of Hits Each Query Generates, the Number of These That Were Available

to Be Inspected, the Number of Titles and Subsequent Abstracts and Paper Bodies that Were Accepted as Valid

Specific

Queries

“app

store

analysis”

“app

store

analysis”

ANDmining

“app store analysis”

ANDmining

AND API

“app store

analysis”

ANDmining

AND feature

“app

store analysis”

“app

store analysis”

AND mining

“app

store analysis”

AND mining

AND API

“app

store analysis”

ANDmining

AND feature

Google Scholar IEEE

Hits 35 17 9 13 3 40 13 13

Inspect 35 17 9 13 3 40 13 13

Title 15 13 8 12 3 8 8 8

Abstract 13 13 8 12 3 7 4 4

Body 12 13 8 12 3 5 4 4

ACM JSTOR

Hits 7 1,146 295 231 0 36 4 13

Inspect 7 1,146 295 231 0 36 4 13

Title 4 69 44 31 0 0 0 0

Abstract 3 57 27 22 0 0 0 0

Body 3 44 26 17 0 0 0 0

arXiv Scopus

Hits 0 81 28 10 1 128 21 1

Inspect 0 81 28 10 1 128 21 1

Title 0 4 1 0 1 128 21 1

Abstract 0 4 1 0 0 13 6 0

Body 0 4 1 0 0 11 4 0

General

Queries

“app store”

AND analysis

AND API

“app store”

AND analysis

API ANDmine

“app store”

AND analysis

AND feature

AND mine

“app store

analysis”

ANDmining

AND requirements

“app store

analysis”

AND mining

AND release

“app store

analysis”

AND mining

AND reviews

“app

store analysis”

AND mining

AND security

“app store

analysis” AND

mining

AND ecosystem

Google Scholar

Hits 3,130 409 1040 12 9 15 9 9

Inspect 1,000 409 1,000 12 9 15 9 9

Title 87 35 37 12 9 14 8 9

Abstract 61 23 33 12 9 14 8 9

Body 52 21 32 12 9 14 8 9

The top boxes indicate more specific queries run in multiple paper repositories, and the lower boxes indicate the more general queries run only in Google Scholar.
In the case of Google Scholar, only the top 1,000 results were accessible to inspect at the time of search.
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2.3 Snowballing

In addition to the repository searches specified in Section 2.2,
we also perform snowballing [244] on many of the included
studies. To do this we inspect the studies cited by the study,
and the publications that subsequently cited the study, using
Google Scholar and ACM. By performing this process in
addition to repository keyword searching, we reduce the
risk that relevant literature is omitted from this survey.

2.4 Search Results

Search results can be found in Table 1.
We set the time window to start with the year 2000, yet

the earliest reported study is 2010. This is likely because the
App Stores that propelled mobile app usage to become
widely adopted were launched in 2008. Yet, it is interesting
that studies incorporating technical with non-technical app
store information did not emerge until two years later.
Papers were collected until November 27, 2015.

An overlap was found between search queries performed,
and thus the total number of discovered papers through

search queries was fewer than suggested by the sum of the
bottom rows in Table 1. Many papers were discovered
through snowballing, which do not appear in the table.

We present a summary of the included literature in
Tables 3, 4, 5, 6, 7, 8, and 9. Histograms depicting the growth
of publications studied on App Store Analysis for software
engineering can be found in Figs. 2, 3, and 4, which show
the split between technical-only and technical and non-tech-
nical research, the split between different subfields identi-
fied as subsections in this survey, and the split between
scale of studies in terms of the number of apps used, respec-
tively. A breakdown of these studies in each sub-field that
we identify is also presented in Fig. 5.

2.5 Lessons Learned

As can be seen fromTable 1, for somequeries, therewere large
drops in the number of papers upon inspection of their title or
abstract, when performing the more general searches on

Fig. 2. Histogram showing number of research papers incorporating non-
technical information and technical-only research papers showing the
period from 2010 to November 27, 2015.

Fig. 3. Histogram of sub-field trends showing the period from 2010 to
November 27, 2015.

Fig. 4. Histogram showing number of research papers grouped into app
quantity ranges each year, showing the period from 2010 to November
27, 2015. Each histogram depicts a range such as 102-103 apps, which
means that the studies included used between 102 and 103 apps.

Fig. 5. Pie chart showing overall sub-field distribution showing the period
from 2010 to November 27, 2015.
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Google Scholar: searches for “app store” with many of the
combinatoral words resulted in several thousand papers
which may have mentioned “app store” only once. We found
that searching for “app store analysis” as a phrase narrowed
the results down a lot, but didmiss some relevant papers.

Searches that included “mining” as a keyword did
encompass much of app store analysis research due to the
focus on collections of apps that meets our app store defini-
tion. However, we found that the snowballing technique
was crucial in our literature search, because paper discovery
through many of the paper repositories we used could not
be replied upon to find all relevant papers; in a growing
field terms of reference are not fully stabilized. We therefore
encourage future surveyors to visit the App Store Analysis
paper repository [201], which can assist in the discovery of
app store analysis literature.

3 NON-TECHNICAL RESEARCH

While software engineering deals primarilywith code, it is not
confined to deal with strictly technical sources of information.
We can combine data from multiple (technical and non-tech-
nical) sources, and app stores provide a wealth of such infor-
mation. There are 127 of 187 (68 percent) papers included in
this study that incorporate non-technical information mined
from app stores in order to either infer technical attributes
(such as features), or to extract useful information such as bug
reports and feature requests from users.

The histogram in Fig. 2 shows that the number of studies
incorporating non-technical information is growing year-
on-year. We can see from Fig. 2 that even including the
boom in technical-only research, there is growth year-on-
year (with the exception of 2014). Using linear regression,
we are able to fit the growth trend with high accuracy
(R2 ¼ 0:9067, p ¼ 0:003373), which indicates that we can
draw a straight line and predict (with 90 percent accuracy)
the publications for a given year.

4 SCALE OF STUDIES

In order to discuss the number of apps that are studied by
research papers, we first need to define a set of ranges. We
assign the papers studied to app quantity ranges in ascend-
ing powers of 10, according to the number of apps that they
consider. The ranges that we assign, and the number of
research papers that study them, are shown in Table 2.

The median number of apps used in the considered liter-
ature is 1,679, and the mean is 44,807. This result shows that
half of the papers study fewer than 2,000 apps, but the other
half study a quantity of apps several orders of magnitude
larger. This is reflected in Fig. 4, where the range ½104; 105Þ is
shown to grow and in 2015 represents almost half of the
app usage literature.

The histogram for the studies using between 104 and 105

apps shows growth from 2011 to 2015, and this result is

reflected in the histogram for studies using between 105 and

106 apps aswell, up to 2014. It is important to note that we did
not have complete data for 2015, so this result is subject to
change. Studies using smaller scales of apps show an uncer-
tain change in frequency, indicating that most studies in the

future are likely to continue using over 104 apps. We antici-
pate larger studies in the future, based on the growth of App
Store Analysis literature, the increasing quantity of apps stud-
ied, and of course the growing app stores themselves.

5 KEY IDEAS TIMELINE

A timeline depicting the key ideas is shown in Fig. 6. This
highlights the launch of major app stores studied, as well as
the first studies in each subsection. We include studies into
the timeline that have advanced the field of App Store Anal-
ysis in some way, or introduced influential ideas into their
respective section.

6 API ANALYSIS

Papers that extract the API usage from app APKs or
source code, and combine this information with non-
technical data are discussed in this section, and are sum-
marised in Table 3. All API analysis literature studied
apps from the Android platform only. This may be due
to the availability of tools which can be used to decom-
pile the apps and extract their API calls, which are freely
available and can be applied to downloaded app bina-
ries. It is perhaps surprising that such analyses have not
also been performed on the Apple platform, iOS, since
the store was launched in 2008. This might be because
iOS binaries are only available for the intended plat-
forms, and cannot be downloaded to, or used from a
desktop computer without an Apple Developer account,
which is not free. Even with such an account, app bina-
ries or source code would be needed, and neither are
freely available due to a) copyright on binaries and b)
many iOS apps being paid-for apps. Due to these diffi-
culties, it is uncertain whether it will be possible for
future studies to extract API information from iOS apps;
in fact, it may become harder since the move (in iOS9)
to developer-submitted LLVM IR (Intermediate Repre-
sentation) binaries, which are then compiled for specific
platforms by Apple.

API analysis literature can be decomposed into “API
Usage”, “Class Reuse and Inheritance”, “Faults” and
“Permissions and Security”. There is some overlap between
the latter section and Section 10. Nevertheless, the literature
discussed in this Section is collected together and discussed
here because it directly analyses API usage. Several papers
included in this section relate to energy usage [139], [236],
although much of this field of research relates only indirectly
to app stores. For thosewhowish to learnmore on the subject,
we point the reader to the recent paper byHindle [96].

All API analysis literature has, hitherto, studied apps from
the Android platform. There is large range in the number
of apps considered, from 0 apps to over 1,000,000.

TABLE 2
Number of Research Papers Studying Each App
Quantity Range from 2010 to November 27, 2015

No. Apps Range Papers No. Apps Range Papers

0 5 ½103; 104Þ 36
½1; 10Þ 19 ½104; 105Þ 39

½10; 102Þ 21 ½105; 106Þ 28

½102; 103Þ 31 � 106 3
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6.1 API Usage

Borges and Valente [30] used association rule mining to
infer API usage patterns, using a dataset of 396 open source
Android apps. For their study, the authors extended API-

Miner [167] to mine usage patterns and instrument API
documents with extracted usage patterns. They reported a
study over 17 months, during which instrumented Android
documentation was made publicly available, and received
approximately 78,000 visits. Shirazi et al. [196] extracted the
API usage with regards to user interface (UI) elements and
layout, and compared statistics between the 21 different cat-
egories of the Google Play store that existed in 2012.

Wan et al. [236] explored energy hotspots in apps by trans-
forming their UIs and producing a ranked list of UI compo-
nents by energy consumption. The authors tested their
approach on 398 apps mined from Google Play. Azad [15]

studied apps mined from Google Play and F-droid, and pro-
duced tools to inspect API usage and suggest similar APIs
based on Stackoverflow discussions, score the similarity of
apps, identify the degree to which apps have copied the
source code of open source projects, and detect license viola-
tions. Tian et al. [219] extracted API information and evalu-
ated apps in terms of code complexity, API dependency, API
quality, as well as a number of other factors, in order to train
features to distinguish high from low rated apps.

API usage can be extracted from Android APK files, mak-
ing analysis on the Android platform relatively straight-
forward. The extracted information has been used to
analyse energy usage, detect malware, analyse graphical
elements and to detect license violations.

Fig. 6. Key ideas timeline for App Store Analysis literature. The primary area of study is suffixed in parentheses.
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6.2 Class Reuse and Inheritance

In 2012 Ruiz et al. [195] studied class reuse and inheritance
in 4,323 Android apps mined from five categories in Google
Play. Of these, 217 apps were found to contain exactly the
same set of classes as another app in the same category. The
study was later extended to 208,601 apps by Ruiz et al. [192]
in 2014. More evidence of substantial code reuse was found,
and the authors concluded that app developers benefit from
increased productivity but risk dependence on the quality
of the code they reuse.

In 2013 Minelli and Lanza presented a visual analytics
web tool for studying repositories of apps [163], [164]. The
tool analyses snapshots of apps throughout their version his-
tory, using an interactive graphical user interface. Following
their subsequent study on 20 free and open source Android
apps, the authors found that 3rd party API code is often
(incorrectly) committed along with the app code, instead of
including the corresponding 3rd party jar files. Excluding
3rd party code, most appswere found to have comparatively
small code-bases. Additionally the authors found little use of
inheritance in Android apps, andmuch duplication. Viennot
et al. [226] introduced the PlayDrone Google Play crawler,
which they used to store daily data on 1.1M apps and decom-
pile 880k free apps. The authors found that native libraries
are heavily used in popular apps, and that approximately a
quarter of free apps are duplicates of other apps. They found
that paid apps account for just 0.05 percent of downloads,
and the top 10 percent of most popular apps account for 96
percent of total downloads as of June 23, 2013.

Linares-V�asquez et al. [140] decompiled and analysed
24,379 APKs from Google Play and found that the 82 per-
cent of detected clones replicate 3rd party libraries. Zhang
et al. [250] proposed ViewDroid, an app plagiarism detec-
tion system that uses view transition graphs as
“birthmarks” to capture app behaviour, in order to detect
clones in the presence of code obfuscation. Apps mined
from Google Play were used as a false negative set. In a
related study, Kim et al. [121] scan API invocations to iden-
tify plagiarised applications, in a more sophisticated
approach than similarity detectors that scan code, as it han-
dles code obfuscation. Wang et al. [237] proposed WuKong,
a two-phase Android clone detection system that first filters
third-party libraries to increase detection speed. The
authors tested the system on 105,299 Android apps and
found zero false positives.

Code reuse is common in the Google Play store, but
inheritance use is comparatively rare. Most apps are
found to have small code bases, often replicating third
party code instead of including compiled jar files. Clone
and plagiarism detection tools are a widely discussed
topic in the Class Reuse and Inheritance literature.

6.3 Faults

Linares-V�asquez et al. analysed the effect of fault and change-
prone core Google APIs on app ratings [138]. This is an impor-
tant study as it combines technical API information with non-
technical information in the form of average user reviews, in
order to assess the impact that API usage can have. Fault and
change prone APIs were found to be usedmore frequently by
poorly-rated apps. Conversely, popular apps used APIs that
were found to be less susceptible to faults and changes. The
paper presents an analysis of 7,097 randomly selected free
apps with > 10 reviews. Changes and faults were measured
as the number of API changes and bug fixes, respectively, to
the particular associated core libraries.

Building on the work by Linares-V�asquez et al. [138],
Linares-V�asquez also presented an approach for a recom-
mendation system for Android app developers [137], to
help them to prepare for platform updates and avoid break-
ing changes and introducing bugs. The authors extended
their API analysis work to identify APIs that have a high
energy usage [139], but this study did not combine non-
technical app store information.

Bavota et al. [21] investigated how the number of
changes and faults present in APIs used affected apps’ rat-
ings. Their results showed an inverse correlation between
the popularity of apps and the number of faults and
changes in APIs they used. That is, low rated apps were
found to use APIs that are more fault- and change-prone
than highly rated apps. Bavota et al. surveyed 45 Android
developers who confirmed this relationship from anecdotal
experience. These studies combined technical (API usage)
with non-technical (user ratings) information to highlight
best practice for API usage in Android development.

Syer et al. [214] studied the effect of platform independence
on source code quality, finding that the more defect prone
source files also depend more heavily on the platform. The
authors therefore suggest prioritising platform-dependent

TABLE 3
Chronological Summary of API-Related App Store Analysis
Literature Showing the Authors, Publication Year, Publication

Venue, and the Number of Apps Used in the Study

Authors [Ref], Year Venue No. apps

Ruiz et al. [195], 2012 ICPC 4,323
Linares-V�asquez et al. [138], 2013 FSE 7,097
Shirazi et al. [196], 2013 EICS 400
Minelli and Lanza [163], 2013 ICSM 20
Minelli and Lanza [164], 2013 CSMR 20
Ruiz et al. [193], 2014 IEEE Soft. 236,245
Hao et al. [91], 2014 MobiSys 3,600
Dering and McDaniel [57], 2014 MILCOM 450,000
Linares-V�asquez et al. [140], 2014 MSR 24,379
Ruiz et al. [192], 2014 IEEE Soft. 208,601
Linares-V�asquez [137], 2014 ICSE comp. 0
Viennot et al. [226], 2014 SIGMETRICS 1,107,476
Bartel et al. [18], 2014 IEEE Soft. Eng. 1,421
Zhang et al. [250], 2014 WiSec 10,311
Borges and Valente [30], 2015 PeerJ C. S. 396
Bavota et al. [21], 2015 IEEE Soft. Eng. 5,848
Kim et al. [121], 2015 ASE 350
Khalid et al. [114], 2015 IEEE Soft. 10,000
Watanabe et al. [242], 2015 SOUPS 200,000
Zhou et al. [254], 2015 WiSec 36,561
Wan et al. [236], 2015 ICST 398
Wang et al. [237], 2015 ISSTA 105,299
Syer et al. [214], 2015 Soft. Qual. 5
Azad [15], 2015 Masters thesis 950
Wang et al. [238], 2015 UbiComp 7,923
Seneviratne et al. [204], 2015 WiSec 4,114

Mean 93,298
Median 5,086
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source files for unit testing, as a quality assurance strategy. In
2015, Khalid et al. [114] performed static analysis on 10,000
free Google Play apps, and found that three categories of
FindBugs warnings occur more frequently in lower rated
apps. The categories ‘bad practice’, ‘internationalisation’ and
‘performance’ had more warnings in lower-rated apps, sug-
gesting that these areas are the ones developers should focus
on to achieve better rating performance.

Fault and change-prone APIs have been used more fre-
quently by poorly rated apps. Fault prone apps often depend
more heavily on the platform than non fault prone apps.

6.4 Permissions and Security

In 2013 Peiravian and Xingquan [180] used API calls and per-
missions data to train their malware classifier, which they
trained and validated on 1,260 malware samples and 1,250
benign samples, using cross-validation. Hao et al. [91] studied
the insertion of UI handlers into app code. They published the
PUMA tools which makes UI automation programmable, and
enables researchers to analyse correctness properties of apps.
They tested the tool on a set of 3,600 apps downloaded from
Google Play. Dering and McDaniel [57] downloaded a set of
700,000 app binaries from 450,000 free apps on Google Play
and analysed library and permission usage. They found a
strong correlation between the number of libraries used and
the number of permissions requested by the apps, leading to
the conclusion that libraries tend to have specific use cases
that require additional permissions from the user. This find-
ing presents a security concern: is each library doingwhat it is
supposed to, and does it need this permission? In conjunction
with the finding by Book et al. [29], this suggests that library
usage is a significant security concern, since libraries often
make use of existing permission privileges, and also increase
the number of permissions requested.

Ruiz et al. studied the effect of advertisement libraries on
app ratings [193]. They combined non-technical rating infor-
mation with the extracted technical information showing
advertisement library usage to perform the study. Adver-
tisement libraries query their host server at regular intervals
to fetch advertisements for display, and this interval deter-
mines the “advertisement fill rate”. Multiple libraries are
often used to obtain higher fill rates in order to increase rev-
enue. From a sample of 236,245 apps, the authors found no
evidence of a correlation between rating and the number of
advertisement libraries. However, certain APIs were found
to have low median ratings from apps that used them. The
authors state that this is due to intrusive behaviours, such
as recording entered passwords.

Gorla et al. [79] trained a one-class support vector
machine [149] on API usage information in order to identify
outliers in trained clusters for security purposes. Bartel
et al. [18] showed that off-the-shelf static analysis is insuffi-
cient for permission-protected APImethods, and investigated
alternatives, which they tested on 1,421 apps downloaded
from two Androidmarkets. Watanabe et al. [242] found, from
analysing the description and API usage of 200,000 Android
apps, that there is disparity between their descriptions and
requested permissions. This is due to a combination of factors:
unnecessary permissions requested by app building

frameworks, or developers that use similar manifests for mul-
tiple app projects; secondary functionality that is not men-
tioned in descriptions; and the use of 3rd party libraries. In a
related study, Zhou et al. [254] mined a set of 36,561 Android
apps, and proposed the tool CredMinerwhich is focused on
decompilation and program slicing. They identified over 400
apps that leaked developer user-names and passwords,
required for the program to execute normally.

Wang et al. [238] decompiled 7,923 apps from Google
Play and mined features from the decompiled code and var-
iable names. They trained a machine learning classifier on
labelled instances of the apps using location and contact
information, in order to identify the way in which sensitive
information is used. Seneviratne et al. [204] studied 275 free
and 234 paid Android apps, and found that paid apps col-
lect personal information, in the same way as free apps do.
60 percent of the paid apps collected personal information,
compared to 85 percent in free apps. The authors subse-
quently showed that 20 percent of 3,605 collected Android
apps were connected to more than three trackers.

There is a strong correlation between libraries used and
permissions requested. Advertisement libraries some-
times have intrusive behaviours such as recording
entered passwords. The treatment of personal data is a
topic of interest in Permissions and Security API analysis.

6.5 Future Work

The biggest available avenue for future API analysis litera-
ture is to consider alternative platforms: all studies thus far
have extracted API usage from Android apps. It remains to
be seem what effect the move to intermediate representation
will have on potential API analysis in the Apple App Store,
but it may hinder efforts. The Windows Phone platform is
relatively recent, and we may start to see API analysis stud-
ies utilising this platform; the Google Play store launched in
2008 (as Android Market), but it was not until 2012 that
App Store Analysis literature studied API usage in the store.

The scale of API analysis studies is large, but future work
may seek to study how usage varies over long time periods.
Literature has looked at how API usage differs between
apps of varying popularity or rating, but there is potential
to look at differences between categories.

7 FEATURE ANALYSIS

Papers that extract feature information from either technical
or non-technical sources of information are discussed in this
section, and are summarised in Table 4. We can observe that
these research papers study a wide range of platforms:
Android, iOS, Nokia Widsets, Blackberry and Windows
Phone. In addition, the publications investigate a large num-
ber of apps: theminimum is 3 and themaximum is 600,000.

Features have been extracted from app descriptions, API
usage, manifest files, decompiled source strings, catego-
ries and permissions.

Papers in this section show that it is possible to extract fea-
ture information from sources other than source code or
requirements lists. Additionally, many different methods are
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used for extraction and categorisation of features, including
natural language processing, topic modelling and clustering.
The work shows that analysis of app collections can be aug-
mented with meaningful technically-oriented information,
mined from freely-available app store pages.

Feature Analysis literature is broken down into “Class-
ification”, “Clustering”, “Lifecycles”, “Recommendation”,
“Success” and “Verification”. This section has an overlap
with Section 10, in the cases where features are used to help
detect anomalies or verify app functionality.

7.1 Classification

Shabtai et al. [207] extracted feature information from the
manifest, XML files, API calls and methods used from a set of
2,285 Google Play apps. They trained a classifier on the fea-
tures to differentiate between Tools and Games categories,
as a proof of concept that malware detectors could be trained
in the same way. In 2012 Sanz et al. [197] trained machine

learning classifiers to predict app categories, using extracted
features. The features used for prediction were strings
extracted from the decompiled app code, requested permis-
sions, rating, number of ratings and app size. They tested the
approach on 820 apps and found a peak AUC (area under
ROC curve) of 0.93 using the Bayesian TAN classifier [67].

Zhu et al. [256], [257] studied the problem of mobile app
classification in the Nokia Store. The authors mined 680
apps, and experimented by classifying apps using data
from web search and from device logs from users of the
apps. Their approach outperformed other classification
techniques, and enabled them to automatically classify a
given app onto a predefined category of Apple’s App Store
taxonomy. In 2015 Berardi et al. [24] built on this work, by
constructing a classifier using features mined from app
descriptions, categories, names, ratings and file sizes. They
trained the classifier using a support vector machine for
each of 50 classes, and used the BM25 weighting
scheme [190] on the features. Users manually classified
5,993 apps mined from Apple App Store and Google Play,
to act as the training (cross validation) set for the classifier.

Jinh et al. [110] used the features: numbers of app installs,
number of reviews, category and rating score, in conjunc-
tion with features based on information flow, for their
machine learning classifier for rating app security risk.
Wang et al. [238] extracted features from decompiled Java

code, from their collection of 7,923 apps mined from Google
Play. They used the extracted features to train classifiers for
predicting how ‘location’ and ‘contact’ information is used,
with 85 percent and 94 percent accuracy, respectively.

Features have been extracted for use with classifiers, in
order to differentiate categories, rate app security and to
predict how sensitive information is used.

7.2 Clustering

Teufl et al. [218] mined 130,211 apps from Google Play and
performed clustering on both app descriptions and
requested permissions, as part of their activation patterns
malware detection approach. They later extended this
work [217] to propose a first-step malware detection
method using links between description terms and security
permissions to identify suspicious outliers. In 2013 Mokari-
zadeh et al. [166] performed clustering on 21,065 apps,
mined from Google Play, after applying topic modelling on
app descriptions. They found that the resultant clusters
were very different from the apps’ assigned categories, and
apps in the same category often had dissimilar description
topic distributions. Mokarizadeh et al. also performed corre-
lation analysis and found that users downloaded free apps
more frequently, and that downloads correlated with the
number of ratings an app had received.

Lulu and Kuflik [22] performed clustering on 120 apps
mined from Google Play, comparing description-based with
category-based clustering. They found that descriptions pro-
vided good clustering features, and presented the method as
the basis of an app recommendation system. The authors
later built on this work [23], by extracting features from 6,633
app descriptions and enriching them with information
mined from the web, found by searching for the app name.

TABLE 4
Chronological Summary of Feature-Related App Store Analysis
Literature Showing the Authors, Publication Year, Store Used: g
Signifies Google Play or Other Android Stores, a Signifies Apple

App Store, n Signifies the Nokia (or Widsets) Platform, b
Signifies Blackberry, s Signifies Samsung (Android) and w

Signifies Windows Phone; Publication Venue, and the Number
of Apps Used in the Study

Authors [Ref], Year Store Venue No. apps

Shabtai et al. [207], 2010 g CIS 2,285
Chen and Liu [40], 2011 a iConference 102,337
Coulton & Bamford [49], ’11 n MobileHCI 3
Harman et al. [92], 2012 b MSR 32,108
Sanz et al. [197], 2012 g CCNC 820
Teufl et al. [218], 2012 g MobiSec 130,211
Zhu et al. [256], 2012 n CIKM 680
Mokarizadeh et al. [166],’13 g WEBIST 21,065
Teufl et al. [217], 2013 g Sec. & Com. Netw. 443
Lulu and Kuflik [22], 2013 g IUI 120
Bhattacharya et al. [25],’13 g CSMR 24
Yin et al. [249], 2013 a WSDM 5,661
Lin et al. [135], 2013 a SIGIR 7,116
Ihm et al. [107], 2013 g CGC 10
Kim et al. [122], 2014 a Service Business 100,830
Finkelstein et al. [65], 2014 b Tech. report 42,092
Yang et al. [248], 2014 g Tech report 26,703
Zhu et al. [257], 2014 n TMC 680
Zhu et al. [260], 2014 g KDD 170,753
Jiang et al. [109], 2014 g INTERNETWARE 150
Zhu et al. [255], 2014 a IEEE Cybernetics 15,045
Gorla et al. [79], 2014 g ICSE 32,136
Vakulenko et al. [222], 2014 a ICIS 600,000
Lin et al. [136], 2014 a SIGIR 6,524
Sarro et al. [202], 2015 b,s RE 54,983
Berardi et al. [24], 2015 a,g SAC 5,993
Svedic [212], 2015 a PhD thesis 60
Seneviratne et al. [205],’15 g WWW 232,906
Tong et al. [220], 2015 g,w JCST 10,000
Wang et al. [238], 2015 g UbiComp 7,923
He et al. [93], 2015 g Big Data 122,875
Tian et al. [219], 2015 g ICSME 1,492
Nayebi and Ruhe [172],’15 g PeerJ C.S. 241
Lulu and Kuflik [23], ’15 g MOB INF SYST 6,633
Al-Subaihin et al. [4], ’16 bg ESEM 17,877

Mean 51,203
Median 6,875
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They used the enriched features to provide an installed-app
recall interface, supported by functionality-based categorisa-
tion. The interface was validated by performing a user study
with 40 participants, who were able to find apps faster and
found the categorisation more intuitive, when compared
with a reference “smart launcher” interface [74].

Kim et al. [122] mined 100,830 apps from Apple App
Store, and extracted feature keywords from their descrip-
tions using natural language processing. They clustered
apps using the extracted features, and re-categorised them
using the resulting clusters. Al-Subaihin et al. [4] mined
17,877 apps from Google Play and Blackberry World app
store. The authors clustered the apps using the similarity
between features extracted from their descriptions. They
scored the quality of the resulting clusters, and found them
to be of higher quality than the existing categorisation of the
mined apps. The authors conducted a human assessment of
app similarity within clusters of varying granularity, and
found a strong correlation between the similarity score of
their technique and the human assessment.

Descriptions are often used for clustering apps based on
their functionality. Clustering has been used to assign
categories and to identify outliers. The clustering-
assigned categories tend to differ from the store-assigned
categories, and have also been shown to outperform
them in feature classification quality.

7.3 Lifecycles

Sarro et al. [202] proposed a theoretical characterisation of fea-
ture lifecycles in app stores, to help app developers to identify
trends and to find undiscovered requirements. In order to
investigate app feature migratory and non-migratory behav-
iours in current app stores, they mined features from app
descriptions using the techniques in the earlier work [92], and
used the proposed theory to empirically analyse the migra-
tory and non-migratory behaviours of 4,053 non-free features
from Samsung and Blackberry stores. The results revealed
that features generally migrated to a category with similar
characteristics. However, there were also a few features that
migrated to apparently non-related categories. The early iden-
tification of these features may allow developers to find
undiscovered requirements. The authors also found that
approximately one third of features were intransitive (they
neither migrate nor do they die out over the period studied),
and such features exhibited significantly different behaviours
with regard to important properties, such as their price. Being
aware of the intransitive features in a given categorymay sup-
port developers in identifying crucial (‘must-have’) require-
ments for their apps.

Features can migrate between apps and between catego-
ries. Intransitive features that do not migrate have been
found to exhibit significantly different properties than
migratory features.

7.4 Recommendation

Yin et al. [249] proposed the Actual Tempting (AT) model to
perform app recommendation for users. The model incorpo-
rates latent tempting parameters. Take for example two apps,

“a” and “b”. The AT model incorporates the number of users
who own app “a” and subsequently download app “b”, and
the number who do not download “b” after owning “a”. The
model also uses feature overlap information, measured by
performing topic modelling on app descriptions and comput-
ing the topic overlap between each pair. The authors found
that the AT approach outperformed collaborative filtering
and case-based reasoning in their initial experiments.

Lin et al. [135] used topic modelling on the Twitter mes-
sages of users that follow an app’s Twitter feed, in order to
generate latent groups related to the app. The groups were
then used as part of a recommendation system, in order to
help remove the problem of cold start in app recommendation
based on othermetadata. The systemwas tested on 7,116 apps
mined from Apple App Store, and the authors found that it
outperformed recommendation using app descriptions. In
2014 Lin et al. [136] used topic modelling on app descriptions
in order to produce a recommendation system. The model
was semi-supervised and incorporated app version informa-
tion using different weights corresponding to update types:
so that newer app versions could be recommended when
they add a certain feature to the description. Resultant topics
were weighted based on their category in the app store to pro-
vide a recommendation. Themodel was trained on 6,524 apps
mined from theApple App Store.

Zhu et al. [255] mined the daily top 300 free and top
300 paid apps from Apple App Store charts from Febru-
ary 2, 2010 to September 17, 2012, collecting information
on 15,045 apps in total. They used popularity informa-
tion to construct a Popularity-based Hidden Markov
Model (PHMM), to encode trend and other latent factors.
The authors stated that this can be used in a variety of
ways, including app recommendation, review spam
detection, and demonstrated its usefulness in ranking
fraud detection. Zhu et al. [260] built an app recommen-
dation system using a combination of technical informa-
tion (device permissions requested) and non-technical
information (app popularity). They tested the system on
170,753 apps mined from Google Play to show its scal-
ability. However, the system received no human-based
evaluation of its recommendations.

Valulenko et al. [222] performed topic modelling on a
set of 600,000 app descriptions mined from the Apple
App Store. They used the resultant topics to suggest cat-
egories, and to improve and augment existing categorisa-
tion approaches used in app stores. He et al. [93] trained
a system for targeting users for advertising, with a data-
set containing app install data on a per-user basis, con-
sisting of 122,875 apps from the Huawei App Store. The
authors reported a higher click rate than targeting
approaches existing at the time of writing. Nayebi and
Ruhe [172] extracted feature information from 241 Goo-
gle Play apps, and used crowd-sourcing to assign user
value to each of the features. The authors used the
approach for service portfolio planning [2].

A variety of models have been trained on app feature
data, incorporating hidden ‘latent’ factors, that are subse-
quently used to recommend apps to users, target users
for advertising, and to suggest categories.
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7.5 Success

In 2011, Coulton and Bamford [49] conducted a case study
on games created for the WidSets platform, an earlier app
store for Nokia phones (including non-smartphones). Their
findings are transferable to modern app stores: high down-
load numbers were required in order to gain active users,
and popular features such as chat were able to increase the
popularity and the proportion of active users. Chen and
Liu [40] collected 102,337 apps from Apple App Store, and
observed no correlation between download rank and rating,
from a sample of the top 200 most popular apps.

Harman et al. [92] introduced app store mining as an MSR
(Mining Software Repositories) problem. They mined app
information and performed correlation analysis on price,
downloads, and rating. Correlation analysis was performed
in both app and feature space, where features were extracted
using natural language processing techniques from app
descriptions, and results showed that under most conditions
there is a strong correlation between rating and downloads
(popularity). The proposed approach can be applied to differ-
ent app stores by modifying the data extraction and parsing
phases to accommodate the different app store structure and
data representations. The authors later extended this
work [65], finding that free apps have higher ratings than
non-free apps, with a medium effect size. They also carried
out a developer survey on the extracted features, who found
them meaningful, and were able to successfully detect the
extracted features over randomly generated features.

Bhattacharya et al. [25] presented an empirical study of 24
open source Android apps frommultiple categories, with the
aim of defining metrics of bug report quality and developer
involvement. The authors showed how the bug-fix process is
affected by differences in bug lifecycles. Security bug reports
were found to be of higher quality, but the associated bugs are
fixedmore slowly. The scale of the studywas large as all apps
had more than 1,000 ratings, 100,000 downloads and 200 bug
reports. The authors found that bug report quality correlates
with description length but not app rating.

Ihm et al. [107] conducted a study on 10 popular apps in
the Google Play store, analysing the correlations between app
downloads in the store and external metrics. The authors
found a strong positive correlation between the number of
downloads in the store and the number of registered users on
the app’s respective websites, and a strong correlation
between the number of downloads and the app website
(inverse) download rank. Jiang et al. [109] conducted a user
survey on 50 app descriptions in order to identify the attrib-
utes most important to the quality of a description. A support
vector machine was trained on the resultant attributes and
tested on a sample of 100 descriptions, finding an accuracy of
0.62. The findings showed that quick overviews were the
most effective form of app description, and the study contains
further heuristics on good description styles.

In a longitudinal study on 60 paid iOS apps, Svedic [212]
found that ratings and reviews can impact sales ranks. The
study found that higher, more stable ratings lead to users
associating the app with high quality, and the app sales
increased as a result. Tian et al. [219] studied 1,492 high and
low rated apps from Google Play, and identified the features
which most accurately differentiate apps with high rating
from those with low rating. The authors used technical

features, such as code complexity and API usage, with non-
technical information such as the category and the number of
images displayed on the app store page. The most important
features for differentiating high from low rated apps were the
size of the app and the number of images on store page. The
target SDK version was also an influential feature, which sug-
gests that high rated apps were updated more frequently and
usedmoremodern features of theAndroid operating system.

Ratings and reviews have been found to correlatewith sales
and download ranks. Features mined from app descrip-
tions can be used as a basis for correlation analysis, and
have been foundmeaningful from a developer survey.

7.6 Verification

Yang et al. [248] introduced the APPIC framework, which
extracts main theme tag words from Android description
and permission files. It does this using LDA and Partially
Labelled Dirichlet Allocation (PLDA), for the purpose of
identifying misleading app descriptions. It uses an app’s
permissions file to establish whether its description makes
claims consistent with its functionality, and whether it
resides in an appropriate category. The method was tested
on 207,865 apps from Google Play, and was manually evalu-
ated on a subset of 1,000 apps. The authors found that their
method achieved (average) 88.1 percent category accuracy,
and 76.5 percent permissions accuracy.

Watanabe et al. [242] found that apps often contain sec-
ondary functionality that is not mentioned in their descrip-
tions. In a study of 232,906 apps, Seneviratne et al. [205]
trained a machine learning classifier on app features in
order to detect spam apps. The features used for the classi-
fier were numeric statistics about an app’s description. The
authors labelled apps that were removed from the store and
establishing potential reasons for removal. Apps likely to
have been removed due to being spam (the majority of those
removed) were then used to train a boosting classifier in
order to identify potential spam.

Tong et al. [220] proposed the App Generative Model

(AGM) topic model, for extracting semantically coherent
app features from descriptions, using term co-occurrence
statistics. The AGM model resulted in lower perplexity (a
topic model fitness function that measures the log-likeli-
hood of generating a held-out test set), than the most com-
monly used model, LDA. However, the model precision
was evaluated only against TF.IDF, and not LDA or similar
topic models such as the weighted topic model [162]. Never-
theless, the study shows the importance of accurate feature
discovery and representation, and can help lead to future
studies using extracted features.

Features have been used in a classifier for spam detection,
and to validate whether an app makes correct claims
about its functionality.

7.7 Future Work

There is potential for future work in tracking feature migra-
tion in alternative app stores: thus far the literature has stud-
ied apps mined from Blackberry and Samsung stores.
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Additionally, future work may seek to investigate the migra-
tion of features between different app stores or platforms.

Features have been used to classify and cluster apps, as
well as recommend similar apps or categories. However,
future work may apply recommendation in a different
direction: it could be very useful for developers to receive
recommendations on features they might implement, based
on similar apps, highly desirable intransitive features, or
other methods.

8 RELEASE ENGINEERING

This section discusses papers that focus on app releases or
release strategies, which are summarised in Table 5. We can
see from Table 5 that there were two papers published in
2011 that tackle this issue, one in 2013, and then a recent
influx of five prior to November 27, 2015. Release studies
typically require time series data, in order that the changes
made to apps in their releases can be recorded. The scale of
the past studies in this section is relatively small, ranging
from 21 to 160,000; this scale is not surprising, given the dif-
ficulty of mining longitudinal data for a large number of
data points.

Release Engineering literature has featured Apple and
Google platforms but not yet Blackberry, Samsung or
Windows. The scale in studies has been small, most likely
due to the difficulty in obtaining time series data.

Release Engineering literature is broken down into
“Content”, “Success” and “Strategy” subsections.

8.1 Content

The 2014 study by Ruiz et al. investigated the updates
made to update advertisement libraries [194]. They found
that over 12 months, almost half of the 5,937 apps with
multiple updates had an advertisement library update.
Approximately 14 percent of advertisement updates

contained no changes to the app’s code, indicating the
effort involved in keeping advertisement libraries updated.
Gui et al. found, from 21 apps in Google Play with fre-
quent releases, that 23 percent of their releases contained
ad-related changes [85].

The findings of Guerrouj et al. [84] indicate that high
code churn in releases correlates with lower ratings. Alharbi
and Yeh [6] tracked the design patterns used by 24,436
Android apps over a period of 18 months. They found that
depreciated patterns were sometimes adopted after they are
depreciated, and that new pattern adoption rates were low.
By tracking the app descriptions, they found that app devel-
opers sometimes updated the app descriptions to reflect
changes in their applied design patterns. The authors
believe that this shows that descriptions are used as a com-
munication channel between developers and users. The
authors report on apps that start and stop using certain
design patterns. An interesting future research direction
might be to record the migration of these “design features”
using the app feature migration terminology of Sarro
et al. [202].

Up to half of app updates over a 12 month period are
advertisement library updates, which have been found to
contain no other changes in 14 percent of cases. High code
churn has been found to correlate with lower ratings.

8.2 Success

Moller et al. [170] studied the installation behaviour of users
with recently updated apps, in a security related study. Lee
and Raghu [126] studied the factors that affect an app’s like-
lihood of staying in the top (most popular) charts in the
Apple App Store. They found that free apps are more likely
to ‘survive’ in the top charts, and that frequent feature
updates are the most important factor in ensuring their sur-
vival, along with releasing in smaller categories. The
authors also found that high volumes of positive reviews
improve an app’s likelihood of survival.

Carbunar and Potharaju [33] conducted a longitudinal
study on 160,000 Google Play apps mined daily over a 6
month time period in 2012. They found that at most 50
percent of apps were updated in each category, and that
there is an issue of “stale apps” affecting aggregated sta-
tistics on large populations. The authors also found that
a few developers dominated the total download counts,
that productive developers did not have many popular
apps, and that there was no correlation between price
and downloads.

Martin et al. [153], [155] conducted a longitudinal study
on 1,033 apps mined from Google Play and Windows Phone
Store over a 12 month time period. The authors used causal
inference to identify the releases with most impact on rat-
ings and downloads. They found that release text discus-
sing features and not bug fixes may have led to more
significant releases, and releases that improved rating. Mar-
tin et al. [156] later extended this work on a sample of
38,858 apps from Google Play, using their tool, CIRA. They
found that paid apps that had significant positive effects on
success were more expensive. The authors also contacted
the developers of significant releases, finding that 78 per-
cent agreed with the causal assessment and 33 percent

TABLE 5
Chronological Summary of Release Engineering-Related App
Store Analysis Literature Showing the Authors, Publication
Year, Store Used: g Signifies Google Play or Other Android

Stores, a Signifies Apple App Store and w Signifies
Windows Phone; the Type of Literature, and the Number of

Apps Used in the Study

Authors [Ref], Year Store Venue No. apps

Lee and Raghu [125], 2011 a AMCIS 3,168
Henze and Boll [95], 2011 a MobileHCI 24,647
Datta and Kajanan [54], 2013 a CloudCom-Asia 3,535
Lee and Ragu [126], 2014 a JMIS 7,579
Ruiz et al. [194], 2014 g IEEE Soft. 120,981
Guerrouj et al. [84], 2015 g SANER 154
Comino et al. [45], 2015 a,g Tech report 1,000
McIlroy et al. [159], 2015 g ESE 10,713
Gui et al. [85], 2015 g ICSE 21
Carbunar and Potharaju [33],’15 g ASONAM 160,000
Alharbi and Yeh [6], 2015 g MobileHCI 24,436
Martin et al. [153], [155], 2016 g,w ICSE comp. 1,033
Martin et al. [156], 2016 g FSE 38,858

Mean 29,772
Median 5,557
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would consider changing their release strategy based on
findings from the study.

Positive reviews and frequent feature updates can help to
keep free apps in the “most popular” charts. Causal infer-
ence has been used to identify releases with high impact
on ratings and downloads.

8.3 Strategy

Lee et al. [125] published the earliest work that meets our
definition of “app store analysis” in 2011 by incorporating
technical with non-technical information for analysis of
apps. The authors mined app information from the top 300
iOS apps in all 21 categories free and paid, mining at least
3,168 apps. They analysed developer diversification
through publishing apps in multiple categories and in both
free and paid sections, and found a positive relationship
between download rank and app portfolio diversification.
The study incorporated technical (download rank) with
non-technical information (category, price) in order to iden-
tify actionable findings for app developers.

Henze and Boll [95] analysed release times and user activ-
ity in the Apple App Store, and concluded that Sunday even-
ing was the best time for deploying games. Their study also
found that version updates were an effective strategy for rais-
ing an app’s rank in the store. Datta and Kajanan [54] studied
review counts from the AppleApp Store, and found that apps
receivedmore reviews after deploying updates on Thursdays.

In 2014 Lin et al. [136] incorporated version information
in their app recommendation system, in order to ensure
that apps were recommended if they added new features to
updated versions. Comino et al. [45] studied the top 1,000
apps in Apple App Store and Google Play. They found that
for iTunes, increased numbers of app releases were more
likely when the app was performing badly, and that
releases could boost downloads. Neither finding held true
for Google Play, however.

McIlroy et al. [159] studied update frequencies in theGoogle
Play store, after mining data about 10,713 mobile apps. They
found that only 1 percent of the studied apps received more
than one update per week, and only 14 percent were updated
in a two-week period. The authors also found that rating was
not affected by update frequency. Nayebi and Ruhe [172] com-
bined app features with values gained from crowd-sourcing as
an approach to app service portfolio planning.

App updates have been found to be more likely when an
app is performing badly, and releases can boost down-
loads in the Apple App Store. Multiple studies suggest
that day of release is a factor in the immediate success of
app releases.

8.4 Future Work

Due to the 2015 spike in release engineering studies, we
expect the trend to continue and contribute to the growing
numbers of App Store Analysis literature. As can be seen in
Table 5, the stores studied are split almost equally into
Apple and Google, but there is potential future work involv-
ing release studies on Blackberry or Windows Phone Store.

Several studied in this section have looked at developer
strategy, and release behaviours that associate with positive
results. A potential for future work could be individualised
recommendation of strategy, which could be particularly
useful for app developers who wish to break into higher
app store ranks.

9 REVIEW ANALYSIS

Literature discussed in this section concerns the study of
app reviews; a summary of discussed literature can be

TABLE 6
Chronological Summary of Reviews-Related App Store Analysis
Literature Showing the Authors, Publication Year, Store Used: g
Signifies Google Play or Other Android Stores, a Signifies Apple
App Store, b Signifies Blackberry; the Type of Literature, and the

Number of Apps Used in the Study

Authors [Ref], Year Store Venue No. apps

Hoon et al. [101], 2012 a OzCHI 17,330
Vasa et al. [224], 2012 a OzCHI 17,330
Chandy and Gu [38], 2012 a WebQuality 3,090
Goul et al. [80], 2012 a HICSS 9
Ha et al. [89], 2013 g CCNC 59
Oh et al. [174], 2013 g CHI 24,000
Hoon et al. [100], 2013 a Tech report 17,330
Iacob and Harrison [104], 2013 g MSR 270
Galvis Carre~no et al. [69], 2013 g ICSE 3
Khalid [115], 2013 a ICSE 20
Fu et al. [68], 2013 g KDD 171,493
Chen et al. [42], 2013 a,g WWW 5,059
Pagano and Maalej [175], 2013 a RE 1,100
Hoon et al. [99], 2013 a OzCHI 25
Iacob et al. [106], 2013 g BCS-HCI 161
Iacob et al. [105], 2014 g MobiCASE 270
Khalid [117], 2014 a IEEE Soft. 20
Chen et al. [41], 2014 g ICSE 4
Cen et al. [36], 2014 g PIR 6,938
Guzman and Maalej [88], 2014 a,g RE 7
Khalid et al. [116], 2014 g FSE 99
Wano and Iio [241], 2014 a NBIS 500
Eri�c et al. [61], 2014 a QIP 968
Khalid et al. [118], 2015 g IJITCS 0
Gao et al. [70], 2015 g SOSE 4
McIlroy et al. [160], 2015 a,g ESE 12,000
Cen et al. [35], 2015 g SIAM 12,783
Vu et al. [234], 2015 g ASE 3
Vu et al. [233], 2015 g CoRR 95
Malavolta et al. [147], 2015 g MS 11,917
Malavolta et al. [148], 2015 g MOBILESoft 11,917
Park et al. [179], 2015 g SIGIR 43,041
Panichella et al. [178], 2015 a,g ICSME 7
Palomba et al. [176], 2015 g ICSME 100
Moran et al. [168], 2015 g FSE 14
Gomez et al. [78], 2015 g MOBILESoft 46,644
Martin et al. [154], 2015 b MSR 15,095
Maalej and Nabil [146], 2015 a,g RE 1,140
P�erez [228], 2015 g Masters thesis 4
Khalid et al. [119], 2015 - IJIEEB 0
Gu and Kim [83], 2015 g ASE 17
Guzman et al. [86], 2015 a,g ESEM 7
Guzman et al. [87], 2015 a,g ASE 7
McIlroy et al. [161], 2015 g IEEE Soft. 10,713
Liang et al. [128], 2015 a IJEC 139

Mean 9,594
Median 161

MARTIN ET AL.: A SURVEY OF APP STORE ANALYSIS FOR SOFTWARE ENGINEERING 829



found in Table 6. We can see from Table 6 that the majority
of studies focused on the Google Play store, with a minority
focusing on Apple App Store, and 1 paper studying Black-
berry store. Review-centred literature was first published in
2012, and subsequently has gained significant and increas-
ing interest and activity: we can see from Fig. 3 that there
are greater numbers of requirements/reviews literature
each year. We hypothesise that this is due to the tenure of
the stores, and the progression of the field.

Review Analysis literature mostly studies Apple and
Google stores, inviting future comparison with Windows
and other store reviews.

Literature in this section is broken down into
“Classification”, “Content”, “Requirements Engineering”,
“Sentiment”, “Summarisation” and “Surveys and Methodo-
logical Aspects of App Store Analysis”. Many early works
have focused on the content of reviews in 2012-2013, before
advancing to sentiment in 2013-2014, and requirements and
summarisation in 2015.

9.1 Classification

Chandy and Gu [38] mined 6,319,661 reviews from 3,090
apps in the Apple App Store. After manually labelling a
subset of the mined reviews as spam or not spam, the
authors trained both a supervised decision tree and unsu-
pervised latent class analysis to identify spam reviews. The
unsupervised method achieved higher accuracy, and took
into account factors such as average rating of a user, and
number of apps rated.

Chen et al. [42] compared the maturity ratings of 1,464
equivalent apps between the Apple App Store and Google
Play, and taking the Apple store ratings as the accurate rat-
ings, the authors found that 9.7 percent of the Android apps
were underrated and 18.1 percent were overrated. The
authors also studied a sample of 729,128 reviews from 5,059
Google Play game apps, and trained a classifier on the sets
of app descriptions and user reviews, and iOS maturity rat-
ings, to automatically verify app maturity ratings. Ha
et al. [89] manually examined 556 reviews mined from 59
Google Play apps, in order to classify them into topics and
sub-topics based on content. They found that most informa-
tion in reviews concerned the quality of the app, and not
security or privacy concerns.

Cen et al. [36] devised an approach to identify the
Comments with Security/Privacy Issues (CSPI) from a
set of mined Google Play app reviews. The authors later
built upon this work, using reviews in order to rank the
security risk of apps, by detecting security labels in a
crowd-sourced approach [35]. Using AndroGuard [8]
scores as a ground truth, the authors found that their
tool outperformed other metrics for ranking app security
risk, half of which incorporated user reviews and half of
which relied on declared permissions.

Gomez et al. [78] used an unsupervised machine learning
approach in order to identify apps that may contain errors,
using 1,402,717 reviews mined from 46,644 apps. The
authors used the error information in addition to permis-
sions used by the apps, in order to construct a ranked rec-
ommender system to analyse app permissions, for app store

moderators. Guzman et al. [87] developed an ensemble of
machine learning classifiers in order to classify user
reviews. They tested this system on 4,550 reviews mined
from seven apps in the Google and Apple app stores, and
achieved a precision of 0.74 and recall of 0.59 on a manually
labelled set of 1,820 reviews.

Reviews have been classified for spam, maturity ratings,
and privacy and security risks. Research in 2015 has also
used reviews to help detect erroneous apps.

9.2 Content

Hoon et al. [101] and Vasa et al. [224] collected a dataset
containing 8.7 million reviews from the Apple App Store
and analysed the reviews and vocabulary used. In 2013
Hoon et al. analysed 8 million reviews from Apple App
Store [100]. They found that the majority of mobile app
reviews were short in length, and that rating and cate-
gory both influenced the length of reviews. The majority
of studied apps received under 50 reviews in their first
year. Half of the apps analysed decreased in the user
assessment of quality, denoted by rating over time. The
authors suggested that user expectations were changing
rapidly towards apps, and that developers must keep up
with demand to remain competitive.

Iacob et al. [106] studied how the price and rating of an
app influence the type and amount of user feedback that it
receives through reviews. The authors selected 3,279
reviews for the study, from which they identified nine clas-
ses of feedback: positive, negative, comparative, price
related, request for requirements, issue reporting, usability,
customer support, versioning. From the selected apps, there
was a roughly equal split of positive type reviews with fea-
ture/issue type reviews, with very few other types such as
negative or price related.

Khalid et al. [116] studied the devices used to submit app
reviews, in order to determine the optimal devices for test-
ing. Palomba et al. [176] studied the Google Play reviews
from 100 open source Android apps, and linked the reviews
to code changes. They found that a mean of 49 percent of
review requests were implemented in new releases, and
that the apps with changes more directly implementing the
content of user reviews improved their ratings with new
releases. In order to bridge the gap between software attrib-
utes and user reviews, Hoon et al. [98] developed an ontol-
ogy of words used to describe software quality attributes in
app reviews.

McIlroy et al. [161] studied responses to reviews from
10,713 Google Play apps, finding that most developers do
not respond to reviews. However, in the cases where a
response occurred, 38.7 percent of users were found to sub-
sequently change their ratings, resulting in a median
increase in individual user ratings of 20 percent. A sum-
mary of mobile app user feedback classification can be
found in the study by Maalej et al. [235].

Review content literature has investigated the vocabulary
and ontology of reviews, the factors affecting feedback,
and devices most used for review submission.
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9.3 Requirements Engineering

Oh et al. [174] developed a review digest system, that they
tested on 1,711,556 reviews mined from 24,000 Google Play
apps. They automatically categorised reviews into bug
reports, functional requests and non-functional requests,
and produced a digest featuring the most informative
reviews in each category.

Iacob and Harrison [104] presented an automated system
(MARA) for extracting and analysing app reviews in order to
identify feature requests. The system is particularly useful
because it offers a simple and intuitive approach to identify-
ing requests. One sixty-one apps and 3,279 reviews were
used for manually training linguistic rules. 136,998 reviews
were used for the evaluation, which found that 23.3 percent
of reviews contained feature requests.

As an extension to the MARA system they had previously
introduced [106], Iacob et al. [105] introduced a set of lin-
guistic rules for identifying feature requests and bug reports
in order to help facilitate app development. Wano and
Iio [241] analysed the textual content of 856 reviews from
500 apps in the Japanese App Store, and found that the
review styles differed between apps in different categories.
In a large scale study, Eri�c et al. [61] studied the star ratings
of 48 million reviews mined from 968 popular free and paid
Apple apps. They found that the reviews were mostly posi-
tive, and that there were significant differences in the distri-
butions between categories, and also between free and paid
sections. Free apps had more reviews but a lower mean rat-
ing, and higher standard deviation. Due to the higher num-
bers of reviews for free apps, which might give an app
credibility, the authors argued that in-app purchasing reve-
nue models were a good way to make money for develop-
ers, especially if used as a ‘teaser’ for a paid version.

Park et al. [179] developed AppLDA, a topic model
designed for use on app descriptions and user reviews, that
discards review-only topics. This enables developers to
inspect the reviews that discuss features present in the app
descriptions. The authors tested the system on 1,385,607
reviews mined from 43,041 apps. Panichella et al. [178] pre-
sented a system for automatically classifying user reviews
based on a predetermined taxonomy, in order to support
software maintenance and requirements evolution. They
verified the system on a manually labelled truth set of 1,421
sentences extracted from reviews, and achieved a precision
of 0.85 and recall of 0.85, when training the system on lan-
guage structure, content and sentiment features. Maalej and
Nabil [146] produced a classification method identifying
bug reports and feature requests from user reviews. The
authors found that upwards of 70 percent precision and 80
percent recall could be obtained using multiple binary clas-
sifiers, as an alternative to a single multiclass classifier.
They also found that the commonly used NLP techniques,
stopword removal and lemmatisation, could negatively
affect the performance of this classification task.

Moran et al. [168] proposed the FUSION system, that per-
forms static and dynamic analysis on Android apps, in
order to help users complete bug reports. The system
focuses on the steps to reproduce a bug, using dynamic
analysis to walk through Android system events. Khalid
et al. [119] argued that app store reviews can be used for
“crowdsourcing” [150]. They argued that users are

inadvertently performing crowdsourcing when they review
apps, solving the following problems: requests for potential
features, suggestions for developer action, recommenda-
tions for other users, and issue reporting.

The requirements engineering review literature has used
reviews to extract bug reports and feature requests, in
addition to prioritising critical reviews.

9.4 Sentiment

The works discussed in this section have incorporated senti-
ment in their study of reviews. Sentiment describes a user’s
views or opinions, typically as positive or negative in this
content, and is extracted from reviews using ‘positive’ senti-
ment words such as ‘good,great,love’, or ‘negative’ senti-
ment words such as ‘bad,hate,terrible’.

In 2012 Goul et al. [80] published the earliest work to
study online app store reviews. The authors performed sen-
timent analysis on 5,000 Apple App Store reviews in order
to facilitate requirements engineering. Galvis Carre~no and
Winbladh [69] extracted user requirements from comments
using the ASUM model [111], a sentiment-aware topic
model. Initial results showed that the method aided require-
ments summarisation with significantly less effort than
manual identification, but did not return all possible
requirements. Hoon et al. [99] gathered a set of 29,182 short
reviews of up to five words from the top 25 Health & Fitness
apps in the Apple App Store. They analysed the reviews
and found that they are mostly made up of sentiment
words, which matched the star rating of the review closely.

Khalid [115], [117] manually categorised 6,390 negative
reviews from a sample of 20 free iOS apps, and reported the
most frequent causes of complaints. The apps had over
250,000 reviews combined, and therefore 6,390 reviews is a
statistically representative sample at the 95 percent confidence
level. The authors carried out a manual analysis of the 6,390
reviews, finding that 11 percent of samples concerned com-
plaints about a recent update. Users were most dissatisfied by
issues relating to invasion of privacy and unethical behaviour,
while hidden cost was the second most negatively perceived
complaint. Pagano and Maalej [175] gathered a sample of 1.1
million reviews from the Apple App Store in order to provide
an empirical summary of user reviewing behaviour. They
found that most feedback was provided after releases, that
positive feedback was often associated with highly down-
loaded apps, and that negative feedback was often associated
with less downloaded apps and often did not contain user
experience or contextual information.

In 2014 Chen et al. [41] produced a system for extracting
the most informative reviews, placing weight on negative
sentiment reviews. Guzman and Maalej [88] studied user
sentiments towards app features from a multi-store sample,
and studied the differences between user sentiments in
Google Play from the Apple App Store. Guzman et al. [86]
developed a tool called DIVERSE, that extracts key reviews
specific to a queried feature. DIVERSE groups together
reviews with similar sentiments about the same feature in
order to condense the information. The authors tested their
tool on the dataset used in their earlier study [88]. Liang
et al. [128] performed MultiFacet Sentiment Analysis
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(MFSA) on user reviews mined from 139 apps on the Apple
App Store. They reported that opinions on product quality
formed a large portion of reviews, but opinions on service
quality had a bigger effect on sales.

Sentiment analysis has identified frequent causes of user
complaints, and has helped to prioritise informative reviews.

9.5 Summarisation

A large sample was used in the 2013 study by Fu et al. [68], in
which the authors analysed over 13 million Google Play
reviews for summarisation. They designed a system called
WisCom that enables summarisation of reviews at a per-
review, per-app or per-market level. This tool can be useful
for large-scale overviews of competitor apps, or for gathering
information about a market. The weakness of the system is
the need for a large complete sample of reviews to be mined
first, and the associated mining difficulties. However, the
WisCom system enables summarisation of ‘complaint’ or
‘praise’ reviews over time, and so it must produce accurate
results given a complete sample in a fixed time period i.e., 6
months, so long as the inherent sample bias is taken into
account. The authors found that there was a large difference
between free and paid apps, and that paid apps had an associ-
ated ‘complaint’ type about price, that free apps did not.

In 2015 McIlroy et al. [160] studied reviews in Google
Play and Apple App Store, and developed an automated
labelling scheme that can identify multiple elements to
reviews that could be beneficial to stakeholders. For exam-
ple, a review might contain a feature request and a bug
report, and so a label for each type would be applied to it.
Gao et al. [70] proposed AR-Tracker, a similar tool to AR-

Miner [41], that automatically collects user reviews of apps
and ranks them in order to optimise the representation of
the review set, in terms of frequency and importance.
P�erez [228] mined and labelled 160 user reviews from 5
Google Play apps in order to train a review categorisation
tool, that identifies feature requests and bug reports. The
tool was evaluated on 400 labelled reviews and achieved
an 0.78 accuracy.

Malavolta et al. [147], [148] analysed 3 million reviews
from 11,917 Google Play apps, and produced a summary of
user perceptions about 445 hybrid apps [94] compared with
native apps. The authors found that hybrid mobile apps
received similar ratings to native apps, but native apps had
been reviewed on average 6.5 times more. They planned (at
the time of writing) to replicate the work using multiple
stores and a small set of cross-platform apps, to compare
their perception across different platforms. Vu et al. [233],
[234] developed MARK, a system that identifies keywords in
sets of reviews in order to assist with summarisation and
search. The method is one of several summarisation
approaches that are applied to reviews.

Gu and Kim [83] proposed SUR-Miner, a review summari-
sation and categorisation tool, that they evaluated on 2,000
sentences mined from reviews of 17 Google Play apps.
The tool was intended for use by developers, and produces a
visualisation of the reviews. The authors surveyed the develop-
ers of the studied apps, of whom 28 out of 32 agreed that
the tool is useful.

Review summarisation helps developers to gather infor-
mation from large numbers of reviews that would be
infeasible to read individually. A number of tools have
been produced, such as WisCom, AR-Tracker, MARK

and SUR-Miner.

9.6 Surveys and Methodological Aspects of App
Store Analysis

Martin et al. [154] identified the App Sampling Problem,
finding that the majority of past work used partial subsets
of biased data for app review analysis. The authors assessed
the bias and identified techniques that can be used to ame-
liorate its effects, as well as defining a classification scheme
that can be applied to app review analysis studies to
describe dataset completeness. Khalid et al. [118] reviewed
recent literature in app store review analysis, and made sev-
eral suggestions that could improve the app reviewing pro-
cess for both users and developers. They suggested that the
process could be improved by assigning categories to
reviews, and adding sort and filtering functionality based
on the assigned category, helpfulness and star rating. The
authors also suggest that adding a user reply feature would
assist the developers to get the highest quality reviews.

There have been two recent methodological analytical
surveys of the review analysis literature, including sug-
gestions for improving the reviewing process, and the
highlighting of a prevalent methodological issue called
the “App Sampling Problem”.

9.7 Future Work

Many studies have produced tools which can aid in the
summarisation and requirements extraction from reviews,
but these tools have not been widely adopted as of yet by
developers. Future work may seek to bridge this gap, by
making tools available to developers in some form.

An avenue of research that has not been attempted is
the study of reviews in the Windows Phone Store, which
was launched in 2010 but has not achieved the wide-
spread success of Google Play and Apple App Store, in
the competitive market. In particular, a comparison of
the review taxonomy, system and culture between differ-
ent platforms including Windows Phone store is a poten-
tial future work.

10 SECURITY

Studies relating to app security are discussed in this section,
and are summarised in Table 7. We can see from Table 7
that the number of studies grew year on year until 2013 and
then remained stable. A large proportion of these papers do
not combine technical with non-technical attributes. Instead,
they use properties such as the validation that highly rated
apps have received, through being downloaded, used, and
highly rated by many users. Much of the security-related lit-
erature uses the property that popular apps can generally be
assumed to be non-malware, since they are scanned prior to
being hosted in the store, and have large user bases.

There are many studies on mobile app security that use
app stores in a less direct way than those discussed in this
section, some of which are mentioned in Section 13.2.
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Additionally, literature in Section 6.4 has identified poten-
tial risks associated with permissions, beyond the more
direct security threats discussed in this section.

Many studies in this section use large collections
(> 10,000 apps) of benign apps to help distinguish
between benign and malicious behaviour. The number of
apps used ranges from 1 to 1,165,847 (which also happens
to be the largest study in this survey).

Security literature is broken down into “Faults”,
“Malware”, “Permissions”, “Plagiarism”, “Privacy” and
“Vulnerability” sections.

10.1 Faults

Ravindranath et al. [188] used a sample of apps mined from
Windows Phone Store to run their greybox fault detection
tool. They found that 1,138 of the sample of 3,000 apps had
failures. Liu et al. [143] presented their DECAF system for
detecting advertisement placement and layout violations, that
can be used to indicate advertisement fraud. They tested the
system on 51,150Windows apps for tablet or phone, and plan
to extend it to detect more types of rule violation. The DECAF
system was used by Microsoft Advertising in 2013 to prompt
developers to complywith layout rules.

Crussell et al. [52] presented MAdFraud, a system that
detects advertisement fraud in the form of requesting ads
while the application is in the background, and in the form of
simulating user clicks on advertisements. They tested the sys-
tem on 165,426 apps gathered from Google Play and a sepa-
rate security company, and found that 30 percent of apps
made advertisement requests while running in the back-
ground, and 27 apps simulated user clicks on advertisements.
Deng et al. [56] introduced their iRiS system, that performs
static analysis on iOS apps in order to detect suspicious apps
that may violate Apple’s terms of service. The authors
detected 146 apps from a sample of 2019, that accessed sensi-
tive user information through use of private APIs.

Faults in mobile applications can point to potential security
risks. Work in fault analysis has detected layout rule viola-
tions, terms of service violations and advertisement library
issues.

10.2 Malware

In 2010 Bl€asing et al. [27] used the top 150 free Google Play
apps to test their static and dynamic APK analyser. They
tested these apps against one known malware app, which
was shown to be an outlier, establishing that their approach
has the potential for Malware detection. Peng et al. [181]
proposed an app risk rating system trained on metadata
from name, category and set of permissions. The system
was trained on a set of 378 malware apps, and evaluated on
almost 500,000 apps mined from Google Play. Zhu
et al. [262] proposed an approach to malware detection that
uses permission and description information to detect
abnormal permission sets. They evaluated the system on
5,685 apps mined from Google Play and found some words
that had a large effect on permission validity; they also
tested the system on known malware and found that it was
able to successfully detect it as such.

Chakradeo et al. [37] created an appmalware triaging tool
call MAST, that they trained on known malware and a set of
14,888 apps mined from Google Play (that were assumed to
be benign). Peiravian and Xingquan [180] trained a malware
classifier using 1,250 samples of known malware, and 1,250
samples of (assumed benign) apps mined from Google Play.
They trained the classifier using information on the permis-
sions requested and the API calls made by the apps.

Sanz et al. [200] used cosine similarity between the sets of
features declared in Android manifest files, in order to

TABLE 7
Chronological Summary of Security-Related App Store Analysis
Literature Showing the Authors, Publication Year, Store Used: g
Signifies Google Play or Other Android Stores, or the Android
Platform in General, and a Signifies Apple App Store; the Type

of Literature, and the Number of Apps Used in the Study

Authors [Ref], Year Store Venue No. apps

Blasing et al. [27], 2010 g MALWARE 150
Batyuk et al. [20], 2011 g MALWARE 1,865
Potharaju et al. [183], 2012 g ESSoS 158,000
Moller et al. [170], 2012 g LARGE 1
Chia et al. [43], 2012 g WWW 19,344
Gibler et al. [72], 2012 g TRUST 24,350
Grace et al. [81], 2012 g WiSec 100,000
Crussell et al. [50], 2012 g ESORICS 75,000
Peng et al. [181], 2012 g CCS 500,000
Zhu et al. [262], 2015 g ICICS 5,685
Awang Abu Bakar
and Mahmud [14], 2013

g ACSAT 5,000

Stevens et al. [211], 2013 g MSR 10,300
Book et al. [29], 2013 g CoRR 114,000
Sanz et al. [198], 2013 g Cybernet. Syst. 333
Sanz et al. [200], 2013 g SECRYPT 333
Sanz et al. [199], 2013 g NSS 333
Wang et al. [240], 2013 g DBSec 272,774
Crussell et al. [51], 2013 g ESORICS 265,359
Gibler et al. [73], 2013 g MobiSys 265,359
Peiravian and Xingquan [180],’13 g ICTAI 1,250
Chakradeo et al. [37], 2013 g WiSec 14,888
Pandita et al. [177], 2013 g SEC 581
Zhu et al. [259], 2013 a CIKM 15,045
Liu et al. [143], 2014 w NSDI 51,150
Crussell et al. [52], 2014 g MobiSys 165,426
Gorla et al. [79], 2014 g ICSE 32,136
Zhang et al. [250], 2014 g WiSec 10,311
Dering and McDaniel [57], 2014 g MILCOM 450,000
Ham and Lee [90], 2014 g IJCCE 10
Bhoraskar et al. [26], 2014 g SEC 1,010
Qu et al. [186], 2014 g CCS 45,811
Zhu et al. [261], 2015 a TKDE 15,045
Kim et al. [121], 2015 g ASE 350
Wang et al. [237], 2015 g ISSTA 105,299
Sch€utte et al. [203], 2015 g ConDroid 10,000
Mutchler et al. [169], 2015 g MoST 998,286
Avdiienko et al. [13], 2015 g ICSE 2,866
Ma et al. [145], 2015 g COMPSAC 22,555
Vigneri et al. [227], 2015 g CoRR 5,000
Yang et al. [247], 2015 g ICSE 633
Lageman et al. [124], 2015 g MILCOM 417
Deng et al. [56], 2015 a CCS 2,019
Zhang et al. [251], 2015 g CCS 100
Huang et al. [102], 2015 g SEC 16,000
Chen et al. [39], 2015 g SEC 1,165,847

Mean 106,929
Median 14,888
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detect anomalies that might suggest the presence of mal-
ware when compared with a benign set. Sanz et al. later
trained machine learning classifiers to distinguish between
sets of known malware and 333 benign apps mined from
Google Play [198], [199]. Similarly, Wang et al. [240] pro-
posed DroidRisk, an app trained on sets of known mal-
ware and assumed benign software mined from Google
Play. DroidRisk rates the security risk of other apps in
order to help prevent users from installing malware
unknowingly. Apps mined from Google Play are assumed
benign as Google’s tool Google Bouncer [5] is run to
detect malware and remove it from the store.

As a means of detecting potentially malicious apps,
Gorla et al. [79] performed topic modelling on app descrip-
tions, and then applied K-means clustering to the results to
form distinct clusters. Utilising API information from the
app manifest, the authors trained a one-class support vector
machine (SVM) [149] on each cluster to detect outliers in
terms of API usage. This method indicated apps that exhibit
sufficiently different behaviour from the norm to suggest
the presence of malware. This approach was later extended
by Ma et al. [145] who used known malware and benign-
ware to train their model, and reported improvements on
the resultant precision, recall and F-measure.

Avdiienko et al. [13] extracted information flow data
from apps in order to train a benign-trained malware
classifier. The classifier was trained on 2,950 of the most
popular Google Play apps, which were to be assumed
benign as their download ranks were in the top 100 in
each of 30 categories. In this way, the authors combined
non-technical information (download rank) with
extracted technical information (information flow) to
detect malware. The system reported high precision on
sets of known malware from the Genome project [253]
and VirusShare database [229]. In a similar way, the
2013 study by Sanz et al. [198] trained machine learning
classifiers to separate known malware and benign apps
mined from Google Play. The 2014 study on identifying
malicious apps using system call events, by Ham and
Lee [90], also used apps from the Google Play Games
category as a benign set, against which to compare.

Lageman et al. [124] generated feature sets to be used for
classification of malware and benignware, from runtime log
datasets of 419 malware apps and 417 mined benign apps.
They tested the feature set and achieved a true positive rate
of 90 percent with a Random Forest classifier [76]. In the
largest app study to date, Chen et al. [39] ran their DiffCom
system on 1,165,847 apps mined from Google Play and third
party Android stores. DiffCom detects malware, including
zero-day malware, without prior knowledge of malware,
using a simple comparison with known apps in the corpus.
The system was tested on a sample of 50,000 apps and
achieved a false positive rate of 0.04 and false negative rate
of 0.06. When run on the entire dataset, DiffCom detected
127,429 instances of malware and 20 likely instances of
zero-day malware.

There has been much work on malware detection through
the use of static and dynamic analysis, and also alterna-
tive sources of information such as descriptions, API
usage and data flow.

10.3 Permissions

In 2013 Awang Abu Bakar and Mahmud [14] mined
5,000 apps from the Google Play store and analysed their
permissions. They found significant correlations of rho
0.13, 0.24 and -0.13 between (technical) the number of
permissions asked for and (non-technical) the price,
download rank and rating, respectively. They
highlighted the top permissions requested by apps, and
found that 40 percent of the apps requested the phone’s
status and identity, a source of sensitive information.
Stevens et al. [211] mined 10,300 apps from several
Android stores including Google Play, and applied the
permissions analysis tool Stowaway [12], that can detect
declared and used permissions. The authors found that
44 percent of apps in their sample contained at least one
unnecessary permission, and computed a Spearman’s
correlation coefficient of 0.72 between the ‘popularity’ of
permissions on Stackoverflow and their misuse. Book
et al. [29] studied library permissions on 114,000 apps
mined from the Google Play store, and showed that
libraries bundled with apps lead to old versions being
included. Increasingly, advertisement libraries were tak-
ing advantage of app permissions, presenting a potential
security risk that the authors argue should be solved by
the app store or privacy legislation.

Pandita et al. [177] presented the WHYPER system for auto-
matically extracting the reason a permission is used from the
description. They evaluated the system using 581 apps mined
fromGoogle Play, thatweremanually labelled by the authors.
The authors tested the system on the permissions for address
book, calendar and audio recording, and achieved an average
precision of 82.2 percent and recall of 81.5 percent. In a related
study, Qu et al. [186] introduced AutoCog, a tool for checking
the fidelity between app descriptions and requested permis-
sions. The authors tested the system on 45,811 Google Play
apps, and achieved a precision of 92.6 percent and a recall of
92.0 percent when detecting 11 permissions.

The findings by Dering and McDaniel [57] suggest that
library usage presents a security risk due to permissions
usage. This is discussed in more detail in Section 6.

Library usage can present a security risk by taking advan-
tage of requested app permissions. Tools such as Stow-

away, WHYPER and AutoCog check permission usage,
comparing it against permissions requested.

10.4 Plagiarism

In 2012 Potharaju et al. [183] conducted a study on 158,000 free
Android apps, identifying apps that are likely to be plagiar-
ised in order to spread malware. The authors found that the
29.4 percent of apps with the most permissive rights were the
most likely to spread malware, and that non-technical infor-
mation such as category, number of downloads and publish-
ing day could increase the initial spread of the malware.
Crussell et al. [50] introduced the tool DNADroid, which they
used to identify 141 cloned apps in the Google Play store,
from a mined set of 75,000 apps. The authors then introduced
the tool AnDarwin, that decompiles apps and compares them
to detect clones [51]. They detected 4,295 cloned apps using
this approach from a mined set of 265,239 apps. This dataset
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was used in the study by Gibler et al. [73], who investigated
the effects of application plagiarism on developers.

Zhu et al. [259], [261] mined ranking, rating and review
data from 15,045 apps from the Apple App Store. They
detected outliers using hypothesis tests in order to find
potentially fraudulent apps. They took a unique approach
to the issue with app ranks (only the top apps in Google
Play, Windows Phone Store and Apple App Store have
download ranks), in that they termed the period in which
an app has a rank as a ‘leading event’ and consecutive
events as a ‘leading session’. Several authors used API infor-
mation to detect plagiarised apps [121], [237], [250], whose
studies are discussed in more detail in Section 6.

App plagiarism is a common approach to spread mal-
ware; a number of authors have detected cloned apps in
the Google Play store. Potentially fraudulent apps have
also been detected in the Apple App Store.

10.5 Privacy

In 2011 Batyuk et al. [20] used the top 1,865 free Google
Play apps to test their static APK analyser, which
detected that 167 apps accessed private identifiers,
thereby presenting a security risk. Of these apps, 114
wrote the information after reading it, which might indi-
cate that the apps contain spyware. The work has since
been extended into a static analysis tool called Andro-

lyzer [53]. Chia et al. [43] evaluated the ratings of apps
from Facebook, Chrome and Google Play, as a means of
warning against privacy risks. They found a strong cor-
relation between popularity and the number of ratings
apps had received, but no correlations between permis-
sions sought and privacy risk, nor rating. This result
shows that ratings were not an effective indicator of the
privacy of apps, and new suspicious apps were not
likely to receive many ratings which could have served
as a warning for future users.

Gibler et al. [72] mapped Android API calls to privacy
information, and performed static analysis to identify apps
where private data is leaked. Using their tool, Androi-
dLeaks, they analysed 24,350 apps from Google Play and
third party stores, and found 2,342 apps with privacy leaks.
Grace et al. [81] introduced AdRisk, a static analysis tool
for identifying potential privacy risks associated with
advertisement libraries. From their study on 100,000 apps
mined from Google Play, the authors found that 52,067
apps used advertisement libraries, of which 31 percent used
more than one. The authors remarked that the majority of
the 100 studied advertisement libraries were found to col-
lect personal information.

Vigneri et al. [227] used a set of 5,000 apps mined from
Google Play, on which they performed dynamic execution to
determine network usage. They focused, in particular, on net-
work activity toURLs that they claimed could present privacy
or security risks, such as those associated with tracking, spy-
ware or malware. Network activity was compared both
within category and overall, in order to determine apps with
suspiciously high activity. The authors noted that a large pro-
portion of apps, even those with high ratings and download
ranks, downloaded a large number of advertisements. Huang

et al. [102] presented their SUPOR system, which detects pri-
vacy information entry fields as potential privacy or security
risks, using static analysis. They evaluated the system on
16,000 appsmined fromGoogle Play, and obtained a precision
of 0.973 and a recall of 0.973, with a false positive rate of 0.087.
The cases found included fields for national ID, username,
password, credit card and health data.

Ratingswere not found to correlatewith permissions or pri-
vacy risk, but suspicious apps did not receivemany ratings.
Many advertisement libraries have been found to collect
personal information, presenting a potent privacy risk.

10.6 Vulnerability

Moller et al. [170] studied the update behaviour of users fol-
lowing recent updates, finding from a case study that
approximately half of users did not update their app for at
least a week after the update. The authors argued that this
could have lead to users continuing to run vulnerable soft-
ware even after a fix was available.

In 2015, Zhang et al. [251] argued that the descriptions given
to apps contain insufficient security information. The authors
presented the DescribeMe system, which generates security-
centric descriptions using static analysis. They performed a user
study usingAmazon’sMechanical Turk [7], on a set of 100 apps,
and asked whether the generated descriptions were readable
and whether they could reduce the rate at which users down-
load malware. The generated descriptions achieved a 4 percent
lower readability rating than the original human-written
descriptions, but decreased the malware download rate by 39
percent. Yang et al. [247] used 633 appsmined fromGoogle Play
as the benign set to test their tool for distinguishing between
malicious andbenignapps. They found that the intent of security
accesseswasmore related towhether an appwasmalicious than
the type of security-sensitive resources that it accessed.

Sch€utte et al. [203] tested their dynamic analysis tool Con-
Droid on the top 10,000 free Google Play apps and found 172
apps suffered from a logic bomb vulnerability, by selectively
executing code sections that use vulnerable APIs. Mutchler
et al. [169] took a snapshot of 1,172,610 Google Play apps.
They found that 998,286 of these apps used the WebViewAPI,
indicating that the apps used an embedded WebView in some
way. The authors searched for several known vulnerabilities
and found that 28 percent of the studied apps had at least one
of these vulnerabilities. As a result, the authors proposed a set
of API changes to mitigate such threats. In a related study,
Bhoraskar et al. [26] mined 1,010 apps from Google Play and
used static analysis and partial app rewriting to check for
known security issues in third party components. They found
that 13 of 200 apps using the Facebook SDK were vulnerable
to known attacks, and that 175 of 220 children’s apps poten-
tially collected information in violation of the US Children’s
Online Privacy ProtectionAct [46].

Reading app descriptions before downloading them can
help to protect against vulnerability, since machine-
generated descriptions are less readable, thereby service
as potential warnings. Several authors have identified
prevalent vulnerabilities, such as logic bombs and
embedded WebViews.
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10.7 Future Work

There is potential future work in App Store Security
Analysis in augmenting approaches with the non-techni-
cal information made available by app stores. Addition-
ally, there is a great deal of literature on app security,
perhaps warranting a standalone survey that can bring
together elements that do not meet the scope for app
store analysis.

The majority of studies in the section use datasets from
Google Play, three study Apple datasets and just one stud-
ies Windows. Potential future work may therefore seek to
study security on collections mined from Apple, Windows
and Blackberry, and may extend to cross-store security anal-
ysis or comparison.

11 STORE ECOSYSTEM

In this section we discuss literature that focuses on a store’s
ecosystem, or the differences between stores. This literature
is summarised in Table 8.

The scale of store ecosystem studies ranges from 1 to
1,164,489 apps, and simulations have included up to
1,250,000 apps.

Store Ecosystem literature is broken down into “Inter-
store”, “Intra-store”, “Recommendation” and “Simulation”
section.

11.1 Inter-Store

In 2011, Syer et al. [213] studied the different code practices
between app stores, by selecting 3 pairs of feature-equiva-
lent apps from Android and Blackberry. The authors ana-
lysed the source code, code dependencies and code churn
of these apps, and found that the Android apps were gener-
ally smaller but rely heavily on the platform. Conversely,
Blackberry apps were larger and relied heavily on 3rd-party
APIs. In order to reach the largest customer base developers
need to cater for each platform, and so the authors
remarked that it is therefore easier to develop for Blackberry
and port to Android than vice versa. Syer et al. [215] later
compared development practices between 15 Android apps
and five traditional desktop and server applications. They
found that mobile apps were most similar to Unix utilities,
in terms of smaller code bases and small development
teams. However, they also reported that mobile apps suf-
fered from greater numbers of defects and slower fix times
than the studied traditional applications.

In 2012 d’Heureuse et al. [58] mined 1,164,489 apps in
total from Apple, Blackberry, Google and Windows app
stores. The apps were mined at regular intervals over a
period of 3 months, in order to perform cross store compari-
son and also to study growth over time. The authors found
that the smaller stores (Blackberry and Windows) had simi-
lar rates of growth to the larger stores (Apple and Google),
at 2 percent. The smaller stores (Blackberry and Windows)
were found to be the most expensive, and all stores dis-
played a similar power-law curve in price, with many cheap
and free apps. Apps that appeared in multiple markets were
on average 7.15 MB larger in the Apple store, and were a
similar size in the three other stores.

Petsas et al. [182] analysed the downloads of 316,143
apps from 4 third-party Android app stores. They found
that 10 percent of the apps accounted for at least 70 per-
cent of the total downloads in the stores, and that user
downloads followed a clustering type behaviour, where
their subsequent app downloads were usually in the
same category. The authors also found that popularity
followed a power-law distribution against app price, for
paid apps. Ng et al. [173] looked into the safety of third-
party Android stores by downloading the top apps from
Google Play and 20 other third-party Chinese Android
app stores. They compared the APKs to check whether
they were the same as the official releases, and ranked
the severity level of differences. The authors concluded
that the third party app stores studied could not be
trusted, as the proportion of apps which did not match
their official releases was high, as were the correspond-
ing difference severity levels.

In 2015 Ruiz et al. [165] conducted a longitudinal rating
study on 10,150 apps over the period of 12 months. They
argued that the Amazon style rating system, in which rat-
ings are accumulated over the lifespan of an app, is too
slow to adapt to changes in apps, whose performance is
determined by the current release. The current Google Play
rating system makes it more difficult for an app to increase

TABLE 8
Chronological Summary of Store Ecosystem-Related App Store

Analysis Literature Showing the Authors, Publication Year,
Store Used: g Signifies Google Play or Other Android Stores,
a Signifies Apple App Store, b Signifies the Blackberry Store
and w Signifies Windows Phone; Publication Venue, and the

Number of Apps Used in the Study

Authors [Ref], Year Store Venue No. apps

Syer et al. [213], 2011 b,g SCAM 3
d’Heureuse et al. [58], 2012 a,b,g,w MCCR 1,164,489
Jung et al. [113], 2012 a Market Lett 1,189
Lim and Bentley [131], 2012 a GECCO *
Lim and Bentley [130], 2012 a ALIFE *
Lim and Bentley [132], 2013 a CEC *
Garg and Telang [71], 2013 a MIS 1,223
Ihm et al. [107], 2013 g CGC 10
Zhong & Michahelles [252],’13 g SAC 191,301
Petsas et al. [182], 2013 g IMC 316,143
Syer et al. [215], 2013 g CASCON 15
McDonnell et al. [158], 2013 g ICSM 10
Cocco et al. [44], 2014 a MWIS ***
Wenxuan and Airu [243],’14 a,g,w ICDMW 736,377
Ng et al. [173], 2014 g COMPSAC 506
Liu et al. [141], 2015 g WSDM 6,157
Ruiz et al. [165], 2015 g IEE Soft. 10,150
Syer et al. [214], 2015 g Soft. Qual. 5
Joorabchi et al. [112], 2015 a,g ISSRE 14
G�omez et al. [77], 2015 g ICSE NIER 1
Askalidis [11], 2015 a CoRR 162
Xie and Zhu [245], 2015 a WiSec 179,353
Corral and Fronza [47], 2015 g MOBILESoft 100
Lim et al. [133], 2015 a TEVC **

Mean 144,845
Median 848

Numbers in the table indicate empirical app data mined from stores, (*) signi-
fies 500,000 simulated apps, (**) signifies 1,250,000 simulated apps, and (***)
signifies over 500 simulated apps (final values were not specified by the paper’s
authors); only empirical data is considered for mean and median.
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its rating with a strong release than, for example, the Apple
App Store rating system. Joorabchi et al. [112] introduced
CheckCAMP, a tool that checks for inconsistencies between
Android and iOS versions of the same app. The authors
tested the tool on seven open source apps and seven indus-
try apps, and validated their results with a user study, find-
ing an F-measure of 1.0 on the open source apps and an F-
measure of 0.92 on the industry apps.

Inter-store analysis literature has compared code practices,
growth, user download behaviour and consistency between
app stores such as Google, Blackberry, Apple andWindows.
Third party Android app stores have been found to host
apps that appear identical yet contain significant differences
to the official versions, a sign that theymay containmalware.

There are sources of non-technical information that repli-
cate information found on app stores, but provide a more
accessible means to gather the data. For example, the study
by Syer et al. [214] uses information on the number of down-
loads from AppBrain, a replication of the number of
installs bracket on Google Play (e.g., 1,000,000-5,000,000
installs appears on AppBrain as 1,000,000+). Ihm
et al. [107] combined download information on 10 social
networking apps from Google Play with the number of reg-
istered users on their respective websites. They found a
strong correlation between the two metrics.

11.2 Intra-Store

Jung et al. [113] assessed the differences between free and
paid apps on Apple’s Korean App Store. They found that
customer ratings were more critical to the survival of free
apps, and there is also benefit to getting an early entrant in
markets. In 2013 McDonnell et al. [158] studied 10 apps
using source code from github [75]. The Android platform
was shown to be evolving, with an average of 115 API
updates per month, due to which 28 percent of Android
references were out of date, and the median lag time to
update to support a new API was found to be 16 months.
The APIs used most were the ones updated most frequently,
yet interestingly API updates were more defect prone than
other changes in client code.

Apps in Google Play do not (at the time of writing) have
accessible information on their number of downloads, other
than ‘ranges’, such as the range 50-100. Zhong and Micha-
helles [252] analysed the distributions of download buckets
and ratings of 191,301 apps from Google Play. They found
that a small number of popular ‘blockbuster’ apps
accounted for the majority of app downloads, and also had
high ratings indicating customer satisfaction. Paid apps
achieved more success when they were cheaper, but expen-
sive professional apps had disproportionally high numbers
of downloads. The authors concluded that developers could
break into the higher download ranking positions by fulfill-
ing a niche market. Garg and Telang [71] compared paid
app demand in the Apple App Store, using download
ranks. They found that the top ranked paid app is down-
loaded 120-150 times more than the 200th ranked app.

Askalidis [11] studied the effects of sales promotions in
the Apple App Store on 162 apps. They found that rival
apps were able to benefit from a promotion, so long as their

promoted price was cheaper than their competition. They
authors also found that sales where apps became free, or
had easily redeemable digital discounts, were the most suc-
cessful. Sales were shown to have mixed effects on the rat-
ings of apps. G�omez et al. [77] proposed an app store
feature of automatically patching defective apps, which
they demonstrated by automatically fixing a defective app
mined from Google Play. Xie and Zhu [245] investigated the
practice of promoting apps through buying positive
reviews, via illicit “underground” services. The authors reg-
istered on eight such app promotion sites and exposed
approximately 30,000 promoted apps. Their tool, App-

Watcher, was used to collect information from 179,353 ran-
domly selected iOS apps, from which they mined 9,399,014
reviews. The authors reported on differences between data-
sets of promoted and random apps.

Corral and Fronza [47] studied 100 open source apps that
are available on the Google Play store. They performed cor-
relation and regression analyses between source code qual-
ity metrics and the store performance metrics number of
downloads, number of reviewers and average rating. The
authors found no strong correlation and no strong regres-
sion coefficients, rejecting their initial hypotheses that
source code quality plays a role in app success.

Source code quality has been shown to have no strong
correlation to app success for open source apps. How-
ever, factors such as price, sales promotions and catering
to a niche market may all play a factor in app success.

11.3 Recommendation

In 2014 Wenxuan and Airu [243] used information on the
number of downloads and numbers of reviews, as well as the
numbers of apps downloaded by and reviewed by participat-
ing users. This data was used as part of a recommendation
system called Interoperability-Enriched Recommendation
(IER), which enables them to recommend similar apps to a
user in the Windows Phone Store using data mined from
736,377 Google Play, Apple App Store, and Amazon App
Store apps. Liu et al. [141] also studied app recommendation
systems, by incorporating the level of privacy that the app
needs as well as user interests. They evaluated their approach
using 6,157 apps mined from Google Play, and found that
their recommender performed better when treating each app
functionwith different privacy allowances. They used the rat-
ing distribution over their dataset as the motivation for
modelling user preferencewith a Poisson distribution.

The Interoperability-Enriched Recommendation (IER)
system uses cross-store data to make app recommenda-
tions. Privacy allowances have also been used to enhance
app recommendation for Google Play.

11.4 Simulations

Lim and Bentley simulated the app store ecosystem using
an agent-based evolutionary model, in order to experiment
with different publicity strategies [130], [131], modelling
apps with infectious properties, so that they can spread after
being downloaded by a user. They found that an ‘app epi-
demic’ is most likely to occur when the app appears on the

MARTIN ET AL.: A SURVEY OF APP STORE ANALYSIS FOR SOFTWARE ENGINEERING 837



‘new apps’ chart. The authors then used the model to
explore different ranking algorithms [132]. The study simu-
lated users, and experimented with alternating time periods
for updating the “new apps” chart, and the degree to which
historical performance factors into the “top apps” chart. The
study found that the top apps chart performed best in terms
of overall downloads by incorporating fresh apps, and for
this to work it needed to incorporate less historical perfor-
mance data (also found later by Ruiz et al. [165]).

Lim et al. later simulated the ecosystem from a user’s
perspective [133], using collected usage information from
over 10,000 participants [129]. They modelled developer
strategies such as ‘innovator’ (who produces apps with ran-
dom features) and ‘copycat’ (who copies the app) [133].
They found that ‘optimiser’ (who improves on the original
‘innovator’ apps) and ‘copycat’ working together led to the
best overall fitness, provided that they represented a low
proportion of the overall modelled developer population.

An agent-based evolutionary model has been used by
multiple authors to simulate an app store. Authors have
studied such factors as ranking algorithms and the opti-
mal interaction between simulated developers.

Cocco et al. [44] extended the model used by Lim and
Bentley, and investigated additional ranking algorithms
and user behaviour. They explored store ranking algo-
rithms, and found that a 1 percent chance of a new app
appearing in the top charts leads to the highest downloads-
to-browse ratio.

11.5 Future Work

There are potential research opportunities to be found com-
paring stores, especially comparing the Windows Phone
Store against more well-studied stores such as Apple, Black-
berry and Google. Future studies may continue to build on
the store simulation work by Lim et al., and may extend
analysis to the success or evolution of less widely used
stores such as Windows or Blackberry.

12 SIZE AND EFFORT PREDICTION

Papers that predict size or effort based on the functionalities
offered by an app are discussed in this section, and are sum-
marised in Table 9. Many of the papers mine apps from
Google Play, and compare the resultant predicted size with
the actual size reported in the store and/or LOC (number of
Lines Of Code) of the apps.

The scale of size and effort prediction studies is relatively
small but, since the field has witnessed strong growth in
2015, it seems likely that the scale of studieswill grow in the
future.

In 2011 Sethumadhavan [206] discussed the application
of Function Point Analysis (FPA) to Android applications,
pointing out that compared with traditional desktop appli-
cations, mobile apps contain limited functionality, and often
functionality is merely a wrapper to system functionality.
Preuss [184], [185] then showed how FPA can be used for
the estimation of the cost of a mobile app, using the
approach on a case study Android application. In 2014 van
Heeringen and van Gorp [223] discussed how to use COS-
MIC [48], a second generation functional size measurement
method, in order to measure the functional size of mobile
apps. Abdullah et al. [1] discussed using the COSMIC
method to estimate game apps, using an intermediate repre-
sentation of required assets and functionality in the Uni-

ty3D game engine.
In 2015 D’Avanzo et al. [55] applied the COSMIC approach

to 8Google Play apps, and applied linear regression to the func-
tional point size in order to estimate the code size. By applying
leave-one-out cross validation, the authors showed that the
approach could accurately estimate code size based on func-
tionality alone, once trained. Francese et al. [66] used linear
regression to estimate the development effort needed, and the
number of GUI components, based on requirements alone. The
authors found, from a study on 23 Android applications, that
the estimates were accurate when trained on source code met-
rics such as classes, files and LOC. Ferrucci et al. [63] applied
theCOSMICapproach to 13Android applications, and showed
that functional size was strongly correlated with app size, and
that it could be used to accurately estimate the bytecode size of
an app. Ferrucci et al. [64] later compared the related
approaches by D’Avanzo et al. [55] and van Heeringen and
vanGorp [223] on their dataset of 13Android apps. They found
that functional size results were correlated with multiple app
size measures, but that the approach presented by D’Avanzo
et al. [55]wasmore accurate.

Function Point Analysis and the COSMIC method of
measuring the functional size of apps, have been used to
predict the size and effort of apps.

12.1 Future Work

Size and effort prediction is a relatively small section of app
store analysis, that we expect to continue to grow. Future
studies may extend to Apple, Windows and Blackberry
stores, and may seek to incorporate mined feature or API
information to increase their prediction accuracy. We also
expect predictive modelling to be used for estimating other
properties of mobile apps, such as faults and crashes.

TABLE 9
Chronological Summary of App Store Analysis Literature
Related to Size and Effort Prediction Showing the Authors,

Publication Year, Publication Venue, and the
Number of Apps Used in the Study

Authors [Ref], Year Venue No. apps

Sethumadhavan [206],’11 ISMA 6
Preuss [185], 2012 The IFPUG Guide to IT

& Software Measurement
1

Preuss [184], 2013 ICEAA 1
van Heeringen and
van Gorp [223], 2014

IWSM-MENSURA 0

Abdullah et al. [1],’14 ICOS 0
D’Avanzo et al. [55],’15 SAC 8
Francese et al. [66],’15 SEAA 23
Ferrucci et al. [63],’15 SEAA 13
Ferrucci et al. [64], 2015 PROFES 13

Mean 7
Median 6
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13 CLOSELY RELATED WORK

The following literature is important to the field of App Store
Analysis, yet does not quite fully meet our exact definition of
App Store Analysis. Nevertheless, we recognise that it would
be restrictive to apply our definition too rigorously at this
early stage in App Store Analysis. Furthermore, since this
work meets aspects of our definition we regard it as closely
related.We do not claim to comprehensively survey this liter-
ature, but provide it to add context to the App Store Analysis
literature discussed thus far in the survey.

13.1 User Surveys and Studies

There is a cross section of App Analysis studies which sur-
vey or study user behaviour and feedback, but the informa-
tion is not specific to observed apps, and is therefore not
combined with technical information.

In 2011 B€ohmer et al. [28] studied 4,100 Android users for
app usage statistics. This was done using AppSensor, an
application that monitors the usage of other apps on an
Android device. They found that the average application
usage session was less than 72 seconds long, and that smart-
phones were used for almost 60 minutes every day. The
type of application was found to differ between times of
day, such as news applications in the morning and games at
night. The exceptions to this rule were communication
apps, which were used throughout the day. In 2012, Ferreira
et al. [62] surveyed 4,035 Android user charging habits,
using an app to record their behaviour. Lin et al. [134] con-
ducted a survey on 179 Android users, that asked about
their expectations of app purpose and sensitive data han-
dling. They found that the problem of apps not meeting
expectations or utilising sensitive data unexpectedly was
prevalent, and outlined potential store interface changes to
rectify the issue.

Shi et al. [209] developed a mobile app recommendation
system that works by learning user preferences. Similarly,
Zhu et al. [258] mined context-aware user preferences using
log information. Rein and M€unch [189] carried out a user
study involving mock purchasing for planned app features,
in order to determine both the priority and ideal pricing for
the features. In 2013, Oh et al. [174] surveyed 100 app users
and found that users were more likely to take a passive
approach and delete apps rather than reviewing or contact-
ing developers, but when they took an active approach,
reviewing was the most popular approach. In 2014 Tan
et al. [216] surveyed users and developers of the Apple App
Store, regarding the iOS permission request explanation fea-
ture. The feature was infrequently used, but the survey
found that users would be significantly more likely to
accept a permissions request if an explanation was given.

In 2015, Lim et al. [129] surveyed app users from 15 coun-
tries to understand how usage of apps and app stores differed
by region. They found that behaviour did differ significantly
by region in many regards. In Eastern regions, such as China
and India, a greater proportion of users participated in recom-
mendation and rating of apps, almost 4 times the proportion
of Western users. Additionally, the survey found that app
abandonment was higher than average in Brazil and the UK,
and lower than average in Japan and France, indicating that
differenceswere influenced bymore than global region.

13.2 Related Security

We present some of the key app security studies that do not
perform App Store Analysis, but that influenced some of
the papers described in Section 10.

Enck et al. [60] introduced Kirin, an Android app certifi-
cation tool for flagging potential malware using a set of rules.
In 2010 Enck et al. introduced TaintDroid [59], a tool for
tracking the flow of sensitive information within an Android
app. TaintDroidwas one of the first static analysis tools for
Android and was built on extensively in subsequent work.
Another information flow extraction tool was created by Arzt
et al. [10] in 2014, calledFlowDroid. This tool statically analy-
ses information flow to find all possible flows. Mao et al. [151]
introduced Sapienz, anAndroid testing tool that the authors
applied to the top 1,000Google Play apps, revealing 558 previ-
ously undetected crashing test causes.

Some authors have used sets mined from Google Play as
benign app sets to test against knownmalware: Xu et al. [246],
Rastogi et al. [187], Jing et al. [110], Arp et al. [9], Wang
et al. [239], Liu and Liu [144], Roy et al. [191] and Khanmo-
hammadi et al. [120]. Ho et al. [97] used the top 10most popu-
lar apps in each category as a benign set, upon which to test
their framework for root kit exploit containment.

Other authors have used sets mined from app stores to test
their tools on large real-world datasets: Barrera et al. [17], Jeon
et al. [108], Grace et al. [82], Crussell et al. [50], [51], Ravindra-
nath et al. [188], von Rhein et al. [232], Li et al. [127], Huang
et al. [103], Cen et al. [34], Liu et al. [142] and Bastani et al. [19].

13.3 Reports

Initial studies, such as the 2010 work by Sharma et al. [208],
evaluated the size and growth of the apps market up to the
time. In 2011 Butler [31] conducted a study on the Android
system, highlighting how it was changing mobile develop-
ment by enabling people with no prior development experi-
ence to release an app. In 2012 Shuler [210] published a
report on the Apple App Store Education category, compar-
ing it with their previous study in 2009. They found that
over 72 percent of the top-selling apps in this category tar-
geted children under 11 years of age, a number that had sig-
nificantly increased from 47 percent in 2009. Additionally,
the average price of an app had risen by 1 USD since 2009,
and the majority of top Education developers in 2012 had
not been present in 2009.

The 2013 report by Vision Mobile [230] on app industry
monetary value and growth found that 72 percent of develop-
ers are dedicated to Android. iOS and Android developers
earned on average double that of developers of other plat-
forms, and iOS was considered the highest priority platform.
As of 2013, iOS, Android and Blackberry were the leading
platforms, despite Blackberry’s decline, and the launch of the
prospect Windows Phone Store in late 2010. Vision Mobile
have released yearly reports since 2012 on aspects such as
developer share, industry revenue and growth. The organisa-
tion gathers information by surveying developersworldwide.

13.4 Mining Tools

Due to the plethora of analysis and research opportunities
presented by app store data, and indeed also due to the dif-
ficulties involved with mining app stores, several mining
tools have been published.
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In 2013, Bakar et al. [16] published OSSGrab, which
mines HTML pages from Google Play. The tool was built in
order to facilitate their app permissions study [14]. In 2014,
Viennot et al. introduced the PlayDrone Google Play
crawler [225], to facilitate their large scale API study [226].

The Android Malware Genome Project [253] is a popular
source of malware applications for testing security tools. In
2015 Krutz et al. [123] made available a dataset containing
1,179 open source applications. The AndroZoo project pro-
vides a large collection of Android APKs [221].

14 GUIDELINES FOR FUTURE APP STORE

ANALYSIS AUTHORS

In this survey we have reported on the general content of
studies, as well as the scale of apps used, and the store
used. Our previous overview of review analysis [154] syn-
thesised the number of reviews used, and the type of
reviews dataset. In future surveys it may be possible to syn-
thesise more information from future literature. Such richer
analysis, facilitated by richer data reporting, could lead to
new insights and directions in the field of App Store Analy-
sis. We therefore present the following guidelines for data
to include, as suggestions for future App Store Analysis
work, to help facilitate future studies such as SLRs:

App Stores used to gather collections of apps.
Total number of apps used in the study.
Breakdown of free/paid apps used in the study, including infor-

mation regarding in-app-purchases where possible.
Categories used, with breakdown of app counts in each

category.
Indication of whether API usage was extracted from the studied

apps to facilitate the study. Indication of whether code was
needed from apps to facilitate the study.

Indication of whether open source apps were used exclusively for
all of part of the study.

Total number of reviews used, if any.
Breakdown of sampling dataset used [154] where applicable,

particularly when reviews are used.
Description of ratings and user feedback categories, including

trends and response ranges.
Details of statical analysis techniques that were used in the

study.

15 FUTURE WORK

Here we discuss potential future avenues of research for
app store analysis. Other such discussions can be found in
the works by Al-Subaihin et al. [3], and Nagappan and
Shihab [171].

Expectations. We expect to see the scale of app samples
used increase in the years to come, as app stores increase in
scale. Google Play and Apple App Store have both exceeded
1.5 million apps, and already there are studies featuring
over 1 million apps. We also expect to see more longitudinal
studies: the sub-fields for prediction and release engineer-
ing studies lend themselves particularly well to longitudinal
data, and both of these fields grew in 2015.

As many studies in Section 10 have shown, app cloning
and replication is a common problem in app stores. It may be
the case that app stores will not grow indefinitely, and may

even shrink in size following a consolidation of unique apps
present, possibly using the some of the techniques discussed
in this survey. In the meantime, as app stores continue to
grow, app discovery presents a crucial problem to newer
apps or developers, and so we may expect to see an effort to
improve discovery, such as a greater-tiered category system.

Opportunities. An avenue for future research concerns the
extraction of non-technical information from app stores,
and extracting samples of apps (cognisant of the App Sam-
pling Problem). Cross-store studies are also an avenue for
future research. Few studies have compared multiple app
stores, yet there is potential to learn the differences between
dominant stores, and lesser known or fledgling stores.

App stores provide us with with the unique opportunity
to leverage customer, business and technical aspects of
applications in the same place. Future app store analysis
studies may seek to further combine all of these aspects to
provide greater insights into the socio-technical business of
developing for app stores.

Problems. Restricted data availability in app stores
presents issues for researchers. We encourage app store
owners not to impose such restrictions as: limiting the
ranked list of apps to the top few hundred; limiting reviews
to the most recent only. Such restrictions could reduce the
scope and accuracy of future App Store Analysis studies. In
addition, more detailed breakdowns of the prices attached
to free apps that utilise in-app-purchases could lead to valu-
able research findings for app developers.

A concept that could be extremely valuable to research-
ers is that of a centralised repository of app store data that
can be freely accessed, consisting of apps that are not just
“free and open source”. However, legal and copyright
issues present potent barriers to the construction of such a
repository from being created at present, and so this
remains an open problem.

16 CONCLUSION

We have surveyed the published literature in App Store
Analysis for software engineering, and identified the key
sub-fields of App Store Analysis to date: “API analysis”,
“feature analysis”, “release engineering”, “review analysis”,
“security analysis”, “store ecosystem comparison”, and
“size and effort prediction”. Newer sub-fields such as
“release engineering” and “size and effort prediction” have
shown strong growth in 2015, suggesting that they
might eventually overtake other smaller sub-fields such as
“store ecosystem”.

The scale of app samples used in studies has increased:
in 2015 the number of studies using between 10,000 and
100,000 apps was approximately three times that of 2014.
We have observed the emergence of new areas of App Store
Analysis, and the progression from conceptual ideas to
practical empirical studies that apply and refine them.

Overall, we find a surprisingly wide and diverse set of
techniques and applications in App Store Analysis, highlight-
ing the health and future potential of the field. App Store
Analysis opens up an exciting new vista for software engi-
neering research which can connect and deeply understand
relationships between social, technical and business facing
aspects of software development, deployment and uptake in
ways previously impossible due to paucity of data.
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